Describing faces in plane triangulations

O.V. Borodin ${ }^{\text {a,b }}$, A.O. Ivanova ${ }^{\text {c,** }}$, A.V. Kostochka ${ }^{\text {d,a }}$
${ }^{\text {a }}$ Sobolev Institute of Mathematics, Novosibirsk 630090, Russia
${ }^{\text {b }}$ Novosibirsk State University, Novosibirsk 630090, Russia
${ }^{\text {c }}$ Ammosov North-Eastern Federal University, Yakutsk, 677891, Russia
${ }^{\text {d }}$ University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA

ARTICLE INFO

Article history:

Received 18 July 2013
Accepted 26 November 2013
Available online 14 December 2013

Dedicated to Douglas R. Woodall on the

 occasion of his 70th birthday
Keywords:

Planar graph
Plane triangulation
Structure properties
3-polytope
Lebesgue's theorem
Weight

ABSTRACT

Lebesgue (1940) proved that every plane triangulation contains a face with the vertexdegrees majorized by one of the following triples:

$$
\begin{aligned}
& (3,6, \infty),(3,7,41),(3,8,23),(3,9,17),(3,10,14),(3,11,13) \\
& (4,4, \infty),(4,5,19),(4,6,11),(4,7,9),(5,5,9),(5,6,7)
\end{aligned}
$$

Jendrol' (1999) improved this description, except for $(4,4, \infty)$ and (4, 6, 11), to
$(3,4,35),(3,5,21),(3,6,20),(3,7,16),(3,8,14),(3,9,14),(3,10,13)$, $(4,4, \infty),(4,5,13),(4,6,17),(4,7,8),(5,5,7),(5,6,6)$
and conjectured that the tight description is
$(3,4,30),(3,5,18),(3,6,20),(3,7,14),(3,8,14),(3,9,12),(3,10,12)$, $(4,4, \infty),(4,5,10),(4,6,15),(4,7,7),(5,5,7),(5,6,6)$.

We prove that in fact every plane triangulation contains a face with the vertex-degrees majorized by one of the following triples, where every parameter is tight:
$(3,4,31),(3,5,21),(3,6,20),(3,7,13),(3,8,14),(3,9,12),(3,10,12)$, $(4,4, \infty),(4,5,11),(4,6,10),(4,7,7),(5,5,7),(5,6,6)$.
© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The degree $d(v)$ of a vertex $v(r(f)$ of a face f) in a plane map M is the number of edges incident with it (loops are counted twice in $d(v)$, and cut-edges are counted twice in $r(f)$). By Δ and δ denote the maximum and minimum vertex degrees of M, respectively. A k-vertex (k-face) is a vertex (face) with degree k; a k^{+}-vertex has degree at least k, etc.

It is well known that each normal plane map, in which loops and multiple edges are allowed, but the degree of each vertex and face is at least three, has a 5^{-}-vertex and a 5^{-}-face. From now on, M denotes a normal plane map.

As proved by Steinitz [31], 3-polytopes are in 1-1 correspondence with 3-connected planar graphs. Plane triangulations are triangulated 3-polytopes; in particular, plane triangulations have neither loops nor multiple edges.

[^0]The weight of a face in M is the degree-sum of its boundary vertices, and $w(M)$, or simply w, denotes the minimum weight of 5^{-}-faces in M.

Let a face f be incident with vertices $x_{1}, \ldots, x_{r(f)}$, where $d\left(x_{1}\right) \leq d\left(x_{2}\right) \leq \cdots \leq d\left(x_{r(x)}\right)$. We say that f is a face of type $\left(k_{1}, \ldots, k_{r(f)}\right)$, or simply a $\left(k_{1}, \ldots, k_{r(f)}\right)$-face, where $k_{1} \leq \cdots \leq k_{r(f)}$, if $d\left(x_{1}\right)=k_{1}, d\left(x_{2}\right)=k_{2}$, and $d\left(x_{i}\right) \leq k_{i}$ whenever $3 \leq i \leq r(f)$. In other words, the boundary of a $\left(k_{1}, \ldots, k_{r(f)}\right)$-face has a k_{1}-vertex, another vertex of degree k_{2}, yet another vertex of degree at most k_{3}, and so on. By a $\left(k_{1}, k_{2}^{-}, k_{3}, \ldots, k_{r(f)}\right)$-face we mean a $\left(k_{1}, l_{2}, k_{3}, \ldots, k_{r(f)}\right)$-face with $k_{1} \leq l_{2} \leq k_{2}$, etc.

Back in 1940, Lebesgue [23] gave an approximate description of 5^{-}-faces in normal plane maps.
Theorem 1 (Lebesgue [23]). Every normal plane map has a 5--face of one of the following types:
$\left(3,6^{-}, \infty\right),(3,7,41),(3,8,23),(3,9,17),(3,10,14),(3,11,13)$,
$(4,4, \infty),(4,5,19),(4,6,11),(4,7,9),(5,5,9),(5,6,7)$,
$(3,3,3, \infty),(3,3,4,11),(3,3,5,7),(3,4,4,5),(3,3,3,3,5)$.

Theorem 1, along with other ideas in Lebesgue [23], has a lot of applications to plane graph coloring problems (first examples of such applications and a recent survey can be found in $[8,28,30]$).

Some parameters of Lebesgue's Theorem 1 were improved for certain subclasses of plane graphs. In 1963, Kotzig [21] proved that every plane triangulation with $\delta=5$ satisfies $w \leq 18$ and conjectured that $w \leq 17$. In 1989, Kotzig's conjecture was confirmed by Borodin [2] in a more general form.

Theorem 2 (Borodin [2]). Every normal plane map with $\delta=5$ has $a(5,5,7)$-face or $a(5,6,6)$-face, where all parameters are tight.

Theorem 2 also confirmed a conjecture of Grünbaum [16] of 1975 that the cyclic connectivity (defined as the minimum number of edges to be deleted from a graph to obtain two components each containing a cycle) of every 5-connected planar graph is at most 11 , which is tight (a bound of 13 was earlier obtained by Plummer [29]).

We note that a 3-polytope with $(4,4, \infty)$-faces can have unbounded w, as follows from the n-pyramid. The same is true concerning ($3,3,3, \infty$)-faces: take the double $2 n$-pyramid and delete all even upper spokes and all odd lower ones to obtain a quadrangulation having only ($3,3,3,2 n$)-faces.

For plane triangulations without 4-vertices, Kotzig [22] proved $w \leq 39$, and Borodin [4], confirming Kotzig's conjecture in [22], proved $w \leq 29$, which is best possible due to the dual of the twice-truncated dodecahedron. This was strengthened by Borodin [5] as follows: either there is a triangle of weight at most 17, or a triangle of weight at most 29 incident with a 3 -vertex. Borodin [6] further shows that each triangulated 3-polytope without ($4^{-}, 4, \infty$)-faces satisfies $w \leq 29$, and that for triangulations without $(4,4, \infty)$-faces there is a sharp bound $w \leq 37$.

Note that $29=3+5+21=3+6+20$, so already $[4]$ implies that the terms $(3,5,21)$ and $(3,6,20)$ could be expected to appear in a tight description of faces in plane triangulations, where the sharpness of 20 in $(3,6,20)$ follows from the dual of the twice-truncated dodecahedron while the sharpness of 21 in $(3,5,21)$ is first established in the present paper (see Fig. 2). A similar remark concerns the tight term $(3,4,30)$ that comes from Borodin [6].

For arbitrary normal plane maps, Theorem 1 yields $w \leq \max \{51, \Delta+9\}$. Horňák and Jendrol' [17] strengthened this as follows: if there are neither $\left(4^{-}, 4, \infty\right)$-faces nor (3,3,3, $)$-faces, then $w \leq 47$. Borodin and Woodall [12] proved that forbidding ($3,3,3, \infty$)-faces implies $w \leq \max \{29, \Delta+8\}$.

Also, Horňák and Jendrol' [17] consider the minimum, w^{*}, of face weights over all faces instead of over only 5^{-}-faces, as was being done before beginning with Lebesgue [23]. Clearly, $w^{*} \leq w$. They proved [17] that any normal map avoiding $\left(4^{-}, 4, \infty\right)$-faces and $(3,3,3, \infty)$-faces satisfies $w^{*} \leq 32$.

For quadrangulated 3-polytopes, Avgustinovich and Borodin [1] improved the description of 4 -faces implied by Lebesgue's Theorem as follows: $(3,3,3, \infty),(3,3,4,10),(3,3,5,7),(3,4,4,5)$.

Some other results related to Lebesgue's Theorem can be found in the already mentioned papers, in a recent survey by Jendrol' and Voss [19], and also in [3,5,11-15,18,20,24-27,32].

In 2002, Borodin [7] strengthened nine parameters in Lebesgue's Theorem 1 without changing the others (the entries marked by an asterisk are best possible, see [7]).

Theorem 3 (Borodin [7]). Every normal plane map has a 5--face of one of the following types:
$\left(3,6^{-}, \infty^{*}\right),\left(3,7^{*}, 22\right),\left(3,8^{*}, 22\right),\left(3,9^{*}, 15\right),\left(3,10^{*}, 13\right),\left(3,11^{*}, 12\right)$,
$\left(4,4, \infty^{*}\right),\left(4,5^{*}, 17\right),\left(4,6^{*}, 11\right),\left(4,7^{*}, 8\right),\left(5,5^{*}, 8\right),\left(5,6,6^{*}\right)$,
$\left(3,3,3, \infty^{*}\right),\left(3,3,4^{*}, 11\right),\left(3,3,5^{*}, 7\right),\left(3,4,4,5^{*}\right),\left(3,3,3,3,5^{*}\right)$.

In particular, to check the tightness of $\left(3,6^{-}, \infty^{*}\right)$ in Theorems 1 and 3 we may use the following construction (Borodin [5]), derived from the double n-pyramid: join each vertex of a cycle $C_{n}=x_{1} \ldots x_{n}$ to n-vertices v_{j} with $1 \leq j \leq 2$, delete all edges $x_{i} x_{i+1}$ (addition modulo n), and for each i and j add a vertex $y_{i, j}$ joined to x_{i}, x_{i+1}, and v_{j}. In the 3-polytope obtained, every 3 -face is incident with a 3 -vertex, 6 -vertex, and $2 n$-vertex, while every 4^{+}-face is a 4 -face incident with two 3 -vertices and two 6-vertices.

Note that for plane triangulations the term $\left(3,6^{-}, \infty\right)$ is not tight, as follows from Theorems 5 and 8 below.
We can see already from Lebesgue's Theorem 1 that if $\delta \geq 4$, then there is either a (4,4, ∞)-face, or a 3-face of bounded weight. From Theorem 3 we have a bit more, and the ultimate result in this direction is as follows.

Theorem 4 (Borodin-Ivanova [9]). Every normal plane map without 3-vertices has a 3-face of one of the following types, where all parameters are sharp:

$$
(4,4, \infty),(4,5,14),(4,6,10),(4,7,7),(5,5,7),(5,6,6)
$$

In 1999, Jendrol' [18] improved the description of faces that comes from Lebesgue's Theorem 1 for the case of plane triangulations, except $(4,4, \infty)$ and $(4,6,11)$.

Theorem 5 (Jendrol' [18]). Every plane triangulation of order at least 5 has a face of one of the following types:

$$
\begin{aligned}
& (3,4,35),(3,5,21),(3,6,20),(3,7,16),(3,8,14),(3,9,14),(3,10,13), \\
& (4,4, \infty),(4,5,13),(4,6,17),(4,7,8),(5,5,7),(5,6,6) .
\end{aligned}
$$

The next conjecture was suggested by Jendrol' [18], and it also appears in a recent survey by Jendrol'-Voss [19, Conjecture 4.9].

Conjecture 6 (Jendrol' [18]). Every plane triangulation of order at least 5 has a face of one of the following types, where every parameter is tight:

$$
\begin{aligned}
& (3,4,30),(3,5,18),(3,6,20),(3,7,14),(3,8,14),(3,9,12),(3,10,12), \\
& (4,4, \infty),(4,5,10),(4,6,15),(4,7,7),(5,5,7),(5,6,6)
\end{aligned}
$$

Recently, the first counterexample to Conjecture 6 was constructed in Borodin-Ivanova [10], as a corollary of the following theorem, which shows that $(4,5,11)$ can be attained.

Theorem 7 (Borodin-Ivanova [10]). Every plane triangulation with $\delta \geq 4$ has a face of one of the following types, where all parameters are sharp:

$$
(4,4, \infty),(4,5,11),(4,6,10),(4,7,7),(5,5,7),(5,6,6)
$$

Comparing Theorems 4 and 7, we see that 3-faces are more restricted in the class of plane triangulations than in arbitrary normal plane maps.

The purpose of this paper is to characterize the faces of arbitrary plane triangulations.
Theorem 8. Every plane triangulation of order at least 5 has a face of one of the following types:

(Ta) $(3,4,31)$,	$(\mathrm{Th})(4,4, \infty)$,	$(\mathrm{Tl})(5,5,7)$,
(Tb) $(3,5,21)$,	$(\mathrm{Ti})(4,5,11)$,	$(\mathrm{Tm})(5,6,6)$.
(Tc) $(3,6,20)$,	$(\mathrm{Tj})(4,6,10)$,	
(Td) $(3,7,13)$,	$(\mathrm{Tk})(4,7,7)$,	
(Te) $(3,8,14)$,		
(Tf) $(3,9,12)$,		
(Tg) $(3,10,12)$,		

Moreover, all parameters in (Ta)-(Tm) are tight.
In particular, we see that Theorem 8 extends or strengthens the above mentioned results in [2,4,6,10,18,21,22] and corrects the terms $(3,4,30),(3,5,18),(3,7,14),(4,5,10)$, and $(4,6,15)$ in Conjecture 6.

2. The tightness of Theorem 8

The bounds in Theorem 8 are all sharp, as follows from the constructions in Figs. 1-6.
Namely, in Fig. 1 we see how to transform the snub dodecahedron (that is a 5-regular polyhedron in which every vertex is incident with one pentagon and four triangles) into a triangulation with all vertices having degree from $3,4,5,6,8$, and at

Fig. 1. A construction with no faces of types other than $(3,4,31)$ in Theorem 8 , showing the tightness of (Ta).

Fig. 2. A construction with only (3, 5, 21)-faces to justify (Tb).
least 31 and such that there are no 3-faces of the types mentioned in Theorem 8 other than $(3,4,31)$. A similar construction with only $(3,5,21)$-faces, justifying the tightness of (Tb), is given in Fig. 2.

In Fig. 3 we see simple constructions showing the tightness of (Tc), (Te), (Tg), and (Tj) $-(\mathrm{Tm})$. For (Tm), we start from the dodecahedron, for (Tc) and (Tj) from the icosahedron, and for (Tk) from the octahedron. To obtain a construction for (Te), we put a 3 -vertex into each face of the previously obtained construction confirming the tightness of (Tk). A triangulation justifying (Tl) is obtained by gluing two copies shown in Fig. 3(Tl) along the outside cycle. Recall that the tightness of (Th) follows from the above mentioned double pyramid.

Fig. 4 represents a replacement for each face of the icosahedron (a 5-regular triangulation on twelve vertices) such that the resulting triangulation has vertices of degree 3,7 , and at least 13 only. More specifically, the corner vertices have degree 15 , and there are three 13 -vertices, each incident with three faces avoiding 3 -vertices (shadowed). Furthermore, if a face is incident with a 3 -vertex, then it is incident with a 7 -vertex and a 13^{+}-vertex. This construction confirms the tightness of (Td).

In Fig. 5 we see one eighth of a construction derived from the octahedron that has only (3,9,12)-faces and confirms the tightness of (Tf).

Finally, Fig. 6 represents a plane triangulation which arises from the snub dodecahedron and confirms the tightness of (Ti) in Theorem 8.

3. Proving the main statement of Theorem 8

A face is hard if it is not incident with a 3-vertex. Suppose T^{*} is a counterexample to Theorem 8 with the fewest hard faces.

Fig. 3. Constructions showing the tightness of $(\mathrm{Tc}),(\mathrm{Te}),(\mathrm{Tg})$, and $(\mathrm{Tj})-(\mathrm{Tm})$.

3.1. Simple structural properties of the counterexample T^{*}

By $v_{1}, \ldots, v_{d(v)}$ we denote the neighbors of a vertex v in a cyclic order.
We will use the following simple structural properties of T^{*}.
(SP1) No 3-vertex is adjacent to a 3-vertex.
Indeed, $T^{*} \neq K_{4}$ and T^{*} has no multiple edges.
(SP2) A 4-vertex has at most one neighbor of degree 3.
This follows from the absence of loops and multiple edges in T^{*}.
(SP3) A $(2 k+1)$-vertex v with $2 \leq k \leq 5$ cannot have neighbors v_{1} and $v_{2 k-1}$ of degree 3 .
Indeed, suppose $d\left(v_{1}\right)=d\left(v_{2 k-1}\right)=3$. Note that since $d\left(v_{2 k}\right)$ and $d\left(v_{2 k+1}\right)$ are sufficiently large due to (Tb), (Td), (Tf), and (Tg), adding a vertex z in the face $v v_{2 k} v_{2 k+1}$ followed by joining z to $v, v_{2 k}$, and $v_{2 k+1}$ results in a new counterexample with fewer hard faces than T, a contradiction.
(SP4) A $(2 k+1)$-vertex v with $2 \leq k \leq 5$ cannot have k neighbors of degree 3 .
This follows immediately from (SP3).

Fig. 4. One twentieth of the icosahedron-like triangulation with only (3, 7, 13)-faces confirming the tightness of (Td).

Fig. 5. This replacement for every face of the octahedron produces only (3, 9, 12)-faces, as required in (Tf).

3.2. Discharging

The sets of vertices, edges, and faces of T^{*} are denoted by V, E, and F, respectively. Euler's formula $|V|-|E|+|F|=2$ for T^{*} implies

$$
\begin{equation*}
\sum_{v \in V}(d(v)-6)+\sum_{f \in F}(2 r(f)-6)=-12 \tag{1}
\end{equation*}
$$

We assign a charge $\mu(v)=d(v)-6$ to every vertex v and $\mu(f)=0$ to every face f, so only 5^{-}-vertices have a negative charge. Using the properties of T^{*} as a counterexample, we define a local redistribution of charges, preserving their sum, such that the new charge $\mu^{\prime}(x)$ is non-negative whenever $x \in V \cup F$. This will contradict the fact that the sum of the new charges is, by (1), equal to -12 .

First we give a few definitions concerning 7-vertices.

Fig. 6. A construction (Borodin-Ivanova [9]) with only (4, 5, 11)-faces, as in (Ti).
A 7-vertex v is poor if $d\left(v_{1}\right)=4,4 \leq d\left(v_{3}\right) \leq 5$, and $d\left(v_{5}\right)=5$. By a 7_{p}-vertex we mean a poor vertex. A 7_{p}^{4}-vertex or 7_{p}^{5}-vertex stands for a poor vertex with $d\left(v_{3}\right)=4$ or $d\left(v_{3}\right)=5$, respectively. A 7_{p}-vertex is coupled if it is adjacent to a 7_{p}-vertex (a coupled 7_{p}^{4}-vertex is shown in Fig. 7(R4b1); for a coupled 7_{p}^{5}-vertex see Fig. 7(R4b2)).

A 7-vertex v is bad if $d\left(v_{4}\right)=d\left(v_{6}\right)=3, d\left(v_{1}\right)=7, d\left(v_{2}\right)=5$, and there is a face $v_{2} v_{3} z$ with $z \neq v$ and $d(z) \geq 5$ (see Fig. 7 (R4c)). Note that $d\left(v_{3}\right) \geq 14$ and $d\left(v_{7}\right) \geq 14$ here due to (Td).

We use the following rules of discharging (see Fig. 7):
R1. Every 3-vertex v receives the following charge from its neighbors:
(a) $\frac{3}{2}$ from each of v_{2} and v_{3} if $d\left(v_{1}\right) \leq 6$;
(b) $\frac{2}{3}$ from v_{1} and $\frac{7}{6}$ from each of v_{2} and v_{3} if $d\left(v_{1}\right)=7$;
(c) $\frac{1}{2}$ from v_{1} and $\frac{5}{4}$ from each of v_{2} and v_{3} if $d\left(v_{1}\right)=8$;
(d) $\frac{3}{4}$ from v_{1} and $\frac{9}{8}$ from each of v_{2} and v_{3} if $d\left(v_{1}\right)=9$;
(e) $\frac{4}{5}$ from v_{1} and $\frac{11}{10}$ from each of v_{2} and v_{3} if $d\left(v_{1}\right)=10$;
(f) 1 from each neighbor if v has no 10^{-}-neighbors.

R2. If T is a face $u v w$ with $d(v)=4$ and $d(u) \geq 8$, then v receives from u through T :
(a) $\frac{1}{2}$ if $d(w) \leq 6$;
(b) $\frac{1}{4}$ if $d(w)=7$, and v also receives $\frac{1}{2}$ from w along the edge $w v$;
(c) $\frac{1}{4}$ if $d(w) \geq 8$ (and $\frac{1}{4}$ from w by symmetry), with the following exception (c^{*}).
(c*) If $d\left(v_{1}\right)=3, d\left(v_{2}\right) \geq 32, d\left(v_{3}\right) \geq 13$, and $d\left(v_{4}\right) \geq 32$, then v receives $\frac{1}{2}$ from v_{3} through each of the faces $v_{2} v v_{3}$ and $v_{3} v v_{4}$, and nothing from v_{2} and v_{4} through these faces.
R3. If T is a face $u v w$ with $d(v)=5$ and $d(u) \geq 8$, then v receives from u through T :
(a) $\frac{1}{8}$ if $d(w)=5$ and $d(u) \leq 11$;
(b) $\frac{1}{4}$ if $d(w) \geq 6$ and $d(u) \leq 11$;
(c) $\frac{1}{4}$ if $d(w)=5$ and $d(u) \geq 12$;
(d) $\frac{1}{2}$ if $d(w) \geq 6$ and $d(u) \geq 12$, except for (d^{*});
(d^{*}) $\frac{1}{4}$ if $d(w)=7$ and there is a face $u v^{\prime} w$ with $d\left(v^{\prime}\right)=3$.
R4. A 7-vertex v gives to its 5-neighbor v_{2} the following charge.
(a) If v is neither bad nor coupled poor while $d\left(v_{1}\right) \geq 6$, then
(a1) $\frac{1}{4}$ when $d\left(v_{3}\right) \geq 8$, or
(a2) $\frac{1}{3}$ when $d\left(v_{3}\right) \leq 7$ and $d\left(v_{1}\right) \leq 7$.
(b) If v and v_{1} are coupled poor 7-vertices (and hence $d\left(v_{6}\right)=4$), then
(b1) $\frac{1}{8}$ if $d\left(v_{4}\right)=4$, or
(b2) $\frac{3}{8}$ if $d\left(v_{4}\right)=5$, in which case $\frac{1}{4}$ is also given by v to v_{4}.
(c) $\frac{1}{6}$ if v is a bad vertex.

R5. A 7-vertex v receives the following charge from a 8^{+}-vertex v_{2} through the face $v_{1} v v_{2}$:
(a) $\frac{1}{4}$ if $d\left(v_{1}\right)=4$;
(b) suppose $d\left(v_{3}\right)=3, d\left(v_{1}\right)=5$, and there is a face $v_{1} v^{\prime} v_{2}$ with $v^{\prime} \neq v$; then
(b1) $\frac{1}{3}$ if $d\left(v^{\prime}\right) \leq 4$, or
(b2) $\frac{1}{4}$ if $d\left(v_{4}\right) \geq 5$;

R1

(21+)

(14+)

(15 ${ }^{+}$)

$\left(13^{+}\right)$

$\left(13^{+}\right)$

11^{+}
R2

$\left(32^{+} \vee 12^{+} \vee 11^{+}\right)$

exception to R2c

R3
(a)

exception to R3d

Fig. 7. Rules of discharging.
(c) suppose $d\left(v_{1}\right)=6$ or $d\left(v_{1}\right) \geq 8$; then
(c1) $\frac{1}{4}$ if $d\left(v_{2}\right) \leq 13$, or
(c2) $\frac{1}{3}$ if $d\left(v_{2}\right) \geq 14$;
(d) $\frac{1}{4}$ if $d\left(v_{1}\right)=7$ and $d\left(v_{2}\right) \geq 12$;
(e) suppose $d\left(v_{1}\right)=7$ and $d\left(v_{2}\right) \leq 11$, then
(e1) $\frac{1}{4}$ if v_{1} is poor but not coupled, or
(e2) $\frac{1}{8}$ otherwise.

Fig. 8. To Case 3.

3.3. Proving $\mu^{\prime}(x) \geq 0$ whenever $x \in V \cup F$

If f is a face in T^{*}, then f does not participate in discharging, and so $\mu^{\prime}(v)=\mu(f)=2 \times 3-6=0$.
Now let v be a vertex in T^{*}.
Case 1. $d(v)=3$. Since v receives the total of precisely 3 from its neighbors by R1, we have $\mu^{\prime}(v)=3-6+3=0$.
Case 2. $d(v)=4$. By R2, v receives $\frac{1}{2}$ through each incident face not incident with a 7 -vertex. If $d\left(v_{1}\right)=7$, then v receives
$\frac{1}{2}$ from v_{1} and $\frac{1}{4}$ through each of the faces $v_{1} v v_{2}$ and $v_{1} v v_{4}$, so we have $\mu^{\prime}(v)=4-6+2=0$.
Case 3. $d(v)=5$. Since $\mu(v)=-1$, we have to check that v receives a total of at least 1 from its neighbors v_{1}, \ldots, v_{5}. Some situations arising in Case 3 are shown in Fig. 8.

Subcase 3.1. $d\left(v_{1}\right) \leq 4$ and $d\left(v_{3}\right) \leq 4$ (see Fig. $8(\mathrm{a})$). Here, $d\left(v_{4}\right) \geq 12$ and $d\left(v_{5}\right) \geq 12$ by(Ti), so v receives $\frac{1}{2}$ from each of v_{4} and v_{5} through face $v v_{4} v_{5}$ by R3d.

Subcase 3.2. $d\left(v_{2}\right) \leq 4$ and $d\left(v_{4}\right) \geq 5$. Now $d\left(v_{1}\right) \geq 12$ and $d\left(v_{3}\right) \geq 12$. If $d\left(v_{4}\right)=5$, then $d\left(v_{5}\right) \geq 8$ by (Tl), so v through face $v v_{1} v_{5}$ receives $\frac{1}{2}$ from v_{1} by R3d and at least $\frac{1}{4}$ from v_{5} by R3b. Furthermore, v receives $\frac{1}{4}$ from v_{3} through face $v v_{3} v_{4}$ by R3c.

Suppose $d\left(v_{4}\right) \geq 6$ and $d\left(v_{5}\right) \geq 6$ (in fact either $d\left(v_{4}\right) \geq 7$ or $d\left(v_{5}\right) \geq 7$ due to (Tm)). By symmetry, it suffices to check that v receives at least $\frac{1}{2}$ from v_{3} and v_{4} together. If R3d* is not applied to v_{3}, then v receives $\frac{1}{2}$ from v_{3} through face $v v_{3} v_{4}$ by R3d, so suppose it is (see Fig. 8(b)). If v receives at least $\frac{1}{4}$ from v_{4}, then we are done since v receives at least $\frac{1}{4}$ from v_{3} by R3(c-d*). According to R4, this does not happen only if v_{4} is either a coupled 7_{p}^{4}-vertex or a bad 7 -vertex.

Note that v_{4} is not poor since it has a 3-neighbor. Finally, suppose that v_{4} is a bad 7 -vertex (see Fig. 8(b) again). However, v_{4} cannot give $\frac{1}{6}$ to v by R4c since this requires $d\left(v_{2}\right) \geq 5$, contrary to the above assumption.

From now on we assume that 5 -vertex v has no 4^{-}-neighbors.
Subcase 3.3. There is a donation of $\frac{1}{8}$ to v from a 7_{p}^{4}-vertex v_{3} by R4b1 (see Fig. 8(c), (d)). Suppose v_{2} is a 7_{p}-vertex, so that $d\left(v_{4}\right) \geq 8$. If v_{2} is a 7_{p}^{4}-vertex (Fig. 8(c)), then $d\left(v_{1}\right) \geq 8$. Since v receives at least $\frac{1}{4}+\frac{1}{8}$ from each of v_{1} and v_{4} by R3(b,d, $\left.\mathrm{d}^{*}\right)$ and $\frac{1}{8}$ from each of v_{2} and v_{3} by R4b1, we have $\mu^{\prime}(v) \geq 0$.

Now suppose that v_{2} is a 7_{p}^{5}-vertex (Fig. 8(d)). Still v receives at least $\frac{1}{4}+2 \times \frac{1}{8}$ from v_{3} and v_{4} together. Also v receives $\frac{3}{8}$ from v_{2} by R4b2. We have to find $\frac{1}{8}$ more to be sure that $\mu^{\prime}(v) \geq 0$, but at least one of v_{1} and v_{5} is a 7^{+}-vertex due to (Tm), and so it cannot give less than $\frac{1}{8}$ to v by R3 and R4.

Subcase 3.4. There is a donation of $\frac{1}{6}$ to v from a bad 7 -vertex v_{3} by R4c (see Fig. 8(e) for the final situation here). Suppose that $d\left(v_{2}\right) \geq 14$ and $d\left(v_{4}\right)=7$ (as it was assumed, $d\left(v_{1}\right) \geq 5$). Note that v_{2} gives at least $\frac{1}{4}$ to v through each of the faces $v_{2} v v_{1}$ and $v_{2} v v_{3}$ by R3(c-d*). Due to Subcase 3.3, v_{4} gives at least $\frac{1}{6}$ to v. At least one of v_{1} and v_{5} is a 7^{+}-vertex due to the absence of (5, 6, 6)-faces, and so also gives at least $\frac{1}{6}$ to v. This yields $\mu^{\prime}(v) \geq-1+2 \times \frac{1}{4}+3 \times \frac{1}{6}=0$, as desired.

Hereafter, we assume that each 7-neighbor gives at least $\frac{1}{4}$ to v according to R4. Of course, the same is true for each 8^{+}-neighbor of v due to R3, where in the worst case v receives $\frac{1}{8}+\frac{1}{8}$ through two faces by R3a.

Fig. 9. Handling 7-vertices in Case 5.

Subcase 3.5. $d\left(v_{1}\right)=d\left(v_{3}\right)=5$ (see Fig. $8(\mathrm{f})$). Since $d\left(v_{2}\right) \geq 8, d\left(v_{4}\right) \geq 8$, and $d\left(v_{5}\right) \geq 8$ by (Tl), it follows that v receives at least $\frac{1}{4}$ from v_{2} and at least $\frac{1}{4}+\frac{1}{8}$ from each of v_{4} and v_{5} through incident faces by R3, which implies $\mu^{\prime}(v) \geq 0$.

Subcase 3.6. $d\left(v_{2}\right)=5, d\left(v_{4}\right) \geq 6$, and $d\left(v_{5}\right) \geq 7$ (Fig. $8(\mathrm{~g})$). Recall that $d\left(v_{1}\right) \geq 8$ and $d\left(v_{3}\right) \geq 8$ due to (Tl). Now v receives at least $\frac{3}{8}$ from each of v_{1} and v_{3} and at least $\frac{1}{4}$ from v_{4} or v_{5}, and we are done.

Subcase 3.7. v has no 5^{-}-neighbors (see Fig. 8(h) for the final situation). If v has at least four 7^{+}-neighbors, then $\mu^{\prime}(v) \geq-1+4 \times \frac{1}{4}=0$. On the other hand, v has at least three 7^{+}-neighbors due to (Tm), so we can assume that $d\left(v_{1}\right)=d\left(v_{3}\right)=6, d\left(v_{2}\right) \geq 7, d\left(v_{4}\right) \geq 7$, and $d\left(v_{5}\right) \geq 7$. If at least one of v_{2}, v_{4}, v_{5} is a 8^{+}-vertex, then R3a is not applied to it, and we have $\mu^{\prime}(v) \geq-1+\frac{1}{2}+2 \times \frac{1}{4}=0$. Thus suppose $d\left(v_{2}\right)=d\left(v_{4}\right)=d\left(v_{5}\right)=7$. Inspecting R4, we see that each of v_{2}, v_{4}, v_{5} gives v either $\frac{1}{3}$ by R4a2 or, due to (Tk), $\frac{3}{8}$ by R4b2. This implies $\mu^{\prime}(v) \geq-1+2 \times \frac{1}{3}=0$.

Case 4. $d(v)=6$. Since v does not participate in discharging, we have $\mu^{\prime}(v)=\mu(v)=0$.
Case 5. $d(v)=7$ (see Fig. 9). We note that handling 7-vertices is the most difficult part of the proof of Theorem 8. By (SP4), v has at most two 3-neighbors. By our rules, v gives $\frac{2}{3}$ to each 3-neighbor (R1b), $\frac{1}{2}$ to each 4-neighbor (R2b), and at most $\frac{3}{8}$ to each 5-neighbor (R4).

Subcase 5.1. v has two 3-neighbors (Fig. 9(a)-(d)). By (SP3), we can assume that $d\left(v_{1}\right)=d\left(v_{3}\right)=3$. It follows from (Td) that $d\left(v_{4}\right) \geq 14$ and $d\left(v_{7}\right) \geq 14$. Note that v receives by R5(a,b,c2,d,f) at least $\frac{1}{4}$ from each of v_{4} and v_{7} through faces $v_{4} v v_{5}$ and $v_{6} v v_{7}$, respectively.

Therefore, v has at least $\frac{3}{2}$ to discharge to its 5^{-}-neighbors. Since v gives $\frac{4}{3}$ to its 3 -neighbors and nothing to its 6^{+}neighbors, we can assume that $4 \leq d\left(v_{5}\right) \leq 5$. Due to (Tk) and (Tl), we have $d\left(v_{6}\right) \geq 6$.

Due to (Tk) and (Tl), we have $d\left(v_{6}\right) \geq 6$ (see Fig. 9(a)). First suppose that $d\left(v_{6}\right)=6$, and hence $d\left(v_{5}\right)=5$ due to (Tj). Now v receives $\frac{1}{3}$ from v_{7} by R5c2. Note that v is neither coupled (since it has a 3-neighbor), nor bad (since it has no 7-neighbor). Therefore, v gives $\frac{1}{4}$ to v_{5} by R4a, which yields $\mu^{\prime}(v) \geq 1+\frac{1}{3}+\frac{1}{4}-2 \times \frac{2}{3}-\frac{1}{4}=0$.

On the other hand, if $d\left(v_{6}\right) \geq 8$ (Fig. 9 (b)), then v receives at least $\frac{1}{4}+\frac{1}{3}$ from v_{6} and v_{7} through face $v_{6} v v_{7}$ by R5c1 and R5c2 and, as mentioned above, at least $\frac{1}{4}$ from v_{4}. Since v gives at most $\frac{1}{2}$ to v_{5}, this yields $\mu^{\prime}(v) \geq 1+\frac{1}{3}+2 \times \frac{1}{4}-\frac{4}{3}-\frac{1}{2}=0$.

Thus it remains to assume that $d\left(v_{6}\right)=7$. Due to (Tk), we have $d\left(v_{5}\right)=5$ (see Fig. 9(c), (d)).
Note that v can give at most $\frac{1}{4}$ to v_{5} by R4 since $d\left(v_{4}\right) \geq 14$ and v is not coupled. Thus, the total expenditure of v is at most $2 \times \frac{2}{3}+\frac{1}{4}$. If v_{5} is bad and hence receives only $\frac{1}{6}$ from v by R4c (see Fig. 9(c)), then $\mu^{\prime}(v) \geq \frac{3}{2}-\frac{4}{3}-\frac{1}{6}=0$.

There is only one reason why R 4 c is not applicable to v_{5}. Let x, y, v_{6}, v, v_{4} be the neighbors of v_{5} in a cyclic order. In these terms, this reason is $d(x) \leq 4$ (see Fig. $9(\mathrm{~d})$). However, then v receives $\frac{1}{3}$ rather than $\frac{1}{4}$ from v_{4} by R5b1, while v_{5} still receives precisely $\frac{1}{4}$ from v by R4a, which implies $\mu^{\prime}(v) \geq 1+\frac{1}{4}+\frac{1}{3}-\frac{4}{3}-\frac{1}{4}=0$.

Subcase 5.2. v has just one 3-neighbor, v_{1} (see Fig. 9(e), (f)). Now $d\left(v_{2}\right) \geq 14$ and $d\left(v_{7}\right) \geq 14$. Still, v has at least $\frac{3}{2}$ to discharge to its neighbors. In particular, v has at least $\frac{5}{6}$ for its 4^{+}-neighbors. Since v is not poor, it can give at most $\frac{1}{3}$ to its 5-neighbors. Recall that v gives $\frac{1}{2}$ to every 4-neighbor. Thus the only problem to consider is that v has two 4-neighbors.

If $d\left(v_{3}\right)=d\left(v_{5}\right)=4$ (see Fig. $9(\mathrm{e})$), then $d\left(v_{6}\right) \geq 8$ due to (Tk), so v receives at least $3 \times \frac{1}{4}$ from the 8^{+}-vertices v_{2}, v_{6}, and v_{7}, and we have $\mu^{\prime}(v) \geq 1+3 \times \frac{1}{4}-\frac{2}{3}-2 \times \frac{1}{2}>0$.

If $d\left(v_{3}\right)=d\left(v_{6}\right)=4$ (see Fig. $9(\mathrm{f})$), then $d\left(v_{4}\right) \geq 8$ and $d\left(v_{5}\right) \geq 8$, so v receives at least $4 \times \frac{1}{4}$ from its 8^{+}-neighbors, which yields $\mu^{\prime}(v)>0$.

Subcase 5.3. v has no 3-neighbors. In particular, v is not bad. We have nothing to prove unless v is adjacent to three 5^{-}-vertices.

If $d\left(v_{1}\right)=d\left(v_{5}\right)=4$ (see Fig. $9(\mathrm{~g})$), then $d\left(v_{6}\right) \geq 8$ and $d\left(v_{7}\right) \geq 8$, so v receives at least $\frac{1}{4}+\frac{1}{4}$ through 3-face $v v_{6} v_{7}$ by R5c2, which implies $\mu^{\prime}(v) \geq 1+2 \times \frac{1}{4}-3 \times \frac{1}{2}=0$.

Now suppose $d\left(v_{1}\right)=4$ and $d\left(v_{5}\right)=5$, that is v is poor. Here, $d\left(v_{6}\right) \geq 6$ and $d\left(v_{7}\right) \geq 8$. First assume that $d\left(v_{3}\right)=4$, so v is a 7_{p}^{4}-vertex (see Fig. 9(h)).

If v_{6} is not a 7_{p}-vertex, which means that v is not coupled, then v receives at least $\frac{1}{4}$ from v_{7} through face $v_{6} v v_{7}$ by R5(c1,c2,d,e1) and gives $\frac{1}{4}$ to v_{5} by R4. This yields $\mu^{\prime}(v) \geq 7-6+\frac{1}{4}-2 \times \frac{1}{2}-\frac{1}{4}=0$.

If v_{6} is a coupled a 7_{p}-vertex, then v receives at least $\frac{1}{8}$ from v_{7} through face $v_{6} v v_{7}$ by R5 ($\left.\mathrm{d}, \mathrm{e} 2\right)$ and gives $\frac{1}{8}$ to v_{5} by R4b1, so $\mu^{\prime}(v) \geq 7-6+\frac{1}{8}-2 \times \frac{1}{2}-\frac{1}{8}=0$.

If $d\left(v_{3}\right)=5$, which means that v is a 7_{p}^{5}-vertex (no matter coupled or not, see Fig. $9(\mathrm{i})$), then v receives at least $\frac{1}{8}$ by R5(c1-e2) and gives $\frac{1}{4}$ to v_{3} by R4b2 if v is coupled or R4a otherwise and at most $\frac{3}{8}$ to v_{4} by Rb2 or R4a, respectively. This implies that $\mu^{\prime}(v) \geq 7-6+\frac{1}{8}-\frac{1}{2}-\frac{1}{4}-\frac{3}{8}=0$.

Finally, suppose that $d\left(v_{1}\right)=d\left(v_{5}\right)=5$. If $d\left(v_{3}\right)=5$ (Fig. $9(\mathrm{j})$), then $\mu^{\prime}(v) \geq 7-6-3 \times \frac{1}{3}=0$ due to R4(a1,a2). Otherwise (Fig. 9(k)), $\mu^{\prime}(v) \geq 7-6-\frac{1}{2}-2 \times \frac{1}{4}=0$ due to R2b and R4a1.

Remark 1. Every vertex v with $8 \leq d(v) \leq 11$ sends at most $\frac{1}{4}$ through each incident hard face $v_{1} v v_{2}$ by R2(b,c), R3(a,b), and R5(c1,e1,e2), unless $d(v)=11, d\left(v_{1}\right)=4, d\left(v_{2}\right)=5$, in which case v sends $\frac{1}{2}$ to v_{1} by R2a (and nothing to v_{2} by R1-R5).

Case 6. $d(v)=8$. We may view the donation of $\frac{1}{2}$ by v by R1c to a 3-vertex v_{2} as giving $\frac{1}{4}$ to v_{2} through each of the nonhard faces $v_{1} v v_{2}$ and $v_{2} v v_{3}$. Due to Remark 1, under this convention v sends at most $\frac{1}{4}$ through each incident face, whence $\mu^{\prime}(v) \geq 8-6-8 \times \frac{1}{4}=0$.

In what follows, let n_{3} be the number of 3-neighbors of v.
Case $7.9 \leq d(v) \leq 10$. Note that v gives at most $\frac{1}{4}$ through any of $d(v)-2 n_{3}$ faces not incident with a 3-vertex due to Remark 1.

For $d(v)=9$ we have $n_{3} \leq 3$ by (SP4), which implies $\mu^{\prime}(v) \geq 9-6-n_{3} \times \frac{3}{4}-\left(9-2 n_{3}\right) \times \frac{1}{4}=\frac{3-n_{3}}{4} \geq 0$ due to R1d.
Suppose $d(v)=10$; then $\mu^{\prime}(v) \geq 10-6-n_{3} \times \frac{4}{5}-\left(10-2 n_{3}\right) \times \frac{2}{5}=0$ in view of R1e.
Case 8. $d(v)=11$. We may look at the donation of 1 by v to a 3-neighbor w by R1f as giving $\frac{1}{2}$ through each of the two faces incident with edge $v w$. If so, then v gives $\frac{1}{2}$ through face $v_{1} v v_{2}$ only if $d\left(v_{1}\right)=3$ and $d\left(v_{2}\right) \geq 11$ by the so modified R1, or $d\left(v_{1}\right)=4$ and $d\left(v_{2}\right)=6$ by R2a. Furthermore, any other face receives from v at most $\frac{1}{4}$ due to Remark 1 . Since $\mu(v)=11-6=5$, we are done unless either every incident face receives $\frac{1}{2}$ from v or each of ten incident faces receives $\frac{1}{2}$ and the eleventh face receives a positive charge. So suppose this is the case.

If $n_{3}=0$, then v has two consecutive 6-neighbors, v_{1} and v_{2} say, but such a face $v_{1} v v_{2}$ receives nothing from v, a contradiction.

Thus we can assume that $n_{3} \geq 1$ (see Fig. 10(a)).
Considering a maximal sequence $v_{1}, \ldots, v_{2 k+1}$ with $d\left(v_{2}\right)=\cdots=d\left(v_{2 k}\right)=3, k \leq 4$, we find two distinct faces $v_{1} v v_{11}$ and $v_{2 k+1} v v_{2 k+2}$ (as $n_{3} \leq 4$ due to (SP4)), each receiving less than $\frac{1}{2}$ from v since $d\left(v_{1}\right) \geq 11$ and $d\left(v_{2 k+1}\right) \geq 11$ (in fact, $\frac{1}{4}$ by R2c, R3b, R5e2, or nothing otherwise), a contradiction.

Remark 2. Every vertex v with $d(v) \geq 12$ sends at most $\frac{1}{2}$ through each incident hard face $v_{2} v v_{3}$ by (combinations of) R2(a, $\left.\mathrm{c}^{*}\right), \mathrm{R} 3\left(\mathrm{c}, \mathrm{d}, \mathrm{d}^{*}\right)$, and R5(a,b2,c2,d), and sends $\frac{1}{4}+\frac{1}{3}$ by R3d* combined with R5b1 when $d(v) \geq 14, d\left(v_{1}\right)=3, d\left(v_{2}\right)=$ $7, d\left(v_{3}\right)=5$, and $d\left(v_{4}\right) \leq 4$.
a

b

C

e

Fig. 10. Some situations in Cases 8 and 10-12.
Case 9. $d(v)=12$. As in Case 8, every 3-neighbor receives 1 from v by R1f in view of (Tg), so we see from Remark 2 that v actually sends at most $\frac{1}{2}$ through every incident face. Thus $\mu^{\prime}(v) \geq 12-6-\frac{12}{2}=0$.

Case 10. $d(v)=13$. Now v sends at most $\frac{9}{8}$ to a 3 -vertex by R1(d-f) due to (Ta)-(Te) and at most $\frac{1}{2}$ through a face not incident with a 3 -vertex in view of Remark 2, including $\frac{1}{3}$ if R5c2 is in action. This implies that $\mu^{\prime}(v) \geq 13-6-n_{3} \times \frac{9}{8}-$ $\left(13-2 n_{3}\right) \times \frac{1}{2}=\frac{4-n_{3}}{8}$, so we are already done if $n_{3} \leq 4$. On the other hand, $n_{3} \leq 6$ due to (SP1).

For $n_{3}=6$ it suffices to note that v has two consecutive 9^{+}-neighbors v_{1} and v_{2} by parity combined with (Ta)-(Te), which means that v does not give any charge through face $v_{1} v v_{2}$, and hence $\mu^{\prime}(v) \geq 7-6 \times \frac{9}{8}>0$.

Thus we can assume that $n_{3}=5$. Furthermore, we are done if, say, $d\left(v_{1}\right) \geq 11, d\left(v_{2}\right)=3$, and $d\left(v_{3}\right) \geq 11$ because v_{2} then receives only 1 from v by R1f, which implies that $\mu^{\prime}(v) \geq 7-4 \times \frac{9}{8}-1-3 \times \frac{1}{2}=0$.

Due to (Ta)-(Te), we can now assume that every 3-neighbor of v is adjacent to a vertex of degree 9 or 10 . On the other hand, if $d\left(v_{i}\right)=3$ and $d\left(v_{i-1}\right) \leq 10$ (addition modulo 13), then $d\left(v_{i+1}\right) \geq 13$ due to (Tf) and (Tg) applied to the face $v_{i-1} v_{i} v_{i+1}$.

So let $d\left(v_{4}\right)=d\left(v_{6}\right)=\cdots=d\left(v_{12}\right)=3,9 \leq d\left(v_{3}\right) \leq 10$, and $d\left(v_{13}\right) \geq 13$ (see Fig. 10 (b)). We note that v sends either $\frac{1}{4}$ or nothing through the face $v_{2} v v_{3}$. Indeed, if $\bar{d}\left(v_{2}\right)=4$ then R2c is applied; if $d\left(v_{2}\right)=5$ then R3c works; if $d\left(v_{2}\right)=6$ or $d\left(v_{2}\right) \geq 8$, then no charge is transferred from v through the face $v_{2} v v_{3}$ by R1-R5; and if $d\left(v_{2}\right)=7$ then $\frac{1}{4}$ is given by R5c2. Therefore, $\mu^{\prime}(v) \geq 7-5 \times \frac{9}{8}-\frac{1}{4}-2 \times \frac{1}{2}>0$.

Case 11. $d(v)=14$. As compared to $d(v) \leq 13$, now four new rules, R1b, R3d*, and R5(b1,b2), join the play. Namely, now v sends by R5b1 and R3d* as much as $\frac{1}{3}+\frac{1}{4}$ through a face $v_{1} v v_{2}$ when $d\left(v_{1}\right)=5, d\left(v_{2}\right)=7, d\left(v_{3}\right)=3$, and $d\left(v_{14}\right) \leq 4$, where in fact $d\left(v_{14}\right)=4$ due to (Td). If R5b1 is not applied, then each incident face avoiding 3-neighbors receives from v at most $\frac{1}{2}$, according to Remark 2. Also, v sends $\frac{7}{6}$ to v_{2} when $d\left(v_{1}\right)=7$ and $d\left(v_{2}\right)=3$ (due to (Td) applied to the face $v_{1} v_{2} v_{3}$, we have $\left.d\left(v_{3}\right) \geq 14\right)$.

Note that $\mu^{\prime}(v) \geq 14-6-n_{3} \times \frac{7}{6}-\left(14-2 n_{3}\right) \times \frac{7}{12}=-\frac{1}{6}$. If R5b1 is applied (see Fig. 10 (c)), then the 4-vertex v_{14} above is incident with two faces each taking $\frac{1}{2}$ from v rather than $\frac{7}{12}$, which implies that $\mu^{\prime}(v) \geq 8-6 \times \frac{7}{6}-2 \times \frac{1}{2}=0$. So suppose R5b1 never applies to our v.

If $n_{3} \leq 6$, then again there are at least two hard faces each taking at most $\frac{1}{2}$ from v, so $\mu^{\prime}(v) \geq 0$. Thus suppose $n_{3}=7$. By parity combined with (Tg), there is a 3-neighbor of v surrounded by 11^{+}-vertices. This 3-vertex receives 1 from v by R1f rather than $\frac{7}{6}$ by R1b, and we are done.

Case $12.15 \leq d(v) \leq 20$. By Remark $2, v$ gives strictly less than $\frac{5}{8}$ through every incident face. Also, v gives at most $\frac{5}{4}$ to every adjacent 3-vertex by R1(b-f) since applying R1a is forbidden by (Ta)-(Tc).

For $d(v) \geq 16$ we are already done since $\mu^{\prime}(v) \geq d(v)-6-n_{3} \times \frac{5}{4}-\left(d(v)-2 n_{3}\right) \times \frac{5}{8}=\frac{3(d(v)-16)}{8} \geq 0$, so suppose $d(v)=15$.

b

d

Fig. 11. To Case 13.
Now we have a rough estimation $\mu^{\prime}(v) \geq-\frac{3}{8}$ and wish to improve it to $\mu^{\prime}(v) \geq 0$ by saving $\frac{3}{8}$ with respect to the above mentioned level of donations of $\frac{5}{8}$ through hard faces and $\frac{5}{4}$ to 3 -vertices.

First suppose a face $v_{2} v v_{3}$ conducts more than $\frac{1}{2}$ from v. As in Case 11, this happens only by R5b1, so we have $d\left(v_{1}\right)=4, d\left(v_{2}\right)=5, d\left(v_{3}\right)=7$, and $d\left(v_{4}\right)=3$ (see Fig. $10(\mathrm{~d})$). In fact, $v_{2} v v_{3}$ conducts $\frac{1}{3}$ to v_{3} by R5b1 and $\frac{1}{4}$ to v_{2} by R3d*. We can say that the saving caused by the face $v_{2} v v_{3}$ alone is $\frac{5}{8}-\frac{1}{3}-\frac{1}{4}=\frac{1}{8}-\frac{1}{12}$. Furthermore, v gives $\frac{7}{6}$ to v_{4} rather than $\frac{1}{4}$, which results in saving of $\frac{1}{12}$ on v_{4}. Finally, face $v_{1} v v_{2}$ conducts $\frac{1}{2}$ and hence saves $\frac{1}{8}$.

Therefore, any application of R5b1 results in saving of $\frac{2}{8}$. Note that $d\left(v_{5}\right) \geq 8$ in view of (Td), so the saving of $\frac{1}{12}$ caused by v_{4} should be attributed to face $v_{2} v v_{3}$ solely. The same is true for the face $v_{1} v v_{2}$; its saving of $\frac{1}{8}$ also cannot be counted twice and belongs to $v_{2} v v_{3}$ only.

Thus more than one application of R5b1 results in saving of at least $\frac{4}{8}$, and we are done. On the other hand, if the above application of R5b1 is unique for v, then we have another saving of $\frac{1}{8}$ caused by face $v_{1} v v_{14}$, where $d\left(v_{14}\right) \geq 5$ due to (Tb) again, as desired. (Informally speaking, any application of R5b1 saves $\frac{2}{8}$ on four consecutive faces and saves $\frac{3}{8}$ on five consecutive faces if R5b1 is applied just once.)

So from now on we can assume that R5b1 is not applied to our v. This means that every hard face conducts at most $\frac{1}{2}$ from v and hence saves at least $\frac{1}{8}$ for v. Due to parity, we can assume that a face $v_{1} v v_{2}$ with $d\left(v_{1}\right) \geq 4$ and $d\left(v_{2}\right) \geq 5$ is unique, for otherwise we already have nothing to prove. This means that $n_{3}=7$, so let $d\left(v_{3}\right)=d\left(v_{5}\right)=\cdots=d\left(v_{15}\right)=3$ (see Fig. 10(e)).

If there is a $v_{2 k+1}, 1 \leq k \leq 7$, surrounded by three 11^{+}-vertices, then $v_{2 k+1}$ receives only 1 from v by R1f and thus saves $\frac{1}{4}$ for v. This yields a desired total saving of $\frac{1}{8}+\frac{1}{4}$.

Otherwise, we deduce by parity combined with (Tg) that $d\left(v_{2}\right) \leq 10$ and $d\left(v_{1}\right) \geq 13$ due to symmetry. Note that $d\left(v_{2}\right) \geq 7$ due to (Tc). If $d\left(v_{2}\right) \geq 8$ then v gives nothing through face $v_{1} v v_{2}$ by R1-R5, which saves $\frac{5}{8}$. So suppose $d\left(v_{2}\right)=7$. Thus $v_{1} v v_{2}$ is as described in R5c2, and it takes away from v only $\frac{1}{3}$. Since v now gives $\frac{7}{6}$ to v by R1b rather than $\frac{5}{4}$ by R1c, this implies $\mu^{\prime}(v) \geq 15-6-7 \times \frac{5}{4}-\frac{1}{3}=0$.

Case $13.21 \leq d(v) \leq 31$. A face $v_{2} v v_{3}$ incident with v is single if $d\left(v_{2}\right) \geq 4$ and $d\left(v_{3}\right) \geq 5$. Clearly, there are precisely $d(v)-2 n_{3}$ single (or hard, which is the same here) faces at v.

Note that every single face $v_{2} v v_{3}$ at v either receives at most $\frac{1}{2}$ from v or participates in R5b1 (we will call such faces, described in Remark 2, bad singles for brevity), in which case $d\left(v_{1}\right)=3, d\left(v_{2}\right)=7, d\left(v_{3}\right)=5$, and $d\left(v_{4}\right) \leq 4$ (see Fig. 11(a)). Recall that $v_{2} v v_{3}$ conducts $\frac{7}{12}$ from v while v_{1} receives $\frac{7}{6}$. We say that the 3 -vertex v_{1} is associated with a bad single $v_{2} v v_{3}$. Due to (Td), we have $d\left(v_{d(v)}\right) \geq 14$, so v_{1} cannot be associated with two bad singles at v.

Due to R1, every 3-neighbor of v receives at most $\frac{3}{2}$ from v. Let n_{3}^{\prime} be the number of 3-vertices associated with bad singles at v. Since $\frac{3}{2}+\frac{1}{2}-\left(\frac{7}{6}+\frac{7}{12}\right)=\frac{1}{4}$, we see that a bad single along with its associated 3-vertex even causes saving of $\frac{1}{4}$ for v with respect to the "normal" donation of $\frac{1}{2}+\frac{3}{2}$ to a hard face plus that to a 3-vertex. From this informal observation combined with $n_{3} \leq\left\lfloor\frac{d(v)}{2}\right\rfloor$, we deduce that

$$
\begin{aligned}
\mu^{\prime}(v) & \geq d(v)-6-\left(n_{3}-n_{3}^{\prime}\right) \times \frac{3}{2}-n_{3}^{\prime} \times \frac{7}{6}-\left(d(v)-2 n_{3}-n_{3}^{\prime}\right) \times \frac{1}{2}-n_{3}^{\prime} \times \frac{7}{12} \\
& \geq d(v)-6-n_{3} \times \frac{3}{2}-\left(d(v)-2 n_{3}\right) \times \frac{1}{2}=\frac{d(v)-12-n_{3}}{2} \geq \frac{d(v)-24}{4} .
\end{aligned}
$$

Thus we are already done if $d(v) \geq 24$. If $d(v)=23$, then we have $\mu^{\prime}(v) \geq \frac{23-12-n_{3}}{2} \geq 0$.
Suppose $d(v)=22$. Since $\mu^{\prime}(v) \geq \frac{22-12-n_{3}}{2}$, the only case to consider is $n_{3}=11$. Due to (Tg) and the oddness of $\frac{22}{2}$, there is a 3-neighbor v_{2} of v such that $d\left(v_{1}\right) \geq 11$ and $d\left(v_{3}\right) \geq 11$. By R1f, v_{2} receives as little as 1 from v. This improves our general rough estimation $\mu^{\prime}(v) \geq \frac{22-12-11}{2}=-\frac{1}{2}$ above by $\frac{3}{2}-1$ and hence proves that $\mu^{\prime}(v) \geq 0$.

Finally, suppose $d(v)=21$ (see Fig. 11(b)-(d)). Due to the rough estimation $\mu^{\prime}(v) \geq \frac{9-n_{3}}{2}$, it suffices to assume that $n_{3}=10$, so we have $\mu^{\prime}(v) \geq-\frac{1}{2}$.

Let $d\left(v_{2}\right)=d\left(v_{4}\right)=\cdots=d\left(v_{20}\right)=3$. By (Tb), we have $d\left(v_{1}\right) \geq 6$ and $d\left(v_{21}\right) \geq 6$ (see Fig. 11(b)). In particular, we see that R5b1 is not applied to $v_{1} v v_{2}$. If in fact $d\left(v_{1}\right) \neq 7 \neq d\left(v_{21}\right)$, then face $v_{1} v v_{21}$ does not receive anything by R1-R5, and we have $\mu^{\prime}(v) \geq 21-6-10 \times \frac{3}{2}=0$.

Fig. 12. To Case 14.
So suppose $d\left(v_{1}\right)=7$ (see Fig. 11(c), (d)). Now v gives $\frac{7}{6}$ to v_{2} rather than $\frac{3}{2}$ in our rough estimation. Thus v saves $\frac{1}{3}$ at v_{2}.

If $d\left(v_{21}\right)=7$ (see Fig. 11(c)), then $\mu^{\prime}(v) \geq-\frac{1}{2}+2 \times \frac{1}{3}>0$, as desired. If $d\left(v_{21}\right) \neq 7$ (see Fig. 11(d)), then v gives $\frac{1}{3}$ to v_{1} through $v_{1} v v_{21}$ by R5c2, which implies $\mu^{\prime}(v) \geq 21-6-9 \times \frac{3}{2}-\frac{7}{6}-\frac{1}{3}=0$.

Case 14. $d(v) \geq 32$. Finally, R1a becomes applicable to v in full strength, since a 3-neighbor of v can have a 4-neighbor. If $d\left(v_{2}\right)=4$ and $d\left(v_{3}\right)=3$ (which implies that $d\left(v_{4}\right) \geq 32$ due to (Ta)), then faces $v_{1} v v_{2}, v_{2} v v_{3}$ and $v_{3} v v_{4}$ form a triple receiver from v, or a triple for brevity (see Fig. 12(a)). A double is a pair of faces $v_{1} v v_{2}, v_{2} v v_{3}$ with $d\left(v_{1}\right) \geq 5, d\left(v_{2}\right)=3$, and, due to (Tg) and symmetry, $d\left(v_{3}\right) \geq 11$ (see Fig. 12(b)). A face $v_{1} v v_{2}$ forms a single receiver if either $d\left(v_{1}\right) \geq 5$ and $d\left(v_{2}\right) \geq 5$ (see Fig. 12(c)), or $d\left(v_{1}\right) \geq 5, d\left(v_{2}\right)=4$, and $d\left(v_{3}\right) \geq 5$ (see Fig. $12\left(c^{*}\right)$).

It follows from (SP1) combined with (Th) that each face incident with v belongs to precisely one receiver, so $3 n_{t}+2 n_{d}+$ $n_{s}=d(v)$, where n_{t}, n_{d}, and n_{s} are the numbers of corresponding receivers.

By our rules, every triple receives from v at most $\frac{1}{2}+\frac{1}{2}+\frac{3}{2}$, so each of the three faces gets at most $\frac{5}{6}$ on the average. A double receives at most $\frac{3}{2}$, so we can say that it saves for v at least $2 \times \frac{5}{6}-\frac{3}{2}$, which is $\frac{1}{6}$, with respect to the level $\frac{5}{6}$ of donation per face. Any single, except for that described in R5b1, receives at most $\frac{1}{2}$, and so saves at least $\frac{1}{3}$.

First suppose that R5b1 is applied to v, so we have a bad single described in Case 13 with $d\left(v_{2}\right)=3, d\left(v_{3}\right)=7, d\left(v_{4}\right)=5$, and $d\left(v_{5}\right) \leq 4$. Here $v_{3} v v_{4}$ is a single as defined in Case 14, while the two faces incident with edge $v v_{2}$ form a double receiver. Recall that v_{2} receives $\frac{7}{6}$ from v, while v_{3} and v_{4} receive $\frac{1}{3}$ and $\frac{1}{4}$, respectively, through face $v_{3} v v_{4}$. Since $\frac{7}{6}+\frac{1}{3}+\frac{1}{4}=3 \times \frac{5}{6}-\frac{3}{4}$, our v saves at least $\frac{3}{4}$ on these two receivers. This implies that $\mu^{\prime}(v) \geq d(v)-6-d(v) \times \frac{5}{6}+\frac{3}{4} \geq \frac{32-36}{6}+\frac{3}{4}>0$. So from now on we assume that R5b1 is not applied to v.

For $d(v) \geq 36$ we have already nothing to prove as $\mu^{\prime}(v) \geq d(v)-6-d(v) \times \frac{5}{6}=\frac{d(v)-36}{6} \geq 0$. For the remaining cases $32 \leq d(v) \leq 35$ we should argue more carefully to prove that the total saving of all receivers always covers the deficiency $\frac{d(v)-36}{6} \geq 0$ of our v. (For example, if $d(v)=32$, then it suffices to check that the total saving is at least $\frac{2}{3}$, while for $d(v)=35$ a saving of $\frac{1}{6}$ is already enough.)

Subcase 14.1. $d(v)=35$. It suffices to observe that $n_{d}+n_{s} \geq 1$ since $\frac{35}{3}$ is not an integer, which implies a saving of at least $\frac{1}{6}$.

Subcase 14.2. $d(v)=34$. If $n_{s} \geq 1$, then v already saves at least $\frac{1}{3}$, and we are done. However, $n_{s}=0$ implies that $n_{d} \geq 2$ because neither $\frac{34}{3}$ nor $\frac{34-1 \times 2}{3}$ is an integer. This yields $\mu^{\prime}(v) \geq \frac{34-36}{6}+2 \times \frac{1}{6}=0$.

Subcase 14.3. $d(v)=33$. Now we have to save $\frac{3}{6}$, so suppose $n_{s} \leq 1$. If $n_{s}=1$, then $n_{d} \geq 1$ since $\frac{33-1 \times 1}{3}$ is not an integer, so we save at least $\frac{1}{3}+\frac{1}{6}$, as desired.

Suppose that $n_{s}=0$. Since $\frac{33-k \times 2}{3}$ is not an integer when $k \in\{1,2\}$, we are done unless $n_{d}=0$. Thus the neighborhood of v is partitioned into 11 triples. Recall that a 3 -vertex in a triple has a 32^{+}-neighbor by (Ta). Since $\frac{33}{3}$ is not even, there is a path $v_{1} \cdots v_{4}$ such that $d\left(v_{1}\right) \geq 32, d\left(v_{2}\right)=4, d\left(v_{3}\right)=3$, and $d\left(v_{4}\right) \geq 32$ (see Fig. 12(d)). According to R2c ${ }^{*}$, our v
gives $0+\frac{1}{2}$ to v_{2} through faces $v_{1} v v_{2}$ and $v_{2} v v_{3}$, respectively, Also, v gives $\frac{3}{2}$ to v_{3} along edge $v v_{3}$. Hence this triple saves $3 \times \frac{5}{6}-\frac{1}{2}-\frac{3}{2}$, that is $\frac{1}{2}$, as desired.

Subcase 14.4. $d(v)=32$. Now we have to save $\frac{4}{6}$. If $n_{s}=1$, then $n_{d} \geq 2$, which implies a total saving of at least $\frac{1}{3}+2 \times \frac{1}{6}$.
So suppose that $n_{s}=0$. Since $\frac{32-k \times 2}{3}$ is not an integer whenever $k \in\{0,2,3\}$, we have either $n_{d}=1$ or $n_{d} \geq 4$.
Thus we are done unless $n_{d}=1$. Let us have a double receiver D defined on path $v_{1} v_{2} v_{3}$. Due to (Tg), we can assume that $d\left(v_{1}\right) \geq 5, d\left(v_{2}\right)=3$, and $d\left(v_{3}\right) \geq 11$. If $d\left(v_{1}\right) \leq 10$, then D saves $2 \times \frac{5}{6}-\frac{3}{2}$, which is $\frac{1}{6}$. Otherwise, D alone saves all we need $\left(2 \times \frac{5}{6}-1=\frac{2}{3}\right)$.

It remains to assume that $d\left(v_{1}\right) \leq 10$, which implies $d\left(v_{3}\right) \geq 13$ due to (Tg) (see Fig. 12(e)). By the same alternation argument as in Subcase 14.4 based on $\mathrm{R} 2 \mathrm{c}^{*}$, we deduce that there is a triple receiver that receives nothing from v through a hard face by R2c*. Therefore, it saves $\frac{1}{2}$ for v in addition to $\frac{1}{6}$ already saved by D, and we are done.

Thus we have proved $\mu^{\prime}(x) \geq 0$ for every $x \in V \cup F$, which contradicts (1) and completes the proof of Theorem 8.

Acknowledgments

The work of the first author was supported by grants 12-01-00631 and 12-01-00448 of the Russian Foundation for Basic Research. The second author was supported by grants 12-01-00631 and 12-01-98510 of the Russian Foundation for Basic Research. The research of the third author is supported in part by NSF grant DMS-1266016.

References

[1] S.V. Avgustinovich, O.V. Borodin, Neighborhoods of edges in normal maps, Diskretn. Anal. Issled. Oper. 2 (3) (1995) 3-9 (in Russian), translation in Ser. "Mathematics and its Applications" 391 (1997) 17-22, A.D. Korshunov (Ed.) Operations Research and Discrete Analysis, Springer Netherlands, 1997, VII, p. 336. http://link.springer.com/book/10.1007/978-94-011-5678-3.
[2] O.V. Borodin, Solving the Kotzig and Grünbaum problems on the separability of a cycle in planar graphs, Mat. Zametki 46 (5) (1989) 9-12 (in Russian), translation in Math. Notes, 46 (5-6) (1989) 835-837.
[3] O.V. Borodin, Joint generalization of the theorems of Lebesgue and Kotzig on the combinatorics of planar maps, Diskret. Mat. 3 (4) (1991) 24-27 (in Russian).
[4] O.V. Borodin, Minimal weight of a face in planar triangulations without 4-vertices, Mat. Zametki 51 (1)(1992) 16-19 (in Russian), translation in Math. Notes, 51 (1-2) (1992) 11-13.
[5] O.V. Borodin, Triangles with restricted degree sum of their boundary vertices in plane triangulations, Discrete Math. 137 (1995) 45-51.
[6] O.V. Borodin, Triangulated 3-polytopes with restricted minimal weight of faces, Discrete Math. 186 (1998) 281-285.
[7] O.V. Borodin, Strengthening Lebesgue's theorem on the structure of the minor faces in convex polyhedra, Diskretn. Anal. Issled. Oper. Ser. 19 (3) (2002) 29-39 (in Russian).
[8] O.V. Borodin, Colorings of plane graphs: a survey, Discrete Math. 313 (4) (2013) 517-539.
[9] O.V. Borodin, A.O. Ivanova, Describing 3-faces in normal plane maps with minimum degree 4, Discrete Math. 313 (23) (2013) $2841-2847$.
[10] O.V. Borodin, A.O. Ivanova, Describing faces in plane triangulations with minimum degree 4, Sibirsk. Mat. Zh. 54 (1) (2014) $51-58$ (in Russian).
[11] O.V. Borodin, D.V. Loparev, The height of small faces in planar normal maps, Diskretn. Anal. Issled. Oper. Ser. 15 (4) (1998)6-17 (in Russian), translation in Discrete Appl. Math. 135 (1-3) (2004) 31-39.
[12] O.V. Borodin, D.R. Woodall, The weight of faces in plane maps, Mat. Zametki 64 (5) (1998) 648-657 (in Russian), translation in Math. Notes 64 (5-6) (1998) 562-570.
[13] O.V. Borodin, D.R. Woodall, Cyclic degrees of 3-polytopes, Graphs Combin. 15 (1999) 267-277.
[14] B. Ferencová, T. Madaras, On the structure of polyhedral graphs with prescribed edge and dual edge weight, Acta Univ. M. Belii Ser. Math. 12 (2005) 13-18.
[15] B. Ferencová, T. Madaras, Light graph in families of polyhedral graphs with prescribed minimum degree, face size, edge and dual edge weight, Discrete Math. 310 (2010) 1661-1675.
[16] B. Grünbaum, Polytopal graphs, in: D.R. Fulkerson (Ed.), Studies in Graph Theory, in: MAA Studies in Mathematics, vol. 12, 1975, pp. $201-224$.
[17] M. Horňák, S. Jendrol', Unavoidable sets of face types for planar maps, Discuss. Math. Graph Theory 16 (2) (1996) 123-142.
[18] S. Jendrol', Triangles with restricted degrees of their boundary vertices in plane triangulations, Discrete Math. 196 (1999) 177-196.
[19] S. Jendrol', H.-J. Voss, Light subgraphs of graphs embedded in the plane-a survey, Discrete Math. 313 (4) (2013) 406-421.
[20] A. Kotzig, Contribution to the theory of Eulerian polyhedra, Mat.-Fyz. Casopis 5 (1955) 101-113.
[21] A. Kotzig, From the theory of Eulerian polyhedra, Mat. Čas. 13 (1963) 20-34 (in Russian).
[22] A. Kotzig, Extremal polyhedral graphs, Ann. New York Acad. Sci. 319 (1979) 569-570.
[23] H. Lebesgue, Quelques conséquences simples de la formule d'Euler, J. Math. Pures Appl. 19 (1940) 27-43.
[24] T. Madaras, R. Škrekovski, Heavy paths, light stars, and big melons, Discrete Math. 286 (2004) 115-131.
[25] B. Madaras, R. Škrekovski, H.-J. Voss, The 7-cycle C_{7} is light in the family of planar graphs with minimum degree 5, Discrete Math. 307 (2007) 1430-1435.
[26] T. Madaras, R. Soták, The 10-cycle C_{10} is light in the family of all plane triangulations with minimum degree five, Tatra Mt. Math. Publ. 18 (1999) 35-56.
[27] B. Mohar, R. Škrekovski, H.-J. Voss, Light subraphs in planar graphs of minimum degree 4 and edge-degree 9, J. Graph Theory 44 (2003) $261-295$.
[28] O. Ore, M.D. Plummer, Cyclic coloration of plane graphs, in: W.T. Tutte (Ed.), Recent Progress in Combinatorics, Academic Press, New York, 1969, pp. 287-293.
[29] M.D. Plummer, On the cyclic connectivity of planar graph, in: Graph Theory and Application, Springer, Berlin, 1972, pp. $235-242$.
[30] M.D. Plummer, B. Toft, Cyclic coloration of 3-polytopes, J. Graph Theory 11 (1987) 507-515.
[31] E. Steinitz, Polyheder und Raumeinteilungen, Enzykl. Math. Wiss. (Geometrie) 3AB (12) (1922) 1-139.
[32] P. Wernicke, Über den Kartographischen Vierfarbensatz, Math. Ann. 58 (1904) 413-426.

[^0]: * Corresponding author.

 E-mail addresses: brdnoleg@math.nsc.ru (O.V. Borodin), shmgnanna@mail.ru (A.O. Ivanova), kostochk@math.uiuc.edu (A.V. Kostochka).

