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a b s t r a c t

Lebesgue (1940) proved that every plane triangulation contains a face with the vertex-
degrees majorized by one of the following triples:

(3, 6, ∞), (3, 7, 41), (3, 8, 23), (3, 9, 17), (3, 10, 14), (3, 11, 13),
(4, 4, ∞), (4, 5, 19), (4, 6, 11), (4, 7, 9), (5, 5, 9), (5, 6, 7).

Jendrol’ (1999) improved this description, except for (4, 4, ∞) and (4, 6, 11), to

(3, 4, 35), (3, 5, 21), (3, 6, 20), (3, 7, 16), (3, 8, 14), (3, 9, 14), (3, 10, 13),
(4, 4, ∞), (4, 5, 13), (4, 6, 17), (4, 7, 8), (5, 5, 7), (5, 6, 6)

and conjectured that the tight description is

(3, 4, 30), (3, 5, 18), (3, 6, 20), (3, 7, 14), (3, 8, 14), (3, 9, 12), (3, 10, 12),
(4, 4, ∞), (4, 5, 10), (4, 6, 15), (4, 7, 7), (5, 5, 7), (5, 6, 6).

We prove that in fact every plane triangulation contains a face with the vertex-degrees
majorized by one of the following triples, where every parameter is tight:

(3, 4, 31), (3, 5, 21), (3, 6, 20), (3, 7, 13), (3, 8, 14), (3, 9, 12), (3, 10, 12),
(4, 4, ∞), (4, 5, 11), (4, 6, 10), (4, 7, 7), (5, 5, 7), (5, 6, 6).

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The degree d(v) of a vertex v (r(f ) of a face f ) in a planemapM is the number of edges incident with it (loops are counted
twice in d(v), and cut-edges are counted twice in r(f )). By ∆ and δ denote the maximum and minimum vertex degrees of
M , respectively. A k-vertex (k-face) is a vertex (face) with degree k; a k+-vertex has degree at least k, etc.

It is well known that each normal planemap, inwhich loops andmultiple edges are allowed, but the degree of each vertex
and face is at least three, has a 5−-vertex and a 5−-face. From now on,M denotes a normal plane map.

As proved by Steinitz [31], 3-polytopes are in 1–1 correspondence with 3-connected planar graphs. Plane triangulations
are triangulated 3-polytopes; in particular, plane triangulations have neither loops nor multiple edges.
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The weight of a face in M is the degree-sum of its boundary vertices, and w(M), or simply w, denotes the minimum
weight of 5−-faces in M .

Let a face f be incident with vertices x1, . . . , xr(f ), where d(x1) ≤ d(x2) ≤ · · · ≤ d(xr(x)). We say that f is a face of type
(k1, . . . , kr(f )), or simply a (k1, . . . , kr(f ))-face, where k1 ≤ · · · ≤ kr(f ), if d(x1) = k1, d(x2) = k2, and d(xi) ≤ ki whenever
3 ≤ i ≤ r(f ). In other words, the boundary of a (k1, . . . , kr(f ))-face has a k1-vertex, another vertex of degree k2, yet another
vertex of degree atmost k3, and so on. By a (k1, k−

2 , k3, . . . , kr(f ))-facewemean a (k1, l2, k3, . . . , kr(f ))-facewith k1 ≤ l2 ≤ k2,
etc.

Back in 1940, Lebesgue [23] gave an approximate description of 5−-faces in normal plane maps.

Theorem 1 (Lebesgue [23]). Every normal plane map has a 5−-face of one of the following types:

(3, 6−, ∞), (3, 7, 41), (3, 8, 23), (3, 9, 17), (3, 10, 14), (3, 11, 13),

(4, 4, ∞), (4, 5, 19), (4, 6, 11), (4, 7, 9), (5, 5, 9), (5, 6, 7),

(3, 3, 3, ∞), (3, 3, 4, 11), (3, 3, 5, 7), (3, 4, 4, 5), (3, 3, 3, 3, 5).

Theorem 1, along with other ideas in Lebesgue [23], has a lot of applications to plane graph coloring problems (first
examples of such applications and a recent survey can be found in [8,28,30]).

Some parameters of Lebesgue’s Theorem 1 were improved for certain subclasses of plane graphs. In 1963, Kotzig [21]
proved that every plane triangulationwith δ = 5 satisfiesw ≤ 18 and conjectured thatw ≤ 17. In 1989, Kotzig’s conjecture
was confirmed by Borodin [2] in a more general form.

Theorem 2 (Borodin [2]). Every normal plane map with δ = 5 has a (5, 5, 7)-face or a (5, 6, 6)-face, where all parameters are
tight.

Theorem 2 also confirmed a conjecture of Grünbaum [16] of 1975 that the cyclic connectivity (defined as the minimum
number of edges to be deleted from a graph to obtain two components each containing a cycle) of every 5-connected planar
graph is at most 11, which is tight (a bound of 13 was earlier obtained by Plummer [29]).

We note that a 3-polytope with (4, 4, ∞)-faces can have unbounded w, as follows from the n-pyramid. The same is true
concerning (3, 3, 3, ∞)-faces: take the double 2n-pyramid and delete all even upper spokes and all odd lower ones to obtain
a quadrangulation having only (3, 3, 3, 2n)-faces.

For plane triangulations without 4-vertices, Kotzig [22] proved w ≤ 39, and Borodin [4], confirming Kotzig’s conjecture
in [22], proved w ≤ 29, which is best possible due to the dual of the twice-truncated dodecahedron. This was strengthened
by Borodin [5] as follows: either there is a triangle of weight at most 17, or a triangle of weight at most 29 incident with a
3-vertex. Borodin [6] further shows that each triangulated 3-polytope without (4−, 4, ∞)-faces satisfies w ≤ 29, and that
for triangulations without (4, 4, ∞)-faces there is a sharp bound w ≤ 37.

Note that 29 = 3+5+21 = 3+6+20, so already [4] implies that the terms (3, 5, 21) and (3, 6, 20) could be expected
to appear in a tight description of faces in plane triangulations, where the sharpness of 20 in (3, 6, 20) follows from the dual
of the twice-truncated dodecahedron while the sharpness of 21 in (3, 5, 21) is first established in the present paper (see
Fig. 2). A similar remark concerns the tight term (3, 4, 30) that comes from Borodin [6].

For arbitrary normal plane maps, Theorem 1 yields w ≤ max{51, ∆ + 9}. Horňák and Jendrol’ [17] strengthened this as
follows: if there are neither (4−, 4, ∞)-faces nor (3, 3, 3, ∞)-faces, then w ≤ 47. Borodin and Woodall [12] proved that
forbidding (3, 3, 3, ∞)-faces implies w ≤ max{29, ∆ + 8}.

Also, Horňák and Jendrol’ [17] consider the minimum, w∗, of face weights over all faces instead of over only 5−-faces,
as was being done before beginning with Lebesgue [23]. Clearly, w∗

≤ w. They proved [17] that any normal map avoiding
(4−, 4, ∞)-faces and (3, 3, 3, ∞)-faces satisfies w∗

≤ 32.
For quadrangulated 3-polytopes, Avgustinovich and Borodin [1] improved the description of 4-faces implied by

Lebesgue’s Theorem as follows: (3, 3, 3, ∞), (3, 3, 4, 10), (3, 3, 5, 7), (3, 4, 4, 5).
Some other results related to Lebesgue’s Theorem can be found in the already mentioned papers, in a recent survey by

Jendrol’ and Voss [19], and also in [3,5,11–15,18,20,24–27,32].
In 2002, Borodin [7] strengthened nine parameters in Lebesgue’s Theorem 1 without changing the others (the entries

marked by an asterisk are best possible, see [7]).

Theorem 3 (Borodin [7]). Every normal plane map has a 5−-face of one of the following types:

(3, 6−, ∞∗), (3, 7∗, 22), (3, 8∗, 22), (3, 9∗, 15), (3, 10∗, 13), (3, 11∗, 12),

(4, 4, ∞∗), (4, 5∗, 17), (4, 6∗, 11), (4, 7∗, 8), (5, 5∗, 8), (5, 6, 6∗),

(3, 3, 3, ∞∗), (3, 3, 4∗, 11), (3, 3, 5∗, 7), (3, 4, 4, 5∗), (3, 3, 3, 3, 5∗).
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In particular, to check the tightness of (3, 6−, ∞∗) in Theorems 1 and 3 we may use the following construction (Borodin
[5]), derived from the double n-pyramid: join each vertex of a cycle Cn = x1 . . . xn to n-vertices vj with 1 ≤ j ≤ 2, delete all
edges xixi+1 (addition modulo n), and for each i and j add a vertex yi,j joined to xi, xi+1, and vj. In the 3-polytope obtained,
every 3-face is incident with a 3-vertex, 6-vertex, and 2n-vertex, while every 4+-face is a 4-face incident with two 3-vertices
and two 6-vertices.

Note that for plane triangulations the term (3, 6−, ∞) is not tight, as follows from Theorems 5 and 8 below.
We can see already from Lebesgue’s Theorem 1 that if δ ≥ 4, then there is either a (4, 4, ∞)-face, or a 3-face of bounded

weight. From Theorem 3 we have a bit more, and the ultimate result in this direction is as follows.

Theorem 4 (Borodin–Ivanova [9]). Every normal plane map without 3-vertices has a 3-face of one of the following types, where
all parameters are sharp:

(4, 4, ∞), (4, 5, 14), (4, 6, 10), (4, 7, 7), (5, 5, 7), (5, 6, 6).

In 1999, Jendrol’ [18] improved the description of faces that comes from Lebesgue’s Theorem 1 for the case of plane
triangulations, except (4, 4, ∞) and (4, 6, 11).

Theorem 5 (Jendrol’ [18]). Every plane triangulation of order at least 5 has a face of one of the following types:

(3, 4, 35), (3, 5, 21), (3, 6, 20), (3, 7, 16), (3, 8, 14), (3, 9, 14), (3, 10, 13),
(4, 4, ∞), (4, 5, 13), (4, 6, 17), (4, 7, 8), (5, 5, 7), (5, 6, 6).

The next conjecturewas suggested by Jendrol’ [18], and it also appears in a recent survey by Jendrol’–Voss [19, Conjecture
4.9].

Conjecture 6 (Jendrol’ [18]). Every plane triangulation of order at least 5 has a face of one of the following types, where every
parameter is tight:

(3, 4, 30), (3, 5, 18), (3, 6, 20), (3, 7, 14), (3, 8, 14), (3, 9, 12), (3, 10, 12),
(4, 4, ∞), (4, 5, 10), (4, 6, 15), (4, 7, 7), (5, 5, 7), (5, 6, 6).

Recently, the first counterexample to Conjecture 6 was constructed in Borodin–Ivanova [10], as a corollary of the
following theorem, which shows that (4, 5, 11) can be attained.

Theorem 7 (Borodin–Ivanova [10]). Every plane triangulation with δ ≥ 4 has a face of one of the following types, where all
parameters are sharp:

(4, 4, ∞), (4, 5, 11), (4, 6, 10), (4, 7, 7), (5, 5, 7), (5, 6, 6).

Comparing Theorems 4 and 7, we see that 3-faces aremore restricted in the class of plane triangulations than in arbitrary
normal plane maps.

The purpose of this paper is to characterize the faces of arbitrary plane triangulations.

Theorem 8. Every plane triangulation of order at least 5 has a face of one of the following types:

(Ta) (3, 4, 31), (Th) (4, 4, ∞), (Tl) (5, 5, 7),
(Tb) (3, 5, 21), (Ti) (4, 5, 11), (Tm) (5, 6, 6).
(Tc) (3, 6, 20), (Tj) (4, 6, 10),
(Td) (3, 7, 13), (Tk) (4, 7, 7),
(Te) (3, 8, 14),
(Tf) (3, 9, 12),
(Tg) (3, 10, 12),

Moreover, all parameters in (Ta)–(Tm) are tight.

In particular, we see that Theorem 8 extends or strengthens the above mentioned results in [2,4,6,10,18,21,22] and
corrects the terms (3, 4, 30), (3, 5, 18), (3, 7, 14), (4, 5, 10), and (4, 6, 15) in Conjecture 6.

2. The tightness of Theorem 8

The bounds in Theorem 8 are all sharp, as follows from the constructions in Figs. 1–6.
Namely, in Fig. 1 we see how to transform the snub dodecahedron (that is a 5-regular polyhedron in which every vertex

is incident with one pentagon and four triangles) into a triangulation with all vertices having degree from 3, 4, 5, 6, 8, and at
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Fig. 1. A construction with no faces of types other than (3, 4, 31) in Theorem 8, showing the tightness of (Ta).

Fig. 2. A construction with only (3, 5, 21)-faces to justify (Tb).

least 31 and such that there are no 3-faces of the types mentioned in Theorem 8 other than (3, 4, 31). A similar construction
with only (3, 5, 21)-faces, justifying the tightness of (Tb), is given in Fig. 2.

In Fig. 3 we see simple constructions showing the tightness of (Tc), (Te), (Tg), and (Tj)–(Tm). For (Tm), we start from the
dodecahedron, for (Tc) and (Tj) from the icosahedron, and for (Tk) from the octahedron. To obtain a construction for (Te),
we put a 3-vertex into each face of the previously obtained construction confirming the tightness of (Tk). A triangulation
justifying (Tl) is obtained by gluing two copies shown in Fig. 3(Tl) along the outside cycle. Recall that the tightness of (Th)
follows from the above mentioned double pyramid.

Fig. 4 represents a replacement for each face of the icosahedron (a 5-regular triangulation on twelve vertices) such that
the resulting triangulation has vertices of degree 3, 7, and at least 13 only. More specifically, the corner vertices have degree
15, and there are three 13-vertices, each incident with three faces avoiding 3-vertices (shadowed). Furthermore, if a face is
incident with a 3-vertex, then it is incident with a 7-vertex and a 13+-vertex. This construction confirms the tightness of
(Td).

In Fig. 5 we see one eighth of a construction derived from the octahedron that has only (3, 9, 12)-faces and confirms the
tightness of (Tf).

Finally, Fig. 6 represents a plane triangulation which arises from the snub dodecahedron and confirms the tightness of
(Ti) in Theorem 8.

3. Proving the main statement of Theorem 8

A face is hard if it is not incident with a 3-vertex. Suppose T ∗ is a counterexample to Theorem 8 with the fewest hard
faces.
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Fig. 3. Constructions showing the tightness of (Tc), (Te), (Tg), and (Tj)–(Tm).

3.1. Simple structural properties of the counterexample T ∗

By v1, . . . , vd(v) we denote the neighbors of a vertex v in a cyclic order.
We will use the following simple structural properties of T ∗.

(SP1) No 3-vertex is adjacent to a 3-vertex.
Indeed, T ∗

≠ K4 and T ∗ has no multiple edges.
(SP2) A 4-vertex has at most one neighbor of degree 3.

This follows from the absence of loops and multiple edges in T ∗.
(SP3) A (2k + 1)-vertex v with 2 ≤ k ≤ 5 cannot have neighbors v1 and v2k−1 of degree 3.

Indeed, suppose d(v1) = d(v2k−1) = 3. Note that since d(v2k) and d(v2k+1) are sufficiently large due to (Tb),
(Td), (Tf), and (Tg), adding a vertex z in the face vv2kv2k+1 followed by joining z to v, v2k, and v2k+1 results in a new
counterexample with fewer hard faces than T , a contradiction.

(SP4) A (2k + 1)-vertex v with 2 ≤ k ≤ 5 cannot have k neighbors of degree 3.

This follows immediately from (SP3).
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Fig. 4. One twentieth of the icosahedron-like triangulation with only (3, 7, 13)-faces confirming the tightness of (Td).

Fig. 5. This replacement for every face of the octahedron produces only (3, 9, 12)-faces, as required in (Tf).

3.2. Discharging

The sets of vertices, edges, and faces of T ∗ are denoted by V , E, and F , respectively. Euler’s formula |V | − |E| + |F | = 2
for T ∗ implies

v∈V

(d(v) − 6) +


f∈F

(2r(f ) − 6) = −12. (1)

We assign a charge µ(v) = d(v) − 6 to every vertex v and µ(f ) = 0 to every face f , so only 5−-vertices have a negative
charge. Using the properties of T ∗ as a counterexample, we define a local redistribution of charges, preserving their sum,
such that the new charge µ′(x) is non-negative whenever x ∈ V ∪ F . This will contradict the fact that the sum of the new
charges is, by (1), equal to −12.

First we give a few definitions concerning 7-vertices.
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Fig. 6. A construction (Borodin–Ivanova [9]) with only (4, 5, 11)-faces, as in (Ti).

A 7-vertex v is poor if d(v1) = 4, 4 ≤ d(v3) ≤ 5, and d(v5) = 5. By a 7p-vertex we mean a poor vertex. A 74
p-vertex

or 75
p-vertex stands for a poor vertex with d(v3) = 4 or d(v3) = 5, respectively. A 7p-vertex is coupled if it is adjacent to a

7p-vertex (a coupled 74
p-vertex is shown in Fig. 7(R4b1); for a coupled 75

p-vertex see Fig. 7(R4b2)).
A 7-vertex v is bad if d(v4) = d(v6) = 3, d(v1) = 7, d(v2) = 5, and there is a face v2v3z with z ≠ v and d(z) ≥ 5 (see

Fig. 7(R4c)). Note that d(v3) ≥ 14 and d(v7) ≥ 14 here due to (Td).
We use the following rules of discharging (see Fig. 7):

R1. Every 3-vertex v receives the following charge from its neighbors:
(a) 3

2 from each of v2 and v3 if d(v1) ≤ 6;
(b) 2

3 from v1 and 7
6 from each of v2 and v3 if d(v1) = 7;

(c) 1
2 from v1 and 5

4 from each of v2 and v3 if d(v1) = 8;
(d) 3

4 from v1 and 9
8 from each of v2 and v3 if d(v1) = 9;

(e) 4
5 from v1 and 11

10 from each of v2 and v3 if d(v1) = 10;
(f) 1 from each neighbor if v has no 10−-neighbors.

R2. If T is a face uvw with d(v) = 4 and d(u) ≥ 8, then v receives from u through T :
(a) 1

2 if d(w) ≤ 6;
(b) 1

4 if d(w) = 7, and v also receives 1
2 from w along the edge wv;

(c) 1
4 if d(w) ≥ 8 (and 1

4 from w by symmetry), with the following exception (c∗).
(c∗) If d(v1) = 3, d(v2) ≥ 32, d(v3) ≥ 13, and d(v4) ≥ 32, then v receives 1

2 from v3 through each of the faces v2vv3
and v3vv4, and nothing from v2 and v4 through these faces.

R3. If T is a face uvw with d(v) = 5 and d(u) ≥ 8, then v receives from u through T :
(a) 1

8 if d(w) = 5 and d(u) ≤ 11;
(b) 1

4 if d(w) ≥ 6 and d(u) ≤ 11;
(c) 1

4 if d(w) = 5 and d(u) ≥ 12;
(d) 1

2 if d(w) ≥ 6 and d(u) ≥ 12, except for (d∗);
(d∗) 1

4 if d(w) = 7 and there is a face uv′w with d(v′) = 3.
R4. A 7-vertex v gives to its 5-neighbor v2 the following charge.

(a) If v is neither bad nor coupled poor while d(v1) ≥ 6, then
(a1) 1

4 when d(v3) ≥ 8, or
(a2) 1

3 when d(v3) ≤ 7 and d(v1) ≤ 7.
(b) If v and v1 are coupled poor 7-vertices (and hence d(v6) = 4), then

(b1) 1
8 if d(v4) = 4, or

(b2) 3
8 if d(v4) = 5, in which case 1

4 is also given by v to v4.
(c) 1

6 if v is a bad vertex.
R5. A 7-vertex v receives the following charge from a 8+-vertex v2 through the face v1vv2:

(a) 1
4 if d(v1) = 4;

(b) suppose d(v3) = 3, d(v1) = 5, and there is a face v1v
′v2 with v′

≠ v; then
(b1) 1

3 if d(v′) ≤ 4, or
(b2) 1

4 if d(v4) ≥ 5;
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Fig. 7. Rules of discharging.

(c) suppose d(v1) = 6 or d(v1) ≥ 8; then

(c1) 1
4 if d(v2) ≤ 13, or

(c2) 1
3 if d(v2) ≥ 14;

(d) 1
4 if d(v1) = 7 and d(v2) ≥ 12;

(e) suppose d(v1) = 7 and d(v2) ≤ 11, then

(e1) 1
4 if v1 is poor but not coupled, or

(e2) 1
8 otherwise.
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a b c d

e f g h

Fig. 8. To Case 3.

3.3. Proving µ′(x) ≥ 0 whenever x ∈ V ∪ F

If f is a face in T ∗, then f does not participate in discharging, and so µ′(v) = µ(f ) = 2 × 3 − 6 = 0.
Now let v be a vertex in T ∗.
Case 1. d(v) = 3. Since v receives the total of precisely 3 from its neighbors by R1, we have µ′(v) = 3 − 6 + 3 = 0.
Case 2. d(v) = 4. By R2, v receives 1

2 through each incident face not incident with a 7-vertex. If d(v1) = 7, then v receives
1
2 from v1 and 1

4 through each of the faces v1vv2 and v1vv4, so we have µ′(v) = 4 − 6 + 2 = 0.
Case 3. d(v) = 5. Since µ(v) = −1, we have to check that v receives a total of at least 1 from its neighbors v1, . . . , v5.

Some situations arising in Case 3 are shown in Fig. 8.
Subcase 3.1. d(v1) ≤ 4 and d(v3) ≤ 4 (see Fig. 8(a)). Here, d(v4) ≥ 12 and d(v5) ≥ 12 by(Ti), so v receives 1

2 from each
of v4 and v5 through face vv4v5 by R3d.

Subcase 3.2. d(v2) ≤ 4 and d(v4) ≥ 5. Now d(v1) ≥ 12 and d(v3) ≥ 12. If d(v4) = 5, then d(v5) ≥ 8 by (Tl), so v through
face vv1v5 receives 1

2 from v1 by R3d and at least 1
4 from v5 by R3b. Furthermore, v receives 1

4 from v3 through face vv3v4
by R3c.

Suppose d(v4) ≥ 6 and d(v5) ≥ 6 (in fact either d(v4) ≥ 7 or d(v5) ≥ 7 due to (Tm)). By symmetry, it suffices to check
that v receives at least 1

2 from v3 and v4 together. If R3d* is not applied to v3, then v receives 1
2 from v3 through face vv3v4

by R3d, so suppose it is (see Fig. 8(b)). If v receives at least 1
4 from v4, then we are done since v receives at least 1

4 from v3

by R3(c–d*). According to R4, this does not happen only if v4 is either a coupled 74
p-vertex or a bad 7-vertex.

Note that v4 is not poor since it has a 3-neighbor. Finally, suppose that v4 is a bad 7-vertex (see Fig. 8(b) again). However,
v4 cannot give 1

6 to v by R4c since this requires d(v2) ≥ 5, contrary to the above assumption.
From now on we assume that 5-vertex v has no 4−-neighbors.
Subcase 3.3. There is a donation of 1

8 to v from a 74
p-vertex v3 by R4b1 (see Fig. 8(c), (d)). Suppose v2 is a 7p-vertex, so that

d(v4) ≥ 8. If v2 is a 74
p-vertex (Fig. 8(c)), then d(v1) ≥ 8. Since v receives at least 1

4 +
1
8 from each of v1 and v4 by R3(b,d,d*)

and 1
8 from each of v2 and v3 by R4b1, we have µ′(v) ≥ 0.

Now suppose that v2 is a 75
p-vertex (Fig. 8(d)). Still v receives at least 1

4 +2×
1
8 from v3 and v4 together. Also v receives 3

8
from v2 by R4b2. We have to find 1

8 more to be sure that µ′(v) ≥ 0, but at least one of v1 and v5 is a 7+-vertex due to (Tm),
and so it cannot give less than 1

8 to v by R3 and R4.
Subcase 3.4. There is a donation of 1

6 to v from a bad 7-vertex v3 by R4c (see Fig. 8(e) for the final situation here). Suppose
that d(v2) ≥ 14 and d(v4) = 7 (as it was assumed, d(v1) ≥ 5). Note that v2 gives at least 1

4 to v through each of the faces
v2vv1 and v2vv3 by R3(c–d∗). Due to Subcase 3.3, v4 gives at least 1

6 to v. At least one of v1 and v5 is a 7+-vertex due to the
absence of (5, 6, 6)-faces, and so also gives at least 1

6 to v. This yields µ′(v) ≥ −1 + 2 ×
1
4 + 3 ×

1
6 = 0, as desired.

Hereafter, we assume that each 7-neighbor gives at least 1
4 to v according to R4. Of course, the same is true for each

8+-neighbor of v due to R3, where in the worst case v receives 1
8 +

1
8 through two faces by R3a.
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Fig. 9. Handling 7-vertices in Case 5.

Subcase 3.5. d(v1) = d(v3) = 5 (see Fig. 8(f)). Since d(v2) ≥ 8, d(v4) ≥ 8, and d(v5) ≥ 8 by (Tl), it follows that v receives
at least 1

4 from v2 and at least 1
4 +

1
8 from each of v4 and v5 through incident faces by R3, which implies µ′(v) ≥ 0.

Subcase 3.6. d(v2) = 5, d(v4) ≥ 6, and d(v5) ≥ 7 (Fig. 8(g)). Recall that d(v1) ≥ 8 and d(v3) ≥ 8 due to (Tl). Now v
receives at least 3

8 from each of v1 and v3 and at least 1
4 from v4 or v5, and we are done.

Subcase 3.7. v has no 5−-neighbors (see Fig. 8(h) for the final situation). If v has at least four 7+-neighbors, then
µ′(v) ≥ −1 + 4 ×

1
4 = 0. On the other hand, v has at least three 7+-neighbors due to (Tm), so we can assume that

d(v1) = d(v3) = 6, d(v2) ≥ 7, d(v4) ≥ 7, and d(v5) ≥ 7. If at least one of v2, v4, v5 is a 8+-vertex, then R3a is not applied
to it, and we have µ′(v) ≥ −1 +

1
2 + 2 ×

1
4 = 0. Thus suppose d(v2) = d(v4) = d(v5) = 7. Inspecting R4, we see that each

of v2, v4, v5 gives v either 1
3 by R4a2 or, due to (Tk), 3

8 by R4b2. This implies µ′(v) ≥ −1 + 2 ×
1
3 = 0.

Case 4. d(v) = 6. Since v does not participate in discharging, we have µ′(v) = µ(v) = 0.
Case 5. d(v) = 7 (see Fig. 9). We note that handling 7-vertices is the most difficult part of the proof of Theorem 8. By

(SP4), v has at most two 3-neighbors. By our rules, v gives 2
3 to each 3-neighbor (R1b), 1

2 to each 4-neighbor (R2b), and at
most 3

8 to each 5-neighbor (R4).
Subcase 5.1. v has two 3-neighbors (Fig. 9(a)–(d)). By (SP3), we can assume that d(v1) = d(v3) = 3. It follows from (Td)

that d(v4) ≥ 14 and d(v7) ≥ 14. Note that v receives by R5(a,b,c2,d,f) at least 1
4 from each of v4 and v7 through faces v4vv5

and v6vv7, respectively.
Therefore, v has at least 3

2 to discharge to its 5−-neighbors. Since v gives 4
3 to its 3-neighbors and nothing to its 6+-

neighbors, we can assume that 4 ≤ d(v5) ≤ 5. Due to (Tk) and (Tl), we have d(v6) ≥ 6.
Due to (Tk) and (Tl), we have d(v6) ≥ 6 (see Fig. 9(a)). First suppose that d(v6) = 6, and hence d(v5) = 5 due to (Tj). Now

v receives 1
3 from v7 by R5c2. Note that v is neither coupled (since it has a 3-neighbor), nor bad (since it has no 7-neighbor).

Therefore, v gives 1
4 to v5 by R4a, which yields µ′(v) ≥ 1 +

1
3 +

1
4 − 2 ×

2
3 −

1
4 = 0.

On the other hand, if d(v6) ≥ 8 (Fig. 9(b)), then v receives at least 1
4 +

1
3 from v6 and v7 through face v6vv7 by R5c1 and

R5c2 and, asmentioned above, at least 1
4 from v4. Since v gives atmost 1

2 to v5, this yieldsµ′(v) ≥ 1+
1
3 +2×

1
4 −

4
3 −

1
2 = 0.

Thus it remains to assume that d(v6) = 7. Due to (Tk), we have d(v5) = 5 (see Fig. 9(c), (d)).
Note that v can give at most 1

4 to v5 by R4 since d(v4) ≥ 14 and v is not coupled. Thus, the total expenditure of v is at
most 2 ×

2
3 +

1
4 . If v5 is bad and hence receives only 1

6 from v by R4c (see Fig. 9(c)), then µ′(v) ≥
3
2 −

4
3 −

1
6 = 0.
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There is only one reason why R4c is not applicable to v5. Let x, y, v6, v, v4 be the neighbors of v5 in a cyclic order. In
these terms, this reason is d(x) ≤ 4 (see Fig. 9(d)). However, then v receives 1

3 rather than 1
4 from v4 by R5b1, while v5 still

receives precisely 1
4 from v by R4a, which implies µ′(v) ≥ 1 +

1
4 +

1
3 −

4
3 −

1
4 = 0.

Subcase 5.2. v has just one 3-neighbor, v1 (see Fig. 9(e), (f)). Now d(v2) ≥ 14 and d(v7) ≥ 14. Still, v has at least 3
2 to

discharge to its neighbors. In particular, v has at least 5
6 for its 4+-neighbors. Since v is not poor, it can give at most 1

3 to its
5-neighbors. Recall that v gives 1

2 to every 4-neighbor. Thus the only problem to consider is that v has two 4-neighbors.
If d(v3) = d(v5) = 4 (see Fig. 9(e)), then d(v6) ≥ 8 due to (Tk), so v receives at least 3 ×

1
4 from the 8+-vertices v2, v6,

and v7, and we have µ′(v) ≥ 1 + 3 ×
1
4 −

2
3 − 2 ×

1
2 > 0.

If d(v3) = d(v6) = 4 (see Fig. 9(f)), then d(v4) ≥ 8 and d(v5) ≥ 8, so v receives at least 4 ×
1
4 from its 8+-neighbors,

which yields µ′(v) > 0.
Subcase 5.3. v has no 3-neighbors. In particular, v is not bad. We have nothing to prove unless v is adjacent to three

5−-vertices.
If d(v1) = d(v5) = 4 (see Fig. 9(g)), then d(v6) ≥ 8 and d(v7) ≥ 8, so v receives at least 1

4 +
1
4 through 3-face vv6v7 by

R5c2, which implies µ′(v) ≥ 1 + 2 ×
1
4 − 3 ×

1
2 = 0.

Now suppose d(v1) = 4 and d(v5) = 5, that is v is poor. Here, d(v6) ≥ 6 and d(v7) ≥ 8. First assume that d(v3) = 4, so
v is a 74

p-vertex (see Fig. 9(h)).
If v6 is not a 7p-vertex, which means that v is not coupled, then v receives at least 1

4 from v7 through face v6vv7 by
R5(c1,c2,d,e1) and gives 1

4 to v5 by R4. This yields µ′(v) ≥ 7 − 6 +
1
4 − 2 ×

1
2 −

1
4 = 0.

If v6 is a coupled a 7p-vertex, then v receives at least 1
8 from v7 through face v6vv7 by R5(d,e2) and gives 1

8 to v5 by R4b1,
so µ′(v) ≥ 7 − 6 +

1
8 − 2 ×

1
2 −

1
8 = 0.

If d(v3) = 5, which means that v is a 75
p-vertex (no matter coupled or not, see Fig. 9(i)), then v receives at least 1

8 by
R5(c1–e2) and gives 1

4 to v3 by R4b2 if v is coupled or R4a otherwise and at most 3
8 to v4 by Rb2 or R4a, respectively. This

implies that µ′(v) ≥ 7 − 6 +
1
8 −

1
2 −

1
4 −

3
8 = 0.

Finally, suppose that d(v1) = d(v5) = 5. If d(v3) = 5 (Fig. 9(j)), then µ′(v) ≥ 7 − 6 − 3 ×
1
3 = 0 due to R4(a1,a2).

Otherwise (Fig. 9(k)), µ′(v) ≥ 7 − 6 −
1
2 − 2 ×

1
4 = 0 due to R2b and R4a1.

Remark 1. Every vertex v with 8 ≤ d(v) ≤ 11 sends at most 1
4 through each incident hard face v1vv2 by R2(b,c), R3(a,b),

and R5(c1,e1,e2), unless d(v) = 11, d(v1) = 4, d(v2) = 5, in which case v sends 1
2 to v1 by R2a (and nothing to v2 by

R1–R5).

Case 6. d(v) = 8. We may view the donation of 1
2 by v by R1c to a 3-vertex v2 as giving 1

4 to v2 through each of the non-
hard faces v1vv2 and v2vv3. Due to Remark 1, under this convention v sends at most 1

4 through each incident face, whence
µ′(v) ≥ 8 − 6 − 8 ×

1
4 = 0.

In what follows, let n3 be the number of 3-neighbors of v.
Case 7. 9 ≤ d(v) ≤ 10. Note that v gives at most 1

4 through any of d(v) − 2n3 faces not incident with a 3-vertex due to
Remark 1.

For d(v) = 9 we have n3 ≤ 3 by (SP4), which implies µ′(v) ≥ 9 − 6 − n3 ×
3
4 − (9 − 2n3) ×

1
4 =

3−n3
4 ≥ 0 due to R1d.

Suppose d(v) = 10; then µ′(v) ≥ 10 − 6 − n3 ×
4
5 − (10 − 2n3) ×

2
5 = 0 in view of R1e.

Case 8. d(v) = 11. We may look at the donation of 1 by v to a 3-neighbor w by R1f as giving 1
2 through each of the two

faces incident with edge vw. If so, then v gives 1
2 through face v1vv2 only if d(v1) = 3 and d(v2) ≥ 11 by the so modified

R1, or d(v1) = 4 and d(v2) = 6 by R2a. Furthermore, any other face receives from v at most 1
4 due to Remark 1. Since

µ(v) = 11 − 6 = 5, we are done unless either every incident face receives 1
2 from v or each of ten incident faces receives

1
2 and the eleventh face receives a positive charge. So suppose this is the case.

If n3 = 0, then v has two consecutive 6-neighbors, v1 and v2 say, but such a face v1vv2 receives nothing from v, a
contradiction.

Thus we can assume that n3 ≥ 1 (see Fig. 10(a)).
Considering a maximal sequence v1, . . . , v2k+1 with d(v2) = · · · = d(v2k) = 3, k ≤ 4, we find two distinct faces v1vv11

and v2k+1vv2k+2 (as n3 ≤ 4 due to (SP4)), each receiving less than 1
2 from v since d(v1) ≥ 11 and d(v2k+1) ≥ 11 (in fact, 1

4
by R2c, R3b, R5e2, or nothing otherwise), a contradiction.

Remark 2. Every vertex v with d(v) ≥ 12 sends at most 1
2 through each incident hard face v2vv3 by (combinations of)

R2(a,c∗), R3(c,d,d∗), and R5(a,b2,c2,d), and sends 1
4 +

1
3 by R3d∗ combined with R5b1 when d(v) ≥ 14, d(v1) = 3, d(v2) =

7, d(v3) = 5, and d(v4) ≤ 4.
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Fig. 10. Some situations in Cases 8 and 10–12.

Case 9. d(v) = 12. As in Case 8, every 3-neighbor receives 1 from v by R1f in view of (Tg), so we see from Remark 2 that
v actually sends at most 1

2 through every incident face. Thus µ′(v) ≥ 12 − 6 −
12
2 = 0.

Case 10. d(v) = 13. Now v sends at most 9
8 to a 3-vertex by R1(d–f) due to (Ta)–(Te) and at most 1

2 through a face not
incident with a 3-vertex in view of Remark 2, including 1

3 if R5c2 is in action. This implies that µ′(v) ≥ 13 − 6 − n3 ×
9
8 −

(13 − 2n3) ×
1
2 =

4−n3
8 , so we are already done if n3 ≤ 4. On the other hand, n3 ≤ 6 due to (SP1).

For n3 = 6 it suffices to note that v has two consecutive 9+-neighbors v1 and v2 by parity combined with (Ta)–(Te),
which means that v does not give any charge through face v1vv2, and hence µ′(v) ≥ 7 − 6 ×

9
8 > 0.

Thus we can assume that n3 = 5. Furthermore, we are done if, say, d(v1) ≥ 11, d(v2) = 3, and d(v3) ≥ 11 because v2
then receives only 1 from v by R1f, which implies that µ′(v) ≥ 7 − 4 ×

9
8 − 1 − 3 ×

1
2 = 0.

Due to (Ta)–(Te), we can now assume that every 3-neighbor of v is adjacent to a vertex of degree 9 or 10. On the other
hand, if d(vi) = 3 and d(vi−1) ≤ 10 (addition modulo 13), then d(vi+1) ≥ 13 due to (Tf) and (Tg) applied to the face
vi−1vivi+1.

So let d(v4) = d(v6) = · · · = d(v12) = 3, 9 ≤ d(v3) ≤ 10, and d(v13) ≥ 13 (see Fig. 10(b)). We note that v sends either
1
4 or nothing through the face v2vv3. Indeed, if d(v2) = 4 then R2c is applied; if d(v2) = 5 then R3c works; if d(v2) = 6 or
d(v2) ≥ 8, then no charge is transferred from v through the face v2vv3 by R1–R5; and if d(v2) = 7 then 1

4 is given by R5c2.
Therefore, µ′(v) ≥ 7 − 5 ×

9
8 −

1
4 − 2 ×

1
2 > 0.

Case 11. d(v) = 14. As compared to d(v) ≤ 13, now four new rules, R1b, R3d∗, and R5(b1,b2), join the play. Namely, now
v sends by R5b1 and R3d∗ as much as 1

3 +
1
4 through a face v1vv2 when d(v1) = 5, d(v2) = 7, d(v3) = 3, and d(v14) ≤ 4,

where in fact d(v14) = 4 due to (Td). If R5b1 is not applied, then each incident face avoiding 3-neighbors receives from v at
most 1

2 , according to Remark 2. Also, v sends 7
6 to v2 when d(v1) = 7 and d(v2) = 3 (due to (Td) applied to the face v1v2v3,

we have d(v3) ≥ 14).
Note that µ′(v) ≥ 14 − 6 − n3 ×

7
6 − (14 − 2n3) ×

7
12 = −

1
6 . If R5b1 is applied (see Fig. 10(c)), then the 4-vertex v14

above is incident with two faces each taking 1
2 from v rather than 7

12 , which implies that µ′(v) ≥ 8 − 6 ×
7
6 − 2 ×

1
2 = 0.

So suppose R5b1 never applies to our v.
If n3 ≤ 6, then again there are at least two hard faces each taking at most 1

2 from v, so µ′(v) ≥ 0. Thus suppose n3 = 7.
By parity combined with (Tg), there is a 3-neighbor of v surrounded by 11+-vertices. This 3-vertex receives 1 from v by R1f
rather than 7

6 by R1b, and we are done.
Case 12. 15 ≤ d(v) ≤ 20. By Remark 2, v gives strictly less than 5

8 through every incident face. Also, v gives at most 5
4 to

every adjacent 3-vertex by R1(b–f) since applying R1a is forbidden by (Ta)–(Tc).
For d(v) ≥ 16 we are already done since µ′(v) ≥ d(v) − 6 − n3 ×

5
4 − (d(v) − 2n3) ×

5
8 =

3(d(v)−16)
8 ≥ 0, so suppose

d(v) = 15.
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Fig. 11. To Case 13.

Nowwe have a rough estimation µ′(v) ≥ −
3
8 and wish to improve it to µ′(v) ≥ 0 by saving 3

8 with respect to the above
mentioned level of donations of 5

8 through hard faces and 5
4 to 3-vertices.

First suppose a face v2vv3 conducts more than 1
2 from v. As in Case 11, this happens only by R5b1, so we have

d(v1) = 4, d(v2) = 5, d(v3) = 7, and d(v4) = 3 (see Fig. 10(d)). In fact, v2vv3 conducts 1
3 to v3 by R5b1 and 1

4 to v2

by R3d*. We can say that the saving caused by the face v2vv3 alone is 5
8 −

1
3 −

1
4 =

1
8 −

1
12 . Furthermore, v gives 7

6 to v4

rather than 1
4 , which results in saving of 1

12 on v4. Finally, face v1vv2 conducts 1
2 and hence saves 1

8 .
Therefore, any application of R5b1 results in saving of 2

8 . Note that d(v5) ≥ 8 in view of (Td), so the saving of 1
12 caused

by v4 should be attributed to face v2vv3 solely. The same is true for the face v1vv2; its saving of 1
8 also cannot be counted

twice and belongs to v2vv3 only.
Thus more than one application of R5b1 results in saving of at least 4

8 , and we are done. On the other hand, if the above
application of R5b1 is unique for v, then we have another saving of 1

8 caused by face v1vv14, where d(v14) ≥ 5 due to
(Tb) again, as desired. (Informally speaking, any application of R5b1 saves 2

8 on four consecutive faces and saves 3
8 on five

consecutive faces if R5b1 is applied just once.)
So from now on we can assume that R5b1 is not applied to our v. This means that every hard face conducts at most 1

2
from v and hence saves at least 1

8 for v. Due to parity, we can assume that a face v1vv2 with d(v1) ≥ 4 and d(v2) ≥ 5 is
unique, for otherwise we already have nothing to prove. This means that n3 = 7, so let d(v3) = d(v5) = · · · = d(v15) = 3
(see Fig. 10(e)).

If there is a v2k+1, 1 ≤ k ≤ 7, surrounded by three 11+-vertices, then v2k+1 receives only 1 from v by R1f and thus saves
1
4 for v. This yields a desired total saving of 1

8 +
1
4 .

Otherwise, we deduce by parity combined with (Tg) that d(v2) ≤ 10 and d(v1) ≥ 13 due to symmetry. Note that
d(v2) ≥ 7 due to (Tc). If d(v2) ≥ 8 then v gives nothing through face v1vv2 by R1–R5, which saves 5

8 . So suppose d(v2) = 7.
Thus v1vv2 is as described in R5c2, and it takes away from v only 1

3 . Since v now gives 7
6 to v by R1b rather than 5

4 by R1c,
this implies µ′(v) ≥ 15 − 6 − 7 ×

5
4 −

1
3 = 0.

Case 13. 21 ≤ d(v) ≤ 31. A face v2vv3 incident with v is single if d(v2) ≥ 4 and d(v3) ≥ 5. Clearly, there are precisely
d(v) − 2n3 single (or hard, which is the same here) faces at v.

Note that every single face v2vv3 at v either receives at most 1
2 from v or participates in R5b1 (we will call such faces,

described in Remark 2, bad singles for brevity), in which case d(v1) = 3, d(v2) = 7, d(v3) = 5, and d(v4) ≤ 4 (see Fig. 11(a)).
Recall that v2vv3 conducts 7

12 from v while v1 receives 7
6 . We say that the 3-vertex v1 is associated with a bad single v2vv3.

Due to (Td), we have d(vd(v)) ≥ 14, so v1 cannot be associated with two bad singles at v.
Due to R1, every 3-neighbor of v receives at most 3

2 from v. Let n′

3 be the number of 3-vertices associatedwith bad singles
at v. Since 3

2 +
1
2 −( 7

6 +
7
12 ) =

1
4 , we see that a bad single alongwith its associated 3-vertex even causes saving of 1

4 for v with
respect to the ‘‘normal’’ donation of 1

2 +
3
2 to a hard face plus that to a 3-vertex. From this informal observation combined

with n3 ≤ ⌊
d(v)

2 ⌋, we deduce that

µ′(v) ≥ d(v) − 6 − (n3 − n′

3) ×
3
2

− n′

3 ×
7
6

− (d(v) − 2n3 − n′

3) ×
1
2

− n′

3 ×
7
12

≥ d(v) − 6 − n3 ×
3
2

− (d(v) − 2n3) ×
1
2

=
d(v) − 12 − n3

2
≥

d(v) − 24
4

.

Thus we are already done if d(v) ≥ 24. If d(v) = 23, then we have µ′(v) ≥
23−12−n3

2 ≥ 0.
Suppose d(v) = 22. Since µ′(v) ≥

22−12−n3
2 , the only case to consider is n3 = 11. Due to (Tg) and the oddness of 22

2 ,
there is a 3-neighbor v2 of v such that d(v1) ≥ 11 and d(v3) ≥ 11. By R1f, v2 receives as little as 1 from v. This improves our
general rough estimation µ′(v) ≥

22−12−11
2 = −

1
2 above by 3

2 − 1 and hence proves that µ′(v) ≥ 0.
Finally, suppose d(v) = 21 (see Fig. 11(b)–(d)). Due to the rough estimation µ′(v) ≥

9−n3
2 , it suffices to assume that

n3 = 10, so we have µ′(v) ≥ −
1
2 .

Let d(v2) = d(v4) = · · · = d(v20) = 3. By (Tb), we have d(v1) ≥ 6 and d(v21) ≥ 6 (see Fig. 11(b)). In particular, we see
that R5b1 is not applied to v1vv2. If in fact d(v1) ≠ 7 ≠ d(v21), then face v1vv21 does not receive anything by R1–R5, and
we have µ′(v) ≥ 21 − 6 − 10 ×

3
2 = 0.
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Fig. 12. To Case 14.

So suppose d(v1) = 7 (see Fig. 11(c), (d)). Now v gives 7
6 to v2 rather than 3

2 in our rough estimation. Thus v saves 1
3 at

v2.
If d(v21) = 7 (see Fig. 11(c)), then µ′(v) ≥ −

1
2 + 2 ×

1
3 > 0, as desired. If d(v21) ≠ 7 (see Fig. 11(d)), then v gives 1

3 to
v1 through v1vv21 by R5c2, which implies µ′(v) ≥ 21 − 6 − 9 ×

3
2 −

7
6 −

1
3 = 0.

Case 14. d(v) ≥ 32. Finally, R1a becomes applicable to v in full strength, since a 3-neighbor of v can have a 4-neighbor.
If d(v2) = 4 and d(v3) = 3 (which implies that d(v4) ≥ 32 due to (Ta)), then faces v1vv2, v2vv3 and v3vv4 form a triple
receiver from v, or a triple for brevity (see Fig. 12(a)). A double is a pair of faces v1vv2, v2vv3 with d(v1) ≥ 5, d(v2) = 3, and,
due to (Tg) and symmetry, d(v3) ≥ 11 (see Fig. 12(b)). A face v1vv2 forms a single receiver if either d(v1) ≥ 5 and d(v2) ≥ 5
(see Fig. 12(c)), or d(v1) ≥ 5, d(v2) = 4, and d(v3) ≥ 5 (see Fig. 12(c∗)).

It follows from (SP1) combined with (Th) that each face incident with v belongs to precisely one receiver, so 3nt + 2nd +

ns = d(v), where nt , nd, and ns are the numbers of corresponding receivers.
By our rules, every triple receives from v at most 1

2 +
1
2 +

3
2 , so each of the three faces gets at most 5

6 on the average.
A double receives at most 3

2 , so we can say that it saves for v at least 2 ×
5
6 −

3
2 , which is 1

6 , with respect to the level 5
6 of

donation per face. Any single, except for that described in R5b1, receives at most 1
2 , and so saves at least 1

3 .
First suppose that R5b1 is applied to v, sowe have a bad single described in Case 13with d(v2) = 3, d(v3) = 7, d(v4) = 5,

and d(v5) ≤ 4. Here v3vv4 is a single as defined in Case 14,while the two faces incidentwith edge vv2 form a double receiver.
Recall that v2 receives 7

6 from v, while v3 and v4 receive 1
3 and 1

4 , respectively, through face v3vv4. Since 7
6 +

1
3 +

1
4 = 3×

5
6 −

3
4 ,

our v saves at least 3
4 on these two receivers. This implies that µ′(v) ≥ d(v) − 6 − d(v) ×

5
6 +

3
4 ≥

32−36
6 +

3
4 > 0. So from

now on we assume that R5b1 is not applied to v.
For d(v) ≥ 36 we have already nothing to prove as µ′(v) ≥ d(v) − 6− d(v) ×

5
6 =

d(v)−36
6 ≥ 0. For the remaining cases

32 ≤ d(v) ≤ 35 we should argue more carefully to prove that the total saving of all receivers always covers the deficiency
d(v)−36

6 ≥ 0 of our v. (For example, if d(v) = 32, then it suffices to check that the total saving is at least 2
3 , while for d(v) = 35

a saving of 1
6 is already enough.)

Subcase 14.1. d(v) = 35. It suffices to observe that nd + ns ≥ 1 since 35
3 is not an integer, which implies a saving of at

least 1
6 .

Subcase 14.2. d(v) = 34. If ns ≥ 1, then v already saves at least 1
3 , and we are done. However, ns = 0 implies that nd ≥ 2

because neither 34
3 nor 34−1×2

3 is an integer. This yields µ′(v) ≥
34−36

6 + 2 ×
1
6 = 0.

Subcase 14.3. d(v) = 33. Nowwe have to save 3
6 , so suppose ns ≤ 1. If ns = 1, then nd ≥ 1 since 33−1×1

3 is not an integer,
so we save at least 1

3 +
1
6 , as desired.

Suppose that ns = 0. Since 33−k×2
3 is not an integer when k ∈ {1, 2}, we are done unless nd = 0. Thus the neighborhood

of v is partitioned into 11 triples. Recall that a 3-vertex in a triple has a 32+-neighbor by (Ta). Since 33
3 is not even, there

is a path v1 · · · v4 such that d(v1) ≥ 32, d(v2) = 4, d(v3) = 3, and d(v4) ≥ 32 (see Fig. 12(d)). According to R2c*, our v
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gives 0 +
1
2 to v2 through faces v1vv2 and v2vv3, respectively, Also, v gives 3

2 to v3 along edge vv3. Hence this triple saves
3 ×

5
6 −

1
2 −

3
2 , that is

1
2 , as desired.

Subcase 14.4. d(v) = 32. Nowwe have to save 4
6 . If ns = 1, then nd ≥ 2, which implies a total saving of at least 1

3 +2×
1
6 .

So suppose that ns = 0. Since 32−k×2
3 is not an integer whenever k ∈ {0, 2, 3}, we have either nd = 1 or nd ≥ 4.

Thus we are done unless nd = 1. Let us have a double receiver D defined on path v1v2v3. Due to (Tg), we can assume that
d(v1) ≥ 5, d(v2) = 3, and d(v3) ≥ 11. If d(v1) ≤ 10, then D saves 2 ×

5
6 −

3
2 , which is 1

6 . Otherwise, D alone saves all we
need (2 ×

5
6 − 1 =

2
3 ).

It remains to assume that d(v1) ≤ 10, which implies d(v3) ≥ 13 due to (Tg) (see Fig. 12(e)). By the same alternation
argument as in Subcase 14.4 based on R2c*, we deduce that there is a triple receiver that receives nothing from v through a
hard face by R2c*. Therefore, it saves 1

2 for v in addition to 1
6 already saved by D, and we are done.

Thus we have proved µ′(x) ≥ 0 for every x ∈ V ∪ F , which contradicts (1) and completes the proof of Theorem 8.
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