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a b s t r a c t

Let ϕP (C6) (respectively, ϕT (C6)) be the minimum integer k with the property that every
3-polytope (respectively, every plane triangulation) with minimum degree 5 has a 6-cycle
with all vertices of degree at most k. In 1999, S. Jendrol’ and T. Madaras proved that
10 ≤ ϕT (C6) ≤ 11. It is also known, due to B. Mohar, R. Škrekovski and H.-J. Voss (2003),
that ϕP (C6) ≤ 107.

We prove that ϕP (C6) = ϕT (C6) = 11.
© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The degree d(x) of a vertex or face x in a plane graph G is the number of incident edges. A k-vertex (k-face) is a vertex (face)
with degree k, a k+-vertex has degree at least k, etc. The minimum vertex degree of G is δ(G). We will drop the arguments
whenever this does not lead to confusion.

A normal plane map (NPM) is a plane pseudograph in which loops and multiple edges are allowed, but d(x) ≥ 3 for
every vertex or face x. As proved by Steinitz [20], the 3-connected plane graphs are planar representations of the convex
three-dimensional polytopes, called hereafter 3-polytopes.

In this note, we consider the class M5 of NPMs with δ = 5 and its subclasses P5 of 3-polytopes and T5 of plane
triangulations. A cycle on k vertices is denoted by Ck, and Sk stands for a k-star centered at a 5-vertex. (So, Sk is a subgraph
ofM5 on a 5-vertex and k vertices adjacent to it, where 0 ≤ k ≤ 5.)

In 1904, Wernicke [21] proved that M5 ∈ M5 implies, in M5, the presence of a vertex of degree 5 adjacent to a vertex
of degree at most 6. This result was strengthened by Franklin [8] in 1922 to the existence of a vertex of degree 5 with two
neighbors of degree atmost 6. In 1940, Lebesgue [15, p. 36] gave an approximate description of the neighborhoods of vertices
of degree 5 in T5.

The weight wM(H) is the maximum overM5 ∈ M5 of the minimum degree-sum of the vertices of H over subgraphs H of
M5. The weights wP(H) and wT (H) are defined similarly for P5 and T5, respectively.

The bounds wM(S1) ≤ 11 (Wernicke [21]) and wM(S2) ≤ 17 (Franklin [8]) are tight. It was proved by Lebesgue [15] that
wM(S3) ≤ 24 and wM(S4) ≤ 31, which was improved much later to the following tight bounds: wM(S3) ≤ 23 (Jendrol’
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and Madaras [10]) and wM(S4) ≤ 30 (Borodin and Woodall [6]). Note that wM(S3) ≤ 23 readily implies wM(S2) ≤ 17
and immediately follows from wM(S4) ≤ 30 (it suffices to delete a vertex of maximum degree from a star of the minimum
weight).

It follows from Lebesgue [15, p. 36] thatwT (C3) ≤ 18. In 1963, Kotzig [14] gave another proof of this fact and conjectured
that wT (C3) ≤ 17. (The bound 17 is easily shown to be tight.)

In 1989, Kotzig’s conjecture was confirmed by Borodin [2] in a more general form, by proving wM(C3) = 17. Another
consequence of this result is the confirming of a conjecture of Grünbaum [9] from 1975 that the cyclic connectivity (defined
as the minimum number of edges to be deleted from a graph to obtain two components each containing a cycle) of every
5-connected planar graph is at most 11, which is tight (a bound of 13 was earlier obtained by Plummer [19]).

It also follows from Lebesgue [15, p. 36] that wT (C4) ≤ 26 and wT (C5) ≤ 31. In 1998, Borodin and Woodall [6] proved
wT (C4) = 25 and wT (C5) = 30.

Now let ϕM(H) (ϕP(H), ϕT (H)) be the minimum integer k with the property that every normal plane map (3-polytope,
plane triangulation) with minimum degree 5 has a copy of H with all vertices of degree at most k.

It follows from Franklin [8] that ϕM(S2) = 6. From wM(C3) = 17 (Borodin [2]), we have ϕM(C3) = 7. In 1996, Jendrol’
andMadaras [10] proved ϕM(S4) = 10 and ϕT (C4) = ϕ(C5) = 10. R. Soták (personal communication; see surveys of Jendrol’
and Voss [12,13]) proved ϕP(C4) = 11 and ϕP(C5) = 10.

In 1999, Jendrol’ et al. [11] obtained the following bounds: 10 ≤ ϕT (C6) ≤ 11, 15 ≤ ϕT (C7) ≤ 17, 15 ≤ ϕT (C8) ≤

29, 19 ≤ ϕT (C9) ≤ 41, and ϕT (Cp) = ∞ whenever p ≥ 11. Madaras and Soták [17] proved 20 ≤ ϕT (C10) ≤ 415.
For the broader class P5 (an easy induction proof shows that every planar triangulation on at least four vertices is

3-connected), it is known that 10 ≤ ϕP(C6) ≤ 107 due to Mohar et al. [18] (in fact, this bound is proved in [18] for all
3-polytopes with δ ≥ 4 in which no 4-vertex is adjacent to a 4-vertex), and ϕP(C7) ≤ 359 is due to Madaras et al. [16].

The purpose of our note is to prove that ϕP(C6) = ϕT (C6) = 11. This answers a question raised by Jendrol’ et al. [11].

Theorem 1. Every 3-polytope with minimum degree 5 has a 6-cycle such that each of its vertices has degree at most 11, and this
bound is tight.

Other structural results onM5, some of which have application to coloring, can be found in the papers alreadymentioned
and in [3,4,7,16–18].

One of the ideas used in our proof is to look for a suitable 6-cycle not in the whole graph but in a carefully chosen portion
of it. A similar approach to coloring problems on plane graphs is described in a survey [5, pp. 520–521], and it has been used
by us several times, beginning with [1].

2. Proving the tightness of Theorem 1

We transform the octahedron (the 4-regular plane triangulation on six vertices) to a plane triangulation in which every
6-cycle goes through a vertex of degree at least 11, replacing each of the eight 3-faces of the octahedron by the configuration
shown in Fig. 1.

More specifically, half of the image of every edge (partly invisible) of the octahedron starts at an ‘‘angular’’ 12-vertex, goes
through an 11-vertex, cuts an edge between two 5-vertices, then goes through two 5-vertices, cuts another edge between
two 5-vertices, and ends in a 12-vertex, the mid-point of the image of the edge. The graph obtained has only 5-, 11-, and 12-
vertices. Furthermore, every 5-vertex belongs to a blue (shadowed) triangle. It is easily seen that the subgraph on 5-vertices
does not contain 6-cycles.

Note that we could use instead of the octahedron any plane triangulation with δ ≥ 4 to obtain a plane triangulation with
the desired property.

3. Proving the upper bound in Theorem 1

Suppose G′ is a counterexample to the main statement of Theorem 1. Thus G′ is a 3-polytope with δ = 5 in which no
6-cycle avoids a 12+-vertex.

By Euler’s formula |V ′
| − |E ′

| + |F ′
| = 2 for G′, we have

v∈V ′

(d(v) − 4) +


f∈F ′

(d(f ) − 4) = −8. (1)

This implies that G′ has a 3-face. So we may assume that the external face of G′ is bounded by a 3-cycle with the vertex
set T ′.

A special triangle T ∗
= t1t2t3 of G′ is a 3-cycle of G′ with the fewest vertices inside. We define G to be the subgraph of G′

induced by the vertices inside T ∗. The vertices of G are internal, and the vertices t1, t2, and t3 are special.
By G∗∗ we denote the subgraph of G′ induced by the vertices of G ∪ T ∗. In particular, T ∗

= T ′ when G∗∗
= G′. In both

cases, T ∗ is the boundary ∂(f∞) of the external face f∞ of G∗∗.
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Fig. 1. One eighth of an octahedral triangulation with δ = 5 and ϕ(C6) = 11. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

To complete the proof of Theorem 1, it suffices to prove the following stronger fact.

Proposition 2. G∗∗ has a 6-cycle that consists of internal 11−-vertices.

Suppose G∗∗ is a counterexample to Proposition 2. By G∗ we denote a counterexample to Proposition 2 with the most
edges on the same set of vertices as G∗∗.

More specifically, consider a maximal sequence

G0 = G∗∗,G1, . . . ,GI = G∗,

where the graph Gi whenever 1 ≤ i ≤ I is obtained from Gi−1 by adding a diagonal such that at least one of its end-vertices
either belongs to T ∗ or has degree at least 12 in Gi−1.

Note that we cannot create a 6-cycle consisting of internal 11−-vertices since we cannot create a new internal 11−-
vertex at any step of constructing G∗. The other structural properties of G∗ confirming that it is indeed a counterexample to
Proposition 2 are discussed in Section 3.1.

In what follows, we prove that G∗ cannot exist. This will imply that G∗∗ cannot exist either, and thus complete the proofs
of Proposition 2 and Theorem 1.

From now on, the degrees of vertices and faces of T ∗ are those in G∗ rather than those in G′. Denote the sets of vertices,
edges, and faces of G∗ by V ∗, E∗, and F∗, respectively. We put V = V (G), so V ∗

= V ∪ {t1, t2, t3}. Euler’s formula
|V ∗

| − |E∗
| + |F∗

| = 2 for G∗ yields
v∈V

(d(v) − 6) +


v∈{t1,t2,t3}

(d(v) − 2) +


f∈F∗

(2d(f ) − 6) = 0. (2)

We assign an initial charge µ(x) to x whenever x ∈ V ∗
∪ F∗ as follows: µ(v) = d(v) − 6 if v ∈ V , µ(v) = d(v) − 2 if

v ∈ {t1, t2, t3}, and µ(f ) = 2d(f ) − 6 if f ∈ F∗. Note that only 5-vertices have a negative initial charge.
Using the properties of G∗ as a counterexample to Proposition 2, we define a local redistribution of charges, preserving

their sum, such that the new charge µ′(x) ≥ 0 is non-negative whenever x ∈ V ∗
∪ F∗. Also, we will show that µ′(t1) > 0.

This will contradict the fact that the sum of the new charges is, by (2), equal to 0.

3.1. Structural properties of G∗

To state the simplest structural properties (SP1)–(SP5) of G∗, we need a few definitions.
By v1, . . . , vd(v) we denote the neighbors of a vertex v in a cyclic order. A vertex is simplicial if it is completely surrounded

by 3-faces.
For brevity, an internal 11−-vertex of Gi whenever 0 ≤ i ≤ I is a white vertex, and a vertex v is black if d(v) ≥ 12 or

v ∈ T ∗.
An edge is strict if it is incident with at least one black vertex. To add a diagonal means to add an edge joining two non-

consecutive vertices on the boundary ∂(f ) of a 4+-face f .
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Fig. 2. A bad 5-vertex.

We first check that Gi, whenever 0 ≤ i ≤ I , is a counterexample to Proposition 2. For i = 0 this was our assumption.
Suppose i < I and u is a black vertex in ∂(f ) = · · · uvw in Gi. Note that adding a diagonal uw inside f does not create

a loop since Gi has no cut-vertices. If adding a diagonal uw creates multiple edges, then uvw is a separating cycle strictly
enclosed in T ∗, contrary to the definition of T ∗.

Finally, we cannot create a 6-cycle consisting of white vertices in Gi+1 since we cannot create a new white vertex by
adding a strict diagonal uw.

A simplicial internal 5-vertex v is poor if it is adjacent to four white vertices v1, . . . , v4 and a black vertex v5, and none
of the faces f1,2 = · · · v1v2v1,2, f2,3 = · · · v2v3v2,3, and f3,4 = · · · v3v4v3,4, where v ∉ {v1,2, v2,3, v3,4}, is a 7+-face.

A poor 5-vertex v is bad if d(f1,2) = d(f2,3) = d(f3,4) = 3 and v1,2, v2,3, and v3,4 are black vertices (see Fig. 2). If v is a bad
vertex, then the vertex v2,3 is associatedwith v.

In what follows, we will need the simple structural properties of G∗ expressed by (SP1)–(SP5) and the slightly more
involved properties of G∗ presented in Lemma 3.

(SP1) The boundary ∂(f ) of any 4+-face f is a cycle that consists of white vertices.
The first claim follows for G0 from the absence of cut-vertices both in G′ and in G0. For i > 0, this follows from

the fact that adding a diagonal cannot create a cut-vertex. The second claim follows from the maximality of G∗ on the
number of strict edges.

(SP2) If v is a black vertex, then v is simplicial.
Indeed, this is just a different way to express (SP1).

(SP3) There are no 6-faces in G∗.
This follows immediately from (SP1).

(SP4) A simplicial white 5-vertex v cannot be surrounded by five white vertices.
Indeed, otherwise we have a desired 6-cycle vv1 · · · v5, a contradiction.

(SP5) No separating 3-cycle consists of white vertices.

This is immediate from the minimality of T ∗ on the number of internal vertices and the fact that adding a strict diagonal
cannot create a white vertex, and hence it cannot create a cycle consisting of three white vertices.

Lemma 3. If a 5-vertex is poor, then it is bad.

Proof. Let v be a poor 5-vertex, and suppose v is not bad.
Case 1. There is a 5-face f = vivi+1xyz with 1 ≤ i ≤ 3. By (SP1), ∂(f ) is a 5-cycle of white vertices. Since v is simplicial,

v ∉ ∂(f ), so the 6-walk vivvi+1xyz is a 6-cycle of white vertices, which contradicts (SP3).
Case 2. By symmetry between the edges v1v2 and v4v3, we can assume that there is a 4-face f = v1v2xy (see Fig. 3).

Arguing as above, we see that v1vv2xy is a 5-cycle of 11−-vertices. Now look at the 6-walk C = v1vv3v2xy. Since the five
vertices of C other than v3 are all distinct, the only possibility for C not to be a cycle is to have degeneration into two 3-
cycles with a common vertex, which happens only when v3 = y. (Note that v3 cannot coincide with x, for otherwise we
have d(v2) < 5 or the multi-edge v2v3.) However, then the set {v2, v3} separates x from the rest of G∗, contrary to the
3-connectedness of G′.

Case 3. There is a 4-face f = v2v3xy. Now v2vv4v3xy is a forbidden 6-cycle, for otherwise v4 = y, with a similar
contradiction.

Case 4. By symmetry, suppose there is a 3-face f = v1v2x where x is white (see Fig. 4). Since vv1 · · · v4 is a 5-cycle
consisting of white vertices, it suffices to check that x ≠ v4. However, if x = v4, then we have a separating 3-cycle vv1v4
consisting of white vertices; this is a contradiction with (SP5).
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Fig. 3. Case 2 in Lemma 3.

Fig. 4. Case 4 in Lemma 3.

Case 5. There is a 3-face f = v2v3xwith a white vertex x. Since vv1 · · · v4 is a 5-cycle consisting of 11−-vertices, it suffices
to check that x ≠ v. Similarly, v1 ≠ x because otherwise we have d(v2) < 5 and also a white separating 3-cycle v1vv3.
However, x ≠ v follows immediately from the absence of loops and multiple edges in G∗.

This completes the proof of Lemma 3.

3.2. Discharging on G∗

We use the following rules of discharging (see Fig. 5):

R1. Every 4+-face gives 1
2 to every incident white 5-vertex.

R2. Every 7+-face f = v1v2 · · · gives 1
2 to every white 5-vertex v across every edge v1v2 such that vv1v2 is a 3-face.

R3. Every black vertex gives 1
2 to every adjacent white 5-vertex.

R4. Every black vertex gives 1
2 to every bad 5-vertex associated with it.

3.3. Checking µ′(x) ≥ 0 for x ∈ V ∗
∪ F∗ and µ′(t1) > 0

Case 1. d(v) = 5 and v is white.
Subcase 1.1. Vertex v has at least two donations of 1

2 from 4+-faces by R1–R2, adjacent black vertices by R3, and the
associated black vertex if it exists by R4. Here, µ′(v) ≥ 5 − 6 + 2 ×

1
2 = 0, as desired. So from now on we assume that v

has at most one donation by R1–R4.
Subcase 1.2. All vertices v1, . . . , v5 are white. By Subcase 1.1 combined with R1, v is either simplicial or incident with a

unique 4+-face, say f = · · · v1vv2. In both cases, we have a desired 6-cycle vv2 · · · v5v1, a contradiction.
Subcase 1.3. Vertex v5 is a unique black neighbor of v. So v receives 1

2 from v5 by R3. Due to Subcase 1.1 combined with
R1, our v is simplicial. If a path P = v1v2v3v4 is incident with a 7+-face, then v receives 1

2 across at least one of the edges
of P by R2, contrary to Subcase 1.1. Hence, v is poor. By Lemma 3, v is bad, which means that v receives another 1

2 from the
associated black vertex by R4, contrary to Subcase 1.1 again.

Case 2. 6 ≤ d(v) ≤ 11 and v is internal. Since v does not participate in R1–R4, we have µ′(v) = d(v) − 6 ≥ 0.
Case 3. d(v) ≥ 12 and v is internal. Recall that v is black, which implies by (SP2) that v is simplicial. To show that the

total donation of v to 5-vertices by R3 and R4 (see Fig. 5) is relatively small (in fact, at most d(v) ×
1
2 ), we use the following

argument.
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Fig. 5. Rules of discharging.

Let W5 be the set of white 5-neighbors of v. By A we denote the set of bad 5-vertices associated with v. Recall that each
vertex inW5 ∪ A receives 1

2 from v by R3 or R4.
We now show that

(∗) |W5 ∪ A| ≤ d(v).

If aj ∈ A, then let aj be associated with v with respect to edge vjvj+1. We relate aj to two neighbors, φ(aj) and ϕ(aj), of v
that do not belong toW5, as follows:

(i) If vj, vj+1 ∈ W5, then we put φ(aj) = vj−1 and ϕ(aj) = vj+2 (hereafter, addition is modulo d(v)).
(ii) If vj ∈ W5, vj+1 ∉ W5, then φ(aj) = vj−1 and ϕ(aj) = vj+1. By symmetry, this also handles the case vj ∉ W5, vj+1 ∈ W5.
(iii) If vj, vj+1 ∉ W5, then φ(aj) = vj and ϕ(aj) = vj+1.

(The fact that {φ(aj), ϕ(aj)} ∩ W5 = ∅ in (i)–(iii) follows directly from the definition of a bad 5-vertex.)
Since, on the other hand, no neighbor of v is related to more than two vertices in A, we have proved (∗). This implies that

µ′(v) ≥ d(v) − 6 −
d(v)

2 =
d(v)−12

2 ≥ 0.
Case 4. ti ∈ T ∗. Recall that d(ti) is the number of vertices adjacent to ti in G∗, including two vertices of T ∗. Since ti is black,

it is simplicial due to (SP2). Note that d(ti) ≥ 3 since otherwise T ∗
− ti is a separating set in G′ on two vertices, contrary to

the 3-connectedness of G′. Recall that µ(ti) = d(ti) − 2. Vertex ti gives 1
2 to at most d(ti) − 2 adjacent white 5-vertices by

R3 and to at most d(ti) − 3 associated ones by R4. This implies µ′(ti) ≥ d(ti) − 2 −
2d(ti)−5

2 =
1
2 , as desired.

Case 5. f ∈ F∗. If d(f ) = 3, then µ′(f ) = µ(f ) = 2 × 3 − 6 = 0 since f does not participate in discharging, no matter
whether f = f∞ or not.

Suppose f is an internal face with d(f ) ≥ 4. Recall that d(f ) ≠ 6 by (SP3). If 4 ≤ d(f ) ≤ 5, then f participates only in R1,
and we have µ′(f ) ≥ 2d(f )− 6−

d(f )
2 =

3(d(f )−4)
2 ≥ 0. Finally, if d(f ) ≥ 7, then µ′(f ) ≥ 2d(f )− 6−

2d(f )
2 > 0 by R1 and R2.

Thus µ′(x) ≥ 0 whenever x ∈ V ∗
∪ F∗ and µ′(t1) > 0. A contradiction, 0 < 0, with (2) shows that G∗ cannot exist. This

completes the proof of Proposition 2, and hence that of Theorem 1.
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