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a b s t r a c t

Mader proved that for k ≥ 1 and n ≥ 2k, every n-vertex graph with no (k + 1)-connected
subgraphs has at most (1 +

1
√
2
)(n − k) edges. He also conjectured that for n large with

respect to k, every such graph has atmost 3
2


k −

1
3


(n−k) edges. Yuster improvedMader’s

upper bound to 193
120 k(n−k) for n ≥

9k
4 . In this note, wemake the next step towardsMader’s

Conjecture: we improve Yuster’s bound to 19
12 k(n − k) for n ≥

5k
2 .

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

All graphs considered here are finite, undirected, and simple. For a graph G, V (G) and E(G) denote its vertex set and edge
set respectively. If U ⊆ V (G), then G[U] denotes the induced subgraph of Gwhose vertex set is U , and G−U := G[V (G)\U].
For v ∈ V (G), N(v) := {u ∈ V (G) : uv ∈ E(G)} denotes the neighborhood of v in G.

Let k ∈ N. Recall that a graph G is (k+1)-connected if, for every set S ⊂ V (G) of size k, the graph G[V (G)\ S] is connected
and contains at least two vertices (so |V (G)| ≥ k + 2). Mader [1] posed the following question:

What is the maximum possible number of edges in an n-vertex graph that does not contain a (k + 1)-connected
subgraph?

It is easy to see that for k = 1 the answer is n−1: every tree on n vertices contains n−1 edges and no 2-connected subgraphs,
whereas every graph on n vertices with at least n edges contains a cycle, and cycles are 2-connected. Thus for the rest of the
note we will assume k ≥ 2.

The following construction due to Mader [2] gives an example of a graph with no (k + 1)-connected subgraphs and a
large number of edges. Fix k and n, and suppose that n = kq + r , where 1 ≤ r ≤ k. The graph Gn,k has vertex set

q
i=0 Vi,

where the sets V0, . . . , Vq are pairwise disjoint and satisfy the following conditions.

1. |V0| = · · · = |Vq−1| = k, while |Vq| = r .
2. V0 is an independent set in Gn,k.
3. For 1 ≤ i ≤ q, Vi is a clique in Gn,k.
4. Every vertex in V0 is adjacent to every vertex in

q
i=1 Vi.

5. Gn,k has no other edges.
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Note that V0 is a separating set of size k and every component of Gn,k − V0 has at most k vertices. It follows that Gn,k has no
(k + 1)-connected subgraphs. A direct calculation shows that Gn,k has at most 3

2


k −

1
3


(n − k) edges, where the equality

holds if n is a multiple of k. Mader [2] conjectured that this example is, in fact, best possible.

Conjecture 1 (Mader [2]). Let k ≥ 2. Then for n sufficiently large, the number of edges in an n-vertex graph without a (k + 1)-
connected subgraph cannot exceed 3

2


k −

1
3


(n − k).

Mader himself proved Conjecture 1 for k ≤ 6. Moreover, he showed that for all k, the weaker version of the conjecture,
where the coefficient 3

2 is replaced by 1 +
1

√
2
, holds. Yuster [4] improved this result by showing that the coefficient can be

taken to be 193
120 .

Theorem 2 (Yuster [4]). Let k ≥ 2 and n ≥
9k
4 . Then every n-vertex graph G with |E(G)| > 193

120k(n − k) contains a (k + 1)-
connected subgraph.

Here we improve Yuster’s bound, obtaining the value 19
12 for the coefficient.

It turns out that for this problem, computations work out nicer if we ‘‘normalize’’ vertex and edge counts by assigning a
weight 1

k to each vertex and a weight 1
k2

to each edge in a graph. Using this terminology, we can restate Conjecture 1 in the
following way.

Conjecture 1′. Let k ≥ 2. Then for γ sufficiently large, every graph G with 1
k |V (G)| = γ and 1

k2
|E(G)| > 3

2 (γ − 1) contains a
(k + 1)-connected subgraph.

Our main result in these terms is as follows.

Theorem 3. Let k ≥ 2. Then every graph G with 1
k |V (G)| = γ ≥

5
2 and 1

k2
|E(G)| > 19

12 (γ − 1) contains a (k + 1)-connected
subgraph.

We follow the ideas of Mader and Yuster: Use induction on the number of vertices for graphs with at least 5
2k vertices.

The hardest part is to prove the case when after deleting a separating set of size k, exactly one of the components of the
remaining graph has fewer than 3

2k vertices, since the induction assumption does not hold for n < 5
2k. New ideas in the

proof are in Lemmas 8 and 9.

2. Proof of Theorem 3

We want to derive a linear in (n − k) bound on the number of edges in a graph that does not contain (k + 1)-
connected subgraphs. But the bound becomes linear only for graphs with large number of vertices; while for small graphs
the dependency is quadratic in n − k. The main difficulties we encounter are around the transition between the quadratic
and linear regimes. To deal with small n, we use the following lemma due to Matula [3], whose bound is asymptotically
exact for n < 2k.

Lemma 4 (Matula [3]). Let k ≥ 2. Then every graph G with |V (G)| = n ≥ k + 1 and |E(G)| >
 n
2


−

1
3 ((n − k)2 − 1) contains

a (k + 1)-connected subgraph.

We will use the following ‘‘normalized’’ version of this lemma.

Lemma 4′. Let k ≥ 2. Then every graph G with 1
k |V (G)| = γ > 1, and

1
k2

|E(G)| >
1
6


γ 2

+ 4γ − 2


(1)

contains a (k + 1)-connected subgraph.

Proof. Indeed, (1) yields

|E(G)| >
k2

6


γ 2

+ 4γ − 2


=


γ k
2


−

1
3
((γ k − k)2 − 1) +

γ k
2

−
1
3

>


γ k
2


−

1
3
((γ k − k)2 − 1),

and we are done by original Matula’s lemma. �
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From now on, fix a graph Gwith 1
k |V (G)| = γ ≥

5
2 and 1

k2
|E(G)| > 19

12 (γ − 1), and suppose for contradiction that G does
not contain a (k+1)-connected subgraph. Choose G to have the least possible number of vertices (so we can apply induction
hypothesis for subgraphs of G). Since G itself is not (k + 1)-connected, it contains a separating set S ⊂ V (G) of size k. Let
A ⊂ V (G) \ S be such that G[A] is a smallest connected component of G − S, and let B := V (G) \ (S ∪ A). Let α :=

1
k |A| and

β :=
1
k |B|.

We start by showing that the graph G cannot be too small, using Matula’s Lemma.

Lemma 5. γ > 3.

Proof. Suppose that γ ≤ 3. Then, by Lemma 4 ′,

0 ≤
1
k2

|E(G)| −
19
12

(γ − 1) ≤
1
6


γ 2

+ 4γ − 2

−

19
12

(γ − 1) =
1
12

(2γ 2
− 11γ + 15). (2)

The function g(γ ) = 2γ 2
− 11γ + 15 on the right-hand side of (2) is convex in γ . Hence it is maximized on the boundary

of the interval [ 52 ; 3]. But it is easy to check that g( 5
2 ) = g(3) = 0, hence it is nonpositive on the whole interval. Therefore,

γ > 3. �

All the edges in G either belong to the graph G[S ∪ B], or are incident to the vertices in A. The number of edges in G[S ∪ B]
can be bounded either using Matula’s lemma (which is efficient for β ≤

3
2 ) or using the induction hypothesis (which can be

applied if β > 3
2 ). Hence the difficulty is in bounding the number of edges incident to the vertices in A.

The first step is to show that A cannot be too large, because otherwise we can use induction.

Lemma 6. α < 3
2 .

Proof. If α ≥
3
2 , then we can apply the induction hypothesis both for G[S ∪ A] and for G[S ∪ B], and thus obtain

1
k2

|E(G)| ≤
19
12

α +
19
12

β =
19
12

(α + β) =
19
12

(γ − 1). �

The next lemma shows that A cannot be too small either, since otherwise the total number of edges between the vertices
in A and the vertices in S ∪ A is small.

Lemma 7. α > 1.

Proof. Suppose that α ≤ 1. Then β > 1, since α + β + 1 = γ > 3. If β ≥
3
2 , then using the induction hypothesis for

G[S ∪ B], we get

1
k2

|E(G)| ≤
1
2
α2

+ α +
19
12

β ≤
3
2
α +

19
12

β <
19
12

(α + β) =
19
12

(γ − 1).

Thus β < 3
2 . Therefore, α > 1

2 . In this case, applying Lemma 4 ′ to G[S ∪ B] reduces the problem to prove the inequality

1
2
α2

+ α +
1
6


(β + 1)2 + 4(β + 1) − 2


≤

19
12

(α + β),

which is equivalent to

6α2
+ 2β2

− 7α − 7β + 6 ≤ 0. (3)

For α fixed, the left-hand side of (3) is monotone decreasing in β when β < 7
4 , so its maximum is attained at β = 1. Thus (3)

will hold if the function g1(α) = 6α2
− 7α + 1 is nonpositive. Since g1(α) is a convex function, its maximum on the interval

[
1
2 ; 1] is attained at one of the boundary points. We have

g1


1
2


= 6 ·


1
2

2

− 7 ·
1
2

+ 1 = −1 < 0, and g1(1) = 6 · 12
− 7 · 1 + 1 = 0. �

So we know that 1 < α < 3
2 . How can we bound the number of edges incident to the vertices in A? The ideas of

Lemma 7 and of Lemma 4′ are not sufficient here. The solution is to combine them by applying Lemma 4′ only to the graph
G[A∪(S\S ′)], where S ′ is a subset of S with relatively few edges between A and S ′. To obtain such set S ′, wewill use Lemma 8,
which asserts that there are many vertices in S that have not too many neighbors in A.

Lemma 8. Let S1 := {v ∈ S :
1
k |N(v) ∩ A| ≤

1
2 (α + 1)}. Then 1

k |S1| > 1
3 .
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Proof. Suppose that 1
k |S1| = σ ≤

1
3 . Let G1 := G[A ∪ (S \ S1)]. Since G1 is not (k + 1)-connected, it has a separating set

T ⊂ V (G1) of size k. Let X and Y form a partition of V (G1) \ T and be separated by T in G1. Without loss of generality assume
that |X ∩ A| ≥ |Y ∩ A|. Then

1
k
|X ∩ A| ≥

1
2

·
1
k
|A \ T | ≥

1
2
(α − 1).

Hence if v ∈ Y ∩ S, then

1
k
|N(v) ∩ A| ≤

1
k

(|A| − |X ∩ A|) ≤
1
2
(α + 1),

which means that v ∈ S1. But that is impossible, since S1 ∩ V (G1) = ∅. Thus Y ∩ S = ∅, i.e. Y ⊂ A. In particular, since
|X ∩ A| ≥ |Y ∩ A| = |Y |, we have 1

k |Y | ≤
1
2α. Then

1
k
|V (G) \ Y | = α + β + 1 −

1
k
|Y | ≥

1
2
α + β + 1 ≥

5
2
,

so the induction hypothesis holds for G − Y , and

1
k2

|E(G − Y )| ≤
19
12


1
k
|V (G − Y )| − 1


.

Hence we are done if
1
k2

(|E(G)| − |E(G − Y )|) ≤
19
12

·
1
k
|Y |,

so assume that is not the case. Let µ :=
1
k |Y |. Then

1
2
µ2

+ µ(1 + σ) >
19
12

µ,

so

µ >
7
6

− 2σ .

We consider two cases.
Case 1: X ∩ S ≠ ∅. Let v ∈ X ∩ S. Then v has more than k ·

1
2 (α + 1) neighbors in A, none of which belong to Y . Hence

µ < 1
2 (α − 1), and so

1
2
(α − 1) >

7
6

− 2σ .

Therefore,

α >
10
3

− 4σ ≥
10
3

− 4 ·
1
3

= 2;

a contradiction.
Case 2: X ∩ S = ∅. Then S \ S1 ⊂ T , and the set T ∩A separates X and Y in G[A] and satisfies 1

k |T ∩A| =
1
k (|T |− |T ∩ S|) =

1 − (1 − σ) = σ . Note that since |Y | ≤ |X |, we have

7
6

− 2σ < µ ≤
1
2
(α − σ),

so

σ >
7
9

−
1
3
α >

7
9

−
1
3

·
3
2

=
5
18

.

Now observe that
1
k2

|E(G[A])| ≤
1
2
α2

− µ(α − σ − µ).

Since 7
6 − 2σ < µ ≤

1
2 (α − σ), the latter expression is less than

1
2
α2

−


7
6

− 2σ


·


α + σ −

7
6


.
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Hence 1
k2

(|E(G)| − |E(G − A)|) is less than

1
2
(α + 1)σ + α(1 − σ) +

1
2
α2

−


7
6

− 2σ


·


α + σ −

7
6


.

Case 2.1. β ≤
3
2 . Then, after adding Matula’s estimate for the number of edges in G[S ∪ B] and subtracting 19

12 (α + β), it
is enough to prove that the following quantity is nonpositive:

1
2
(α + 1)σ + α(1 − σ) +

1
2
α2

−


7
6

− 2σ


·


α + σ −

7
6


+

1
6


(β + 1)2 + 4(β + 1) − 2


−

19
12

(α + β),

which is equal to

1
36

(18α2
+ 54ασ − 63α + 6β2

− 21β + 72σ 2
− 108σ + 67).

Note that for α and σ fixed, the last expression is monotone decreasing in β (recall that β ≤
3
2 , while the minimum is

attained at β =
7
4 ), so its maximum is attained when β = α, where it turns into

ϕ1(α, σ ) =
1
36

(24α2
+ 54ασ − 84α + 72σ 2

− 108σ + 67).

Since ϕ1(α, σ ) is convex in both α and σ , it attains its maximum at some point (α0, σ0), where α0 ∈ {1, 3
2 } and σ0 ∈ {

5
18 ,

1
3 }.

It remains to check the four possibilities:

ϕ1


1,

5
18


= −

11
162

< 0, ϕ1


1,

1
3


= −

1
12

< 0,

ϕ1


3
2
,

5
18


= −

125
648

< 0, and ϕ1


3
2
,
1
3


= −

1
6

< 0.

Case 2.2. β > 3
2 . Then, instead of usingMatula’s bound for G[S∪B], we can apply the induction hypothesis, so it is enough

to prove that the function

ϕ2(α, σ ) =
1
2
(α + 1)σ + α(1 − σ) +

1
2
α2

−


7
6

− 2σ


·


α + σ −

7
6


−

19
12

α

is nonpositive. Again, we only have to check the boundary values:

ϕ2


1,

5
18


= −

49
324

< 0, ϕ2


1,

1
3


= −

1
6

< 0,

ϕ2


3
2
,

5
18


= −

125
648

< 0, and ϕ2


3
2
,
1
3


= −

1
6

< 0.

This finishes the proof. �

Nowwe can simply try to use as the set S ′ the set S1 itself. This choice indeed gives a good bound if A is large, as the next
lemma shows.

Lemma 9. α < 4
3 .

Proof. Suppose that α ≥
4
3 . Recall that σ = |S1| > 1

3 . Using Lemma 4′ for G[A ∪ (S \ S1)], we get that

1
k2

(|E(G)| − |E(G − A)|) ≤
1
6


(α + 1 − σ)2 + 4(α + 1 − σ) − 2


+

1
2
(α + 1)σ

=
1
6
(α2

+ ασ + 6α + σ 2
− 3σ + 3).

Case 1: β ≤
3
2 . Adding Matula’s estimate for G[B ∪ S] and subtracting 19

12 (α + β), we get

1
k2

|E(G)| −
19
12

(α + β) ≤
1
6
(α2

+ ασ + 6α + σ 2
− 3σ + 3) +

1
6


(β + 1)2 + 4(β + 1) − 2


−

19
12

(α + β)

=
1
12

(2α2
+ 2ασ − 7α + 2β2

− 7β + 2σ 2
− 6σ + 12).
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Again, the maximum is attained when β = α, so we should consider the expression

ϕ3(α, σ ) =
1
6
(2α2

+ ασ − 7α + σ 2
− 3σ + 6).

It is convex in both α and σ , so again it is enough to check the boundary points:

ϕ3


4
3
,
1
3


= −

1
27

< 0, ϕ3


4
3
, 1


= −

2
27

< 0,

ϕ3


3
2
,
1
3


= −

7
108

< 0, and ϕ3


3
2
, 1


= −

1
12

< 0.

Case 2: β > 3
2 . Then, instead of using Matula’s bound for G[S ∪ B], we can apply the induction hypothesis, so it is enough

to prove that the function

ϕ4(α, σ ) =
1
6
(α2

+ ασ + 6α + σ 2
− 3σ + 3) −

19
12

α =
1
12

(2α2
+ 2ασ − 7α + 2σ 2

− 6σ + 6)

is nonpositive. The function is convex in both α and σ , so we check the boundary points:

ϕ4


4
3
,
1
3


= −

1
18

< 0, ϕ4


4
3
, 1


= −

5
54

< 0,

ϕ4


3
2
,
1
3


= −

7
108

< 0, and ϕ4


3
2
, 1


= −

1
12

< 0.

This finishes the proof. �

The next lemma is the final piece of the jigsaw. It shows that if A is small, we can still obtain the desired bound if we take
the set S ′ to be slightly bigger than S1.

Lemma 10. α > 4
3 .

Proof. Suppose that α ≤
4
3 . Then 1−2(α−1) ≥

1
3 . Let S

′ be a subset of S with 1
k |S

′
| = 1−2(α−1) such that 1

k |S
′
∩S1| ≥

1
3 .

Observe that the normalized number of edges between A and S ′ is at most

1
k2

|A| · |S ′
| −

1
2
(α − 1) ·

1
3
,

by the definition of S1. Hence, using Lemma 4′ for G[A ∪ (S \ S ′)], we get that

1
k2

(|E(G)| − |E(G − A)|) ≤
1
6


(3α − 2)2 + 4(3α − 2) − 2


+ α(3 − 2α) −

1
6
(α − 1)

=
1
6
(−3α2

+ 17α − 5).

Case 1: β ≤
3
2 . Adding Matula’s estimate for G[B ∪ S] and subtracting 19

12 (α + β), we get

1
k2

|E(G)| −
19
12

(α + β) ≤
1
6
(−3α2

+ 17α − 5) +
1
6


(β + 1)2 + 4(β + 1) − 2


−

19
12

(α + β)

=
1
12

(−6α2
+ 15α + 2β2

− 7β − 4).

Since α ≤ β ≤
3
2 , the maximum is attained when β = α, in which case the last expression turns into −

1
3 (α − 1)2 ≤ 0.

Case 2: β > 3
2 . Then, instead of using Matula’s bound for G[S ∪ B], we can apply the induction hypothesis, so it is enough

to prove that

1
6
(−3α2

+ 17α − 5) −
19
12

α = −
1
12

(6α2
− 15α + 10) ≤ 0. (4)

Since the discriminant of the quadratic 6α2
− 15α + 10 is negative, (4) holds for all α, and we are done. �

Since Lemmas 9 and 10 contradict each other, we conclude that such graph G does not exist. This completes the proof of
the theorem.
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