A list version of graph packing

Ervin Győri ${ }^{\text {a,b }}$, Alexandr Kostochka ${ }^{\text {d,c }, ~ A n d r e w ~ M c C o n v e y ~}{ }^{\text {d,*, }}$, Derrek Yager ${ }^{\text {d }}$
${ }^{\text {a }}$ Alfréd Rényi Institute of Mathematics, Budapest, Hungary
${ }^{\mathrm{b}}$ Department of Mathematics, Central European University, Budapest, Hungary
${ }^{\text {c }}$ Sobolev Institute of Mathematics, Novosibirsk, Russia
${ }^{\text {d }}$ University of Illinois at Urbana-Champaign, 1409 W. Green St., Urbana, IL 61801, USA

ARTICLE INFO

Article history:

Received 1 January 2015
Received in revised form 3 March 2016
Accepted 4 March 2016
Available online 27 April 2016

Keywords:

Graph packing
Maximum degree
Edge sum
List coloring

Abstract

We consider the following generalization of graph packing. Let $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=$ (V_{2}, E_{2}) be graphs of order n and $G_{3}=\left(V_{1} \cup V_{2}, E_{3}\right)$ a bipartite graph. A bijection f from V_{1} onto V_{2} is a list packing of the triple $\left(G_{1}, G_{2}, G_{3}\right)$ if $u v \in E_{1}$ implies $f(u) f(v) \notin E_{2}$ and for all $v \in V_{1}, v f(v) \notin E_{3}$. We extend the classical results of Sauer and Spencer and Bollobás and Eldridge on packing of graphs with small sizes or maximum degrees to the setting of list packing. In particular, we extend the well-known Bollobás-Eldridge Theorem, proving that if $\Delta\left(G_{1}\right) \leq n-2, \Delta\left(G_{2}\right) \leq n-2, \Delta\left(G_{3}\right) \leq n-1$, and $\left|E_{1}\right|+\left|E_{2}\right|+\left|E_{3}\right| \leq 2 n-3$, then either (G_{1}, G_{2}, G_{3}) packs or is one of 7 possible exceptions.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The notion of graph packing is a well-known concept in graph theory and combinatorics. Two graphs on n vertices are said to pack if there is an edge-disjoint placement of the graphs onto the same set of vertices. In 1978, two seminal papers, [6] and [1], on extremal problems on graph packing appeared in the same journal. In particular, Sauer and Spencer [6] proved sufficient conditions for packing two graphs with bounded product of maximum degrees.

Theorem 1 ([6]). Let G_{1} and G_{2} be two graphs of order n. If $2 \Delta\left(G_{1}\right) \Delta\left(G_{2}\right)<n$, then G_{1} and G_{2} pack.
This result is sharp and later Kaul and Kostochka [5] characterized all graphs for which Theorem 1 is sharp.
Theorem 2 ([5]). Let G_{1} and G_{2} be two graphs of order n and $2 \Delta\left(G_{1}\right) \Delta\left(G_{2}\right) \leq n$. Then G_{1} and G_{2} do not pack if and only if one of G_{1} and G_{2} is a perfect matching and the other is either $K_{\frac{n}{2}, \frac{n}{2}}$ with $\frac{n}{2}$ odd or contains $K_{\frac{n}{2}+1}$.

Bollobás and Eldridge [1] and, independently, Sauer and Spencer gave sufficient conditions for packing two graphs with given total number of edges.

Theorem 3 ([1,6]). Let G_{1} and G_{2} be two graphs of order n. If $\left|E\left(G_{1}\right)\right|+\left|E\left(G_{2}\right)\right| \leq \frac{3}{2} n-2$, then G_{1} and G_{2} pack.
This result is best possible, since $G_{1}=K_{1, n-1}$ and $G_{2}=\frac{n}{2} K_{2}$ do not pack. Bollobás and Eldridge [1] proved the stronger result that the bound of Theorem 3 can be significantly strengthened when $\Delta\left(G_{1}\right)<n-1$ and $\Delta\left(G_{2}\right)<n-1$.

[^0]

Fig. 1. Bad pairs in Theorems 4 and 6 .

Theorem 4 ([1]). Let G_{1} and G_{2} be two graphs of order n. If $\Delta\left(G_{1}\right), \Delta\left(G_{2}\right) \leq n-2,\left|E\left(G_{1}\right)\right|+\left|E\left(G_{2}\right)\right| \leq 2 n-3$, and $\left\{G_{1}, G_{2}\right\}$ is not one of the following pairs: $\left\{2 K_{2}, K_{1} \cup K_{3}\right\},\left\{\bar{K}_{2} \cup K_{3}, K_{2} \cup K_{3}\right\},\left\{3 K_{2}, \bar{K}_{2} \cup K_{4}\right\},\left\{\bar{K}_{3} \cup K_{3}, 2 K_{3}\right\},\left\{2 K_{2} \cup K_{3}, \bar{K}_{3} \cup K_{4}\right\},\left\{\bar{K}_{4} \cup\right.$ $\left.K_{4}, K_{2} \cup 2 K_{3}\right\},\left\{\bar{K}_{5} \cup K_{4}, 3 K_{3}\right\}$ (Fig. 1), then G_{1} and G_{2} pack.

This result is also sharp, since the graphs $G_{1}=C_{n}$ and $G_{2}=K_{1, n-2} \cup K_{1}$ satisfy the maximum degree conditions, have $2 n-2$ edges, and do not pack. There are other extremal examples.

Variants of the packing problem have been studied and, in particular, restrictions of permissible packings arise both within proofs and are posed as independent questions. The notion of a bipartite packing was introduced by Catlin [2] and was later studied by Hajnal and Szegedy [4]. This variation of traditional packing involves two bipartite graphs $G_{1}=\left(X_{1} \cup Y_{1}, E_{1}\right)$ and $G_{2}=\left(X_{2} \cup Y_{2}, E_{2}\right)$ where permissible packings send X_{1} onto X_{2} and Y_{1} onto Y_{2}. The problem of fixed-point-free embeddings, studied by Schuster in 1978, considers a different restriction to the original packing problem [7]. In this case, $G_{1}=G$ is packed with $G_{2}=G$ under the additional restraint that no vertex of G_{1} is mapped to its copy in G_{2}. In [9], Schuster's result is used to prove a necessary condition for packing two graphs with given maximum and average degrees.

In this paper, we introduce the language of list packing in order to model such problems. A list packing of the graph triple $\left(G_{1}, G_{2}, G_{3}\right)$ with $G_{1}=\left(V_{1}, E_{1}\right), G_{2}=\left(V_{2}, E_{2}\right)$, and $G_{3}=\left(V_{1} \cup V_{2}, E_{3}\right)$ is a bijection $f: V_{1} \rightarrow V_{2}$ such that $u v \in E_{1}$ implies $f(u) f(v) \notin E_{2}$ and for each $u \in V_{1}, u f(u) \notin E_{3}$. Note that both G_{1} and G_{2} are graphs on n vertices so that G_{3} has $2 n$ vertices, and one can think of the edge set E_{3} as a list of restrictions that must be avoided when packing G_{1} and G_{2}.

This notion is closely related to Vizing's concept of list coloring [8]. Suppose we wish to color a graph G with the colors $\{1, \ldots, k\}$. A list assignment L is a function on the vertex set $V(G)$ that returns a set of colors $L(v) \subseteq\{1, \ldots, k\}$ permissible for v. A list coloring, more specifically an L-coloring, is a proper coloring f of G such that $f(v) \in L(v)$ for all $v \in V(G)$. The problem of list coloring G can be stated within the framework of list packing. A proper L-coloring of a graph G is equivalent to a list packing where $G_{1}=G$ along with an appropriate number of isolated vertices, G_{2} is a disjoint union of K_{n} 's each representing a color, and E_{3} consists of all edges going between a vertex $v \in V_{1}$ and the copies of K_{n} corresponding to colors not in $L(v)$. Note the list $L(v)$ denotes permissible colors in a list coloring while $N_{3}(v)$ specifies forbidden vertices in a list packing.

Similarly, the variations of packing discussed above can be modeled using this framework. A bipartite packing is a packing of the triple $\left(G_{1}, G_{2}, G_{3}\right)$ where E_{3} consists of all edges between X_{i} and Y_{3-i} for $i=1$, 2. A fixed-point-free embedding is a packing of the triple $\left(G, G, G_{3}\right)$ where $E_{3}=\{(v, v): v \in V(G)\}$. Further, several important theorems on the ordinary packing can be stated in terms of list packing. The results of this paper prove natural generalizations of Theorems 1-4. In particular, we extend Theorems 1 and 2 as follows.

Theorem 5. Let $\mathbf{G}=\left(G_{1}, G_{2}, G_{3}\right)$ be a graph triple with $\left|V_{1}\right|=\left|V_{2}\right|=n$. If

$$
\begin{equation*}
\Delta\left(G_{1}\right) \Delta\left(G_{2}\right)+\Delta\left(G_{3}\right) \leq n / 2 \tag{1}
\end{equation*}
$$

then \mathbf{G} does not pack if and only if $\Delta\left(G_{3}\right)=0$ and one of G_{1} or G_{2} is a perfect matching and the other is $K_{\frac{n}{2}, \frac{n}{2}}$ with $\frac{n}{2}$ odd or contains $K_{\frac{n}{2}+1}$. Consequently, if $\Delta\left(G_{1}\right) \Delta\left(G_{2}\right)+\Delta\left(G_{3}\right)<n / 2$, then \mathbf{G} packs.

The main result of this paper is the following list version of Theorem 4.
Theorem 6. Let $\mathbf{G}=\left(G_{1}, G_{2}, G_{3}\right)$ be a graph triple with $\left|V_{1}\right|=\left|V_{2}\right|=n$. If $\Delta\left(G_{1}\right), \Delta\left(G_{2}\right) \leq n-2, \Delta\left(G_{3}\right) \leq n-1$, $\left|E_{1}\right|+\left|E_{2}\right|+\left|E_{3}\right| \leq 2 n-3$ and the pair $\left\{G_{1}, G_{2}\right\}$ is none of the 7 pairs in Fig. 1, then \mathbf{G} packs.

Theorem 6 is sharp and has more sharpness examples than Theorem 4. First, the condition $\Delta\left(G_{3}\right) \leq n-1$ cannot be removed, since a vertex in V_{1} adjacent to all vertices in V_{2} cannot be placed at all (Fig. 2(a)). The restriction on $\left|E_{1}\right|+\left|E_{2}\right|+\left|E_{3}\right|$ is also sharp, as there are several examples of graphs with $\left|E_{3}\right|>0$ and edge sum equal to $2 n-2$ that do not pack.

Fig. 2. Sharpness examples for Theorem 6. In each of the above figures, the left column of vertices corresponds to V_{1} and the right column corresponds to V_{2}.

For example, let G_{1} and G_{2} be independent sets and $x_{1}, x_{2} \in V_{1}$ be adjacent to the same $n-1$ vertices in V_{2} (Fig. 2(b)). In this case (G_{1}, G_{2}, G_{3}) does not pack. If E_{1} consists of a single edge $x_{1} x_{2}, E_{2}$ consists of a single edge $y_{n-1} y_{n}$, and E_{3} consists of all edges between $\left\{x_{1}, x_{2}\right\}$ and $V_{2}-y_{n-1}-y_{n}$ (Fig. 2(c)), then (G_{1}, G_{2}, G_{3}) also does not pack. Similarly, if E_{1} contains a single edge, G_{2} contains a triangle and $(n-3)$ isolated vertices, and G_{3} consists of all edges between non-isolated vertices in G_{1} and isolated vertices in G_{2}, then (G_{1}, G_{2}, G_{3}) does not pack (Fig. 2(d)).

Alternatively, consider $G_{1}=K_{1, m-1} \cup \bar{K}_{n-m}, G_{2}=K_{1, m^{\prime}-1} \cup \bar{K}_{n-m^{\prime}}$ (for any choice of m, m^{\prime} such that $m-1 \neq n-m^{\prime}$), and E_{3} consisting of all edges between the center of the star in G_{1} and isolated vertices in G_{2} as well as between the center of the star in G_{2} and isolated vertices in G_{1} (Fig. 2(e)). Indeed, since $m-1 \neq n-m^{\prime}$, mapping the center of the star in G_{1} to the center of the star in G_{2} will create a conflict. Then, since the center of the star in G_{1} must be mapped to a leaf in G_{2} and a leaf in G_{1} must be mapped to the center of the star in G_{2}, $\left(G_{1}, G_{2}, G_{3}\right)$ does not pack. Finally, consider $G_{1}=K_{1, n-1} \cup K_{1}$, $G_{2}=C_{k} \cup \bar{K}_{n-k}$ (for any choice of k), and let E_{3} consist of all possible edges between the center of the star in G_{1} and isolated vertices in G_{2} (Fig. 2(f)). In this case, (G_{1}, G_{2}, G_{3}) does not pack since the center of the star in G_{1} is adjacent to $n-2$ vertices in G_{1}, but must be mapped to a vertex in the cycle in G_{2}.

The notion of list packing arose while the authors were working on a conjecture of Żak [9] on packing n-vertex graphs with given sizes and maximum degrees. In this situation, list packing provides a stronger inductive assumption that facilitates a proof. In [3], we heavily use Theorems 5 and 6 of this paper to get an approximate solution to Żak's conjecture.

The paper is organized as follows. In the next paragraph, we introduce some notation. In Section 2, we prove Theorem 5. Section 3 contains some preliminary results, including an extension of Theorem 3 that will be used as a base case in the proof of Theorem 6. In Section 4 we prove the main result by induction on the size of the vertex set.

1.1. Notation

A graph triple $\mathbf{G}=\left(G_{1}, G_{2}, G_{3}\right)$ of order n consists of a pair of n-vertex graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ with disjoint vertex sets together with a bipartite graph $G_{3}=\left(V_{1} \cup V_{2}, E_{3}\right)$. For $i \in\left\{1,2\right.$, 3\}, let $e_{i}=\left|E_{i}\right|$. Let $V=V(\mathbf{G})=V_{1} \cup V_{2}$. An edge in $E_{1} \cup E_{2}$ is a white edge, while an edge in E_{3} is a yellow edge. The edge set of \mathbf{G} is $E(\mathbf{G})=E_{1} \cup E_{2} \cup E_{3}$.

Let $i \in\{1,2\}$ and $v \in V_{i}$. Then the white neighborhood of v, denoted $N_{i}(v)$, is the set of neighbors of v in G_{i}, and $d_{i}(v)=\left|N_{i}(v)\right|$. A vertex in $N_{i}(v)$ is a white neighbor of v. For convenience, we say that $N_{3-i}(v)=\emptyset$ (and hence $d_{3-i}(v)=0$). The yellow neighborhood of v, denoted $N_{3}(v)$, is the set of neighbors of v in G_{3} and $d_{3}(v)=\left|N_{3}(v)\right|$. A vertex in $N_{3}(v)$ is a yellow neighbor of v. Furthermore, the neighborhood of v, denoted $N(v)$, is the disjoint union $N_{i}(v) \cup N_{3}(v)$ and vertices in the neighborhood are neighbors. The degree of v is $d_{i}(v)+d_{3}(v)$ and is denoted $d(v)$. For $i \in\{1,2,3\}$, define $\Delta_{i}=\Delta_{i}(\mathbf{G})$ to be $\max _{v \in V} d_{i}(v)$.

If $W \subseteq V$ with $\left|W \cap V_{1}\right|=\left|W \cap V_{2}\right|$, then the triple induced by W is $\mathbf{G}[W]=\left(G_{1}[W], G_{2}[W], G_{3}[W]\right)$, where $G_{i}[W]$ is the subgraph of G_{i} induced by the set W. Similarly, the triple $\mathbf{G}-W$ is $\left(G_{1}-W, G_{2}-W, G_{3}-W\right)$. The underlying graph $\underline{\mathbf{G}}$ of a triple \mathbf{G} is the graph with vertex set $V(\mathbf{G})$ and edge set $E(\mathbf{G})$.

Finally, we say the graph triple \mathbf{G} packs if the triple has a list packing.

2. Proof of Theorem 5

(\Leftarrow) Suppose G_{1} is a perfect matching and G_{2} contains $K_{\frac{n}{2}+1}$ or $\frac{n}{2}$ is odd and $G_{2}=K_{\frac{n}{2}, \frac{n}{2}}$. In the first case, for any mapping $f: V_{1} \rightarrow V_{2}$, some edge of G_{1} will be mapped to an edge in the clique $K_{\frac{n}{2}+1}$. In the second case, since $\frac{n}{2}$ odd, some edge of a perfect matching on V_{2} has one endpoint in each partite set of G_{2}. Thus, $\mathbf{G}=\left(G_{1}, G_{2}, G_{3}\right)$ cannot pack.
(\Rightarrow) Assume that a graph triple \mathbf{G} is a counterexample with the minimum $\left|E_{3}\right|$. By Theorem $1, E_{3} \neq \emptyset$. By the minimality of $\left|E_{3}\right|$, we may assume that there is a mapping f which has a conflict at only one edge $v w \in E_{3}$, i.e., $f(v)=w$. For each $a \in V_{1}-v$, define the mapping f_{a} by $f_{a}(v)=f(a), f_{a}(a)=w$ and $f_{a}(x)=f(x)$ for all $x \in V_{1}-a-v$. We claim that there is a mapping f_{a} that satisfies:
(i) $f_{a}\left(N_{1}(a)\right) \cap N_{2}(w)=\emptyset$,
(ii) $f_{a}\left(N_{1}(v)\right) \cap N_{2}(f(a))=\emptyset$,
(iii) $f_{a}(a) \notin N_{3}(v)$, and
(iv) $w \notin N_{3}(a)$.

Indeed, $V_{1}-v$ has at most $\Delta_{1} \Delta_{2}$ vertices that may violate (i), at most $\Delta_{1} \Delta_{2}$ vertices that may violate (ii), at most $\Delta_{3}-1$ vertices that may violate (iii) and at most $\Delta_{3}-1$ vertices that may violate (iv). Since \mathbf{G} does not pack, $n-1=\left|V_{1}-v\right| \leq$ $\left(\Delta_{3}-1\right)+\left(\Delta_{3}-1\right)+2 \Delta_{1} \Delta_{2}$. But this inequality yields $n+1 \leq 2\left(\Delta_{3}+\Delta_{1} \Delta_{2}\right)$, contradicting (1).

Thus some f_{a} satisfies (i)-(iv). Then under f_{a} there is no conflict along edge $v w$ and no new conflicts are introduced. Since the only conflict in f was along $v w, f_{a}$ is a packing, a contradiction to the choice of \mathbf{G}.

3. Preliminary facts

The following lemma is an extension of Theorem 3.
Lemma 7. Let $\mathbf{G}=\left(G_{1}, G_{2}, G_{3}\right)$ be a graph triple with $\left|V_{1}\right|=\left|V_{2}\right|=n$. If $\Delta_{3} \leq n-1$ and $e_{1}+e_{2}+e_{3} \leq\left\lfloor\frac{3}{2} n\right\rfloor-2$, then the triple $\mathbf{G}=\left(G_{1}, G_{2}, G_{3}\right)$ packs.

Proof. It is enough to prove the lemma in the case

$$
\begin{equation*}
e_{1}+e_{2}+e_{3}=\left\lfloor\frac{3}{2} n\right\rfloor-2 \tag{2}
\end{equation*}
$$

The proof will proceed by induction on n. If $n=1$, then \mathbf{G} contains no edges and it packs. If $n=2$, then $e_{1}+e_{2}+e_{3}=1$ and \mathbf{G} also packs. If $e_{3}=0$, then the result holds by Theorem 3. If $e_{1}=0$ or $e_{2}=0$, then the problem reduces to finding a perfect matching in $K_{n, n}-E_{3}$. By the König-Egerváry Theorem, if $K_{n, n}-E_{3}$ has no perfect matching, then it has a vertex cover C with $|C|=n-1$. This means that $G_{3}-C$ is a complete bipartite graph with $n+1$ vertices, say $G_{3}-C=K_{k, n+1-k}$. Since $\Delta_{3} \leq n-1$, we have $2 \leq k \leq n-1$ and so $\left|E\left(G_{3}-C\right)\right|=k(n+1-k) \geq 2 n-2$, contradicting (2). Therefore, $e_{1}, e_{2}, e_{3}>0$ and so $n \geq 4$.

We now claim that

$$
\begin{equation*}
\Delta_{3} \leq n-2 \tag{3}
\end{equation*}
$$

Otherwise, by symmetry, we may assume that $d_{3}(v)=n-1$ for some $v \in V_{1}$. Let $V_{2}-N_{3}(v)=\{y\}$. Then at most $n / 2-1$ edges in \mathbf{G} are not adjacent to v. In particular, there is $u \in V_{2}$ that has no neighbors in $\left(V_{1} \cup V_{2}\right)-v$. If $u=y$, then we pack $\mathbf{G}-v-y$ by induction and extend this packing by assigning v to y.

If $u v \in E_{3}$ and there is $w \in V_{1}-v$ with $d(w) \geq 1$, then consider $\mathbf{G}^{\prime}=\mathbf{G}-w-u$. The total number of edges decreases by at least 2 , and v is incident with exactly $n-2$ yellow edges. So, since \mathbf{G}^{\prime} contains at most $\left\lfloor\frac{3}{2} n\right\rfloor-4$ edges, $\Delta_{3}\left(\mathbf{G}^{\prime}\right)=n-2$. Thus \mathbf{G}^{\prime} packs by induction, and we can extend the packing by sending w to u. Finally, if $u v \in E_{3}$ and G_{1} has no edges, it is enough to find an ordering $\left(v_{1}, \ldots, v_{n}\right)$ of V_{1} and an ordering $\left(y_{1}, \ldots, y_{n}\right)$ of V_{2} such that $v_{i} y_{i} \notin E_{3}$ for all i. We order V_{1} so that $v_{1}=v$ and $d_{3}\left(v_{i+1}\right) \leq d_{3}\left(v_{i}\right)$ for all $1 \leq i \leq n-1$ and find a nonneighbor y_{i} for v_{i} greedily one by one for $i=1, \ldots, n$. This is possible, since $G_{3}-v_{1}$ has at most $n / 2-1$ edges and so for $i \geq 2$, v_{i} has at most $\frac{n / 2-1}{i-1}$ neighbors in $V_{2}-\left\{y_{1}, \ldots, y_{i-1}\right\}$. This proves (3).

We now proceed in three cases.
Case 1: There exists an $i \in\{1,2\}$ and a vertex $x \in V_{i}$ such that $d_{i}(x)=0$ and $d_{3}(x)>0$. By symmetry, we may assume $i=1$. If there exists $y \in V_{2}-N_{3}(x)$ with $d_{3}(x)+d(y) \geq 2$, then by (3) the triple $\mathbf{G}-x-y$ satisfies the lemma. By induction, $\mathbf{G}-x-y$ has a packing and this packing can be extended to \mathbf{G} by assigning x to y. Otherwise, we may assume $d(y)=0$ for every $y \in V_{2}-N_{3}(x)$ and $d_{3}(x)=1$. Let $N_{3}(x)=\{z\}$. Since $\Delta_{3} \leq n-1$, there exists a vertex $w \in V_{1}-N_{3}(z)$ that can be mapped to z. As $d(y)=0$ for each $y \in V_{2}-z$, any bijection from $V_{1}-w$ onto $V_{2}-z$ is a packing of $\mathbf{G}-w-z$. This packing extends to a packing of \mathbf{G} by assigning w to z.

Case 2: There exists an $i \in\{1,2\}$ and a vertex $x \in V_{i}$ such that $d_{i}(x)=d_{3}(x)=0$. Again, we may assume $i=1$. Similarly to Case 1, if there exists $y \in V_{2}$ with $d(y) \geq 2$, then the triple $\mathbf{G}-x-y$ satisfies the lemma. By induction $\mathbf{G}-x-y$ has

Fig. 3. Graph triples of order $n=3$ and $e_{1}=e_{2}=e_{3}=1$. In each case, the function $f: V_{1} \rightarrow V_{2}$ defined by $f\left(x_{i}\right)=y_{i}$ for each $i \in\{1,2,3\}$ is a packing.
a packing and this packing can be extended to \mathbf{G} by assigning x to y. So we may assume that $d(y) \leq 1$ for all $y \in V_{2}$. Then since $e_{3}>0$, there is $y \in V_{2}$ with $d_{3}(y)=1$ and $d_{2}(y)=0$. But this means we now have Case 1 .

Case 3: For $i \in\{1,2\}, d_{i}(v) \geq 1$ for every $v \in V_{i}$. By (2), there is $x \in V_{1} \cup V_{2}$ with $d(x) \leq 1$. By symmetry, we may assume $x \in V_{1}$. By the case assumption, $d_{1}(x)=1$, and so $d_{3}(x)=0$. Let $N_{1}(x)=\{z\}$. Since $e_{3}>0$, there is $y \in V_{2}$ incident with a yellow edge. Let $\mathbf{G}^{\prime \prime}$ be obtained from the triple $\mathbf{G}-x-y$ by joining z with an edge to each vertex in $N_{2}(y)$. Note that we have deleted $1+d_{2}(y)+d_{3}(y)$ edges and added only $d_{2}(y)$ edges. Since $d_{3}(y) \geq 1,\left|E\left(\mathbf{G}^{\prime \prime}\right)\right| \leq\left\lfloor\frac{3}{2}(n-1)\right\rfloor-2$.

For $i \in\{1,2\}, d_{i}(v) \geq 1$ for each $v \in V_{i}$, so $e_{1}, e_{2} \geq \frac{n}{2}$. Every vertex in $\mathbf{G}^{\prime \prime}$ is incident to at most Δ_{3} yellow edges present in \mathbf{G} and at most $d_{2}(y) \leq \Delta_{2}$ newly added yellow edges. Hence, each vertex in $\mathbf{G}^{\prime \prime}$ is incident to at most $e_{2}+e_{3} \leq\left(\frac{3}{2} n-2\right)-e_{1} \leq n-2$ yellow edges. Thus the triple $\mathbf{G}^{\prime \prime}$ satisfies the conditions of Lemma 7 and, by induction, $\mathbf{G}^{\prime \prime}$ packs. Due to the added yellow edges, z was sent to a vertex in $V_{2}-N_{2}(y)$. Therefore, this packing extends to a packing of \mathbf{G} by mapping x to y.

Lemma 7 along with the following corollary will serve as a base case for a proof of Theorem 6 .
Corollary 8. Suppose \mathbf{G} is a graph triple $\left(G_{1}, G_{2}, G_{3}\right)$ of order $n \geq 1$. If $e_{1}+e_{2}+e_{3} \leq n$, then either:
(1) G has a packing, or
(2) $e_{1}=e_{2}=0$ and for some $i \in\{1,2\}$, there exists $v \in V_{i}$ adjacent to all vertices in V_{3-i}, or
(3) $n=2, e_{3}=0$ and $G_{1} \cong G_{2} \cong K_{2}$.

Proof. For $n \geq 4$, the result follows from Lemma 7. If $n=1$, then either there are no edges and so \mathbf{G} packs, or there is a single edge in E_{3}, and (2) holds.

If $n=2$ and $e_{1}+e_{2}=2$, then (3) holds. If $n=2, e_{3}=1$ and $e_{1}+e_{2} \leq 1$, then \mathbf{G} has a packing. Finally, if $n=2$ and $e_{3}=2$, then either \mathbf{G} has a packing or (2) holds.

The last case is $n=3$. If $e_{3}=0$, then in the worst case, $e_{1}+e_{2}=3$. In this case, either $\left\{G_{1}, G_{2}\right\} \cong\left\{K_{1,2}, K_{2} \cup K_{1}\right\}$ or $\left\{G_{1}, G_{2}\right\} \cong\left\{K_{3}, \bar{K}_{3}\right\}$ and so $\mathbf{G}=\left(G_{1}, G_{2}, \bar{K}_{6}\right)$ packs in all cases. Suppose now $e_{1}=0$. Then similarly to the proof of Lemma 7 , G packs if $K_{3,3}-E_{3}$ has a perfect matching. If $K_{3,3}-E_{3}$ has no such matching, then by the König-Egerváry Theorem, G_{3} has a complete bipartite subgraph with 4 vertices. Since $e_{3} \leq 3$, the only possibility is that $G_{3}=K_{1,3}$, i.e. (2) holds. Thus, $e_{1}, e_{2}, e_{3} \geq 1$, which means $e_{1}=e_{2}=e_{3}=1$. Up to isomorphism, there are only 3 cases, and Fig. 3 shows a packing in each case.

4. Proof of Theorem 6

Let $\mathbf{G}=\left(G_{1}, G_{2}, G_{3}\right)$ of order n be a counterexample to Theorem 6 with the smallest order. By Corollary $8, n \geq 4$. Also, by Theorem 4, we may assume $E_{3} \neq \emptyset$.

Lemma 9. $\Delta_{3} \leq n-2$.
Proof. Suppose that there exist $v \in V_{1}$ and $w \in V_{2}$ such that $N_{3}(v)=V_{2}-w$. Since $|E(\mathbf{G}-v-w)| \leq(2 n-3)-(n-1)=n-2$, the triple $\mathbf{G}-v-w$ packs by Corollary 8 . If $d_{1}(v)=0$ or $d_{2}(w)=0$, then additionally placing v on w is a packing of \mathbf{G}. So assume $d_{1}(v) \geq 1$ and $d_{2}(w) \geq 1$.

Let $\mathbf{G}^{\prime}=\left(G_{1}^{\prime}, G_{2}^{\prime}, G_{3}^{\prime}\right)$ be obtained from \mathbf{G} by deleting, in G_{3}, all $n-1$ edges connecting v with V_{2} and all edges (maybe zero) connecting w with V_{1}. We now show that after mapping v to w, there are enough isolated vertices in either $V_{2}-w$ or $V_{1}-v$ to complete the packing.

First suppose v and w are in different components of the underlying graph $\underline{\mathbf{G}^{\prime}}$. Define X and Y to be the vertex sets of the component of $\underline{\mathbf{G}}^{\prime}$ containing v and w, respectively (possibly $X=Y$). Define $Z=X \cup Y$ and let $z=|Z|$. For $i \in\{1,2\}$, let $Z_{i}=Z \cap V_{i}$, with size z_{i}. The graph $\underline{\mathbf{G}}^{\prime}-Z$ has $2 n-z$ vertices and at most $2 n-3-(n-1)-(z-2)$ edges. So $\underline{\mathbf{G}^{\prime}}-Z$ has at least $(2 n-z)-(n-z)=n$ components, and at least z of them have no edges, i.e. are singletons. At least z_{1} of the singletons are in V_{2} or at least z_{2} of them are in V_{1}. Suppose the former holds. In particular, there is a set $S \subseteq V_{2}-w$ of singletons with $|S|=d_{1}(v)$.

Consider the triple $\mathbf{G}^{\prime \prime}=\mathbf{G}-v-w-N_{1}(v)-S$. The triple $\mathbf{G}^{\prime \prime}$ has order $n-d_{1}(v)-1$ and $\left|E\left(\mathbf{G}^{\prime \prime}\right)\right| \leq 2 n-3-(n-1)-$ $d_{1}(v)-d_{2}(w)=n-2-d_{1}(v)-d_{2}(w)$. The number of edges in $\mathbf{G}^{\prime \prime}$ is strictly less than the order of $\mathbf{G}^{\prime \prime}$, so by Corollary 8 , $\mathbf{G}^{\prime \prime}$ packs. This packing, together with the placement of v and $N_{1}(v)$, gives a packing of \mathbf{G}, a contradiction.

Lemma 10. $\Delta_{1}, \Delta_{2} \leq n-3$.

Proof. Suppose $\Delta_{1}=n-2$, the other case is symmetric. Let $v, v^{\prime} \in V_{1}$ and $N_{1}(v)=V_{1}-v-v^{\prime}$.
Case 1: There is $w \in V_{2}-N(v)$ with no neighbors in V_{2}. Consider the triple $\mathbf{G}^{\prime}=\mathbf{G}-v-w$. Since $d(v) \geq n-2$, $\left|E\left(\mathbf{G}^{\prime}\right)\right| \leq(2 n-3)-(n-2)=n-1$. By Lemma $9, \Delta_{3}\left(\mathbf{G}^{\prime}\right) \leq n-2$, so \mathbf{G} packs by Corollary 8 . This packing can be extended to a packing of \mathbf{G} by sending v to w.

Case 2: Every $w \in V_{2}-N(v)$ has a white neighbor. Let W^{\prime} be the set of vertices in V_{2} reachable from V_{1} in the underlying graph $\underline{\mathbf{G}}$, and let $W=V_{2}-W^{\prime}$. Since $\underline{\mathbf{G}}-W$ has at least $(n-2)+\left|W^{\prime}\right|$ edges, $\left|W^{\prime}\right| \leq n-1$. So $W \neq \emptyset$ and if $d_{1}\left(v^{\prime}\right)=a$, then

$$
\begin{equation*}
|E(\underline{\mathbf{G}}[W])| \leq(2 n-3)-(n-2)-a-\left|W^{\prime}\right|=|W|-1-a . \tag{4}
\end{equation*}
$$

Let W_{1} be the vertex set of a smallest tree component in $G_{2}[W]$. By the case assumption, every vertex in $G_{2}[W]$ has positive degree. Since there are no yellow edges incident to W, the degree of each vertex in $G_{2}[W]$ is equal to its degree in \mathbf{G}. Let $y \in W_{1}$ be a vertex of degree 1 in $G_{2}[W]$ and let $y^{\prime} \in W_{1}$ be the neighbor of y. Suppose $d_{2}\left(y^{\prime}\right)=b$. Let $\mathbf{G}^{\prime}=\left(G_{1}^{\prime}, G_{2}^{\prime}, G_{3}^{\prime}\right)$ be the triple obtained from $\mathbf{G}-\left\{v, v^{\prime}, y, y^{\prime}\right\}$ by adding the $a(b-1)$ yellow edges connecting the white neighbors of v^{\prime} with the (necessarily white) neighbors of y^{\prime} distinct from y. The graph triple \mathbf{G}^{\prime} has $2(n-2)$ vertices and

$$
\begin{equation*}
\left|E\left(\mathbf{G}^{\prime}\right)\right| \leq 2 n-3-(n-2)-a-b+a(b-1)=n-1-2 a+b(a-1) \tag{5}
\end{equation*}
$$

If \mathbf{G}^{\prime} packs, then because of the added edges, this packing extends to a packing of \mathbf{G} by sending v to y and v^{\prime} to y^{\prime}. Suppose it does not.

Case 2.1: $a \leq 1$. Then by (5),
$\left|E\left(\mathbf{G}^{\prime}\right)\right| \leq n-2$ with equality only if $a=0, b=1$, and the only edges in
$E(\mathbf{G})-E\left(\mathbf{G}^{\prime}\right)$ are $y y^{\prime}$ and the $n-2$ white edges incident with v.
By Corollary $8,\left|E\left(\mathbf{G}^{\prime}\right)\right|=n-2$ and \mathbf{G}^{\prime} either has no white edges or has no yellow edges, since \mathbf{G}^{\prime} does not pack. Then (6) yields $a=0, b=1$, and $E(\mathbf{G})-E\left(\mathbf{G}^{\prime}\right)$ has no yellow edges. Since $e_{3}>0$, this implies \mathbf{G}^{\prime} has no white edges, but this contradicts the case conditions together with $b=1$.

Case 2.2: $a \geq 2$. By (4), $G_{2}[W]$ has at least $a+1$ tree components. So by the choice of W_{1},

$$
\begin{equation*}
2 \leq b+1 \leq\left|W_{1}\right| \leq|W| /(a+1) \leq n /(a+1) \tag{7}
\end{equation*}
$$

and thus $b \leq-1+n /(a+1)$. Since $a \geq 2$, by (5),

$$
\begin{aligned}
\left|E\left(\mathbf{G}^{\prime}\right)\right| & \leq n-1-2 a+\left(\frac{n}{a+1}-1\right)(a-1) \\
& =n-3 a+n \frac{a}{a+1}-\frac{n}{a+1} \\
& \leq n+n \frac{a}{a+1}-3 a-3 \\
& \leq n+n \frac{a}{a+1}-9<2(n-2)-3 .
\end{aligned}
$$

Since \mathbf{G}^{\prime} does not pack and the last strict inequality ensures that the examples from Fig. 1 do not appear as \mathbf{G}^{\prime}, by induction, some vertex z in \mathbf{G}^{\prime} has yellow degree $n-2$ or white degree at least $n-3$. But since we deleted at least $n-2+a+b \geq n+1$ edges out of $2 n-3$ in \mathbf{G}, the number of edges in $E\left(\mathbf{G}^{\prime}\right) \cap E(\mathbf{G})$ (and thus the total number of white edges in $E\left(\mathbf{G}^{\prime}\right)$) is at most $n-4$. It follows that the vertex z has yellow degree $n-2$ in \mathbf{G}^{\prime} and is incident to an added yellow edge. Since all added yellow edges connect W_{1} with $V_{1}, z \in W_{1} \cup V_{1}$.

If $z \in W_{1}$, then by the definition of W, all $n-2$ yellow edges incident to z are in $E\left(\mathbf{G}^{\prime}\right)-E(\mathbf{G})$. By the construction of \mathbf{G}^{\prime}, this yields $a \geq n-2$, which contradicts (7) since $n \geq 4$. Thus $z \in V_{1}$ and is adjacent to each vertex in $V\left(G_{2}^{\prime}\right)$. But by the definition of W and \mathbf{G}^{\prime}, the vertices in $W-W_{1}$ are not incident with yellow edges in \mathbf{G}^{\prime}. This is a contradiction, since $W-W_{1} \neq \emptyset$ by (4).

Lemma 11. Every vertex of \mathbf{G} has a white neighbor.
Proof. Suppose $v \in V$ has no white neighbor. Without loss of generality, assume $v \in V_{1}$.
Case 1: $d_{3}(v)=0$.
Case 1.1: Some $w \in V_{2}$ has degree at least 2 . Then $\mathbf{G}-v-w$ contains at most $2(n-1)-3$ edges. By Lemmas 9 and 10, $\mathbf{G}-v-w$ satisfies the conditions of Theorem 6 for $n^{\prime}=n-1$. Since any packing of $\mathbf{G}-v-w$ can be extended to a packing of \mathbf{G} by sending v to w, it does not pack. So by the minimality of $\mathbf{G}, \mathbf{G}-v-w$ is one of the examples in Fig. 1. In particular, $G_{3}-v-w$ has no yellow edges. This means all yellow edges in \mathbf{G} are incident to w. Since each of the examples in Fig. 1 has exactly $2(n-1)-3$ edges, $d(w)=2$.

If both edges adjacent to w are yellow, since every graph in Fig. 1 contains 3 vertices of positive degree, there is some $v^{\prime} \in V_{1}-N(w)$ with $d\left(v^{\prime}\right) \geq 1$. Then $\mathbf{G}-v^{\prime}-w$ contains fewer than $2(n-1)-3$ edges and no yellow edges. By Theorem 4, $\mathbf{G}-v^{\prime}-w$ packs and this packing can be extended to a packing of \mathbf{G} by sending v^{\prime} to w.

Since $e_{3}>0$, the remaining possibility is that w has exactly one neighbor $w^{\prime} \in V_{2}$ and one neighbor in V_{1}. As above, we can choose some $v^{\prime} \in V_{1}-N_{1}(w)$ with positive degree. Create a new graph triple \mathbf{G}^{\prime} from \mathbf{G} by removing v^{\prime} and w and adding yellow edges from w^{\prime} to $N_{1}\left(v^{\prime}\right)$. This triple \mathbf{G}^{\prime} has exactly $2(n-1)-3$ edges, and all yellow edges in \mathbf{G}^{\prime} are incident to w^{\prime}, since w was the only vertex in \mathbf{G} incident to yellow edges. So $\Delta_{3}\left(\mathbf{G}^{\prime}\right)=d_{1}\left(v^{\prime}\right) \leq n-3$ by Lemma 10 . Additionally, no white edges were added, so again by Lemma $10, \Delta_{1}\left(\mathbf{G}^{\prime}\right), \Delta_{2}\left(\mathbf{G}^{\prime}\right) \leq n-3$. Thus, \mathbf{G}^{\prime} satisfies the conditions of Theorem 6 and has at least one yellow edge. Hence \mathbf{G}^{\prime} is not one of the examples from Fig. 1. By the minimality of \mathbf{G}, the triple \mathbf{G}^{\prime} packs, and this packing can be extended to a packing of \mathbf{G} by sending v^{\prime} to w.

Case 1.2: $d(w) \leq 1$ for each $w \in V_{2}$. If there exists $w \in V_{2}$ such that $d(w)=0$, then in view of Case 1.1, each $u \in V_{1}$ has degree at most 1 , and \mathbf{G} packs by Corollary 8.

Thus, $d(w)=1$ for each $w \in V_{2}$. Since $e_{3}>0$, there exists $w \in V_{2}$ such that $d_{3}(w)=d(w)=1$. Let $N_{3}(w)=\left\{v^{\prime}\right\}$. Fix $u \in V_{1}-v^{\prime}$ with $d(u)$ maximum. If $d(u)=0$, then

$$
\sum_{v \in V_{1} \cup V_{2}} d(v) \leq d_{3}\left(v^{\prime}\right)+n \leq \Delta_{3}(\mathbf{G})+n \leq 2 n-1 .
$$

In particular, $|E(\mathbf{G})|<n$. Corollary 8 and the strict inequality imply that \mathbf{G} packs. So suppose $d(u) \geq 1$. Since $d(w)=1$ and $d(u) \geq 1,|E(\mathbf{G}-u-w)| \leq 2(n-1)-3$. By Lemmas 9 and $10, \mathbf{G}-u-w$ satisfies the conditions of Theorem 6 . If $d(u)=1$, then v^{\prime} is the only vertex in $V_{1} \cup V_{2}$ with degree at least 2 , and hence $\mathbf{G}-u-v$ is not one of the examples from Fig. 1. Similarly, if $d(u) \geq 2$, then $|E(\mathbf{G}-u-w)| \leq 2(n-1)-4$ and again $\mathbf{G}-u-w$ is not one of the examples from Fig. 1. Therefore, there is a packing of $\mathbf{G}-u-w$, and sending u to w extends this packing to a packing of \mathbf{G}.

Case 2: $d_{3}(v) \geq 1$. Among the vertices in $V_{2}-N_{3}(v)$ with maximum degree, let w be a vertex that minimizes $d_{3}(w)$. By Case $1, d(w) \geq 1$. Consider the triple $\mathbf{G}^{\prime}:=\mathbf{G}-v-w$. Since $d(v)+d(w) \geq 2$ and $v w \notin E(\mathbf{G})$, by Lemmas 9 and $10, \mathbf{G}^{\prime}$ satisfies the conditions of Theorem 6 for $n^{\prime}=n-1$. If \mathbf{G}^{\prime} packs, then the packing extends to a packing of \mathbf{G} by sending v to w. Therefore by Theorem $6, d(v)=d(w)=1$, and \mathbf{G}^{\prime} is an example from Fig. 1.

However, by the choice of w and the fact that $d(w)=1$, all vertices in $V_{2}-N_{3}(v)$ have degree at most 1 in \mathbf{G} and, hence, in $G_{2}-w$. By inspection, $G_{2}-w$ is either $G_{1}(1)$ or $G_{2}(3)$ in Fig. 1, as every other graph in Fig. 1 has at least two vertices with degree at least 2 . Since each of $G_{2}(1)$ and $G_{1}(3)$ has an isolated vertex, and by Case $1, \mathbf{G}$ has no isolated vertices in V_{1}, we have removed an incident yellow edge when deleting w. It follows that $d_{3}(w)=d(w)=1$. Each of $G_{1}(1)$ and $G_{2}(3)$ has at least 4 vertices incident to exactly one white edge. Since $d_{2}(w)=0$, in the process of removing v and w from \mathbf{G}, we have removed only one edge incident to $V_{2}-w$. Thus, G_{2} contains a vertex with degree 1 incident to a white edge, contradicting our choice of w.

Proof of Theorem 6. Let \mathbf{G} be our minimum counterexample. Since $e_{3}>0$, \mathbf{G} has a yellow edge $x y$ with $x \in V_{1}$ and $y \in V_{2}$. Since $|E(\mathbf{G})| \leq 2 n-3<2 n$, there are vertices of degree at most 1 . We may assume that $v \in V_{1}$ and $d(v) \leq 1$. By Lemma 11 , v has a white neighbor, v^{\prime}. Since $d(v)=1, v \neq x$. We obtain the triple \mathbf{G}^{\prime} from \mathbf{G} by removing v and y, and adding a yellow edge from v^{\prime} to each vertex in $N_{2}(y)$. Then, $\left|E\left(\mathbf{G}^{\prime}\right)\right| \leq|E(\mathbf{G})|-2 \leq 2(n-1)-3$. The triple \mathbf{G}^{\prime} has at least one yellow edge (connecting v^{\prime} with a white neighbor of y), so it is not an example from Fig. 1. Since we have not added any white edges, by Lemma 10, $\Delta_{1}\left(\mathbf{G}^{\prime}\right), \Delta_{2}\left(G^{\prime}\right) \leq n-3$. If $\Delta_{3}\left(G^{\prime}\right) \leq n-2$, then \mathbf{G}^{\prime} satisfies the conditions of Theorem 6 and so there exists a packing of \mathbf{G}^{\prime}. This packing extends to a packing of \mathbf{G} by sending v to y.

Thus, $\Delta_{3}\left(\mathbf{G}^{\prime}\right)=n-1$. By Lemma 11, $e_{1}+e_{2} \geq n$, so $\Delta_{3} \leq e_{3} \leq n-3$. Since v^{\prime} is the only vertex whose degree in \mathbf{G}^{\prime} exceeds the degree in \mathbf{G} by at least 2 , it is the only vertex with yellow degree $n-1$ in \mathbf{G}^{\prime}. In particular, by construction this implies that in \mathbf{G}, every vertex in $V_{2}-y$ is either in $N_{3}\left(v^{\prime}\right)$ or in $N_{2}(y)$.

Since the underlying graph $\underline{\mathbf{G}}$ of \mathbf{G} contains $2 n$ vertices and at most $2 n-3$ edges, it contains at least 3 tree components. Consider a tree component T that contains neither v^{\prime} nor y. Since every vertex in $V_{2}-y$ is adjacent to y or v^{\prime},
T contains only vertices in V_{1} that do not have neighbors in V_{2}.
By Lemma $11, T$ is not a single vertex. Let $u \in V_{1}$ be a leaf vertex, so $d(u)=1$, and let $u^{\prime} \in V_{1}$ be its neighbor.
Consider the triple $\mathbf{G}^{\prime \prime}$ formed from $\mathbf{G}-u-y$ by adding a yellow edge from u^{\prime} to each vertex in $N_{2}(y)$. As with \mathbf{G}^{\prime}, $\left|E\left(\mathbf{G}^{\prime \prime}\right)\right| \leq|E(\mathbf{G})|-2 \leq 2(n-1)-3$ and $\mathbf{G}^{\prime \prime}$ contains a yellow edge, so it is not an example from Fig. 1. No white edges have been added, so by Lemma $10, \Delta_{1}\left(\mathbf{G}^{\prime \prime}\right), \Delta_{2}\left(\mathbf{G}^{\prime \prime}\right) \leq n-2$. By (8), u^{\prime} is incident to exactly $d_{2}(y) \leq \Delta_{2} \leq n-3$ yellow edges and every other vertex in $\mathbf{G}^{\prime \prime}$ is incident to at most $\Delta_{3}+1 \leq n-2$ yellow edges. So $\mathbf{G}^{\prime \prime}$ satisfies the conditions of Theorem 6 . Therefore, there exists a packing of $\mathbf{G}^{\prime \prime}$, and this packing extends to a packing of \mathbf{G} by sending u to y.

Acknowledgments

The authors would like to thank Gexin Yu and the referees for helpful comments. The first author's research was supported in part by OTKA Grants 78439 and 101536. The second author's research was supported in part by NSF grant DMS-1266016 and by grants 15-01-05867 and 16-01-00499 of the Russian Foundation for Basic Research. The third author gratefully acknowledges support from the Campus Research Board, University of Illinois. The fourth author acknowledges support from National Science Foundation grant DMS 08-38434 "EMSW21-MCTP: Research Experience for Graduate Students".

References

[1] B. Bollobás, S.E. Eldridge, Packings of graphs and applications to computational complexity, J. Combin. Theory Ser. B 25 (2) (1978) $105-124$.
[2] P.A. Catlin, Subgraphs of graphs, I, Discrete Math. 10 (2) (1974) 225-233.
[3] E. Győri, A.V. Kostochka, A. McConvey, D. Yager, Toward Żak's conjecture on graph packing, J. Comb. 7 (2) (2016) 307-340.
[4] P. Hajnal, M. Szegedy, On packing bipartite graphs, Combinatorica 12 (3) (1992) 295-301.
[5] H. Kaul, A. Kostochka, Extremal graphs for a graph packing theorem of Sauer and Spencer, Combin. Probab. Comput. 16 (03) (2007) $409-416$.
[6] N. Sauer, J. Spencer, Edge disjoint placement of graphs, J. Combin. Theory Ser. B 25 (3) (1978) 295-302.
[7] S. Schuster, Fixed-point-free embeddings of graphs in their complements, Internat. J. Math. Math. Sci. 1 (3) (1978) 335-338.
[8] V. Vizing, Vertex colorings with given colors, Metody Diskret. Analiz 29 (1976) 3-10 (in Russian).
[9] A. Żak, On packing two graphs with bounded sum of size and maximum degree, SIAM J. Discrete Math. 28 (2014) 1686-1698.

[^0]: * Corresponding author.

 E-mail addresses: ervin@renyi.hu (E. Győri), kostochk@math.uiuc.edu (A. Kostochka), mcconve2@illinois.edu (A. McConvey), yager2@illinois.edu (D. Yager).

