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a b s t r a c t

We consider the following generalization of graph packing. Let G1 = (V1, E1) and G2 =

(V2, E2) be graphs of order n and G3 = (V1 ∪ V2, E3) a bipartite graph. A bijection f from V1
onto V2 is a list packing of the triple (G1,G2,G3) if uv ∈ E1 implies f (u)f (v) ∉ E2 and for
all v ∈ V1, vf (v) ∉ E3. We extend the classical results of Sauer and Spencer and Bollobás
and Eldridge on packing of graphs with small sizes or maximum degrees to the setting of
list packing. In particular, we extend the well-known Bollobás–Eldridge Theorem, proving
that if ∆(G1) ≤ n − 2, ∆(G2) ≤ n − 2, ∆(G3) ≤ n − 1, and |E1| + |E2| + |E3| ≤ 2n − 3,
then either (G1,G2,G3) packs or is one of 7 possible exceptions.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The notion of graph packing is a well-known concept in graph theory and combinatorics. Two graphs on n vertices are
said to pack if there is an edge-disjoint placement of the graphs onto the same set of vertices. In 1978, two seminal papers, [6]
and [1], on extremal problems on graph packing appeared in the same journal. In particular, Sauer and Spencer [6] proved
sufficient conditions for packing two graphs with bounded product of maximum degrees.

Theorem 1 ([6]). Let G1 and G2 be two graphs of order n. If 2∆(G1)∆(G2) < n, then G1 and G2 pack.

This result is sharp and later Kaul and Kostochka [5] characterized all graphs for which Theorem 1 is sharp.

Theorem 2 ([5]). Let G1 and G2 be two graphs of order n and 2∆(G1)∆(G2) ≤ n. Then G1 and G2 do not pack if and only if one
of G1 and G2 is a perfect matching and the other is either K n

2 , n2
with n

2 odd or contains K n
2 +1.

Bollobás and Eldridge [1] and, independently, Sauer and Spencer gave sufficient conditions for packing two graphs with
given total number of edges.

Theorem 3 ([1,6]). Let G1 and G2 be two graphs of order n. If |E(G1)| + |E(G2)| ≤
3
2n − 2, then G1 and G2 pack.

This result is best possible, since G1 = K1,n−1 and G2 =
n
2K2 do not pack. Bollobás and Eldridge [1] proved the stronger

result that the bound of Theorem 3 can be significantly strengthened when ∆(G1) < n − 1 and ∆(G2) < n − 1.
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Fig. 1. Bad pairs in Theorems 4 and 6.

Theorem 4 ([1]). Let G1 and G2 be two graphs of order n. If ∆(G1), ∆(G2) ≤ n − 2, |E(G1)| + |E(G2)| ≤ 2n − 3, and {G1,G2}

is not one of the following pairs: {2K2, K1 ∪ K3}, {K 2 ∪ K3, K2 ∪ K3}, {3K2, K 2 ∪ K4}, {K 3 ∪ K3, 2K3}, {2K2 ∪ K3, K 3 ∪ K4}, {K 4 ∪

K4, K2 ∪ 2K3}, {K 5 ∪ K4, 3K3} (Fig. 1), then G1 and G2 pack.

This result is also sharp, since the graphs G1 = Cn and G2 = K1,n−2 ∪ K1 satisfy the maximum degree conditions, have
2n − 2 edges, and do not pack. There are other extremal examples.

Variants of the packing problem have been studied and, in particular, restrictions of permissible packings arise both
within proofs and are posed as independent questions. The notion of a bipartite packingwas introduced by Catlin [2] andwas
later studied by Hajnal and Szegedy [4]. This variation of traditional packing involves two bipartite graphs G1 = (X1∪Y1, E1)
and G2 = (X2 ∪ Y2, E2) where permissible packings send X1 onto X2 and Y1 onto Y2. The problem of fixed-point-free
embeddings, studied by Schuster in 1978, considers a different restriction to the original packing problem [7]. In this case,
G1 = G is packedwithG2 = G under the additional restraint that no vertex ofG1 ismapped to its copy inG2. In [9], Schuster’s
result is used to prove a necessary condition for packing two graphs with given maximum and average degrees.

In this paper, we introduce the language of list packing in order to model such problems. A list packing of the graph triple
(G1,G2,G3) with G1 = (V1, E1),G2 = (V2, E2), and G3 = (V1 ∪ V2, E3) is a bijection f : V1 → V2 such that uv ∈ E1 implies
f (u)f (v) ∉ E2 and for each u ∈ V1, uf (u) ∉ E3. Note that both G1 and G2 are graphs on n vertices so that G3 has 2n vertices,
and one can think of the edge set E3 as a list of restrictions that must be avoided when packing G1 and G2.

This notion is closely related to Vizing’s concept of list coloring [8]. Suppose we wish to color a graph G with the colors
{1, . . . , k}. A list assignment L is a function on the vertex set V (G) that returns a set of colors L(v) ⊆ {1, . . . , k} permissible
for v. A list coloring, more specifically an L-coloring, is a proper coloring f of G such that f (v) ∈ L(v) for all v ∈ V (G). The
problem of list coloring G can be stated within the framework of list packing. A proper L-coloring of a graph G is equivalent
to a list packing where G1 = G along with an appropriate number of isolated vertices, G2 is a disjoint union of Kn’s each
representing a color, and E3 consists of all edges going between a vertex v ∈ V1 and the copies of Kn corresponding to colors
not in L(v). Note the list L(v) denotes permissible colors in a list coloring while N3(v) specifies forbidden vertices in a list
packing.

Similarly, the variations of packing discussed above can bemodeled using this framework. A bipartite packing is a packing
of the triple (G1,G2,G3) where E3 consists of all edges between Xi and Y3−i for i = 1, 2. A fixed-point-free embedding is
a packing of the triple (G,G,G3) where E3 = {(v, v) : v ∈ V (G)}. Further, several important theorems on the ordinary
packing can be stated in terms of list packing. The results of this paper prove natural generalizations of Theorems 1–4.
In particular, we extend Theorems 1 and 2 as follows.

Theorem 5. Let G = (G1,G2,G3) be a graph triple with |V1| = |V2| = n. If

∆(G1)∆(G2) + ∆(G3) ≤ n/2, (1)

then G does not pack if and only if ∆(G3) = 0 and one of G1 or G2 is a perfect matching and the other is K n
2 , n2

with n
2 odd or

contains K n
2 +1. Consequently, if ∆(G1)∆(G2) + ∆(G3) < n/2, then G packs.

The main result of this paper is the following list version of Theorem 4.

Theorem 6. Let G = (G1,G2,G3) be a graph triple with |V1| = |V2| = n. If ∆(G1), ∆(G2) ≤ n − 2, ∆(G3) ≤ n − 1,
|E1| + |E2| + |E3| ≤ 2n − 3 and the pair {G1,G2} is none of the 7 pairs in Fig. 1, then G packs.

Theorem 6 is sharp and has more sharpness examples than Theorem 4. First, the condition ∆(G3) ≤ n − 1 cannot be
removed, since a vertex in V1 adjacent to all vertices in V2 cannot be placed at all (Fig. 2(a)). The restriction on |E1|+|E2|+|E3|
is also sharp, as there are several examples of graphs with |E3| > 0 and edge sum equal to 2n − 2 that do not pack.
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Fig. 2. Sharpness examples for Theorem 6. In each of the above figures, the left column of vertices corresponds to V1 and the right column corresponds
to V2 .

For example, let G1 and G2 be independent sets and x1, x2 ∈ V1 be adjacent to the same n − 1 vertices in V2 (Fig. 2(b)).
In this case (G1,G2,G3) does not pack. If E1 consists of a single edge x1x2, E2 consists of a single edge yn−1yn, and E3 consists
of all edges between {x1, x2} and V2 − yn−1 − yn (Fig. 2(c)), then (G1,G2,G3) also does not pack. Similarly, if E1 contains a
single edge, G2 contains a triangle and (n − 3) isolated vertices, and G3 consists of all edges between non-isolated vertices
in G1 and isolated vertices in G2, then (G1,G2,G3) does not pack (Fig. 2(d)).

Alternatively, consider G1 = K1,m−1 ∪ K n−m, G2 = K1,m′−1 ∪ K n−m′ (for any choice of m,m′ such that m − 1 ≠ n − m′),
and E3 consisting of all edges between the center of the star in G1 and isolated vertices in G2 as well as between the center
of the star in G2 and isolated vertices in G1 (Fig. 2(e)). Indeed, sincem − 1 ≠ n − m′, mapping the center of the star in G1 to
the center of the star in G2 will create a conflict. Then, since the center of the star in G1 must be mapped to a leaf in G2 and
a leaf in G1 must be mapped to the center of the star in G2, (G1,G2,G3) does not pack. Finally, consider G1 = K1,n−1 ∪ K1,
G2 = Ck ∪ K n−k (for any choice of k), and let E3 consist of all possible edges between the center of the star in G1 and isolated
vertices in G2 (Fig. 2(f)). In this case, (G1,G2,G3) does not pack since the center of the star in G1 is adjacent to n− 2 vertices
in G1, but must be mapped to a vertex in the cycle in G2.

The notion of list packing arosewhile the authorswereworking on a conjecture of Żak [9] onpackingn-vertex graphswith
given sizes and maximum degrees. In this situation, list packing provides a stronger inductive assumption that facilitates a
proof. In [3], we heavily use Theorems 5 and 6 of this paper to get an approximate solution to Żak’s conjecture.

The paper is organized as follows. In the next paragraph, we introduce some notation. In Section 2, we prove Theorem 5.
Section 3 contains some preliminary results, including an extension of Theorem 3 that will be used as a base case in the
proof of Theorem 6. In Section 4 we prove the main result by induction on the size of the vertex set.

1.1. Notation

A graph triple G = (G1,G2,G3) of order n consists of a pair of n-vertex graphs G1 = (V1, E1) and G2 = (V2, E2) with
disjoint vertex sets together with a bipartite graph G3 = (V1 ∪V2, E3). For i ∈ {1, 2, 3}, let ei = |Ei|. Let V = V (G) = V1 ∪V2.
An edge in E1 ∪ E2 is a white edge, while an edge in E3 is a yellow edge. The edge set of G is E(G) = E1 ∪ E2 ∪ E3.

Let i ∈ {1, 2} and v ∈ Vi. Then the white neighborhood of v, denoted Ni(v), is the set of neighbors of v in Gi, and
di(v) = |Ni(v)|. A vertex inNi(v) is awhite neighbor of v. For convenience, we say thatN3−i(v) = ∅ (and hence d3−i(v) = 0).
The yellow neighborhood of v, denoted N3(v), is the set of neighbors of v in G3 and d3(v) = |N3(v)|. A vertex in N3(v) is a
yellow neighbor of v. Furthermore, the neighborhood of v, denoted N(v), is the disjoint union Ni(v) ∪ N3(v) and vertices in
the neighborhood are neighbors. The degree of v is di(v) + d3(v) and is denoted d(v). For i ∈ {1, 2, 3}, define ∆i = ∆i(G) to
be maxv∈V di(v).

If W ⊆ V with |W ∩ V1| = |W ∩ V2|, then the triple induced by W is G[W ] = (G1[W ],G2[W ],G3[W ]), where Gi[W ] is
the subgraph of Gi induced by the setW . Similarly, the triple G − W is (G1 − W ,G2 − W ,G3 − W ). The underlying graph G
of a triple G is the graph with vertex set V (G) and edge set E(G).

Finally, we say the graph triple G packs if the triple has a list packing.



E. Győri et al. / Discrete Mathematics 339 (2016) 2178–2185 2181

2. Proof of Theorem 5

(⇐) Suppose G1 is a perfect matching and G2 contains K n
2 +1 or n

2 is odd and G2 = K n
2 , n2

. In the first case, for any mapping
f : V1 → V2, some edge of G1 will be mapped to an edge in the clique K n

2 +1. In the second case, since n
2 odd, some edge of a

perfect matching on V2 has one endpoint in each partite set of G2. Thus, G = (G1,G2,G3) cannot pack.
(⇒) Assume that a graph triple G is a counterexample with the minimum |E3|. By Theorem 1, E3 ≠ ∅. By the minimality
of |E3|, we may assume that there is a mapping f which has a conflict at only one edge vw ∈ E3, i.e., f (v) = w. For each
a ∈ V1 − v, define the mapping fa by fa(v) = f (a), fa(a) = w and fa(x) = f (x) for all x ∈ V1 − a − v. We claim that there is
a mapping fa that satisfies:

(i) fa(N1(a)) ∩ N2(w) = ∅,
(ii) fa(N1(v)) ∩ N2(f (a)) = ∅,
(iii) fa(a) ∉ N3(v), and
(iv) w ∉ N3(a).

Indeed, V1 − v has at most ∆1∆2 vertices that may violate (i), at most ∆1∆2 vertices that may violate (ii), at most ∆3 − 1
vertices that may violate (iii) and at most ∆3 − 1 vertices that may violate (iv). Since G does not pack, n − 1 = |V1 − v| ≤

(∆3 − 1) + (∆3 − 1) + 2∆1∆2. But this inequality yields n + 1 ≤ 2(∆3 + ∆1∆2), contradicting (1).
Thus some fa satisfies (i)–(iv). Then under fa there is no conflict along edge vw and no new conflicts are introduced. Since

the only conflict in f was along vw, fa is a packing, a contradiction to the choice of G. �

3. Preliminary facts

The following lemma is an extension of Theorem 3.

Lemma 7. Let G = (G1,G2,G3) be a graph triple with |V1| = |V2| = n. If ∆3 ≤ n − 1 and e1 + e2 + e3 ≤
 3

2n


− 2, then the
triple G = (G1,G2,G3) packs.

Proof. It is enough to prove the lemma in the case

e1 + e2 + e3 =


3
2
n


− 2. (2)

The proof will proceed by induction on n. If n = 1, then G contains no edges and it packs. If n = 2, then e1 + e2 + e3 = 1
and G also packs. If e3 = 0, then the result holds by Theorem 3. If e1 = 0 or e2 = 0, then the problem reduces to finding
a perfect matching in Kn,n − E3. By the König–Egerváry Theorem, if Kn,n − E3 has no perfect matching, then it has a vertex
cover C with |C | = n − 1. This means that G3 − C is a complete bipartite graph with n + 1 vertices, say G3 − C = Kk,n+1−k.
Since ∆3 ≤ n − 1, we have 2 ≤ k ≤ n − 1 and so |E(G3 − C)| = k(n + 1 − k) ≥ 2n − 2, contradicting (2). Therefore,
e1, e2, e3 > 0 and so n ≥ 4.

We now claim that

∆3 ≤ n − 2. (3)

Otherwise, by symmetry, we may assume that d3(v) = n − 1 for some v ∈ V1. Let V2 − N3(v) = {y}. Then at most n/2 − 1
edges in G are not adjacent to v. In particular, there is u ∈ V2 that has no neighbors in (V1 ∪ V2) − v. If u = y, then we pack
G − v − y by induction and extend this packing by assigning v to y.

If uv ∈ E3 and there is w ∈ V1 − v with d(w) ≥ 1, then consider G′
= G−w −u. The total number of edges decreases by

at least 2, and v is incident with exactly n − 2 yellow edges. So, since G′ contains at most
 3

2n


− 4 edges, ∆3(G′) = n − 2.
Thus G′ packs by induction, and we can extend the packing by sending w to u. Finally, if uv ∈ E3 and G1 has no edges, it is
enough to find an ordering (v1, . . . , vn) of V1 and an ordering (y1, . . . , yn) of V2 such that viyi ∉ E3 for all i. We order V1 so
that v1 = v and d3(vi+1) ≤ d3(vi) for all 1 ≤ i ≤ n− 1 and find a nonneighbor yi for vi greedily one by one for i = 1, . . . , n.
This is possible, since G3−v1 has atmost n/2−1 edges and so for i ≥ 2, vi has atmost n/2−1

i−1 neighbors in V2−{y1, . . . , yi−1}.
This proves (3).

We now proceed in three cases.
Case 1: There exists an i ∈ {1, 2} and a vertex x ∈ Vi such that di(x) = 0 and d3(x) > 0. By symmetry, we may assume

i = 1. If there exists y ∈ V2 −N3(x) with d3(x)+ d(y) ≥ 2, then by (3) the triple G− x− y satisfies the lemma. By induction,
G − x − y has a packing and this packing can be extended to G by assigning x to y. Otherwise, we may assume d(y) = 0 for
every y ∈ V2 − N3(x) and d3(x) = 1. Let N3(x) = {z}. Since ∆3 ≤ n − 1, there exists a vertex w ∈ V1 − N3(z) that can be
mapped to z. As d(y) = 0 for each y ∈ V2 − z, any bijection from V1 − w onto V2 − z is a packing of G− w − z. This packing
extends to a packing of G by assigning w to z.

Case 2: There exists an i ∈ {1, 2} and a vertex x ∈ Vi such that di(x) = d3(x) = 0. Again, we may assume i = 1. Similarly
to Case 1, if there exists y ∈ V2 with d(y) ≥ 2, then the triple G − x − y satisfies the lemma. By induction G − x − y has
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Fig. 3. Graph triples of order n = 3 and e1 = e2 = e3 = 1. In each case, the function f : V1 → V2 defined by f (xi) = yi for each i ∈ {1, 2, 3} is a packing.

a packing and this packing can be extended to G by assigning x to y. So we may assume that d(y) ≤ 1 for all y ∈ V2. Then
since e3 > 0, there is y ∈ V2 with d3(y) = 1 and d2(y) = 0. But this means we now have Case 1.

Case 3: For i ∈ {1, 2}, di(v) ≥ 1 for every v ∈ Vi. By (2), there is x ∈ V1 ∪ V2 with d(x) ≤ 1. By symmetry, we may assume
x ∈ V1. By the case assumption, d1(x) = 1, and so d3(x) = 0. Let N1(x) = {z}. Since e3 > 0, there is y ∈ V2 incident with
a yellow edge. Let G′′ be obtained from the triple G − x − y by joining z with an edge to each vertex in N2(y). Note that we
have deleted 1 + d2(y) + d3(y) edges and added only d2(y) edges. Since d3(y) ≥ 1, |E(G′′)| ≤

 3
2 (n − 1)


− 2.

For i ∈ {1, 2}, di(v) ≥ 1 for each v ∈ Vi, so e1, e2 ≥
n
2 . Every vertex in G′′ is incident to at most ∆3 yellow

edges present in G and at most d2(y) ≤ ∆2 newly added yellow edges. Hence, each vertex in G′′ is incident to at most
e2 + e3 ≤ ( 3

2n − 2) − e1 ≤ n − 2 yellow edges. Thus the triple G′′ satisfies the conditions of Lemma 7 and, by induction, G′′

packs. Due to the added yellow edges, z was sent to a vertex in V2 − N2(y). Therefore, this packing extends to a packing of
G by mapping x to y. �

Lemma 7 along with the following corollary will serve as a base case for a proof of Theorem 6.

Corollary 8. Suppose G is a graph triple (G1,G2,G3) of order n ≥ 1. If e1 + e2 + e3 ≤ n, then either:

(1) G has a packing, or
(2) e1 = e2 = 0 and for some i ∈ {1, 2}, there exists v ∈ Vi adjacent to all vertices in V3−i, or
(3) n = 2, e3 = 0 and G1 ∼= G2 ∼= K2.

Proof. For n ≥ 4, the result follows from Lemma 7. If n = 1, then either there are no edges and so G packs, or there is a
single edge in E3, and (2) holds.

If n = 2 and e1 + e2 = 2, then (3) holds. If n = 2, e3 = 1 and e1 + e2 ≤ 1, then G has a packing. Finally, if n = 2 and
e3 = 2, then either G has a packing or (2) holds.

The last case is n = 3. If e3 = 0, then in the worst case, e1 + e2 = 3. In this case, either {G1,G2} ∼= {K1,2, K2 ∪ K1} or
{G1,G2} ∼= {K3, K 3} and so G = (G1,G2, K 6) packs in all cases. Suppose now e1 = 0. Then similarly to the proof of Lemma 7,
G packs if K3,3 − E3 has a perfect matching. If K3,3 − E3 has no such matching, then by the König–Egerváry Theorem, G3
has a complete bipartite subgraph with 4 vertices. Since e3 ≤ 3, the only possibility is that G3 = K1,3, i.e. (2) holds. Thus,
e1, e2, e3 ≥ 1, which means e1 = e2 = e3 = 1. Up to isomorphism, there are only 3 cases, and Fig. 3 shows a packing in
each case. �

4. Proof of Theorem 6

Let G = (G1,G2,G3) of order n be a counterexample to Theorem 6 with the smallest order. By Corollary 8, n ≥ 4. Also,
by Theorem 4, we may assume E3 ≠ ∅.

Lemma 9. ∆3 ≤ n − 2.

Proof. Suppose that there existv ∈ V1 andw ∈ V2 such thatN3(v) = V2−w. Since |E(G−v−w)| ≤ (2n−3)−(n−1) = n−2,
the triple G − v − w packs by Corollary 8. If d1(v) = 0 or d2(w) = 0, then additionally placing v on w is a packing of G. So
assume d1(v) ≥ 1 and d2(w) ≥ 1.

Let G′
= (G′

1,G
′

2,G
′

3) be obtained from G by deleting, in G3, all n − 1 edges connecting v with V2 and all edges (maybe
zero) connecting w with V1. We now show that after mapping v to w, there are enough isolated vertices in either V2 − w or
V1 − v to complete the packing.

First suppose v and w are in different components of the underlying graph G′. Define X and Y to be the vertex sets of the
component of G′ containing v and w, respectively (possibly X = Y ). Define Z = X ∪ Y and let z = |Z |. For i ∈ {1, 2}, let
Zi = Z ∩ Vi, with size zi. The graph G′

− Z has 2n− z vertices and at most 2n− 3− (n− 1) − (z − 2) edges. So G′
− Z has at

least (2n− z)− (n− z) = n components, and at least z of them have no edges, i.e. are singletons. At least z1 of the singletons
are in V2 or at least z2 of them are in V1. Suppose the former holds. In particular, there is a set S ⊆ V2 − w of singletons with
|S| = d1(v).

Consider the triple G′′
= G− v −w −N1(v)− S. The triple G′′ has order n− d1(v)− 1 and |E(G′′)| ≤ 2n− 3− (n− 1)−

d1(v) − d2(w) = n − 2 − d1(v) − d2(w). The number of edges in G′′ is strictly less than the order of G′′, so by Corollary 8,
G′′ packs. This packing, together with the placement of v and N1(v), gives a packing of G, a contradiction. �

Lemma 10. ∆1, ∆2 ≤ n − 3.
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Proof. Suppose ∆1 = n − 2, the other case is symmetric. Let v, v′
∈ V1 and N1(v) = V1 − v − v′.

Case 1: There is w ∈ V2 − N(v) with no neighbors in V2. Consider the triple G′
= G − v − w. Since d(v) ≥ n − 2,

|E(G′)| ≤ (2n− 3)− (n− 2) = n− 1. By Lemma 9, ∆3(G′) ≤ n− 2, so G packs by Corollary 8. This packing can be extended
to a packing of G by sending v to w.

Case 2: Every w ∈ V2 − N(v) has a white neighbor. LetW ′ be the set of vertices in V2 reachable from V1 in the underlying
graph G, and let W = V2 − W ′. Since G − W has at least (n − 2) + |W ′

| edges, |W ′
| ≤ n − 1. So W ≠ ∅ and if d1(v′) = a,

then

|E(G[W ])| ≤ (2n − 3) − (n − 2) − a − |W ′
| = |W | − 1 − a. (4)

Let W1 be the vertex set of a smallest tree component in G2[W ]. By the case assumption, every vertex in G2[W ] has
positive degree. Since there are no yellow edges incident toW , the degree of each vertex in G2[W ] is equal to its degree in G.
Let y ∈ W1 be a vertex of degree 1 in G2[W ] and let y′

∈ W1 be the neighbor of y. Suppose d2(y′) = b. Let G′
= (G′

1,G
′

2,G
′

3)
be the triple obtained from G− {v, v′, y, y′

} by adding the a(b− 1) yellow edges connecting the white neighbors of v′ with
the (necessarily white) neighbors of y′ distinct from y. The graph triple G′ has 2(n − 2) vertices and

|E(G′)| ≤ 2n − 3 − (n − 2) − a − b + a(b − 1) = n − 1 − 2a + b(a − 1). (5)

If G′ packs, then because of the added edges, this packing extends to a packing of G by sending v to y and v′ to y′. Suppose it
does not.

Case 2.1: a ≤ 1. Then by (5),

|E(G′)| ≤ n − 2 with equality only if a = 0, b = 1, and the only edges in

E(G) − E(G′) are yy′ and the n − 2 white edges incident with v. (6)

By Corollary 8, |E(G′)| = n−2 andG′ either has nowhite edges or has no yellow edges, sinceG′ does not pack. Then (6) yields
a = 0, b = 1, and E(G) − E(G′) has no yellow edges. Since e3 > 0, this implies G′ has no white edges, but this contradicts
the case conditions together with b = 1.

Case 2.2: a ≥ 2. By (4), G2[W ] has at least a + 1 tree components. So by the choice ofW1,

2 ≤ b + 1 ≤ |W1| ≤ |W |/(a + 1) ≤ n/(a + 1) (7)

and thus b ≤ −1 + n/(a + 1). Since a ≥ 2, by (5),

|E(G′)| ≤ n − 1 − 2a +


n

a + 1
− 1


(a − 1)

= n − 3a + n
a

a + 1
−

n
a + 1

≤ n + n
a

a + 1
− 3a − 3

≤ n + n
a

a + 1
− 9 < 2(n − 2) − 3.

SinceG′ does not pack and the last strict inequality ensures that the examples fromFig. 1 do not appear asG′, by induction,
some vertex z in G′ has yellow degree n−2 or white degree at least n−3. But since we deleted at least n−2+a+b ≥ n+1
edges out of 2n− 3 in G, the number of edges in E(G′) ∩ E(G) (and thus the total number of white edges in E(G′)) is at most
n − 4. It follows that the vertex z has yellow degree n − 2 in G′ and is incident to an added yellow edge. Since all added
yellow edges connectW1 with V1, z ∈ W1 ∪ V1.

If z ∈ W1, then by the definition ofW , all n − 2 yellow edges incident to z are in E(G′) − E(G). By the construction of G′,
this yields a ≥ n − 2, which contradicts (7) since n ≥ 4. Thus z ∈ V1 and is adjacent to each vertex in V (G′

2). But by
the definition of W and G′, the vertices in W − W1 are not incident with yellow edges in G′. This is a contradiction, since
W − W1 ≠ ∅ by (4). �

Lemma 11. Every vertex of G has a white neighbor.

Proof. Suppose v ∈ V has no white neighbor. Without loss of generality, assume v ∈ V1.
Case 1: d3(v) = 0.
Case 1.1: Some w ∈ V2 has degree at least 2. Then G − v − w contains at most 2(n − 1) − 3 edges. By Lemmas 9 and 10,

G− v −w satisfies the conditions of Theorem 6 for n′
= n− 1. Since any packing of G− v −w can be extended to a packing

of G by sending v to w, it does not pack. So by the minimality of G, G − v − w is one of the examples in Fig. 1. In particular,
G3 − v − w has no yellow edges. This means all yellow edges in G are incident to w. Since each of the examples in Fig. 1 has
exactly 2(n − 1) − 3 edges, d(w) = 2.

If both edges adjacent to w are yellow, since every graph in Fig. 1 contains 3 vertices of positive degree, there is some
v′

∈ V1 −N(w)with d(v′) ≥ 1. Then G−v′
−w contains fewer than 2(n−1)−3 edges and no yellow edges. By Theorem 4,

G − v′
− w packs and this packing can be extended to a packing of G by sending v′ to w.
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Since e3 > 0, the remaining possibility is that w has exactly one neighbor w′
∈ V2 and one neighbor in V1. As above,

we can choose some v′
∈ V1 − N1(w) with positive degree. Create a new graph triple G′ from G by removing v′ and w and

adding yellow edges from w′ to N1(v
′). This triple G′ has exactly 2(n − 1) − 3 edges, and all yellow edges in G′ are incident

to w′, since w was the only vertex in G incident to yellow edges. So ∆3(G′) = d1(v′) ≤ n− 3 by Lemma 10. Additionally, no
white edges were added, so again by Lemma 10, ∆1(G′), ∆2(G′) ≤ n− 3. Thus, G′ satisfies the conditions of Theorem 6 and
has at least one yellow edge. Hence G′ is not one of the examples from Fig. 1. By the minimality of G, the triple G′ packs, and
this packing can be extended to a packing of G by sending v′ to w.

Case 1.2: d(w) ≤ 1 for each w ∈ V2. If there exists w ∈ V2 such that d(w) = 0, then in view of Case 1.1, each u ∈ V1 has
degree at most 1, and G packs by Corollary 8.

Thus, d(w) = 1 for each w ∈ V2. Since e3 > 0, there exists w ∈ V2 such that d3(w) = d(w) = 1. Let N3(w) = {v′
}. Fix

u ∈ V1 − v′ with d(u) maximum. If d(u) = 0, then
v∈V1∪V2

d(v) ≤ d3(v′) + n ≤ ∆3(G) + n ≤ 2n − 1.

In particular, |E(G)| < n. Corollary 8 and the strict inequality imply that G packs. So suppose d(u) ≥ 1. Since d(w) = 1
and d(u) ≥ 1, |E(G − u − w)| ≤ 2(n − 1) − 3. By Lemmas 9 and 10, G − u − w satisfies the conditions of Theorem 6.
If d(u) = 1, then v′ is the only vertex in V1 ∪ V2 with degree at least 2, and hence G− u− v is not one of the examples from
Fig. 1. Similarly, if d(u) ≥ 2, then |E(G− u−w)| ≤ 2(n− 1)− 4 and again G− u−w is not one of the examples from Fig. 1.
Therefore, there is a packing of G − u − w, and sending u to w extends this packing to a packing of G.

Case 2: d3(v) ≥ 1. Among the vertices in V2 − N3(v) with maximum degree, let w be a vertex that minimizes d3(w).
By Case 1, d(w) ≥ 1. Consider the triple G′

:= G − v − w. Since d(v) + d(w) ≥ 2 and vw ∉ E(G), by Lemmas 9 and 10, G′

satisfies the conditions of Theorem 6 for n′
= n − 1. If G′ packs, then the packing extends to a packing of G by sending v to

w. Therefore by Theorem 6, d(v) = d(w) = 1, and G′ is an example from Fig. 1.
However, by the choice of w and the fact that d(w) = 1, all vertices in V2 −N3(v) have degree at most 1 in G and, hence,

in G2 − w. By inspection, G2 − w is either G1(1) or G2(3) in Fig. 1, as every other graph in Fig. 1 has at least two vertices
with degree at least 2. Since each of G2(1) and G1(3) has an isolated vertex, and by Case 1, G has no isolated vertices in V1,
we have removed an incident yellow edge when deleting w. It follows that d3(w) = d(w) = 1. Each of G1(1) and G2(3) has
at least 4 vertices incident to exactly one white edge. Since d2(w) = 0, in the process of removing v and w from G, we have
removed only one edge incident to V2 − w. Thus, G2 contains a vertex with degree 1 incident to a white edge, contradicting
our choice of w. �

Proof of Theorem 6. Let G be our minimum counterexample. Since e3 > 0, G has a yellow edge xy with x ∈ V1 and y ∈ V2.
Since |E(G)| ≤ 2n−3 < 2n, there are vertices of degree at most 1. Wemay assume that v ∈ V1 and d(v) ≤ 1. By Lemma 11,
v has a white neighbor, v′. Since d(v) = 1, v ≠ x. We obtain the triple G′ from G by removing v and y, and adding a yellow
edge from v′ to each vertex in N2(y). Then, |E(G′)| ≤ |E(G)| − 2 ≤ 2(n − 1) − 3. The triple G′ has at least one yellow edge
(connecting v′ with a white neighbor of y), so it is not an example from Fig. 1. Since we have not added any white edges, by
Lemma 10, ∆1(G′), ∆2(G′) ≤ n − 3. If ∆3(G′) ≤ n − 2, then G′ satisfies the conditions of Theorem 6 and so there exists a
packing of G′. This packing extends to a packing of G by sending v to y.

Thus, ∆3(G′) = n − 1. By Lemma 11, e1 + e2 ≥ n, so ∆3 ≤ e3 ≤ n − 3. Since v′ is the only vertex whose degree in G′

exceeds the degree in G by at least 2, it is the only vertex with yellow degree n − 1 in G′. In particular, by construction this
implies that in G, every vertex in V2 − y is either in N3(v

′) or in N2(y).
Since the underlying graph G of G contains 2n vertices and at most 2n − 3 edges, it contains at least 3 tree components.

Consider a tree component T that contains neither v′ nor y. Since every vertex in V2 − y is adjacent to y or v′,

T contains only vertices in V1 that do not have neighbors in V2. (8)

By Lemma 11, T is not a single vertex. Let u ∈ V1 be a leaf vertex, so d(u) = 1, and let u′
∈ V1 be its neighbor.

Consider the triple G′′ formed from G − u − y by adding a yellow edge from u′ to each vertex in N2(y). As with G′,
|E(G′′)| ≤ |E(G)|− 2 ≤ 2(n− 1)− 3 and G′′ contains a yellow edge, so it is not an example from Fig. 1. No white edges have
been added, so by Lemma 10, ∆1(G′′), ∆2(G′′) ≤ n − 2. By (8), u′ is incident to exactly d2(y) ≤ ∆2 ≤ n − 3 yellow edges
and every other vertex in G′′ is incident to at most ∆3 +1 ≤ n−2 yellow edges. So G′′ satisfies the conditions of Theorem 6.
Therefore, there exists a packing of G′′, and this packing extends to a packing of G by sending u to y. �
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