
Discussiones Mathematicae
Graph Theory 33 (2013) 25–31
doi:10.7151/dmgt.1641

Dedicated to the 70th Birthday of Mieczys law Borowiecki

COLORING SOME FINITE SETS IN R
n
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Abstract

This note relates to bounds on the chromatic number χ(Rn) of the Eu-
clidean space, which is the minimum number of colors needed to color all
the points in R

n so that any two points at the distance 1 receive differ-
ent colors. In [6] a sequence of graphs Gn in R

n was introduced showing

that χ(Rn) ≥ χ(Gn) ≥ (1 + o(1))n
2

6
. For many years, this bound has been

remaining the best known bound for the chromatic numbers of some low-

dimensional spaces. Here we prove that χ(Gn) ∼ n
2

6
and find an exact

formula for the chromatic number in the case of n = 2k and n = 2k − 1.
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1. Introduction

In this note, we study the classical chromatic number χ(Rn) of the Euclidean
space. The quantity χ(Rn) is the minimum number of colors needed to color all
the points in R

n so that any two points at a given distance a receive different
colors. By a well-known compactness result of Erdős and de Bruijn (see [1]),
the value of χ(Rn) is equal to the chromatic number of a finite distance graph
G = (V,E), where V ⊂ R

n and E = {{x,y} : |x− y| = a}.
Now we know that

(1.239 . . .+ o(1))n ≤ χ(Rn) ≤ (3 + o(1))n,

where the lower bound is due to the third author of this paper (see [8]) and the
upper bound is due to Larman and Rogers (see [6]). Also, in [3] one can find an
up-to-date table of estimates obtained for the dimensions n ≤ 12.

It is worth noting that the linear bound χ(Rn) ≥ n+ 2 is quite simple, and
the first superlinear bound was discovered by Larman, Rogers, Erdős, and Sós in
[6]. They considered a family of graphs Gn = (Vn, En) with

Vn = {x = (x1, . . . , xn) : xi ∈ {0, 1}, x1 + · · ·+ xn = 3},

En = {{x,y} : |x− y| = 2}.

In other words, the vertices of Gn are all the 3-subsets of the set [n] = {1, . . . , n}
and two vertices A,B are connected with an edge iff |A ∩ B| = 1. Larman and
Rogers [6] used an earlier result by Zs. Nagy who proved the following theorem.

Theorem 1 [6]. Let s and t ≤ 3 be nonnegative integers and let n = 4s+t. Then

α(Gn) =







n, if t = 0,

n− 1, if t = 1,

n− 2, if t = 2 or t = 3.
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The standard inequality χ(Gn) ≥
|Vn|

α(Gn)
combined with the above theorem gives

an obvious corollary.

Corollary 2 [6]. Let s and t ≤ 3 be nonnegative integers and let n = 4s + t.
Then

χ(Gn) ≥











(n−1)(n−2)
6 , if t = 0,

n(n−2)
6 , if t = 1,

n(n−1)
6 , if t = 2 or t = 3.

The bounds from the corollary are applied to estimate from below the chromatic
numbers χ(Rn−1), since the vertices of Gn lie in the hyperplane x1 + · · ·+ xn =
3. Now all these bounds are surpassed due to the consideration of some other
distance graphs (see [3]). However, it could happen that actually χ(Gn) is much

bigger than the ratio |Vn|
α(Gn)

. It turns out that this is not the case, and the main
result of this note is as follows.

Theorem 3. If n = 2k for some integer k ≥ 2, then

χ(Gn) =
(n− 1)(n− 2)

6
.

Additionally, if n = 2k − 1 for some integer k ≥ 2, then

χ(Gn) =
n(n− 1)

6
.

Finally, there is a constant c such that for every n,

χ(Gn) ≤
(n− 1)(n− 2)

6
+ cn.

Our proof yields that c ≤ 5.5. With some more work we could prove that c ≤ 4.5.
On the other hand, since n(n − 1)/6 − (n − 1)(n − 2)/6 = (n − 1)/3, we have
c ≥ 1/3.

In the next section, we prove Theorem 3.

2. Proof of Theorem 3

Easily, χ(G3) = 1, χ(G4) = 1, χ(G5) = 3.

Let f(n) := (n−1)(n−2)
6 . We show by induction on k that χ(G2k) = f(2k). For

k = 2 it is trivial. Assume that for some k we established the induction hypoth-
esis. Partition the set [n] =

[

2k+1
]

into the equal parts A1 =
[

n
2

]

, A2 = [n] \
[

n
2

]

of size 2k. Denote by U1 and U2 the sets of vertices of G = G2k+1 lying in the sets
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A1 and A2 respectively. By the induction assumption, each of the induced sub-
graphs G[U1] and G[U2] can be properly colored with at most f(2k) colors. Cover
all pairs of the 2k elements of A1 with disjoint perfect matchings N1, . . . , N2k−1

and all pairs of the 2k elements of A2 with matchings M1, . . . ,M2k−1. We form
a color class C(i, j) for 1 ≤ i ≤ 2k − 1, 1 ≤ j ≤ 2k−1 as follows. Consider the
matchings Ni,Mi and assume that the edges are {u1, u2}, {u3, u4}, . . . in Ni and
{v1, v2}, {v3, v4}, . . . in Mi. For j = 1, . . . , 2k−1 let D(i, j) denote the following
set of 4-tuples (indices are considered modulo 2k):

{u1, u2, v2j−1, v2j}, {u3, u4, v2j+1, v2j+2}, . . . , {u2k−1, u2k , v2j−3, v2j−2}.

For i = 1, . . . , 2k − 1 and j = 1, . . . , 2k−1, the color class C(i, j) is formed by the
collection of triples contained in the members of D(i, j). The intersection sizes
are all 0 or 2, so the triples in C(i, j) form an independent set in G. Moreover,
each triple is contained in a member of some D(i, j). The total number of used
colors is

2k−1(2k − 1) + f(2k) = 22k−1 − 2k−1 + (2k−1)(2k−2)
6 = f(2k+1).

This proves the first statement of the theorem. Since χ(Gn) ≤ χ(Gn+1), this
together with Corollary 2 also implies the statement of the theorem for n = 2k−1.

It remains to show that there exists a constant c such that χ(Gn) ≤
n2

6 + cn
for every n. Consider our coloring in steps.

Step 1: Let n = 4s1 + t1 where t1 ≤ 3. First, color all triples containing
the elements 4s1 + 1, . . . , 4s1 + t1 with at most t1(n − 1) < 3n colors. Now
consider the set [4s1] and all the triples in this set. Partition [4s1] into A1 = [2s1]
and A2 = [4s1] − [2s1] and color the triples intersecting both A1 and A2 with
s1(2s1 − 1) < n

4

(

n
2 − 1

)

colors as above.

Step 2: Since the triples contained in A1 are disjoint from the triples contained
in A2, we will use for coloring the triples contained in A2 the same colors and the
same procedure as for the triples contained in A1. Consider A1. Let n1 = |A1| =
2s1 = 4s2 + t2 where t2 ≤ 3. Since 2s1 is even, t2 ≤ 2. By construction, n1 ≤ n

2 .
Similarly to Step 1, color all triples containing the elements 4s2 + 1, . . . , 4s2 + t2
with at most t2(n1 − 1) < 2n1 colors. Partition [4s2] into A1,1 = [2s2] and
A1,2 = [4s2]− [2s2] and color the triples intersecting both A1,1 and A1,2 with at
most n

8

(

n
4 − 1

)

new colors.

Step i (for i ≥ 3): If 2si−1 ≤ 2, then Stop. Otherwise, repeat Step 2 with
[2si−1] in place of [2s1].

Altogether, we use at most (3n+ n
4 (

n
2 − 1))+ (2n2 + n

8 (
n
4 − 1))+ (2n4 + n

16(
n
8 −

1)) + · · · < 5n+ n2

8 · 4
3 = n2

6 + 5n = (n−1)(n−2)
6 + 5.5n− 1/3 colors. The theorem

is proved.
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3. Discussion

As we have already said, the constant 5 in the bound χ(Gn) ≤ n2

6 + 5n is not
the best possible and can be improved. However, to find the exact value of the
chromatic number is still interesting. For example, we know that χ(R12) ≥ 27

(see [3]). At the same time, χ(G13) ≥

⌈

(133 )
12

⌉

= 24 (due to Corollary 2), and the

proof of Theorem 3 applied for n = 13 yields a bound χ(G13) ≤ 31.

It would be quite interesting to study more general graphs. Let G(n, r, s)
be the graph whose set of vertices consists of all the r-subsets of the set [n] and
whose set of edges is formed by all possible pairs of vertices A,B with |A∩B| = s.
Larman proved in [5] that

χ(Rn) ≥ χ(G(n, 5, 2)) ≥

(

n
5

)

α(G(n, 5, 2))
≥ (1 + o(1))

(

n
5

)

1485n2
∼

n3

178200
.

Thus, the main result of Larman was in finding the bound α(G(n, 5, 2)) ≤ (1 +
o(1))1485n2. However, the so-called linear algebra method ([2], see also [8])

can be directly applied here to show that α(G(n, 5, 2)) ≤ (1 + o(1))
(

n
2

)

∼ n2

2 .
This substantially improves Larman’s estimate and gives χ(G(n, 5, 2)) ≥ (1 +

o(1))n
3

60 . We do not know any further improvements on this result. On the other
hand, observe that for any 3-set A, the collection of 5-sets containing A forms an
independent set in G(n, 5, 2), yielding χ(G(n, 5, 2)) ≤

(

n
3

)

∼ n3

6 . It is plausible
that χ(G(n, 5, 2)) ∼ cn3 with a constant c ∈ [1/60, 1/6], but this constant is not
yet found and even no better bounds for c have been published.

Furthermore, the graphs G(n, 5, 3) have been studied, since the best known
lower bound χ(R9) ≥ 21 is due to the fact that χ(G(10, 5, 3)) = 21 (see [4]). No
related results concerning the case of n → ∞ have apparently been published.

Although for combinatorial geometry small values of n are of greater interest,
we see that the consideration of graphs G(n, r, s) with small r, s and growing n is
of its intrinsic interest, too. So assume that r, s are fixed and n → ∞. We have

χ(G(n, r, s)) ≤ min{O(nr−s), O(ns+1)}.

The first bound follows from Brooks’ theorem, since the maximum degree of
G(n, r, s) is

(

r

s

)(

n− r

r − s

)

= (1 + o(1))
r!

s!(r − s)!(r − s)!
nr−s.

The second bound is a simple generalization of the above-mentioned bound
χ(G(n, 5, 2)) ≤ (1 + o(1))n3/6.

Note that the second bound can be somewhat improved. Assume s < r/2,
so q := ⌈(r − 1)/s⌉ is at least 2. Assuming that q divides n, partition [n] into q
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equal classes, A1, . . . , Aq. Let C be the family of (s + 1)-sets that are subsets of
some Ai. For each B ∈ C, the r-sets containing B form an independent set in
G(n, r, s), and by the pigeonhole principle every r-set contains such B, hence

χ(G(n, r, s)) ≤ |C| = q

(

n/q

s+ 1

)

= (1 + o(1))
ns+1

qs(s+ 1)!
.

In particular, χ(G(n, 5, 2)) ≤ (1 + o(1))n
3

24 , which improves the previous bound
n3

6 .
It is worthwhile to look at the construction in Section 2 from a different

point of view. For n = 2k we constructed a 4-uniform hypergraph H with the
property that every 3-subset of vertices is covered exactly once. Note that e(H) =
(

n
3

)

/4. Then we decomposed E(H) into
(

n
3

)

perfect matchings. Each matching
gives a color class of our coloring. Note that instead of providing the explicit
decomposition, we could have used a classical theorem of Pippenger and Spencer
[7], which claims the existence of (1 + o(1))

(

n
3

)

covering matchings.
This motivates the following possible approach to the case r = 2s + 1. The

discussion here is not a proof, it is just a sketch of a possible way to generalize our
argument. Assume that we managed to construct an (r+ s)-uniform hypergraph
H that covers every r-set exactly once. Then e(H) =

(

n
r

)

/
(

r+s
s

)

. Assume that
H can be decomposed into t hypergraphs, N1, . . . ,Nt, such that for every i and
every A,B ∈ Ni we have |A ∩ B| ≤ s− 1. Then the r-sets covered by sets in Ni

form an independent set, yielding χ(G(n, r, s)) ≤ t. Probably a generalization of
the theorem of Pippenger and Spencer [7] would give t ≤ (1+o(1))

(

n
r

)

/
(

n
s

)

= (1+
o(1))(s!/r!)nr−s. This bound, if true, would be asymptotically best possible, since
the already mentioned linear algebra method (see [2, 8]) ensures that α(G(n, 2s+
1, s)) ≤ (1+o(1))

(

n
s

)

and so χ(G(n, 2s+1, s)) ≥ (1+o(1))
(

n
r

)

/
(

n
s

)

, provided s+1

is a prime power. In particular, we would get χ(G(n, 5, 2)) ∼ n2

60 .
The case of simultaneously growing n, r, s has also been studied. Namely,

r ∼ r′n and s ∼ s′n with any r′ ∈ (0, 1) and s′ ∈ (0, r′) have been considered.
This is due to the fact that the first exponential estimate to the quantity χ(Rn),
χ(Rn) ≥ (1.207 · · · + o(1))n, was obtained by Frankl and Wilson in [2] with the
help of some graphs G(n, r, s) having r ∼ r′n and s ∼ r′

2 n. Lower bounds are
usually based on the linear algebra (see [8]) and upper bounds can be found in
[9].
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