On perfect packings in dense graphs

József Balogh,* Alexandr V. Kostochka ${ }^{\dagger}$ and Andrew Treglown ${ }^{\ddagger}$

Submitted: Jun 30, 2011; Accepted: Mar 2, 2013; Published: Mar 8, 2013

Mathematics Subject Classifications: 05C15, 05C35, 05C70

Abstract

We say that a graph G has a perfect H-packing if there exists a set of vertexdisjoint copies of H which cover all the vertices in G. We consider various problems concerning perfect H-packings: Given $n, r, D \in \mathbb{N}$, we characterise the edge density threshold that ensures a perfect K_{r}-packing in any graph G on n vertices and with minimum degree $\delta(G) \geqslant D$. We also give two conjectures concerning degree sequence conditions which force a graph to contain a perfect H-packing. Other related embedding problems are also considered. Indeed, we give a structural result concerning K_{r}-free graphs that satisfy a certain degree sequence condition.

1 Introduction

Given two graphs H and G, a perfect H-packing in G is a collection of vertex-disjoint copies of H which cover all the vertices in G. Perfect H-packings are also referred to as H-factors or perfect H-tilings. Hell and Kirkpatrick [8] showed that the decision problem whether a graph G has a perfect H-packing is NP-complete precisely when H has a component consisting of at least 3 vertices. So for such graphs H, it is unlikely that there is a complete characterisation of those graphs containing a perfect H-packing. Thus, there has been significant attention on obtaining sufficient conditions that ensure a graph G contains a perfect H-packing.

A seminal result in the area is the Hajnal-Szemerédi theorem [7] which states that a graph G whose order n is divisible by r has a perfect K_{r}-packing provided that $\delta(G) \geqslant$ $(r-1) n / r$. Kühn and Osthus [12, 13] characterised, up to an additive constant, the

[^0]minimum degree which ensures a graph G contains a perfect H-packing for an arbitrary graph H.

It is easy to see that the minimum degree condition in the Hajnal-Szemerédi theorem cannot be lowered. Of course, this does not mean that one cannot strengthen this result. Ore-type degree conditions consider the sum of the degrees of non-adjacent vertices in a graph. The following Ore-type result of Kierstead and Kostochka [10] implies the HajnalSzemerédi theorem.

Theorem 1 (Kierstead and Kostochka [10]). Let $n, r \in \mathbb{N}$ such that r divides n. Suppose that G is a graph on n vertices such that for all non-adjacent $x \neq y \in V(G)$,

$$
d(x)+d(y) \geqslant 2(1-1 / r) n-1
$$

Then G contains a perfect K_{r}-packing.
Kühn, Osthus and Treglown [14] characterised, asymptotically, the Ore-type degree condition which ensures a graph G contains a perfect H-packing for an arbitrary graph H.

1.1 Perfect packings in dense graphs of low minimum degree

It is easy to characterise the edge density that forces a graph G to contain a perfect K_{r}-packing when there are no other restrictions. Indeed, given $n, r \in \mathbb{N}$ such that $r \geqslant 2$ divides n, if G is a graph on n vertices and $e(G) \geqslant\binom{ n}{2}-n+r$ then G contains a perfect K_{r}-packing. Moreover, if G is a copy K of K_{n-1} together with a vertex which sends precisely $r-2$ edges to K, then $e(G)=\binom{n}{2}-n+r-1$ and G does not contain a perfect K_{r}-packing. The following result of Akiyama and Frankl [1] refines this observation.

Theorem 2 (Akiyama and Frankl [1]). Let $n, r \in \mathbb{N}$ such that r divides n. Suppose G is a graph on n vertices and $e(\bar{G}) \leqslant \min \left\{\binom{n / r+1}{2}, n-r+1\right\}$. Then G has a perfect K_{r}-packing unless \bar{G} is isomorphic to one of the following graphs:
(i) A copy of $K_{n / r+1}$ together with $(1-1 / r) n-1$ isolated vertices;
(ii) The disjoint union of $K_{1, n-r-j+1}, j$ edges and $r-j-2$ isolated vertices, for some $1 \leqslant j \leqslant r-2$.

When (for example) $n \geqslant r^{3},\binom{n / r+1}{2}>n-r+1$. Hence, in this case Theorem 2 is equivalent to the following: If G is a graph on n vertices and $e(G) \geqslant\binom{ n}{2}-n+r-1$ then either G contains a perfect K_{r}-packing or \bar{G} is isomorphic to a graph as in (ii).

In Sections 2 and 3 we consider the following natural problem: Let $n, r \in \mathbb{N}$ such that r divides n. Given some $D \in \mathbb{N}$, what edge density condition ensures that any graph G on n vertices and of minimum degree $\delta(G) \geqslant D$ contains a perfect K_{r}-packing?

We fully resolve the problem, and our answers for $r=2$ and $r \geqslant 3$ differ.

Theorem 3. For an even positive n and integer $1 \leqslant d<n / 2$, let $h(n, d):=\binom{n-d-1}{2}+$ $d(d+1)$ and let $f(2, n, d)$ denote the maximum integer c such that some n-vertex graph with minimum degree at least d and at least c edges has no perfect matching. Then

$$
f(2, n, d)=\max \{h(n, d), h(n, 0.5 n-1)\} .
$$

Theorem 4. Let $n, r \in \mathbb{N}$ such that $r \geqslant 3$ and r divides n. Given any $D \in \mathbb{N}$ such that $r-1 \leqslant D \leqslant(r-1) n / r-1$ define

$$
g(n, r, D):=\max \left\{\binom{n}{2}-\binom{n / r+1}{2}, D(n-D)+\binom{n-1-D}{2}+e(T(D, r-2))\right\} .
$$

Suppose that G is a graph on n vertices with $\delta(G) \geqslant D$ and $e(G)>g(n, r, D)$. Then G contains a perfect K_{r}-packing. Moreover, there exists a graph G^{\prime} on n vertices with $\delta\left(G^{\prime}\right) \geqslant D$ and $e\left(G^{\prime}\right)=g(n, r, D)$ but such that G^{\prime} does not contain a perfect K_{r}-packing.

Clearly a graph G of minimum degree $\delta(G)<r-1$ cannot contain a perfect $K_{r^{-}}$ packing. Further, regardless of edge density, every graph G whose order n is divisible by r and with $\delta(G) \geqslant(r-1) n / r$ contains a perfect K_{r}-packing. Thus, Theorem 4 covers all values of D where our problem was not solved previously.

An equitable k-colouring of a graph G is a proper k-colouring of G such that any two colour classes differ in size by at most one. Let $n, r \in \mathbb{N}$ such that r divides n. Notice that a graph G on n vertices has a perfect K_{r}-packing if and only if the complement \bar{G} of G has an equitable n / r-colouring. So, for example, the Hajnal-Szemerédi theorem can be stated in terms of equitable colourings: Let G be a graph on n vertices such that r divides n. If $\Delta(G) \leqslant n / r-1$ then G has an equitable n / r-colouring.

It is often easier to work in the language of equitable colourings compared to perfect packings. Indeed, rather than prove Theorem 1 directly, Kierstead and Kostochka proved the equivalent statement for equitable colourings. Here we also find it more convenient to work with equitable colourings. Thus, instead of proving Theorem 4 directly we prove the following equivalent result.

Theorem 5. Let $n, r \in \mathbb{N}$ such that $r \geqslant 3$ and r divides n. Recall that $T(n, r)$ denotes the Turán graph. Given any $D \in \mathbb{N}$ such that $n / r \leqslant D \leqslant n-r$ define

$$
f(n, r, D):=\min \left\{\binom{n / r+1}{2}, D+e(\bar{T}(n-D-1, r-2))\right\} .
$$

Suppose that G is a graph on n vertices with $\Delta(G) \leqslant D$ and $e(G)<f(n, r, D)$. Then G has an equitable n / r-colouring. Moreover, there exists a graph G^{\prime} on n vertices with $\Delta\left(G^{\prime}\right) \leqslant D$ and $e\left(G^{\prime}\right)=f(n, r, D)$ but such that G^{\prime} does not have an equitable n / r colouring.

We prove Theorem 3 and describe extremal constructions for Theorems 4 and 5 in Section 2. That is, we show that the edge density condition in Theorem 4 is best possible for all values of D such that $r-1 \leqslant D \leqslant(r-1) n / r-1$. Section 3 contains a proof of Theorem 5.

1.2 Degree sequence conditions forcing a perfect packing

Chvátal [3] gave a condition on the degree sequence of a graph which ensures Hamiltonicity: Suppose that G is a graph on n vertices and that the degrees of the graph are $d_{1} \leqslant \ldots \leqslant d_{n}$. If $n \geqslant 3$ and $d_{i} \geqslant i+1$ or $d_{n-i} \geqslant n-i$ for all $i<n / 2$ then G is Hamiltonian. The following is a simple consequence of Chvátal's theorem.

Theorem 6 (Chvátal [3]). Suppose that G is a graph on $n \geqslant 2$ vertices and the degrees of the graph are $d_{1} \leqslant \ldots \leqslant d_{n}$. If

$$
d_{i} \geqslant i \text { or } d_{n-i+1} \geqslant n-i \text { for all } 1 \leqslant i \leqslant n / 2
$$

then G contains a Hamilton path.
We propose the following conjecture on the degree sequence of a graph which forces a perfect K_{r}-packing.

Conjecture 7. Let $n, r \in \mathbb{N}$ such that r divides n. Suppose that G is a graph on n vertices with degree sequence $d_{1} \leqslant \ldots \leqslant d_{n}$ such that:
(α) $d_{i} \geqslant(r-2) n / r+i$ for all $i<n / r$;
(β) $d_{n / r+1} \geqslant(r-1) n / r$.
Then G contains a perfect K_{r}-packing.
Note that Conjecture 7, if true, is much stronger than the Hajnal-Szemerédi theorem since the degree condition allows for n / r vertices to have degree less than $(r-1) n / r$. Further, Proposition 17 in Section 4 shows that the condition on the degree sequence in Conjecture 7 is essentially "best possible". It is easy to see that Theorem 6 implies Conjecture 7 in the case when $r=2$. We prove the conjecture in the case when G is additionally K_{r+1}-free (see Section 5).

If one can prove Conjecture 7, it seems likely it can be used to prove the next conjecture.

Conjecture 8. Suppose $\gamma>0$ and H is a graph with $\chi(H)=r$. Then there exists an integer $n_{0}=n_{0}(\gamma, H)$ such that the following holds. If G is a graph whose order $n \geqslant n_{0}$ is divisible by $|H|$, and whose degree sequence $d_{1} \leqslant \ldots \leqslant d_{n}$ satisfies

- $d_{i} \geqslant(r-2) n / r+i+\gamma n$ for all $i<n / r$,
then G contains a perfect H-packing.
Since first submitting this paper, the third author and Knox [11] have proven Conjecture 8 in the case when $r=2$. (In fact, they have proven a much more general result concerning embedding spanning bipartite graphs of small bandwidth.)

The following result of Erdős [6] characterises those degree sequences which force a copy of K_{r} in a graph G.

Theorem 9 (Erdős [6]). Let G be a graph on n vertices with degree sequence $d_{1} \leqslant \ldots \leqslant d_{n}$. If G is K_{r+1}-free then there is an r-partite graph G^{\prime} on n vertices whose degree sequence $d_{1}^{\prime} \leqslant \ldots \leqslant d_{n}^{\prime}$ satisfies

$$
d_{i} \leqslant d_{i}^{\prime} \quad \text { for all } i \leqslant n .
$$

In Section 6 we prove the following related structural theorem.
Theorem 10. Suppose that $n, r \in \mathbb{N}$ such that $n \geqslant r$ and so that r divides n. Let G be a K_{r+1}-free graph on n vertices whose degree sequence $d_{1} \leqslant \ldots \leqslant d_{n}$ is such that $d_{n / r} \geqslant(r-1) n / r$. Then $G \subseteq T(n, r)$, where $T(n, r)$ is the complete r-partite Turán graph on n vertices; so each vertex class has size $\lceil n / r\rceil$ or $\lfloor n / r\rfloor$.

2 The case $r=2$ and extremal examples for $r \geqslant 3$

2.1 Perfect matchings in dense graphs

In this section we establish the density threshold that ensures every graph G on an even number n of vertices and of minimum degree $\delta(G) \geqslant d$ contains a perfect matching. Note that we only consider values of d such that $1 \leqslant d<n / 2$, since if $\delta(G) \geqslant n / 2$ then G has a perfect matching, regardless of the edge density.

Recall that $h(n, d):=\binom{n-d-1}{2}+d(d+1)$. Note that for a fixed even $n, h(n, d)$ decreases with d in the interval $[0, n / 3-5 / 6]$ and increases with d in $[n / 3-5 / 6,0.5 n-1]$.

For a positive even n and an integer $0 \leqslant d<n / 2$, let A, B and C be disjoint sets with $|A|=d+1,|B|=d,|C|=n-2 d-1$. Let $H=H(n, d)$ be the graph with the vertex set $A \cup B \cup C$ such that $H[B \cup C]=K_{n-d-1}$, and each vertex in A is adjacent to each vertex in B and to no vertex in C. So H does not contain a perfect matching and has exactly $h(n, d)$ edges.

The examples of $H(n, d)$ show that $f(2, n, d) \geqslant \max \{h(n, d), h(n, 0.5 n-1)\}$. Thus to derive Theorem 3, it suffices to prove that an n-vertex graph G with $\delta(G) \geqslant d$ and $e(G)>\max \{h(n, d), h(n, 0.5 n-1)\}$ has a perfect matching.

Consider such a graph G. Let $d_{1} \leqslant \ldots \leqslant d_{n}$ denote the degree sequence of G. If $d_{i} \geqslant i$ for all $1 \leqslant i \leqslant n / 2$ then Theorem 6 implies that G contains a perfect matching. Suppose for a contradiction that $d_{i^{\prime}} \leqslant i^{\prime}-1$ for some $1 \leqslant i^{\prime} \leqslant n / 2$. Note that $i^{\prime}>d$ as $\delta(G) \geqslant d$.

Let A denote the set of i^{\prime} vertices in G that correspond to the first i^{\prime} terms $d_{1}, \ldots, d_{i^{\prime}}$ of the degree sequence. Set $B:=V(G) \backslash A$. Then

$$
e(G[B]) \geqslant e(G)-i^{\prime}\left(i^{\prime}-1\right)>\max \{h(n, d), h(n, 0.5 n-1)\}-i^{\prime}\left(i^{\prime}-1\right)
$$

since $d(x) \leqslant i^{\prime}-1$ for all $x \in A$. Note that $\max \{h(n, d), h(n, 0.5 n-1)\} \geqslant h\left(n, i^{\prime}-1\right)$ since $d<i^{\prime} \leqslant n / 2$. Therefore,

$$
e(G[B])>\max \{h(n, d), h(n, 0.5 n-1)\}-i^{\prime}\left(i^{\prime}-1\right) \geqslant h\left(n, i^{\prime}-1\right)-i^{\prime}\left(i^{\prime}-1\right)=\binom{n-i^{\prime}}{2}
$$

a contradiction as $|B|=n-i^{\prime}$. Thus, $d_{i} \geqslant i$ for all $1 \leqslant i \leqslant n / 2$, as desired.

2.2 Examples for $r \geqslant 3$

We will give the extremal examples for Theorem 5. Since Theorems 4 and 5 are equivalent, the complements of the extremal graphs for Theorem 5 are the extremal graphs for Theorem 4.

Proposition 11. Suppose that $n, r \in \mathbb{N}$ such that $r \geqslant 3$ and r divides n. Then there exists a graph G_{1} on n vertices such that $\Delta\left(G_{1}\right)=n / r$,

$$
e\left(G_{1}\right)=\binom{n / r+1}{2}
$$

but such that G_{1} does not have an equitable n / r-colouring.
Proof. Let G_{1} denote the disjoint union of a clique V on $n / r+1$ vertices and an independent set W of $(1-1 / r) n-1$ vertices. So every independent set in G_{1} contains at most one vertex from V. But since $|V|=n / r+1, G_{1}$ does not have an equitable n / r-colouring. Further, $\Delta\left(G_{1}\right)=n / r$ and $e\left(G_{1}\right)=\binom{n / r+1}{2}$.
Proposition 12. Suppose that $n, r \in \mathbb{N}$ such that $r \geqslant 3$ and $n=k r$ for some $k \geqslant 2$. Further, let $D \in \mathbb{N}$ such that $n /(r-1) \leqslant D \leqslant n-r$. Then there exists a graph G_{2} on n vertices such that $\Delta\left(G_{2}\right)=D$,

$$
e\left(G_{2}\right)=D+e(\bar{T}(n-D-1, r-2)),
$$

but such that G_{2} does not have an equitable n / r-colouring.
Proof. Let G_{2} denote the disjoint union of a copy K of $K_{1, D}$ and a copy of $\bar{T}(n-D-1, r-$ 2). So $|G|=n$. Let v denote the vertex of degree D in K. The largest independent set in G_{2} that contains v is of size $r-1$. Thus, G_{2} does not have an equitable n / r-colouring. Further, $e\left(G_{2}\right)=D+e(\bar{T}(n-D-1, r-2))$.

Since $n /(r-1) \leqslant D$ we have that $n-1 \leqslant(r-1) D$. Thus, every vertex in the copy of $\bar{T}(n-D-1, r-2)$ has degree at most

$$
\left\lceil\frac{n-D-1}{r-2}\right\rceil-1 \leqslant \frac{n-D-1}{r-2} \leqslant D .
$$

This implies that $\Delta\left(G_{2}\right)=D$.
Clearly Propositions 11 and 12 show that one cannot lower the edge density condition in Theorem 5 in the case when $n /(r-1) \leqslant D \leqslant n-r$. The following result, together with Proposition 11, shows that Theorem 5 is best possible in the case when $n / r \leqslant D \leqslant$ $n /(r-1)$.

Proposition 13. Let $n, r \in \mathbb{N}$ such that $r \geqslant 3$ and r divides $n \geqslant 2 r$. Suppose that $D \in \mathbb{N}$ such that $n / r \leqslant D \leqslant n /(r-1)$. Then

$$
f(n, r, D)=\binom{n / r+1}{2} .
$$

The following simple consequence of Turán's theorem will be used in the proof of Theorem 5.

Fact 14. Let $n, r \in \mathbb{N}$ such that $r \leqslant n$. Then

$$
e(T(n, r)) \leqslant\left(1-\frac{1}{r}\right) \frac{n^{2}}{2} \text { and thus } e(\bar{T}(n, r)) \geqslant \frac{n^{2}}{2 r}-\frac{n}{2} .
$$

We will also require the following easy result.
Lemma 15. Let $n, r \in \mathbb{N}$ such that $r \geqslant 4$ and r divides $n \geqslant 3 r$. Suppose that $D \in \mathbb{N}$ such that $n / r \leqslant D<(n+r) /(r-1)$. Then

$$
f(n, r, D)=\binom{n / r+1}{2} .
$$

3 Proof of Theorem 5

3.1 Preliminaries

Suppose for a contradiction that the result is false. Let G be a counterexample with the fewest vertices. That is, $n=|V(G)|=r k$ for some $k \in \mathbb{N}, \Delta(G) \leqslant D$ for some $D \in \mathbb{N}$ such that $n / r \leqslant D \leqslant n-r, e(G)<f(n, r, D)$ and G has no equitable n / r-colouring. By the Hajnal-Szemerédi theorem, $\Delta(G) \geqslant n / r$. Notice that given fixed n and $r, f(n, r, D)$ is non-increasing with respect to D. Thus, we may assume that $\Delta(G)=D$.

We first show that $k \geqslant 4$. Indeed, if $n=2 r$ then $f(n, r, D) \leqslant\binom{ 3}{2}=3$. But it is easy to see that every graph G_{1} on $2 r$ vertices and with $e\left(G_{1}\right) \leqslant 2$ has an equitable 2colouring. If $n=3 r$ then $f(n, r, D) \leqslant\binom{ 4}{2}=6$. Consider any graph G_{1} on $3 r$ vertices with $e\left(G_{1}\right) \leqslant 5$ and $3 \leqslant \Delta\left(G_{1}\right) \leqslant 5$. Let x denote the vertex in G_{1} where $d_{G_{1}}(x)=\Delta\left(G_{1}\right)$. Since $3 \leqslant d_{G_{1}}(x) \leqslant 5, x$ lies in an independent set I in G_{1} of size r. But then $G_{1}-I$ contains $2 r$ vertices and at most 2 edges. So $G_{1}-I$ has an equitable 2-colouring and hence G_{1} has an equitable 3 -colouring.

Let $v \in V(G)$ such that $d_{G}(v)=D$. Set $G^{*}:=G-\left(N_{G}(v) \cup\{v\}\right)$. Since $f(n, r, D) \leqslant$ $D+e(\bar{T}(n-D-1, r-2))$ we have that $e\left(G^{*}\right)<e(\bar{T}(n-D-1, r-2))$. Thus, by Turán's theorem, G^{*} contains an independent set of size $r-1$. Hence, v lies in an independent set in G of size r. Amongst all such independent sets of size r that contain v, choose a set $I=\left\{v, x_{1}, \ldots, x_{r-1}\right\}$ such that $d_{G}\left(x_{1}\right)+\cdots+d_{G}\left(x_{r-1}\right)$ is maximised.

Set $G^{\prime}:=G-I, n^{\prime}:=\left|V\left(G^{\prime}\right)\right|=n-r$ and $D^{\prime}:=\Delta\left(G^{\prime}\right) \leqslant D$. Notice that $D^{\prime} \geqslant n^{\prime} / r$. (Indeed, if not, then by the Hajnal-Szemerédi theorem G^{\prime} contains an equitable n^{\prime} / r colouring. Thus, as I is an independent set in G this gives us an equitable n / r-colouring of G, a contradiction.) Furthermore, $D^{\prime} \leqslant n^{\prime}-r$. If not then

$$
e(G) \geqslant D+D^{\prime} \geqslant 2 D^{\prime} \geqslant 2\left(n^{\prime}-r+1\right)=2 n-4 r+2
$$

and further,

$$
\begin{aligned}
e(G) & <f(n, r, D) \leqslant f(n, r, n-2 r+1) \leqslant(n-2 r+1)+e(\bar{T}(2 r-2, r-2)) \\
& \leqslant(n-2 r+1)+(r+3)=n-r+4 .
\end{aligned}
$$

Therefore, $2 n-4 r+2<n-r+4$ and so $n<3 r+2$ a contradiction since $n=k r \geqslant 4 r$.
Since $n^{\prime} / r \leqslant D^{\prime} \leqslant n^{\prime}-r$, if $e\left(G^{\prime}\right)<f\left(n^{\prime}, r, D^{\prime}\right)$ then the minimality of G implies that G^{\prime} has an equitable n^{\prime} / r-colouring. This then implies that G has an equitable n / r colouring, a contradiction. Thus,

$$
\begin{equation*}
e\left(G^{\prime}\right) \geqslant f\left(n^{\prime}, r, D^{\prime}\right) . \tag{1}
\end{equation*}
$$

We now split our argument into three cases.

3.2 Case 1: $\mathbf{f}\left(\mathbf{n}^{\prime}, \mathbf{r}, \mathbf{D}^{\prime}\right)=\binom{\mathbf{n}^{\prime} / \mathbf{r}+\mathbf{1}}{2}$.

By (1), $e\left(G^{\prime}\right) \geqslant\binom{ n^{\prime} / r+1}{2}=\binom{n / r}{2}$. Since $d_{G}(v)=D \geqslant n / r$,

$$
e(G) \geqslant \frac{n}{r}+\binom{n / r}{2}=\binom{n / r+1}{2} \geqslant f(n, r, D)
$$

a contradiction, as desired.

3.3 Case 2: $\mathbf{D}^{\prime} \leqslant \mathrm{D}-1$ and $\mathbf{f}\left(\mathbf{n}^{\prime}, \mathbf{r}, \mathrm{D}^{\prime}\right)=\mathrm{D}^{\prime}+\mathbf{e}\left(\overline{\mathbf{T}}\left(\mathbf{n}^{\prime}-\mathbf{D}^{\prime}-1, \mathbf{r}-2\right)\right)$.

The following claim will be useful.
Claim 16. $D^{\prime}<\frac{r-1}{2 r-3} n-\frac{\left(r^{2}-r+1\right)}{2 r-3}$.
Proof. Note that

$$
\begin{equation*}
D+D^{\prime}+e\left(\bar{T}\left(n^{\prime}-D^{\prime}-1, r-2\right)\right) \stackrel{(1)}{\leqslant} e(G)<f(n, r, D) \leqslant D+e(\bar{T}(n-D-1, r-2)) . \tag{2}
\end{equation*}
$$

Since $D^{\prime} \leqslant D-1$, clearly $e\left(\bar{T}\left(n^{\prime}-D, r-2\right)\right) \leqslant e\left(\bar{T}\left(n^{\prime}-D^{\prime}-1, r-2\right)\right)$. Thus, (2) implies that

$$
\begin{equation*}
D^{\prime}+e\left(\bar{T}\left(n^{\prime}-D, r-2\right)\right)<e(\bar{T}(n-D-1, r-2)) . \tag{3}
\end{equation*}
$$

One can obtain $\bar{T}(n-D-1, r-2)$ from $\bar{T}\left(n^{\prime}-D, r-2\right)$ by adding $r-1$ vertices and at most

$$
\begin{equation*}
\left(n^{\prime}-D\right)+\frac{n-D-2}{r-2} \text { edges. } \tag{4}
\end{equation*}
$$

Hence (3) and (4) give

$$
D^{\prime}<n^{\prime}-D+\frac{n-D-2}{r-2} .
$$

Rearranging, and using that $D^{\prime} \leqslant D-1$ and $n^{\prime}=n-r$ we get that

$$
\left(2+\frac{1}{r-2}\right) D^{\prime}<\left(1+\frac{1}{r-2}\right) n-\frac{\left(r^{2}-r+1\right)}{r-2} .
$$

Thus,

$$
D^{\prime}<\frac{r-1}{2 r-3} n-\frac{\left(r^{2}-r+1\right)}{2 r-3},
$$

as desired.
Since we are in Case 2 we have that

$$
\begin{equation*}
D^{\prime}+e\left(\bar{T}\left(n-r-D^{\prime}-1, r-2\right)\right) \leqslant\binom{ n^{\prime} / r+1}{2}=\binom{n / r}{2} . \tag{5}
\end{equation*}
$$

Notice that for fixed n and $r, D^{\prime}+e\left(\bar{T}\left(n-r-D^{\prime}-1, r-2\right)\right)$ is non-increasing as D^{\prime} increases. Hence, (5) and Claim 16 imply that

$$
\begin{equation*}
D^{\prime \prime}+e\left(\bar{T}\left(n-r-D^{\prime \prime}-1, r-2\right)\right) \leqslant \frac{n^{2}}{2 r^{2}}-\frac{n}{2 r} \tag{6}
\end{equation*}
$$

where $D^{\prime \prime}:=\left\lfloor(r-1) n /(2 r-3)-\left(r^{2}-r+1\right) /(2 r-3)\right\rfloor$. Note that

$$
n-r-\frac{r-1}{2 r-3} n+\frac{\left(r^{2}-r+1\right)}{2 r-3}-1=\frac{r-2}{2 r-3} n+\frac{4-r^{2}}{2 r-3} .
$$

So Fact 14 and (6) imply that

$$
\begin{aligned}
& \left(\frac{r-1}{2 r-3} n-\frac{\left(r^{2}-r+1\right)}{2 r-3}-\frac{(2 r-4)}{2 r-3}\right)+\frac{1}{2(r-2)}\left(\frac{r-2}{2 r-3} n+\frac{4-r^{2}}{2 r-3}\right)^{2} \\
& -\frac{1}{2}\left(\frac{r-2}{2 r-3} n+\frac{4-r^{2}}{2 r-3}\right) \leqslant \frac{n^{2}}{2 r^{2}}-\frac{n}{2 r}
\end{aligned}
$$

Next we will move all terms from the previous equation to the left hand side and simplify. The coefficient of n^{2} is

$$
\begin{equation*}
\frac{r-2}{2(2 r-3)^{2}}-\frac{1}{2 r^{2}}=\frac{r^{3}-6 r^{2}+12 r-9}{2 r^{2}(2 r-3)^{2}} \tag{7}
\end{equation*}
$$

The coefficient of n is

$$
\begin{equation*}
\frac{r-1}{2 r-3}-\frac{(r-2)}{2(2 r-3)}+\frac{1}{2 r}+\frac{\left(4-r^{2}\right)}{(2 r-3)^{2}}=\frac{r^{2}-4 r+9}{2 r(2 r-3)^{2}} \tag{8}
\end{equation*}
$$

The constant term is

$$
\begin{equation*}
-\frac{\left(r^{2}+r-3\right)}{2 r-3}+\frac{\left(r^{2}-4\right)^{2}}{2(r-2)(2 r-3)^{2}}+\frac{\left(r^{2}-4\right)}{2(2 r-3)}=\frac{-r^{4}+3 r^{3}+4 r^{2}-26 r+28}{2(r-2)(2 r-3)^{2}} . \tag{9}
\end{equation*}
$$

Since $n \geqslant 4 r,(7)-(9)$ imply that

$$
\begin{equation*}
\frac{8\left(r^{3}-6 r^{2}+12 r-9\right)}{(2 r-3)^{2}}+\frac{2\left(r^{2}-4 r+9\right)}{(2 r-3)^{2}}+\frac{-r^{4}+3 r^{3}+4 r^{2}-26 r+28}{2(r-2)(2 r-3)^{2}} \leqslant 0 \tag{10}
\end{equation*}
$$

Multiplying (10) by $2(r-2)(2 r-3)^{2}$ we get

$$
15 r^{4}-121 r^{3}+364 r^{2}-486 r+244 \leqslant 0
$$

This yields a contradiction, since it is easy to check that

$$
15 r^{4}-121 r^{3}+364 r^{2}-486 r+244>0
$$

for all $r \in \mathbb{N}$ such that $r \geqslant 3$.

3.4 Case 3: $\mathbf{D}^{\prime}=\mathbf{D}$ and $\mathbf{f}\left(\mathbf{n}^{\prime}, \mathbf{r}, \mathbf{D}^{\prime}\right)=\mathbf{D}^{\prime}+\mathbf{e}\left(\overline{\mathbf{T}}\left(\mathbf{n}^{\prime}-\mathbf{D}^{\prime}-\mathbf{1}, \mathbf{r}-\mathbf{2}\right)\right)$.

By (1) we have that

$$
\begin{equation*}
e\left(G^{\prime}\right) \geqslant f\left(n^{\prime}, r, D^{\prime}\right)=D^{\prime}+e\left(\bar{T}\left(n^{\prime}-D^{\prime}-1, r-2\right)\right) \tag{11}
\end{equation*}
$$

Consider any vertex $x \in V\left(G^{\prime}\right)$ such that $d_{G^{\prime}}(x)=D^{\prime}=D$. Since $\Delta(G)=D, x$ is not adjacent to any vertex in $I=\left\{v, x_{1}, \ldots, x_{r-1}\right\}$. Further, I was chosen such that $d_{G}\left(x_{1}\right)+\cdots+d_{G}\left(x_{r-1}\right)$ is maximised. Thus, $d_{G}\left(x_{1}\right)=\cdots=d_{G}\left(x_{r-1}\right)=D$. Together with (11) this implies that

$$
\begin{equation*}
e(G) \geqslant(r+1) D+e\left(\bar{T}\left(n^{\prime}-D-1, r-2\right)\right) \tag{12}
\end{equation*}
$$

Since $e(G)<f(n, r, D) \leqslant D+e(\bar{T}(n-D-1, r-2))$, (12) implies that

$$
\begin{equation*}
r D+e\left(\bar{T}\left(n^{\prime}-D-1, r-2\right)\right)<e(\bar{T}(n-D-1, r-2)) . \tag{13}
\end{equation*}
$$

One can obtain $\bar{T}(n-D-1, r-2)$ from $\bar{T}\left(n^{\prime}-D-1, r-2\right)$ by adding r vertices and at most

$$
\begin{equation*}
\left(n^{\prime}-D-1\right)+\frac{2(n-D-3)}{r-2}+1 \text { edges. } \tag{14}
\end{equation*}
$$

Thus, (13) and (14) imply that

$$
r D<n-r-D+\frac{2(n-D-3)}{r-2}
$$

and so

$$
\begin{equation*}
\left(r+1+\frac{2}{r-2}\right) D<\left(1+\frac{2}{r-2}\right) n+\frac{\left(-r^{2}+2 r-6\right)}{r-2}<\left(1+\frac{2}{r-2}\right) n \tag{15}
\end{equation*}
$$

If $r=3$ then (15) implies that

$$
D<\frac{n}{2} .
$$

Since $f\left(n^{\prime}, 3, D\right)=\min \left\{\binom{n^{\prime} / 3+1}{2}, D+\binom{n^{\prime}-D-1}{2}\right\}$ it is easy to see that if $f\left(n^{\prime}, 3, D\right)=$ $D+\binom{n^{\prime}-D-1}{2}$ then $D \geqslant 2 n^{\prime} / 3+1=2 n / 3-1$. Thus, $2 n / 3-1 \leqslant D<n / 2$, a contradiction since $n \geqslant 4 r=12$.

If $r \geqslant 4$ then (15) implies that

$$
D<\frac{n}{r-1}=\frac{n^{\prime}}{r-1}+\frac{r}{r-1} .
$$

Since $n^{\prime} \geqslant 3 r$, Lemma 15 implies that $f\left(n^{\prime}, r, D^{\prime}\right)=\binom{n^{\prime} / r+1}{2}$ and so we are in Case 1, which we have already dealt with.

4 The extremal examples for Conjecture 7

Proposition 17. Suppose that $n, r, k \in \mathbb{N}$ such that $r \geqslant 2$ divides n and $1 \leqslant k<n / r$. Then there exists a graph G on n vertices whose degree sequence $d_{1} \leqslant \ldots \leqslant d_{n}$ satisfies

- $d_{i}=(r-2) n / r+k-1$ for all $1 \leqslant i \leqslant k$;
- $d_{i}=(r-1) n / r$ for all $k+1 \leqslant i \leqslant(r-2) n / r+k$;
- $d_{i}=n-k-1$ for all $(r-2) n / r+k+1 \leqslant i \leqslant n-k+1$;
- $d_{i}=n-1$ for all $n-k+2 \leqslant i \leqslant n$,
but such that G does not contain a perfect K_{r}-packing.
Proof. Let G^{\prime} denote the complete $(r-2)$-partite graph whose vertex classes V_{1}, \ldots, V_{r-2} each have size n / r. Obtain G from G^{\prime} by adding the following vertices and edges: Add a set V_{r-1} of $2 n / r-2 k+1$ vertices to G^{\prime}, a set V_{r} of $k-1$ vertices and a set V_{0} of k vertices. Add all edges from $V_{0} \cup V_{r-1} \cup V_{r}$ to $V_{1} \cup \cdots \cup V_{r-2}$. Further, add all edges with both endpoints in $V_{r-1} \cup V_{r}$. Add all possible edges between V_{0} and V_{r}.

So V_{0} is an independent set, and there are no edges between V_{0} and V_{r-1}. This implies that any copy of K_{r} in G containing a vertex from V_{0} must also contain at least one vertex from V_{r}. But since $\left|V_{0}\right|>\left|V_{r}\right|$ this implies that G does not contain a perfect K_{r}-packing. Furthermore, G has our desired degree sequence.

Notice that the graphs G considered in Proposition 17 satisfy (β) from Conjecture 7 and only fail to satisfy (α) in the case when $i=k$ (and in this case $\left.d_{k}=(r-2) n / r+k-1\right)$.

Let $n, r \in \mathbb{N}$ such that r divides n. Denote by $T^{*}(n, r)$ the complete r-partite graph on n vertices with $r-2$ vertex classes of size n / r, one vertex class of size $n / r-1$ and one vertex class of size $n / r+1$. Then $T^{*}(n, r)$ does not contain a perfect K_{r}-packing. Furthermore, $T^{*}(n, r)$ satisfies (α) but condition (β) fails; we have that $d_{n / r+1}=(r-1) n / r-1$ here. Thus, together $T^{*}(n, r)$ and Proposition 17 show that, if true, Conjecture 7 is essentially best possible.

5 A special case of Conjecture 7

We now give a simple proof of Conjecture 7 in the case when G is K_{r+1}-free.
Theorem 18. Let $n, r \in \mathbb{N}$ such that $r \geqslant 2$ divides n. Suppose that G is a graph on n vertices with degree sequence $d_{1} \leqslant \ldots \leqslant d_{n}$ such that:

- $d_{i} \geqslant(r-2) n / r+i$ for all $i<n / r$;
- $d_{n / r+1} \geqslant(r-1) n / r$.

Further suppose that no vertex $x \in V(G)$ of degree less than $(r-1) n / r$ lies in a copy of K_{r+1}. Then G contains a perfect K_{r}-packing.

Proof. We prove the theorem by induction on n. In the case when $n=r$ then $d_{n / r+1}=$ $d_{2} \geqslant(r-1) r / r=r-1$. This implies that every vertex in G has degree $r-1$. Hence $G=K_{r}$ as desired. So suppose that $n>r$ and the result holds for smaller values of n. Let $x_{1} \in V(G)$ such that $d_{G}\left(x_{1}\right)=d_{1} \geqslant(r-2) n / r+1$. If $d_{G}\left(x_{1}\right) \geqslant(r-1) n / r$ then $\delta(G) \geqslant(r-1) n / r$. Thus G contains a perfect K_{r}-packing by the Hajnal-Szemerédi theorem. So we may assume that $(r-2) n / r+1 \leqslant d_{G}\left(x_{1}\right)<(r-1) n / r$. In particular, x_{1} does not lie in a copy of K_{r+1}. We first find a copy of K_{r} containing x_{1}. If $r=2, x_{1}$ has a neighbour and so we have our desired copy of K_{2}. So assume that $r \geqslant 3$. Certainly $N_{G}\left(x_{1}\right)$ contains a vertex x_{2} such that $d_{G}\left(x_{2}\right) \geqslant(r-1) n / r$. Thus, $\left|N_{G}\left(x_{1}\right) \cap N_{G}\left(x_{2}\right)\right| \geqslant$ $(r-3) n / r+1>0$. So if $r=3$ we obtain our desired copy of K_{r}. Otherwise, we can find a vertex $x_{3} \in N_{G}\left(x_{1}\right) \cap N_{G}\left(x_{2}\right)$ such that $d_{G}\left(x_{3}\right) \geqslant(r-1) n / r$. We can repeat this argument until we have obtained vertices x_{1}, \ldots, x_{r} that together form a copy K_{r}^{\prime} of K_{r}.

Let $G^{\prime}:=G-V\left(K_{r}^{\prime}\right)$ and set $n^{\prime}:=n-r=\left|V\left(G^{\prime}\right)\right|$. Since G does not contain a copy of K_{r+1} containing x_{1}, every vertex $x \in V(G) \backslash V\left(K_{r}^{\prime}\right)$ sends at most $r-1$ edges to K_{r}^{\prime} in G. Thus, $d_{G^{\prime}}(x) \geqslant d_{G}(x)-(r-1)$ for all $x \in V\left(G^{\prime}\right)$. So if $d_{G}(x) \geqslant(r-1) n / r$ then $d_{G^{\prime}}(x) \geqslant(r-1) n / r-(r-1)=(r-1) n^{\prime} / r$ for all $x \in V\left(G^{\prime}\right)$. If a vertex $y \in V\left(G^{\prime}\right)$ does not lie in a copy of K_{r+1} in G then clearly y does not lie in a copy of K_{r+1} in G^{\prime}. This means that no vertex $y \in V\left(G^{\prime}\right)$ of degree less than $(r-1) n^{\prime} / r$ lies in a copy of K_{r+1}.

Let $d_{1}^{\prime} \leqslant \ldots \leqslant d_{n^{\prime}}^{\prime}$ denote the degree sequence of G^{\prime}. It is easy to check that $d_{i}^{\prime} \geqslant$ $(r-2) n^{\prime} / r+i$ for all $i<n^{\prime} / r$ and that $d_{n^{\prime} / r+1}^{\prime} \geqslant(r-1) n^{\prime} / r$. Indeed, since $x_{1} \in V\left(K_{r}^{\prime}\right)$
where $d_{G}\left(x_{1}\right)=d_{1}$, we have that $d_{i}^{\prime} \geqslant d_{i+1}-(r-1)$ for all $1 \leqslant i \leqslant n^{\prime}$. Thus, for all $1 \leqslant i<n^{\prime} / r=n / r-1, d_{i}^{\prime} \geqslant d_{i+1}-(r-1) \geqslant(r-2) n / r+(i+1)-(r-1)=(r-2) n^{\prime} / r+i$. Similarly, $d_{n^{\prime} / r+1}^{\prime}=d_{n / r}^{\prime} \geqslant d_{n / r+1}-(r-1) \geqslant(r-1) n / r-(r-1)=(r-1) n^{\prime} / r$. Hence, by induction G^{\prime} contains a perfect K_{r}-packing. Together with K_{r}^{\prime} this gives us our desired perfect K_{r}-packing in G.

6 Proof of Theorem 10

Consider any $x_{1} \in V(G)$ such that $d_{G}\left(x_{1}\right) \geqslant(r-1) n / r$. Since $d_{n / r} \geqslant(r-1) n / r$ we can greedily select vertices x_{2}, \ldots, x_{r-1} such that

- x_{1}, \ldots, x_{r-1} induce a copy of K_{r-1} in G;
- $d_{G}\left(x_{i}\right) \geqslant(r-1) n / r$ for all $1 \leqslant i \leqslant r-1$.

Note that since G is K_{r+1}-free, $\cap_{i=1}^{r-1} N_{G}\left(x_{i}\right)$ is an independent set. The choice of x_{1}, \ldots, x_{r-1} implies that $\left|\cap_{i=1}^{r-1} N_{G}\left(x_{i}\right)\right| \geqslant n / r$. Let V_{1} denote a subset of $\cap_{i=1}^{r-1} N_{G}\left(x_{i}\right)$ of size n / r. Thus V_{1} contains a vertex x_{1}^{1} of degree at least $(r-1) n / r$.

As before we can find vertices $x_{2}^{1}, \ldots, x_{r-1}^{1}$ such that

- $x_{1}^{1}, \ldots, x_{r-1}^{1}$ induce a copy of K_{r-1} in G;
- $d_{G}\left(x_{i}^{1}\right) \geqslant(r-1) n / r$ for all $1 \leqslant i \leqslant r-1$.

So $\cap_{i=1}^{r-1} N_{G}\left(x_{i}^{1}\right)$ is an independent set of size at least n / r. Let V_{2} denote a subset of $\cap_{i=1}^{r-1} N_{G}\left(x_{i}^{1}\right)$ of size n / r. Note that $N_{G}\left(x_{1}^{1}\right) \cap V_{1}=\emptyset$ since $x_{1}^{1} \in V_{1}$ and V_{1} is an independent set. Thus as $V_{2} \subseteq N_{G}\left(x_{1}^{1}\right), V_{1} \cap V_{2}=\emptyset$.

Our aim is to find disjoint sets $V_{1}, \ldots, V_{r} \subseteq V(G)$ of size n / r and vertices $x_{1}^{1}, \ldots, x_{r-1}^{1}$, $x_{1}^{2}, \ldots, x_{r-1}^{2}, \ldots, x_{1}^{r-1}, \ldots, x_{r-1}^{r-1}$ with the following properties:

- $G\left[V_{j}\right]$ is an independent set for all $1 \leqslant j \leqslant r$;
- Given any $1 \leqslant j \leqslant r-1, x_{k}^{j} \in V_{k}$ for each $1 \leqslant k \leqslant j$;
- $d_{G}\left(x_{k}^{j}\right) \geqslant(r-1) n / r$ for all $1 \leqslant j \leqslant r-1$ and $1 \leqslant k \leqslant r-1$;
- $x_{1}^{j}, \ldots, x_{r-1}^{j}$ induce a copy of K_{r-1} in G for all $1 \leqslant j \leqslant r-1$.

Clearly finding such a partition V_{1}, \ldots, V_{r} of $V(G)$ implies that $G \subseteq T(n, r)$.
Suppose that for some $1<j<r$ we have defined sets V_{1}, \ldots, V_{j} and vertices $x_{1}^{1}, \ldots, x_{r-1}^{1}, \ldots, x_{1}^{j-1}, \ldots, x_{r-1}^{j-1}$ with our desired properties. Since $d_{n / r} \geqslant(r-1) n / r$ and V_{1}, \ldots, V_{j} are independent sets of size n / r we can choose vertices $x_{1}^{j}, \ldots, x_{j}^{j}$ such that for all $1 \leqslant k \leqslant j$,

- $x_{k}^{j} \in V_{k}$ and $d_{G}\left(x_{k}^{j}\right) \geqslant(r-1) n / r$.

This degree condition, together with the fact that $x_{1}^{j}, \ldots, x_{j}^{j}$ lie in different vertex classes, implies that these vertices form a copy of K_{j} in G. We now greedily select further vertices $x_{j+1}^{j}, \ldots, x_{r-1}^{j}$ such that

- $x_{1}^{j}, \ldots, x_{r-1}^{j}$ induce a copy of K_{r-1} in G;
- $d_{G}\left(x_{k}^{j}\right) \geqslant(r-1) n / r$ for all $j+1 \leqslant k \leqslant r-1$.

So $\cap_{i=1}^{r-1} N_{G}\left(x_{i}^{j}\right)$ is an independent set of size at least n / r. Let V_{j+1} denote a subset of $\cap_{i=1}^{r-1} N_{G}\left(x_{i}^{j}\right)$ of size n / r. Note that, for each $1 \leqslant k \leqslant j, N_{G}\left(x_{k}^{j}\right) \cap V_{k}=\emptyset$ since $x_{k}^{j} \in V_{k}$ and V_{k} is an independent set. Thus as $V_{j+1} \subseteq N_{G}\left(x_{k}^{j}\right)$ for each $1 \leqslant k \leqslant j, V_{j+1}$ is disjoint from $V_{1} \cup \cdots \cup V_{j}$.

Repeating this argument we obtain our desired sets $V_{1}, \ldots, V_{r} \subseteq V(G)$ and vertices $x_{1}^{1}, \ldots, x_{r-1}^{1}, x_{1}^{2}, \ldots, x_{r-1}^{2}, \ldots, x_{1}^{r-1}, \ldots, x_{r-1}^{r-1}$.

Acknowledgements

We thank the referees for their comments. In particular, we thank one referee for pointing out the work in [1], [5] and [9].

This research was carried out whilst the third author was visiting the Department of Mathematics of the University of Illinois at Urbana-Champaign. This author would like to thank the department for the hospitality he received. We would also like to thank Hal Kierstead for helpful discussions.

References

[1] A. Akiyama and P. Frankl, On the Size of Graphs with Complete-Factors, J. Graph Theory 9 (1985), 197-201.
[2] P. Allen, J. Böttcher, J. Hladký and D. Piguet, A density Corrádi-Hajnal theorem, Electronic Notes in Discrete Mathematics 38 (2011), 31-36.
[3] V. Chvátal, On Hamilton's ideals, J. Combin. Theory B 12 (1972), 163-168.
[4] K. Corrádi and A. Hajnal, On the maximal number of independent circuits in a graph, Acta Math. Acad. Sci. Hungar. 14 (1964), 423-439.
[5] G.A. Dirac, Structural properties and circuits in graphs, in: C.St.-J.A. NashWilliams, J. Sheehan (Eds.), Proceedings of the 5th British Combinatorial Conference, Congressus Numerantium, No. XV, Utilitas Math., Winnipeg, Man., 1976, pp. 135-140.
[6] P. Erdős, On the graph theorem of Turán, Mat. Lapok. 21 (1970), 249-251.
[7] A. Hajnal and E. Szemerédi, Proof of a conjecture of Erdős, Combinatorial Theory and its Applications vol. II 4 (1970), 601-623.
[8] P. Hell and D.G. Kirkpatrick, On the complexity of general graph factor problems, SIAM J. Computing 12 (1983), 601-609.
[9] P. Justesen, On independent circuits in finite graphs and a conjecture of Erdős and Pósa, Ann. Discrete Math. 41 (1989), 299-306
[10] H.A. Kierstead and A.V. Kostochka, An Ore-type Theorem on Equitable Coloring, J. Combin. Theory B 98 (2008), 226-234.
[11] F. Knox and A. Treglown, Embedding spanning bipartite graphs of small bandwidth, Combin. Probab. Comput. 22 (2013), 71-96.
[12] D. Kühn and D. Osthus, Critical chromatic number and the complexity of perfect packings in graphs, ${ }^{7} 7$ th ACM-SIAM Symposium on Discrete Algorithms (SODA 2006), 851-859.
[13] D. Kühn and D. Osthus, The minimum degree threshold for perfect graph packings, Combinatorica 29 (2009), 65-107.
[14] D. Kühn, D. Osthus and A. Treglown, An Ore-type theorem for perfect packings in graphs, SIAM J. Disc. Math. 23 (2009), 1335-1355.

Appendix

Here we give proofs of Proposition 13 and Lemma 15. The following fact will be used in both of these proofs.

Fact 19. Fix $n, r \in \mathbb{N}$ such that $r \geqslant 3$ and r divides $n \geqslant 2 r$. Define

$$
h(x):=x+\frac{(n-x-1)^{2}}{2(r-2)}-\frac{1}{2}(n-x-1) .
$$

Then $h(x)$ is a decreasing function for $x \in[0, n /(r-1)]$. Moreover, if $n \geqslant 3 r$ then $h(x)$ is a decreasing function for $x \in[0,(n+r) /(r-1)]$.

Proof. Notice that

$$
h^{\prime}(x)=\frac{3}{2}-\frac{(n-x-1)}{r-2}=\frac{x}{r-2}+\frac{1-n}{r-2}+\frac{3}{2} .
$$

So for $x \leqslant n /(r-1)$,

$$
h^{\prime}(x) \leqslant \frac{n}{(r-1)(r-2)}+\frac{1-n}{r-2}+\frac{3}{2}=-\frac{n}{r-1}+\frac{1}{r-2}+\frac{3}{2} .
$$

Note that $3(r-1) / 2+(r-1) /(r-2)<n$ since $n \geqslant 2 r$ and $r \geqslant 3$. Thus,

$$
h^{\prime}(x) \leqslant-\frac{n}{r-1}+\frac{1}{r-2}+\frac{3}{2}<0 .
$$

If $x \leqslant(n+r) /(r-1)$ then

$$
h^{\prime}(x) \leqslant \frac{n+r}{(r-1)(r-2)}+\frac{1-n}{r-2}+\frac{3}{2}=-\frac{n}{r-1}+\frac{1}{r-2}+\frac{r}{(r-1)(r-2)}+\frac{3}{2} .
$$

If $n \geqslant 3 r$ then $n>3 r / 2+4$. So $n>3(r-1) / 2+(2 r-1) /(r-2)$. Thus,

$$
h^{\prime}(x) \leqslant-\frac{n}{r-1}+\frac{1}{r-2}+\frac{r}{(r-1)(r-2)}+\frac{3}{2}<0,
$$

as desired.
Proof of Proposition 13. We need to show that, for all $D \in \mathbb{N}$ such that $n / r \leqslant D \leqslant$ $n /(r-1)$,

$$
\frac{n^{2}}{2 r^{2}}+\frac{n}{2 r}=\binom{n / r+1}{2} \leqslant D+e(\bar{T}(n-D-1, r-2)) .
$$

Since $D \leqslant n /(r-1)$, Facts 14 and 19 imply that

$$
\begin{aligned}
D+e(\bar{T}(n-D-1, r-2)) & \geqslant D+\frac{(n-D-1)^{2}}{2(r-2)}-\frac{(n-D-1)}{2} \\
& \geqslant \frac{n}{r-1}+\frac{1}{2(r-2)}\left[\frac{(r-2)}{r-1} n-1\right]^{2}-\frac{1}{2}\left[\frac{(r-2)}{r-1} n-1\right] \\
& \geqslant \frac{(r-2)}{2(r-1)^{2}} n^{2}-\frac{(r-2)}{2(r-1)} n .
\end{aligned}
$$

Thus, it suffices to show that

$$
\begin{equation*}
\frac{(r-2)}{2(r-1)^{2}} n-\frac{r-2}{2(r-1)} \geqslant \frac{n}{2 r^{2}}+\frac{1}{2 r} . \tag{16}
\end{equation*}
$$

Notice that

$$
\begin{equation*}
\frac{r-2}{2(r-1)^{2}}-\frac{1}{2 r^{2}}=\frac{(r-2) r^{2}-(r-1)^{2}}{2 r^{2}(r-1)^{2}}=\frac{r^{3}-3 r^{2}+2 r-1}{2 r^{2}(r-1)^{2}} \tag{17}
\end{equation*}
$$

and

$$
\frac{r-2}{2(r-1)}+\frac{1}{2 r}=\frac{r^{2}-r-1}{2 r(r-1)}
$$

Since $n \geqslant 2 r$, (16) implies that it suffices to show that

$$
\begin{equation*}
\frac{r^{3}-3 r^{2}+2 r-1}{r(r-1)^{2}}-\frac{r^{2}-r-1}{2 r(r-1)} \geqslant 0 \tag{18}
\end{equation*}
$$

Note that $r^{3} \geqslant 4 r^{2}-4 r+3$ as $r \geqslant 3$. Thus, $2\left(r^{3}-3 r^{2}+2 r-1\right) \geqslant\left(r^{2}-r-1\right)(r-1)$. So indeed (18) is satisfied, as desired.

Proof of Lemma 15. We need to show that, for all $D \in \mathbb{N}$ such that $n / r \leqslant D<$ $(n+r) /(r-1)$,

$$
\frac{n^{2}}{2 r^{2}}+\frac{n}{2 r}=\binom{n / r+1}{2} \leqslant D+e(\bar{T}(n-D-1, r-2)) .
$$

Since $D<(n+r) /(r-1)$ we have that $D \leqslant n /(r-1)+1$. So Facts 14 and 19 imply that

$$
\begin{aligned}
D+e(\bar{T}(n-D-1, r-2)) & \geqslant D+\frac{(n-D-1)^{2}}{2(r-2)}-\frac{(n-D-1)}{2} \\
& \geqslant \frac{n}{r-1}+1+\frac{1}{2(r-2)}\left[\frac{(r-2)}{r-1} n-2\right]^{2}-\frac{1}{2}\left[\frac{(r-2)}{r-1} n-2\right] \\
& \geqslant \frac{(r-2)}{2(r-1)^{2}} n^{2}-\frac{(r-2)}{2(r-1)} n-\frac{n}{r-1} .
\end{aligned}
$$

Thus, it suffices to show that

$$
\begin{equation*}
\frac{(r-2)}{2(r-1)^{2}} n-\frac{(r-2)}{2(r-1)}-\frac{1}{r-1} \geqslant \frac{n}{2 r^{2}}+\frac{1}{2 r} . \tag{19}
\end{equation*}
$$

Notice that

$$
\frac{r-2}{2(r-1)}+\frac{1}{r-1}+\frac{1}{2 r}=\frac{r^{2}+r-1}{2 r(r-1)} .
$$

Since $n \geqslant 3 r$, (17) and (19) imply that it suffices to show that

$$
\begin{equation*}
\frac{3\left(r^{3}-3 r^{2}+2 r-1\right)}{2 r(r-1)^{2}}-\frac{r^{2}+r-1}{2 r(r-1)} \geqslant 0 . \tag{20}
\end{equation*}
$$

Note that $2 r^{3}-9 r^{2}+8 r-4 \geqslant 0$ as $r \geqslant 4$. Thus, $3\left(r^{3}-3 r^{2}+2 r-1\right) \geqslant\left(r^{2}+r-1\right)(r-1)$. So indeed (20) is satisfied, as desired.

[^0]: *University of Illinois, Urbana-Champaign, USA and University of California, San Diego, USA, jobal@math.uiuc.edu. This author is supported by NSF CAREER Grant DMS-0745185, UIUC Campus Research Board Grant 11067, and OTKA Grant K76099.
 ${ }^{\dagger}$ University of Illinois, Urbana-Champaign, USA and Institute of Mathematics, Novosibirsk, Russia, kostochk@math.uiuc.edu. This author is supported in part by NSF grant DMS-0965587 and by grant 12-01-00631 of the Russian Foundation for Basic Research.
 ${ }^{\ddagger}$ Queen Mary, University of London, United Kingdom, treglown@maths.qmul.ac.uk

