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a b s t r a c t

Rödl and Tuza proved that sufficiently large (k+ 1)-critical graphs
cannot be made bipartite by deleting fewer than


k
2


edges, and

that this is sharp. Chen, Erdős, Gyárfás, and Schelp constructed
infinitely many 4-critical graphs obtained from bipartite graphs
by adding a matching of size 3 (and called them (B + 3)-graphs).
They conjectured that every n-vertex (B+3)-graph hasmuchmore
than 5n/3 edges, presented (B+ 3)-graphs with 2n− 3 edges, and
suggested that perhaps 2n is the asymptotically best lower bound.
We prove that indeed every (B+3)-graph has at least 2n−3 edges.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

A graph G is said to be (k + 1)-critical if it is (k + 1)-chromatic but every proper subgraph G is
k-colorable.

In this paper we consider (k + 1)-critical graphs that are ‘‘nearly bipartite’’ in the following sense.
For an integer ℓ, we say a graph is a B + Eℓ graph if it is obtained from a bipartite graph by adding
some ℓ edges. We say that a graph is a B + Mℓ graph if it is obtained from a bipartite graph by adding
a matching of size ℓ. (In [2], a B + Mℓ graph is denoted by B + ℓ.)

Disproving a conjecture by Erdős, Rödl and Tuza [7] showed that for all sufficiently large n, there
are n-vertex (k + 1)-critical B + E

k
2

 graphs. They also showed that this is best possible: when n is

large enough, there are no n-vertex (k + 1)-critical B + Eℓ graphs with ℓ <


k
2


.
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Chen, Erdős, Gyárfás, and Schelp [2], strengthened Rödl and Tuza’s result for k = 3: they showed
that for all sufficiently large n, there are 4-critical n-vertex B + M3 graphs.

We focus on the case k = 3 and ask how few edges such a graphmay have. Chen et al. [2] provided
for every n ≥ 7 such a graphwith 2n−3 edges. They ‘‘suspect[ed]’’ that any 4-critical n-vertex B+M3
graph has at least 2n edges asymptotically, and ‘‘dare[d] to conjecture only that they have significantly
more than 5n/3 edges’’. Gyárfás renewed interest to the problem in [3]. Here we prove that indeed,
every such graph has at least 2n − 3 edges. Furthermore, we prove the same result for any 4-critical
B + E3 graph.

Theorem 1.1. If G is a 4-critical B + E3 graph, then |E(G)| ≥ 2|V (G)| − 3.

We use techniques from [5,6].
For A ⊆ V (G), we let G[A] denote the subgraph of G induced by A. When A ∩ B = ∅, we let G[A, B]

denote the bipartite subgraph with parts A, B consisting of all edges from A to B.

2. Proof

For A ⊆ V (G), define the potential, ρG(A), to be 2|A| − |E(G[A])|.
Theorem 1.1 is equivalent to the statement

ρG(V (G)) ≤ 3 for every 4-critical B + E3 graph G.

We will frequently use the fact that, for A, B ⊆ V (G),

ρG(A ∪ B)+ ρG(A ∩ B) = ρG(A)+ ρG(B)− |E(G[A − B, B − A])|.

Lemma 2.1. Suppose G ≠ K4 is a 4-critical graph such that E(G) = E(B) ∪ E(S) where B is bipartite and
|E(S)| = 3. Let V1, V2 be the bipartition of V (B) with |V1 ∩ V (S)| ≥ |V2 ∩ V (S)|. Then either

(1) G[V1 ∩ V (S)] = K3, and ρG(V (S)) = 3; or
(2) G[V1 ∩ V (S)] = P3, G[V2 ∩ V (S)] = K2, and ρG(V (S)) ≤ 3; or
(3) G[V1 ∩ V (S)] = 2K2, G[V2 ∩ V (S)] = K2, and ρG(V (S)) ≤ 5.

Proof. Observation: If there is an independent set I that intersects each edge of S, thenG−I is bipartite
and so G is 3-colorable.

Chen et al. [2] showed that the only B+E2 graph that is 4-critical is K4. So each edge of S lies within
one of V1, V2. If all three edges of S are in V1, then G[V (S)] = K3 by the observation. Otherwise two
edges of S, say ab and cd, lie in V1 and one edge, say xy, lies in V2. Then G[V1 ∩ V (S)] is either 2K2
(a, b, c, d are distinct) or P3 (say b = c). By the observation, xmust be adjacent to both of a, b or both
of c, d; by symmetry assume xa, xb ∈ E(G). Similarly, y must be adjacent to both a, b or to both c, d;
since G does not contain a K4, we have yc, yd ∈ E(G). These four edges together with E(S) imply the
given inequalities on potential. �

For a graph G as in the hypothesis of Lemma 2.1, let

P(G) = min
V (S)⊆A⊆V (G)

ρG(A).

Suppose the theorem fails. Among all counterexamples, choose G to have the maximum P(G), and
subject to this, to have the minimum number of vertices. (Note that for any G, P(G) ≤ ρG(V (S)) ≤ 5,
so the maximum exists.) For this G, let S, V1, V2 be as in Lemma 2.1. Let a, b, c, d, x, y be vertices not
in V (G), and letM be the matching with edges ab, cd, and xy.

Claim 2.2. If V (S) ⊆ R ⊆ V (G), then ρG(R) ≥ 4. If furthermore 8 < |R| < |V (G)|, then ρG(R) ≥ 5.

Proof. If R = V (G), then the claim follows from G being a counterexample. Sowe henceforth consider
R ( V (G). If the first statement of the claim fails, then there is an R such that
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Fig. 1. The graph G′
[R′

].

(i) ρG(R) = P(G) ≤ 3. If the first statement of the claim holds but the second statement fails, then
there is an R such that (ii) 8 < |R| < |V (G)| and ρG(R) = 4. Fix such an R in either case.

Take any 3-coloring φ of G[R], and construct the graph G′ as follows. Let R′
= V (M) ∪ {z2, z3},

where z2, z3 are new vertices. Let V (G′) = (V (G)− R) ∪ R′.
Let E(G′

[V (G)− R]) = E(G[V (G)− R]), and

E(G′
[R′

]) = {ab, ax, bx, by, xy, cd, cy, dy, z2a, z2c, z3a, z3d}.

See Fig. 1 for G′
[R′

]. For each i ∈ [3], let

Ci = {v ∈ V (G)− R : v is adjacent to some vertex of color i},

and let E(G′
[R′, V (G′)− R′

]) be such that

NG′(a)− R′
= V2 ∩ C1, NG′(d)− R′

= V2 ∩ C2, NG′(c)− R′
= V2 ∩ C3,

NG′(y)− R′
= V1 ∩ C1, NG′(z2)− R′

= V1 ∩ C2, NG′(z3)− R′
= V1 ∩ C3,

NG′(b) ⊆ R′, NG′(x) ⊆ R′.

Then G′ is not 3-colorable. Indeed, if it had a proper 3-coloring ψ , then by renaming colors as
necessary, we can assume that ψ(a) = ψ(y) = 1, ψ(c) = ψ(z3) = 3, and ψ(d) = ψ(z2) = 2. Then
coloring G by φ on R and ψ on V (G) − R is a proper coloring, a contradiction. Hence there exists a
4-critical subgraph G′′

⊆ G′; note that E(G′′) ⊃ E(M).
For any A such that V (M) ⊆ A ⊆ V (G′), we have

|E(G′
[A − R′, A ∩ R′

])| ≤ |E(G′
[A − R′, R′

])| ≤ |E(G[A − R′, R])|.

Also, any subset of R′ containing V (M) has potential equal to 4. Hence for any A ⊆ V (G′′) containing
V (M),

ρG′′(A) ≥ ρG′(A)
= ρG′(A − R′)+ ρG′(A ∩ R′)− |E(G′

[A − R′, A ∩ R′
])|

≥ ρG(A − R′)+ 4 − |E(G[A − R′, R])|
= (4 − ρG(R))+ (ρG(A − R′)+ ρG(R)− |E(G[A − R′, R])|)
= (4 − ρG(R))+ ρG((A − R′) ∪ R).

Since ρ(R) ≤ 4, we have P(G′′) ≥ P(G). If ρ(R) < 4, then P(G′′) > P(G); if ρ(R) = 4 and |R| > 8,
then |V (G′′)| < |V (G)|. In either case, by the extremality of G, we have ρG′′(V (G′′)) ≤ 3. Taking
A = V (G′′) above, we have

ρG((V (G′′)− R′) ∪ R) ≤ ρG′′(V (G′′))− 4 + ρG(R) ≤ ρG(R)− 1.

If R satisfies (i), then the set (V (G′′) − R′) ∪ R contradicts the minimality of ρG(R). Hence the first
statement of the claim holds. If R satisfies (ii), then the set (V (G′′) − R′) ∪ R has potential at most 3,
contradicting the first statement. Hence the second statement of the claim holds as well. �

Claim 2.2 and Lemma 2.1 imply that S is a matching, and we will henceforth assume it is M , with
V1 ∩ V (M) = {a, b, c, d} and V2 ∩ V (M) = {x, y}. Furthermore we obtain that ρG(V (M)) ∈ {4, 5},
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Fig. 2. The two cases for G[V (M)].

Fig. 3. G′
[V (M)] with f .

i.e. |E(G[V (M)])| ∈ {7, 8}. From the proof of Lemma 2.1 we see that

E(G[V (M)]) ⊇ {ab, ax, bx, xy, cd, cy, dy},

with equality or, up to symmetry, with the extra edge by (see Fig. 2). We will need to consider these
two cases separately. First we introduce a few lemmas that the arguments will have in common.

The following lemma is an old result by Hakimi [4]. A simpler version of it was used by Alon and
Tarsi in [1].

Lemma 2.3 (Theorem 4 in [4]). Given a multigraph H and a function f : V (H) → N, one of the following
holds.

(1) There is a subset A ⊆ V (H) such that |E(H[A])| >


v∈A f (v).
(2) There is an orientation of H such that for every v ∈ V (H), d+(v) ≤ f (v).

A kernel in a digraph is an independent set S such that for every v ∈ V (D)− S, there is some s ∈ S
such that vs ∈ E(D). A digraph is called kernel-perfect if every induced subdigraph has a kernel.

Lemma 2.4 (Lemma 10 in [6]). Let A be an independent set in a graph H and B = V (H) − A. Let D be
the digraph obtained from H by replacing each edge in H[B] by a pair of opposite arcs and by an arbitrary
orientation of H[A, B]. Then D is kernel-perfect.

Lemma 2.5 (Bondy, Boppana, and Siegel, see [1]). If D is a kernel-perfect digraph and L is a list assignment
such that for every v ∈ V (D), |L(v)| ≥ 1 + d+(v), then D is L-colorable.

Now we consider two cases.
Case ρ(V (M)) = 4:

Let G′ be obtained from G by doubling the two edges ab and cd of M . Define f : V (G′
− x) → N by

f |N(x) ≡ 1, f |V (G′)−N[x] ≡ 2, and apply Lemma 2.3 to G′
− x, f .

If Conclusion (2) of Lemma 2.3 holds, then the orientation of G′
− x must have antiparallel edges

ab and cd. Indeed, ab must be antiparallel in order to have the outdegrees of a and b at most 1, then
yb must be oriented from y, hence cy and dy must both be oriented toward y, and thus cd must be
antiparallel (see Fig. 3). By Lemma 2.4, the orientation is kernel-perfect. We extend this orientation to
one of G′ by making x a sink; the result is still kernel-perfect, and now d+(v) ≤ 2 for every v ∈ V (G).
By Lemma 2.5, G′ and also G are 3-choosable, a contradiction.
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Fig. 4. G′
x[V (M)] with f .

So Conclusion (1) of Lemma 2.3 holds. That is, there exists an A ⊆ V (G′)with ρG′(A) ≤ −1 + |A ∩

N(x)|. This implies that
ρG(A) ≤ −1 + |A ∩ N(x)| + |E(M) ∩ E(G[A])|. (1)

If A ∩ V (M) = ∅, then
ρG(A + x) ≤ ρG(A)+ 2 − |A ∩ N(x)| ≤ 1
ρG(A + x + y) ≤ 1 + (2 − 1) = 2
ρG(A + V (M)) ≤ 2 + 2(4 − 3)− 1 = 3.

But this contradicts Claim 2.2.
So suppose A ∩ V (M) ≠ ∅. If y ∈ A, then we even save one, in the middle step of the previous

paragraph. If exactly one of a, b (resp. c, d) is in A, then again we can even save one, in the third step
above. If both a, b ∈ A (resp. c, d ∈ A), then our bound in the first line above coming from Eq. (1) is
worse by one (or two if all of a, b, c, d ∈ A). But then we save one (or two) in the third line of the
computations above. So we still have a contradiction.
Case ρ(V (M)) = 5:

Let G′
x = G − x − cd + ab, and define f : V (G′

x) → N by f |N(x)∪{c,d} ≡ 1, f |V (G′
x)−(N[x]∪{c,d}) ≡ 2, and

apply Lemma 2.3 to G′
x, f . (See Fig. 4.)

If Conclusion (2) of Lemma 2.3 holds, then the orientation must have antiparallel edges ab. Extend
the orientation of G′

x to an orientation of G− x+ab+ cd by orienting the double edges cd antiparallel;
then Lemma 2.4 implies the orientation is kernel-perfect. Extend to an orientation of G + ab + cd
by making x a sink; the result is still kernel-perfect, and now d+(v) ≤ 2 for every v. By Lemma 2.5,
G + ab + cd and also G are 3-choosable, a contradiction.

So Conclusion (1) of Lemma 2.3 holds. That is, there exists an A ⊆ V (G′
x)with ρG′

x
(A) ≤ −1 + |A ∩

(N(x) ∪ {c, d})|. This implies that
ρG(A + x) ≤ 1 + ϵ1 + ϵ2, (2)

where ϵ1 =


1 if A ∩ {c, d} ≠ ∅,
0 if A ∩ {c, d} = ∅

and ϵ2 =


1 if A ⊇ {a, b},
0 otherwise.

Adding to A in turn {y}, {c, d}, and {a, b} each adds at most 1 to the potential. If A already intersects
{y}, {c, d}, or {a, b}, then instead no potential is gained. Hence A ∩ V (M) = ∅ or A ∩ V (M) = {a, b};
otherwise ρ(A + V (M)) ≤ 3, contradicting Claim 2.2.

Similarly, we construct the graph G′
y, and find a set B such that ρG(B + y) ≤ 1 + ϵ3, where

ϵ3 =


1 if B ⊇ {c, d},
0 else.

We have x ∉ A ∪ B, y ∉ A ∪ B, and B ∩ V (M) = ∅ or B ∩ V (M) = {c, d}. So

ρ(A + x + B + y)+ ρ(A ∩ B) ≤ 2 + ϵ2 + ϵ3 − |E(G[A + x − B, B + y − A])|. (3)
Let C = A ∩ B. Then C ∩ V (M) = ∅. If |C | ≤ 2, then ρ(C) ≥ 0; if |C | > 2, then by Claim 2.2 we have

5 ≤ ρ(C + V (M)) ≤ ρ(C)+ ρ(V (M))− ρ(C ∩ V (M)) = ρ(C)+ 5,
so that still ρ(C) ≥ 0. Furthermore, xy contributes to the last term of (3), and so by (3),

ρ(A + x + B + y) ≤ 1 + ϵ2 + ϵ3.

This implies that ρ(A + B + V (M)) ≤ 3, which contradicts Claim 2.2. �
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Fig. 5. Three 5-critical B + E6 graphs with few edges.

3. Comments

1. The lemmas imply that if G is obtained from a bipartite graph B by adding a set S of at most 3
edges, ρ(A) ≥ 0 for every A ⊆ V (G) and ρ(A) ≥ 4 for every V (S) ⊆ A ⊆ V (G), then G is not only
3-colorable, but also 3-list-colorable.

2.When a graph is a (k+1)-critical B+E
k
2

 graph, how fewedgesmay it contain? Rödl and Tuza [7]

gave examples for infinitelymany n of (k+1)-critical n-vertex B+E
k
2

 graphswith (k−1)n−


k
2


+1

edges. For k = 3, Chen et al. [2] gave examples for every n ≥ 7 with only 2n− 3 edges, and our result
shows that this is sharp. For k = 4, Fig. 5 shows three examples of 5-critical n-vertex B + E6 graphs
with fewer than 3n− 5 edges. The middle one, which is obtained from the Moser Spindle by adding a
dominating vertex, was kindly shown to us by a referee. It is interesting whether for infinitely many
n there exist 5-critical n-vertex B + E6 graphs with fewer than 3n − 5 edges.
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