Hypergraph Ramsey numbers: Triangles versus cliques

Alexandr Kostochka ${ }^{\text {a,b,1 }}$, Dhruv Mubayi ${ }^{\text {c,2 }}$, Jacques Verstraete ${ }^{\mathrm{d}, 3}$
${ }^{\text {a }}$ Department of Mathematics, University of Illinois at Urbana-Champaign, IL, United States
${ }^{\text {b }}$ Sobolev Institute of Mathematics, Novosibirsk, Russia
${ }^{\text {c }}$ Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago, IL, United States
${ }^{\text {d }}$ Department of Mathematics, University of California at San Diego, La Jolla, CA, United States

A R T I C L E I N F O

Article history:

Received 23 March 2012
Available online 7 May 2013

Keywords:

Ramsey number
Hypergraph
Loose triangle
Independent set

A B S T R A C T

A celebrated result in Ramsey Theory states that the order of magnitude of the triangle-complete graph Ramsey numbers $R(3, t)$ is $t^{2} / \log t$. In this paper, we consider an analogue of this problem for uniform hypergraphs. A triangle is a hypergraph consisting of edges e, f, g such that $|e \cap f|=|f \cap g|=|g \cap e|=1$ and $e \cap f \cap g=\emptyset$. For all $r \geqslant 2$, let $R\left(C_{3}, K_{t}^{r}\right)$ be the smallest positive integer n such that in every red-blue coloring of the edges of the complete r-uniform hypergraph K_{n}^{r}, there exists a red triangle or a blue K_{t}^{r}. We show that there exist constants $a, b_{r}>0$ such that for all $t \geqslant 3$,

$$
\frac{a t^{\frac{3}{2}}}{(\log t)^{\frac{3}{4}}} \leqslant R\left(C_{3}, K_{t}^{3}\right) \leqslant b_{3} t^{\frac{3}{2}}
$$

and for $r \geqslant 4$

$$
\frac{t^{\frac{3}{2}}}{(\log t)^{\frac{3}{4}+o(1)}} \leqslant R\left(C_{3}, K_{t}^{r}\right) \leqslant b_{r} t^{\frac{3}{2}} .
$$

This determines up to a logarithmic factor the order of magnitude of $R\left(C_{3}, K_{t}^{r}\right)$. We conjecture that $R\left(C_{3}, K_{t}^{r}\right)=o\left(t^{3 / 2}\right)$ for all $r \geqslant 3$. We also study a generalization to hypergraphs of cycle-complete graph Ramsey numbers $R\left(C_{k}, K_{t}\right)$ and a connection to $r_{3}(N)$, the

[^0]maximum size of a set of integers in $\{1,2, \ldots, N\}$ not containing a three-term arithmetic progression.
© 2013 Elsevier Inc. All rights reserved.

1. Introduction

A hypergraph is a pair (V, E) where V is a set whose elements are called vertices and E is a family of subsets of V called edges. If all edges have size r, then the hypergraph is referred to as an r-graph. Throughout this paper, C_{k} denotes a loose k-cycle, namely the hypergraph with edges e_{1}, \ldots, e_{k} such that $\left|e_{i} \cap e_{i+1}\right|=1$ for $i=1, \ldots, k-1,\left|e_{1} \cap e_{k}\right|=1$, and $e_{i} \cap e_{j}=\emptyset$ otherwise. In particular, a loose triangle is a hypergraph consisting of three edges e, f, g such that $|e \cap f|=|f \cap g|=|g \cap e|=1$ and $e \cap f \cap g=\emptyset$. Since we consider only loose cycles and triangles, we will omit the word "loose". A hypergraph is linear if any pair of distinct edges of the hypergraph intersect in at most one vertex.

An independent set in a hypergraph is a set of vertices containing no edges of the hypergraph. Let K_{t}^{r} denote the t-vertex complete r-graph, i.e., the t-vertex r-graph whose edges are all r-element subsets of the vertex set. In this paper we consider the cycle versus complete hypergraph Ramsey numbers $R\left(C_{k}, K_{t}^{r}\right)$ - this is the minimum n such that every n-vertex r-graph contains either a cycle C_{k} or an independent set of t vertices. Our main effort will be on the triangle-complete hypergraph Ramsey number $R\left(C_{3}, K_{t}^{r}\right)$. A celebrated result of Kim [13] together with earlier bounds by Ajtai, Komlós and Szemerédi [2] shows that

$$
R\left(C_{3}, K_{t}\right)=\Theta\left(\frac{t^{2}}{\log t}\right) \quad \text { as } t \rightarrow \infty
$$

This establishes the order of magnitude of these Ramsey numbers for graphs.

1.1. Triangle-free hypergraphs

The study of the independence number in triangle-free hypergraphs was initiated by Ajtai, Komlós, Pintz, Spencer and Szemerédi [1] and used to give a counterexample to a conjecture of Erdős on the Heilbronn problem [17] on the largest area of a triangle with vertices from n points in the unit square. Motivated also by the triangle-complete graph Ramsey numbers, in this paper we determine for $r \geqslant 3$ the order of magnitude of the triangle-complete Ramsey numbers for r-graphs up to logarithmic factors:

Theorem 1.1. There exist constants $a, b_{3}>0$ such that for all $t \geqslant 1$,

$$
\frac{a t^{\frac{3}{2}}}{(\log t)^{\frac{3}{4}}} \leqslant R\left(C_{3}, K_{t}^{3}\right) \leqslant b_{3} t^{\frac{3}{2}} .
$$

For each $r>3$, there exist constants $a_{r}, b_{r}>0$ such that for all $t \geqslant 1$,

$$
\frac{t^{\frac{3}{2}}}{(\log t)^{\frac{3}{4}+\frac{a_{r}}{\sqrt{\log \log t}}}} \leqslant R\left(C_{3}, K_{t}^{r}\right) \leqslant b_{r} t^{\frac{3}{2}} .
$$

We shall see that $b_{r} \leqslant(2 r)^{9 / 2}$ for all $r \geqslant 3$. The upper bound in Theorem 1.1 is proved in Section 3. The lower bound in Theorem 1.1 comes from a construction that combines randomness and linear algebra and a construction of triangle-free hypergraphs coming from sets with no three-term arithmetic progressions, presented in Section 5. The preliminaries required to analyze this construction are presented in Section 4. Some of the ideas of the construction were recently used in [14] to study a related problem. In light of Theorem 1.1, we make the following conjecture:

Conjecture 1.1. For all fixed $r \geqslant 3$,

$$
R\left(C_{3}, K_{t}^{r}\right)=o\left(t^{3 / 2}\right) \quad \text { as } t \rightarrow \infty
$$

We shall see in Section 2 that if H is a triangle-free hypergraph (the edges may have arbitrary size) on n vertices, then H contains an independent set of size at least $\lfloor\sqrt{n}\rfloor$. By Theorem 1.1, this is not tight for r-uniform hypergraphs for each fixed $r \geqslant 3$. It would be interesting to see if it is tight when edges whose size depends on n are allowed.

1.2. Linear triangle-free hypergraphs

We indicate a connection between independent sets in linear triangle-free hypergraphs and Roth's Theorem [17] on arithmetic progressions. Let $r_{3}(N)$ denote the largest size of a set of integers in $\{1,2, \ldots, N\}$ containing no three-term arithmetic progressions. This problem has attracted much attention, starting with the original theorem of Roth [17] showing that $r_{3}(N)=o(N)$. The best current known bounds are as follows: for some constant $c>0$,

$$
\frac{N}{e^{c \sqrt{\log N}}} \leqslant r_{3}(N) \leqslant \frac{N}{(\log N)^{1-o(1)}}
$$

The lower bound, which comes from a construction of Behrend [4], is essentially unchanged for more than sixty years. The upper bound, due to Sanders [19] improves many earlier results which gave smaller powers of $\log N$ in the denominator. Let $R L\left(C_{3}, K_{t}^{3}\right)$ denote the minimum n such that every linear triangle-free 3-graph on at least n vertices contains an independent set of size t. We prove the following theorem:

Theorem 1.2. There are constants $\tilde{a}, \tilde{b}>0$ such that for all $t \geqslant 1$

$$
\frac{t^{\frac{3}{2}}}{e^{\tilde{a} \sqrt{\log t}}} \leqslant R L\left(C_{3}, K_{t}^{3}\right) \leqslant \frac{\tilde{b} t^{\frac{3}{2}}}{\sqrt{\log t}}
$$

Furthermore, if for some $c>0, R L\left(C_{3}, K_{t}^{3}\right)=O\left(t^{3 / 2}(\log t)^{-3 / 4-c}\right)$, then

$$
r_{3}(N)=O\left(\frac{N}{(\log N)^{\frac{4 c}{3}}}\right)
$$

It would be interesting if one could prove that $r_{3}(N)=o(N)$ using Theorem 1.2 above. The bound $R L\left(C_{3}, K_{t}^{3}\right)=O\left(t^{3 / 2} / \sqrt{\log t}\right)$ may also be evidence for Conjecture 1.1, that $R\left(C_{3}, K_{t}^{3}\right)=o\left(t^{3 / 2}\right)$.

1.3. k-Cycle-free hypergraphs

The construction used in Theorem 1.1 extends more generally to give lower bounds on all cyclecomplete hypergraph Ramsey numbers. The cycle C_{3} is precisely a hypergraph triangle. We give for all $k, r \geqslant 3$ a construction of C_{k}-free r-graphs with low independence number, based on known results on the C_{k}-free bipartite Ramanujan graphs of Lubotzky, Phillips and Sarnak [16]. Specifically, we prove the following theorem by a suitable and fairly straightforward modification of the construction. We write $f=O^{*}(g)$ to denote that for some constant $c>0, f(t)=O\left((\log t)^{c} g(t)\right)$, and $f=\Omega^{*}(g)$ is equivalent to $g=O^{*}(f)$.

Theorem 1.3. For fixed $r, k \geqslant 3$,

$$
R\left(C_{k}, K_{t}^{r}\right)=\Omega^{*}\left(t^{1+\frac{1}{3 k-1}}\right) \quad \text { as } t \rightarrow \infty
$$

The key point of this theorem is that the exponent $1+1 /(3 k-1)$ of t is bounded away from 1 by a constant independent of r, and strictly improves for all $r, k \geqslant 5$ the lower bounds given by considering appropriate random hypergraphs, namely

$$
R\left(C_{k}, K_{t}^{r}\right)=\Omega^{*}\left(t^{1+\frac{1}{k r-r-k}}\right) \quad \text { as } t \rightarrow \infty
$$

In the case $r=2$, namely for graphs, the best available constructions for lower bounds on $r\left(C_{k}, K_{t}^{r}\right)$ indeed come from appropriate random graphs; in particular the C_{k}-free random graph process studied by Bohman and Keevash [7].

By using the known constructions of extremal bipartite graphs of girth 12, arising from generalized hexagons, we obtain the following improvement of the lower bound in Theorem 1.3 for C_{5}, i.e. for loose pentagons:

Theorem 1.4. For fixed $r \geqslant 3$, there exists a constant $c_{r}>0$ such that

$$
R\left(C_{5}, K_{t}^{r}\right) \geqslant c_{r}\left(\frac{t}{\log t}\right)^{\frac{5}{4}} \quad \text { as } t \rightarrow \infty
$$

The main part of this theorem is the exponent $5 / 4$; we suspect that this exponent may be tight as $t \rightarrow \infty$, and perhaps even more generally, that $r\left(C_{k}, K_{t}^{r}\right)=\Theta^{*}\left(t^{k /(k-1)}\right)$ for all $r, k \geqslant 3$. Our second conjecture is as follows:

Conjecture 1.2. For all $r \geqslant 3$,

$$
R\left(C_{5}, K_{t}^{r}\right)=O\left(t^{5 / 4}\right) \quad \text { as } t \rightarrow \infty .
$$

For graphs, the best current bounds are $a_{2} t^{\frac{4}{3}} / \log t \leqslant R\left(C_{5}, K_{t}\right) \leqslant b_{2} t^{3 / 2} / \sqrt{\log t}$, for some constants $a_{2}>0$ and $b_{2}>0$, where the upper bound is due to Caro, Li, Rousseau and Zhang [9] and the lower bound is from Bohman and Keevash [7].

2. Non-uniform hypergraphs

The goal of this section is to give a simple proof that any triangle-free hypergraph on n vertices has an independent set of size at least $\lfloor\sqrt{n}\rfloor$. Recall that the chromatic number $\chi(H)$ of a hypergraph H is the minimum k such that there is an assignment of k colors to the vertices such that no subset of vertices of the same color forms an edge of H.

Theorem 2.1. Let H be any hypergraph on n vertices not containing a triangle and in which $|e| \geqslant 2$ for all $e \in H$. Then

$$
\alpha(H) \geqslant\lfloor\sqrt{n}\rfloor .
$$

Proof. Suppose for a contradiction that $\alpha(H)<\lfloor\sqrt{n}\rfloor$. Then $\chi(H)>k:=\lfloor\sqrt{n}\rfloor$. So, H contains a $(k+1)$-vertex-critical subgraph H^{\prime}, which means that $\chi\left(H^{\prime}\right)=k+1$ but $\chi\left(H^{\prime}-v\right) \leqslant k$ for every $v \in V\left(H^{\prime}\right)$. By Corollary 3 on page 431 of [6] (see also [22] and [15]), the strong degree of each vertex in H^{\prime} is at least k, i.e. for each $v \in V\left(H^{\prime}\right)$ there are k edges $e_{1}, e_{2}, \ldots, e_{k}$ such that $e_{i} \cap e_{j}=\{v\}$ for all $1 \leqslant i<j \leqslant k$. In words, the $e_{i} s$ share v and nothing else. Choose a vertex v_{i} in each $e_{i} \backslash\{v\}$. Since H^{\prime} has no triangles, the set $\left\{v_{1}, \ldots, v_{k}\right\}$ is an independent set of H of size $k \geqslant\lfloor\sqrt{n}\rfloor$, which is a contradiction.

This result is almost tight since $R\left(C_{3}, t\right)=\Theta\left(t^{2} /(\log t)\right)$, so there are n-vertex triangle-free graphs with independence number of order $\sqrt{n \log n}$. It would be interesting to see if for hypergraphs (not necessarily uniform) where every edge has size at least three, the above lower bound on the independence number is tight.

3. Proof of Theorem 1.1: Upper bound

The aim of this section is to prove the upper bound of Theorem 1.1. For $r \geqslant 3$, let Δ_{r} denote the family of all triangle-free hypergraphs each of whose edges has size at least three and at most r. The upper bound on $R\left(C_{3}, K_{t}^{r}\right)$ in Theorem 1.1 will be derived as a direct consequence of the following more general statement about hypergraphs in \triangle_{r} :

Theorem 3.1. For every $r \geqslant 3$ and $G \in \Delta_{r}, \alpha(G) \geqslant|V(G)|^{2 / 3} /\left(8 r^{3}\right)$.
This section is devoted to the proof of Theorem 3.1, which gives the constant $b_{r}=\left(8 r^{3}\right)^{3 / 2}=$ $(2 r)^{9 / 2}$ in the upper bound in Theorem 1.1.

3.1. Expandable sets

In this section we state and prove a sequence of preliminary results needed for the proof of Theorem 3.1.

A set S of vertices of $G \in \Delta_{r}$ is called expandable if, for every $T \subseteq V(G)-S$ with $|T| \leqslant 2 r$, there is an edge of G containing S and disjoint from T, otherwise S is non-expandable. For example, if S is an edge of G, then it is expandable, and every set $S \subset V(G)$ of size more than r is non-expandable.

Let G be an n-vertex graph in Δ_{r} with the smallest $\sum_{e \in E(G)}|e|$ for which Theorem 3.1 fails. Certainly G has at least one edge.

Lemma 3.2. No three expandable sets in G form a triangle.
Proof. If sets S_{1}, S_{2}, S_{3} form a triangle, then by the definition of expandable sets, there is an edge $e_{1} \supseteq S_{1}$ disjoint from $\left(S_{2} \cup S_{3}\right) \backslash S_{1}$, there is an edge $e_{2} \supseteq S_{2}$ disjoint from $\left(e_{1} \cup S_{3}\right) \backslash S_{2}$, and there is an edge $e_{3} \supseteq S_{3}$ disjoint from ($e_{1} \cup e_{2}$) \} S _ { 3 } . Now e _ { 1 } , e _ { 2 } , e _ { 3 } form a triangle in G , contradicting $G \in \Delta_{r}$.

Lemma 3.3. Let $S \subset V(G)$ be an expandable set and $|S| \geqslant 3$. Then no edge of G of size more than $|S|$ contains S.

Proof. Suppose an expandable set S with $|S| \geqslant 3$ is contained in $e \in E(G)$ with $|e| \geqslant|S|+1$. Let $V\left(G^{\prime}\right)=V(G)$ and $E\left(G^{\prime}\right)=E(G)-e+S$. By Lemma 3.2, $G^{\prime} \in \Delta_{r}$. Since $\sum_{e \in E\left(G^{\prime}\right)}|e|<\sum_{e \in E(G)}|e|$, by the minimality of $G, \alpha\left(G^{\prime}\right) \geqslant\left|V\left(G^{\prime}\right)\right|^{2 / 3} / 8 r^{3}=n^{2 / 3} / 8 r^{3}$. But every independent set in G^{\prime} is also independent in G, and so $\alpha(G) \geqslant \alpha\left(G^{\prime}\right) \geqslant n^{2 / 3} / 8 r^{3}$, a contradiction to the choice of G.

Lemma 3.4. For every $3 \leqslant i<j \leqslant r$ no i-element subset of $V(G)$ is contained in more than (2r) ${ }^{j-i}$ edges of size j.

Proof. We use induction on $j-i$. If a $(j-1)$-element $S \subset V(G)$ is contained in $2 r+1$ edges of size j in G, then S is expandable, a contradiction to Lemma 3.3. Suppose now that $3 \leqslant i \leqslant j-2$ and an i-element $S \subset V(G)$ is contained in $m \geqslant(2 r)^{j-i}+1$ edges $e_{1}, e_{2}, \ldots, e_{m} \in E(G)$ of size j. By Lemma 3.3, S is not expandable. This means that for some set T of $2 r$ vertices of $V(G) \backslash S$, we have $\left(e_{i} \backslash S\right) \cap T \neq \emptyset$ for every $1 \leqslant i \leqslant m$. In other words, T intersects the part outside S of every e_{i}.

By the pigeonhole principle, there is an $x \in T$ such that the set $S \cup\{x\}$ is contained in at least $(2 r)^{j-i-1}+1$ edges among $e_{1}, e_{2}, \ldots, e_{m}$, a contradiction.

Corollary 3.5. For every $3 \leqslant j \leqslant k$ each 2 -element non-expandable subset of $V(G)$ is contained in at most $(2 k)^{j-2}$ edges of size j.

Proof. Suppose that $S=\{x, y\}$ is a non-expandable pair of vertices in G is contained in $m \geqslant$ $(2 k)^{j-2}+1$ edges e_{1}, \ldots, e_{m} of size j. Then some $2 k$ vertices $x_{1}, \ldots, x_{2 k}$ outside S intersect all edges
of G containing S, and in particular, all edges e_{1}, \ldots, e_{m}. Then by the pigeonhole principle, for some $1 \leqslant t \leqslant 2 k$, the 3 -element set $S+x_{t}$ is contained in at least $(2 k)^{j-3}+1$ edges among e_{1}, \ldots, e_{m}, a contradiction to Lemma 3.4.

3.2. Proof of Theorem 3.1

In this section we complete the proof of Theorem 3.1. For $3 \leqslant i \leqslant r$, let G_{i} be the subgraph of G consisting of all edges of size i, that is, $E\left(G_{i}\right)=\{e \in E(G):|e|=i\}$. For convenience, denote $n=|V(G)|$.

Lemma 3.6. For every $3<j \leqslant r,\left|E\left(G_{j}\right)\right| \leqslant(2 r)^{j-2}\binom{n}{2}$.
Proof. Let $e \in E\left(G_{j}\right)$ and $x, y, z \in e$. By Lemma 3.2, at least one of the pairs $\{x, y\},\{x, z\}$ and $\{y, z\}$ is non-expandable and thus, by Corollary 3.5 , is contained in at most $(2 r)^{j-2}$ edges of G_{j}. Since every $e \in E\left(G_{j}\right)$ contains such a pair, the lemma follows.

Lemma 3.7. $\left|E\left(G_{3}\right)\right| \geqslant n^{5 / 3} / 4 r^{2}$.
Proof. Suppose that $\left|E\left(G_{3}\right)\right|<n^{5 / 3} / 4 r^{2}$. Let $p=n^{-1 / 3} / 4 r^{2}$ and let W be a random subset of $V(G)$ where each $v \in V(G)$ is in W with probability p independently of all other vertices. By Lemma 3.6, for $j \geqslant 4$, the expected number of edges of size j in $G[W]$ is at most

$$
\left|E\left(G_{j}\right)\right| p^{j} \leqslant(2 r)^{j-2}\binom{n}{2}\left(4 r^{2}\right)^{-j} n^{-j / 3} \leqslant(2 r)^{-j} n^{2 / 3}
$$

By assumption, the expected number of edges of size 3 in $G[W]$ is at most

$$
n^{5 / 3} p^{3} / 4 r^{2}=(2 r)^{-8} n^{2 / 3} \leqslant(2 r)^{-5} n^{2 / 3}
$$

So, the expectation of $|W|-|E(G[W])|$ is at least

$$
p n-\sum_{j=4}^{r}(2 r)^{-j} n^{2 / 3}-(2 r)^{-5} n^{2 / 3} \geqslant p n-2(2 r)^{-4} n^{2 / 3}=\left(1-\frac{1}{2 r^{2}}\right) p n
$$

Thus there is a particular subset U of $V(G)$ with $|U|-|E(G[U])| \geqslant 0.9 p n$. Then deleting a vertex from each edge in $G[U]$ we obtain an independent subset U^{\prime} of U with $\left|U^{\prime}\right| \geqslant 0.9 p n$, so $\alpha(G) \geqslant n^{2 / 3} / 5 r^{2}>$ $n^{2 / 3} / 8 r^{3}$, a contradiction to the choice of G.

The key part of the proof will be to produce an independent set in $H=G_{3}$ of size at least $n^{2 / 3} / 8 r^{3}$ that is also an independent set in G, using the preceding lemmas. By Lemma 3.7, $|E(H)| \geqslant(2 r)^{-2} n^{5 / 3}$. Let $d=3|E(H)| / n$ be the average degree of H, so $d \geqslant 3 n^{2 / 3} / 4 r^{2}$. An edge $e \in H$ is called k-light if exactly k pairs of vertices of e have codegree in H at most r. An edge is heavy if it is 0 -light. We see quickly that H has no heavy edges: for a heavy edge $\{x, y, z\} \in H$, since $r+1 \geqslant 4$, we can greedily choose distinct vertices $a, b, c \notin\{x, y, z\}$ such that edges $\{a, x, y\},\{b, y, z\},\{c, x, z\}$ form a triangle, since each of the pairs $(x, y),(y, z),(z, x)$ has codegree at least $r+1 \geqslant 4$. We now consider two cases.

Case 1. The number of edges in H that are 2-light or 3-light is at least $2|E(H)| / 3$.
For each vertex v, let $d^{\prime}(v)$ be the number of edges e of H containing v such that e is either 2 -light or 3 -light and v is incident to two light pairs of e. Then $\sum_{v} d^{\prime}(v)$ counts each such e one or three times so $\sum_{v} d^{\prime}(v) \geqslant 2|E(H)| / 3$. Therefore some vertex v of H is in at least $2|E(H)| / 3 n=2 d / 9$ edges, where two pairs of codegree (in H) at most r in each edge contain v. Let $e_{1}, e_{2}, \ldots, e_{m}$ be such a set of edges on v with $m \geqslant 2 d / 9$. Then the link graph $L(v)$ consisting of pairs $e_{i} \backslash\{v\}$ has maximum degree at most r. It follows by Vizing's Theorem that $L(v)$ has a matching of size $\ell \geqslant m /(r+1)$. This means that we have found edges, say $e_{1}, e_{2}, \ldots, e_{\ell}$ sharing no vertices other than v, and such

Fig. 1. Finding an independent set in Case 1.

Fig. 2. Finding an independent set in Case 2.
that in each e_{i} the two pairs containing v have codegree at most r. Now pick $x_{1}, x_{2}, \ldots, x_{\ell}$ where $x_{i} \in e_{i} \backslash\{v\}$ for $1 \leqslant i \leqslant \ell$. We claim that this is an independent set in the entire hypergraph G. If not, then say $e=\left\{x_{1}, \ldots, x_{j}\right\} \in E(G)$. Then $\left\{e, e_{1}, e_{2}\right\}$ is a triangle in G, since e_{1} and e_{2} share only v, e and e_{1} share only x_{1}, and e and e_{2} share only x_{2} - see Fig. 1. This independent set has size $\ell \geqslant m /(r+1) \geqslant 2 d / 9(r+1) \geqslant n^{2 / 3} / 8 r^{3}$. This completes the proof in Case 1.

Case 2. The number of 1 -light edges in H is at least $|E(H)| / 3$.
For each vertex v, let $d^{\prime \prime}(v)$ be the number of edges e of H containing v such that e is 1 -light and v is incident to the light pair of e. Then $\sum_{v} d^{\prime \prime}(v)$ counts each such e exactly twice so $\sum_{v} d^{\prime \prime}(v) \geqslant$ $2|E(H)| / 3$. By averaging, some v in H lies in at least $2|E(H)| / 3 n=2 d / 91$-light edges such that the pair of codegree in H at most r in each edge contains v. Then there are at least $2 d / 9 r$ distinct vertices $x_{1}, x_{2}, \ldots, x_{m}$ such that the codegree of $\left(v, x_{i}\right)$ is at most r, and there is a 1 -light edge $e_{i} \supset\left\{v, x_{i}\right\}$ for all $i \in\{1,2, \ldots, m\}$. Since each e_{i} is 1-light, exactly two pairs of vertices in e_{i} have codegree at least $1+r$, and in particular, all $e_{i} s$ are distinct. We claim that $\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}$ is again an independent set in G. Suppose not, and that $\left\{x_{1}, \ldots, x_{j}\right\}$ is an edge. Let $e_{i} \backslash\left\{x_{i}, v\right\}=\left\{y_{i}\right\}$. Note that every y_{i} is disjoint from $\left\{x_{1}, \ldots, x_{j}\right\}$, otherwise if say $y_{i}=x_{j}$, then $\left\{v, x_{i}\right\}$ and $\left\{v, x_{j}\right\}$ both have codegree less than $1+r$, but they lie in the edge e_{i}, which has only one pair of codegree less than $1+r$ - a contradiction. So every y_{i} is disjoint from $\left\{x_{1}, \ldots, x_{j}\right\}$. Now we claim that $y_{1}=y_{2}=\cdots=y_{j}$. If say $y_{1} \neq y_{2}$ (left drawing in Fig. 2), consider the triples $\left\{v, x_{1}, y_{1}\right\},\left\{v, x_{2}, y_{2}\right\}$ and the edge $\left\{x_{1}, x_{2}, \ldots, x_{j}\right\}$. Since $y_{1}, y_{2}, x_{1}, \ldots, x_{j}$ are all distinct, this is a triangle. So $y_{1}=y_{2}=\cdots=y_{j}=y$. Now consider the pairs $\left\{y, x_{1}\right\},\left\{y, x_{2}\right\}$ (shown in black bold lines in the right drawing in Fig. 2). Since $\left\{y, x_{1}\right\}$ and $\left\{y, x_{2}\right\}$ are pairs in e_{1} and e_{2}, respectively, and they do not contain v, by the choice of e_{1} and e_{2}, those pairs have codegree at least $1+r$. So we can pick $z_{1} \neq z_{2}$ with $z_{1}, z_{2} \notin\left\{x_{1}, \ldots, x_{j}, y, v\right\}$ such that $\left\{x_{1}, y, z_{1}\right\},\left\{x_{2}, y, z_{2}\right\},\left\{x_{1}, x_{2}, \ldots, x_{j}\right\}$ is a triangle - namely $z_{1}, z_{2}, x_{1}, \ldots, x_{j}$ are all distinct. This shows that $\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}$ is independent, and it has size at least $2 d / 9 r \geqslant n^{2 / 3} / 6 r^{3}$.

4. Generalized quadrangles and a spectral lemma

Generalized quadrangles were first constructed by Tits [21] and described as graphs by Benson [5]. Let G_{q} denote a generalized quadrangle of order q, which is a $(q+1)$-regular $(q+1)$-uniform C_{2}, C_{3}-free hypergraph on $q^{3}+q^{2}+q+1$ vertices. Generalized quadrangles of order q exist whenever q is a prime power.

4.1. A general spectral lemma

In this section, we employ a lemma which relates the distribution of edges in a bipartite graph to spectral properties of its adjacency matrix. This lemma is an analog of a well-known spectral lemma in graph theory (see for example [3]) which is frequently referred to as the expander mixing lemma, and is used especially in the context of (n, d, λ)-graphs and pseudorandom graphs. The lemma we give may be referred to as the expander mixing lemma for bipartite graphs, appears in a different form in [11] and in [12]. For completeness, we give the proof here and it is very similar to the proof for non-bipartite graphs in [3].

Lemma 4.1. Let $G(U, V)$ be a d-regular bipartite graph with adjacency matrix A and let $\lambda_{1} \geqslant \lambda_{2} \geqslant \cdots \geqslant \lambda_{N}$ be the eigenvalues of A. Let $\lambda=\max \left\{\left|\lambda_{i}\right|: i \notin\{1, N\}\right.$. Then for any sets $X \subseteq U$ and $Y \subseteq V$, the number $e(X, Y)$ of edges from X to Y satisfies

$$
\left|e(X, Y)-\frac{d}{|V|}\right| X||Y|| \leqslant \lambda \sqrt{|X||Y|} .
$$

Proof. Let χ_{X} and χ_{Y} denote the characteristic vectors of X and Y. Let $x_{1}, x_{2}, \ldots, x_{N}$ be an orthonormal basis of eigenvectors of A, where χ_{i} is the eigenvector corresponding to λ_{i}, and write

$$
\chi_{X}=\sum_{i=1}^{N} s_{i} x_{i}, \quad \chi_{Y}=\sum_{i=1}^{N} t_{i} x_{i} .
$$

Then

$$
e(X, Y)=\left\langle A \chi_{X}, \chi_{Y}\right\rangle=\lambda_{1} s_{1} t_{1}+\lambda_{N} s_{N} t_{N}+\sum_{i=2}^{N-1} \lambda_{i} s_{i} t_{i} .
$$

The values of s_{1}, t_{1}, s_{N} and t_{N} are recovered quickly from the knowledge of the first and last eigenvectors, x_{1} and x_{N}, recalling x_{1} is the constant unit vector and x_{N} is the unit vector which is constant on $V\left(G_{q}\right)$ and minus that constant on $E\left(G_{q}\right)$. Noting that $\left\|\chi_{X}\right\|^{2}=|X|$ and $\left\|\chi_{Y}\right\|^{2}=|Y|$, and using $\lambda_{1}=d=-\lambda_{N}$, it is straightforward to see that

$$
e(X, Y)=\frac{d}{|V|}|X||Y|+\sum_{i=2}^{N-1} \lambda_{i} s_{i} t_{i}
$$

Finally, by the Cauchy-Schwarz inequality,

$$
\sum_{i=2}^{N-1} \lambda_{i} s_{i} t_{i} \leqslant \lambda(A)\left(\sum_{i=1}^{N} s_{i}^{2}\right)^{1 / 2}\left(\sum_{i=1}^{N} t_{i}^{2}\right)^{1 / 2}
$$

and the sums are $\left\|\chi_{X}\right\|=\sqrt{|X|}$ and $\left\|\chi_{Y}\right\|=\sqrt{|Y|}$ respectively.
This lemma will be used in the context of hypergraphs (in particular for the hypergraph $H=G_{q}$) in the following way: if H is a hypergraph, then the bipartite incidence graph of H is the bipartite graph $B(H)$ whose parts are $V(H)$ and $E(H)$, and $\{v, e\} \in E(B(H))$ if and only if $v \in e$. We denote by $A(H)$ the adjacency matrix of the bipartite incidence graph $B(H)$, and when $|V(H)|=|E(H)|$ we denote
by $\lambda(H)$ the largest absolute value of the eigenvalues of $A(H)$ other than λ_{1} and λ_{N}. Lemma 4.1 is applied to $B(H)$ to give the following hypergraph formulation:

Lemma 4.2. Let H be a d-uniform d-regular n-vertex hypergraph and let $X \subseteq V(H)$ and $Y \subseteq E(H)$. Then

$$
\left|\sum_{e \in Y}\right| X \cap e\left|-\frac{d}{|V|}\right| X||Y|| \leqslant \lambda(H) \sqrt{|X||Y|}
$$

In particular, if $\lambda(H) \leqslant \delta \sqrt{d}$ and $|X| \geqslant 2 \tau n / d$, then the number of edges $e \in E(H)$ such that $|X \cap e| \geqslant \tau$ is at least $n-2 \delta^{2} n / \tau$.

Proof. For the first inequality, if H is a d-uniform d-regular hypergraph, then $B(H)$ is d-regular. Applying Lemma 4.1 gives

$$
\left|e(X, Y)-\frac{d}{|V|}\right| X||Y|| \leqslant \lambda(H) \sqrt{|X||Y|}
$$

We note that

$$
e(X, Y)=\sum_{e \in Y}|X \cap e|
$$

This gives the first inequality of Lemma 4.2. Applying this inequality with $\lambda(H) \leqslant \delta \sqrt{d}$, we obtain for any $Z \subseteq E(H)$,

$$
\left|\sum_{e \in Z}\right| X \cap e\left|-\frac{d}{n}\right| X||Z|| \leqslant \delta \sqrt{d|X||Z|}
$$

Now let $Y=\{e \in E(H):|X \cap e| \geqslant \tau\}$ and $Z=E(H) \backslash Y$. Suppose for a contradiction that $|Z|>2 \delta^{2} n / \tau$. By the definition of Z,

$$
\sum_{e \in Z}|X \cap e|<\tau|Z|
$$

By the preceding inequality,

$$
\tau|Z|>\sum_{e \in Z}|X \cap e|>\frac{d}{n}|X||Z|-\delta \sqrt{d|X||Z|}
$$

Since $|X| \geqslant 2 \tau n / d$, we get

$$
\tau|Z|<\delta \sqrt{2 \tau n|Z|}
$$

This contradicts $|Z|>2 \delta^{2} n / \tau$.
We remark that for fixed $|X|, d|X| /|V|$ is exactly the expected value of $|X \cap e|$ when X is a random set whose elements are chosen from $V(H)$ independently with probability $|X| /|V|$.

4.2. Spectral properties of $A\left(G_{q}\right)$

In order to apply Lemma 4.2 to G_{q}, we determine $\lambda\left(G_{q}\right)$. Since G_{q} is $(q+1)$-uniform and $(q+1)$-regular, the bipartite incidence graph $B\left(G_{q}\right)$ is $(q+1)$-regular. Since $B\left(G_{q}\right)$ is connected, this implies $q+1$ and $-(q+1)$ are eigenvalues of $A=A\left(G_{q}\right)$ with multiplicity 1 . By the definition of a generalized quadrangle, for every vertices x and y in distinct partite sets of $B\left(G_{q}\right)$, there exists exactly one x, y-path of length 3 . Since each entry $a_{i, j}^{3}$ of A^{3} is the number of i, j-walks of length 3 , we have

$$
A^{3}=J+q A
$$

where J is the block matrix

$$
J=\left(\begin{array}{cc}
0 & K \\
K & 0
\end{array}\right)
$$

and K is the square all 1 matrix with appropriate dimensions. If $\lambda \notin\{-(q+1), q+1\}$ is an eigenvalue of A, then an eigenvector x for λ is orthogonal to the constant unit vector and so $K x=0$. It follows that $\lambda^{3}=q \lambda$ and therefore $\lambda \in\{-\sqrt{q}, 0, \sqrt{q}\}$. Since the eigenvalues of $A\left(G_{q}\right)$ other than $-(q+1)$ and $(q+1)$ are not all zero, $\lambda\left(G_{q}\right)=\sqrt{q}$. A more complete analysis of these eigenvalues and their multiplicities was achieved by Haemers [11]. Since we have $\lambda\left(G_{q}\right)=\sqrt{q}$, Lemma 4.2 gives the following:

Corollary 4.3. Let $X \subseteq V\left(G_{q}\right)$ where $|X| \geqslant 2 \tau n /(q+1)$, and let Y be the set of $e \in E\left(G_{q}\right)$ such that $|X \cap e| \geqslant \tau$. Then

$$
|Y| \geqslant n-\frac{2 n}{\tau}
$$

Proof. Since $\lambda\left(G_{q}\right)=\sqrt{q}$, applying Lemma 4.2 with $\delta=1$ and $d=q+1$ gives the result.

5. Proof of Theorem 1.1: Lower bound

Based on the generalized quadrangle G_{q}, we now specify the construction of a triangle-free n-vertex hypergraph H_{q} with independence number $O\left(n^{2 / 3} \sqrt{\log n}\right)$, which gives the lower bound in Theorem 1.1 for $r=3$. Let $\tau=\lfloor 4 \log q\rfloor$. The idea is to place randomly a carefully chosen triangle-free 3-graph F_{q} on $q+1$ vertices into each of the edges of G_{q}, independently for each edge of G_{q}, to form a new hypergraph H_{q} with $n=q^{3}+q^{2}+q+1$ vertices. We then use the spectral result in the form of Corollary 4.3 to deduce that a set of $2 \tau n / q$ vertices of G_{q} must intersect almost all edges of G_{q} in roughly τ vertices. Together with some basic probability, we use this to deduce that the expected number of independent sets of size $2 \tau n / q$ in H_{q} is $o(1)$, and therefore some H_{q} has independence number $2 \tau n / q$, as required. A similar idea will be used in the lower bound in Theorems 1.2 and 1.4, and the appropriate modifications to F_{q} will be made in Section 5.3 to obtain the lower bound in Theorem 1.1 for $r>3$.

5.1. The hypergraph F_{q}

Throughout this section, $\tau=\lfloor 8 \sqrt{\log q}\rfloor$. To describe H_{q}, we use the auxiliary hypergraph F_{q} with vertex set $[q+1]$, defined as follows. Let $V=\left\{v_{i j}: 1 \leqslant i, j \leqslant \tau\right\}$ be a τ^{2}-element subset of $[q+1]$ and let $S_{1}, \ldots, S_{\tau}, T_{1}, \ldots, T_{\tau}$ be a partition of $[q+1]-V$ into sets whose sizes differ by at most one. Let $S=\bigcup_{i=1}^{\tau} S_{i}$ and $T=\bigcup_{j=1}^{\tau} T_{j}$. The edge set of F_{q} is the set of all triples $\left\{v_{i j}, a, b\right\}$ such that $a \in S_{i}$ and $b \in T_{j}$. Note that F_{q} is actually 3-partite, with parts V, S and T. Then H_{q} is constructed by taking independently for each $e \in G_{q}$ a random bijection π_{e} from $V\left(F_{q}\right)$ to e and letting a triple in e be an edge if its pre-image is an edge in F_{q}.

Lemma 5.1. H_{q} is triangle-free.
Proof. Since G_{q} is linear and triangle-free, it is sufficient to verify that F_{q} is triangle-free. Suppose F_{q} has a triangle. Since F_{q} is 3-partite, some vertex in V belongs to two of the edges of the triangle. Let this vertex be $v_{i j} \in V$, and these two edges be $\left\{v_{i j}, s_{i}, t_{j}\right\}$ and $\left\{v_{i j}, s_{i}^{\prime}, t_{j}^{\prime}\right\}$. Now the third edge must be either $\left\{v, s_{i}, t_{j}^{\prime}\right\}$ or $\left\{v, s_{i}^{\prime}, t_{j}\right\}$ for some $v \in V$. By definition of F_{q}, this implies that $v=v_{i j}$, a contradiction.

Next we bound from above the probability that a set of τ vertices of $e \in E\left(G_{q}\right)$ is an independent set in H_{q}.

Lemma 5.2. Let I be a τ-element subset of $e \in E\left(G_{q}\right)$. Then as $q \rightarrow \infty$, the probability that I is independent in H_{q} is at most $1-\frac{\tau^{3}-o\left(\tau^{3}\right)}{4 e q}$.

Proof. Let N be the number of τ-sets X of $V\left(F_{q}\right)=[q+1]$ that are not independent in F_{q}. A lower bound for N is obtained by picking an element $v_{i j} \in V$, an element $s \in S_{i}$, an element $t \in T_{j}$ and $\tau-3$ elements in $[q+1]-\left(V \cup S_{i} \cup T_{j}\right)$. As $q \rightarrow \infty$, this gives

$$
\begin{aligned}
N & \geqslant \sum_{v_{i j} \in V}\left|S_{i}\right|\left|T_{j}\right|\binom{q+1-\left|S_{i}\right|-\left|T_{j}\right|-|V|}{\tau-3} \\
& \geqslant \tau^{2} \cdot\left\lfloor\left.\frac{q}{2 \tau}\right|^{2}\binom{q+1-2\left\lceil\frac{q+1-\tau^{2}}{2 \tau}\right\rceil-\tau^{2}}{\tau-3}\right. \\
& \geqslant \tau^{2} \cdot\left\lfloor\left.\frac{q}{2 \tau}\right|^{2}\binom{(1-1 / \tau)(q+1)-\tau^{2}}{\tau-3}\right. \\
& =(1-o(1)) \tau^{2}\left(\frac{q}{2 \tau}\right)^{2}\binom{(1-1 / \tau) q}{\tau-3} \\
& =(1-o(1)) \frac{q^{2}}{4}(1-1 / \tau)^{\tau-3} \frac{q^{\tau-3}}{(\tau-3)!} \\
& =(1-o(1)) \frac{\tau^{3}}{4 e q} \frac{(q+1)^{\tau}}{\tau!} \\
& =(1-o(1)) \frac{\tau^{3}}{4 e q}\binom{q+1}{\tau}
\end{aligned}
$$

Now the probability that $I \subset e$ is not independent in H_{q} is

$$
\frac{\mid\left\{\pi_{e}: I \text { is not independent under } \pi_{e}\right\} \mid}{(q+1)!}=\frac{N \tau!(q+1-\tau)!}{(q+1)!}=\frac{N}{\binom{q+1}{\tau}}
$$

The lower bound on N now gives the desired result.

5.2. Independence number of H_{q}

If $n=q^{3}+q^{2}+q+1$ for some prime power q, then we show that with positive probability, H_{q} has no independent set of size more than $2 \tau n / q$ if n is large enough and $\tau=\lfloor 8 \sqrt{\log q}\rfloor$. Note that $2 \tau n / q<16 n^{2 / 3} \sqrt{\log n}$ if n is large enough. If n is not of this form, pick the smallest prime power q such that $n \leqslant q^{3}+q^{2}+q+1$, and remove $q^{3}+q^{2}+q+1-n$ vertices from H_{q}. The new hypergraph H_{q}^{\prime} has $\alpha\left(H_{q}^{\prime}\right) \leqslant \alpha\left(H_{q}\right)$. Since it is well-known that there exists a prime $q: n^{1 / 3} \leqslant q \leqslant 2 n^{1 / 3}, H_{q}^{\prime}$ has no independent set of size more than $2 \tau n / q=O\left(n^{2 / 3} \sqrt{\log n}\right)$, as required to finish the proof of the lower bound in Theorem 1.1.

Suppose that $X \subset V\left(H_{q}\right)=V\left(G_{q}\right)$ is an independent set of size $\lceil 2 \tau n / q\rceil$ in H_{q}. By Corollary 4.3, at least $n-2 n / \tau$ of the edges of G_{q} contain at least τ vertices of I. Let $Y=Y(X)$ be this set of edges. For each $e \in Y, X \cap e$ is an independent set in the random hypergraph F_{q} on e. Let B_{e} be the event that $X \cap e$ is independent in F_{q}. By Lemma 5.2,

$$
P\left(B_{e}\right) \leqslant 1-\frac{\tau^{3}}{11 q}
$$

provided q is large enough. The events B_{e} are independent over $e \in Y$, and therefore the expected number of independent sets of size $2 \tau n / q$ in H_{q} is at most

$$
\begin{align*}
\sum_{X:|X|=\lceil 2 \tau n / q\rceil} \prod_{e \in Y} P\left(B_{e}\right) & \leqslant\left(1-\frac{\tau^{3}-o\left(\tau^{3}\right)}{4 e q}\right)^{n-2 n / \tau}\binom{n}{\lceil 2 \tau n / q\rceil} \\
& \leqslant \exp \left(-\frac{n\left(\tau^{3}-o\left(\tau^{3}\right)\right)}{4 e q}+\frac{2 \tau n}{q} \log \frac{n}{q}\right) . \tag{1}
\end{align*}
$$

Since $\tau=\lfloor 8 \sqrt{\log q}\rfloor$ and $n=q^{3}+q^{2}+q+1$, as $q \rightarrow \infty$, we have

$$
\begin{aligned}
-\frac{n\left(\tau^{3}-o\left(\tau^{3}\right)\right)}{4 e q}+\frac{2 \tau n}{q} \log \frac{n}{q} & \leqslant \frac{n \tau}{q}\left[-\frac{\tau^{2}-o\left(\tau^{2}\right)}{4 e}+2 \log q^{2}\right] \\
& \leqslant \frac{n \tau}{q}\left[-\frac{(1-o(1)) 64 \log q}{4 e}+4 \log q\right]
\end{aligned}
$$

Thus the quantity in (1) decays to zero. Therefore with high probability, H_{q} has no independent set of size more than $2 \tau n / q<16 n^{2 / 3} \sqrt{\log n}$ if n is large enough. This proves the lower bound in Theorem 1.1 for $r=3$. We next turn to the case $r>3$.

5.3. The hypergraph $H_{q, r}$

In this section we prove the lower bound in Theorem 1.1 for $r>3$. Take $H_{q, r}$ to consist of randomly placed copies of a carefully chosen hypergraph $F_{q, r}$ on $q+1$ vertices in the edges of G_{q}. The hypergraph $F_{q, r}$ takes the role of the hypergraph F_{q} in the preceding section. To describe $F_{q, r}$, we first review a known construction of linear r-graphs based on a construction of dense sets without three-term arithmetic progressions.

5.4. Description of $F_{q, r}$

Erdős, Frankl and Rödl [10] showed that for every $r \geqslant 3$ there is a constant $c_{r}>0$ such that for each $N \in \mathbb{N}$ there exists a linear triangle-free r-partite r-graph $J(N, r)$ with N vertices in each part and at least $N^{2} / \exp \left(c_{r} \sqrt{\log N}\right)$ edges. Their construction is based on and generalizes the construction of Ruzsa and Szemerédi [18] for $r=3$ of a dense linear triangle-free 3-graph. The Ruzsa-Szemerédi construction is in turn derived from Behrend's construction [4] of relatively dense sets of integers with no three-term arithmetic progressions. Using the Erdős-Frankl-Rödl construction, we describe a triangle-free (but not linear) r-graph $F_{q, r}$ on $q+1$ vertices for each $r>3$. This is the key in the description of $H_{q, r}$ for the proof of Theorem 1.1.

Fix $r>3$, and let $C_{r}>0$ be a constant depending on r, to be chosen later. Let J be the Erdős-Frankl-Rödl hypergraph $J(\tau, r-1)$, where

$$
\tau=\left\lceil(\log q)^{1 / 2} \exp \left(-C_{r} \sqrt{\log \log q}\right)\right\rceil=(\log q)^{1 / 2-o(1)} .
$$

For convenience let $m=|E(J)|$ and let V_{1}, \ldots, V_{r-1} be the parts of J. To define $V\left(F_{q, r}\right)$, associate pairwise disjoint sets S_{v} to the vertices $v \in V(J)$, and let W be a set of m vertices disjoint from all the sets S_{v} and indexed by the edges of J, namely $W=\left\{v_{e}: e \in E(J)\right\}$. Then let

$$
V\left(F_{q, r}\right)=W \cup \bigcup_{v \in V(J)} S_{v}
$$

where the S_{v} are as equal in size as possible subject to

$$
q+1=m+\bigcup_{v \in V(J)} S_{v}
$$

This ensures that $F_{q, r}$ has exactly $q+1$ vertices. The edges of $F_{q, r}$ are defined as follows. For every $e=\left\{v_{1}, \ldots, v_{r-1}\right\} \in J(\tau, r-1)$ with $v_{i} \in V_{i}$, recall that $v_{e} \in W$, and let

$$
F_{e}=\left\{v_{e} \cup\left\{x_{1}, \ldots, x_{r-1}\right\}: x_{i} \in S_{v_{i}}, i=1, \ldots, r-1\right\} .
$$

Then

$$
E\left(F_{q, r}\right)=\bigcup_{e \in J(\tau, r-1)} F_{e}
$$

Loosely speaking, the edges $e \in E(J)$ are being replaced with complete ($r-1$)-partite ($r-1$)-graphs $K(e)$ with parts of size roughly $q /(r-1) \tau$, and then we form the edges of $F_{q, r}$ by enlarging each of the edges of $K(e)$ with the new vertex v_{e}. It is straightforward to check (by both the linearity of J and the fact that J is triangle-free) that $F_{q, r}$ is triangle-free (although it is not linear). The key lemma about $F_{q, r}$ is now as follows:

Lemma 5.3. Let $r \geqslant 3$ and I be a τ-element subset of $e \in E\left(G_{q}\right)$. Then for some $d_{r}>0$, the probability that I is independent in $H_{q, r}$ is at most

$$
1-\frac{\tau^{3-d_{r} / \sqrt{\log \tau}}}{q}
$$

Proof. Let N be the number of τ-element subsets of $V\left(F_{q, r}\right)=[q+1]$ that are not independent in $F_{q, r}$. Since every τ-element set obtained by picking an element $w_{e} \in W$, an element from each set S_{v} such that $v \in e$, and then $\tau-r$ elements in $[q+1] \backslash\left(W \cup \bigcup_{v \in e} S_{v}\right)$ is not independent, we have

$$
N \geqslant \sum_{w_{e} \in W}\left(\prod_{v \in e}\left|S_{v}\right|\right)\binom{q+1-\sum_{v \in e}\left|S_{v}\right|-|W|}{\tau-r}
$$

Since all S_{v} have almost the same cardinality, as $q \rightarrow \infty$ the right-hand side is at least

$$
(m+o(m)) \cdot\left(\frac{q}{\tau}\right)^{r-1} \cdot\left(\frac{q+1-q / \tau}{\tau-r}\right)^{\tau-r} \geqslant(m+o(m)) \cdot \frac{\tau}{q \operatorname{er}^{r}}\binom{q+1}{\tau}
$$

So we can choose $d_{r}>0$ depending only on r such that the last expression is at least

$$
\frac{\tau^{3-d_{r} / \sqrt{\log \tau}}}{q}\binom{q+1}{\tau}
$$

This bound proves the lemma.

The rest of the proof for $H_{q, r}$ carries through as for H_{q}, except at the end, the expected number of independent sets of size $2 \tau n / q$ in $H_{q, r}$ is now by Lemma 5.3 at most

$$
\left(1-\frac{\tau^{3-d_{r} / \sqrt{\log \tau}}}{q}\right)^{n-2 n / \tau}\binom{n}{2 \tau n / q}<\exp \left(-\frac{\tau^{3-d_{r} / \sqrt{\log \tau} n}}{2 q}+\frac{2 \tau n \log n}{q}\right)
$$

We have chosen τ to ensure

$$
\tau^{3-d_{r} / \sqrt{\log \tau}}>6 \tau \log n
$$

This ensures that the expected number of independent sets of size $2 \tau n / q$ in $H_{q, r}$, for large enough n, is less than

$$
\exp \left(-\frac{\tau n \log n}{q}\right)<\exp \left(-n^{2 / 3} \log n\right)<1
$$

We conclude that with positive probability, for large enough n and a large enough constant C_{r},

$$
\alpha\left(H_{q, r}\right) \leqslant 2 \tau n / q \leqslant 2 n^{2 / 3}(\log n)^{1 / 2+C_{r} / \sqrt{\log \log n}}
$$

This gives the lower bound on Ramsey numbers in Theorem 1.1.

6. Proof of Theorem 1.2

To prove the upper bound in Theorem 1.2, it is sufficient to show that every n-vertex linear triangle-free 3 -graph has an independent set of $\operatorname{size} \Omega\left(n^{2 / 3}(\log n)^{1 / 3}\right)$. Let H be such a 3 -graph. By the main theorem in [1],

$$
\alpha(H)=\Omega\left(\frac{n \sqrt{\log d}}{\sqrt{d}}\right)
$$

where d is the average degree of H. The union of all pairs $e \backslash\{v\}$ for edges e containing a vertex v of degree at least d in H is an independent set of $2 d$ vertices in H, since H is linear and triangle-free. Therefore

$$
\alpha(H)=\Omega\left(\min _{d} \max \left\{d, \frac{n \sqrt{\log d}}{\sqrt{d}}\right\}\right)=\Omega\left(n^{2 / 3}(\log n)^{1 / 3}\right)
$$

This completes the proof of the upper bound in Theorem 1.2.

6.1. Proof of Theorem 1.2: Lower bound

Based on the hypergraph G_{q}, for $n=q^{3}+q^{2}+q+1$ and q a prime power, we construct an n-vertex linear triangle-free 3-graph H_{q}^{*} with $\alpha\left(H_{q}^{*}\right) \leqslant n^{2 / 3} \exp (A \sqrt{\log n})$ for some $A>0$. If n is not of that form, then as in the proof of Theorem 1.1 we use the distribution of primes and a large subhypergraph of H_{q}^{*} to obtain the same result with perhaps a slightly larger implicit constant. Let $N=\lfloor(q+1) / 3\rfloor$ and let $F_{q}^{*}=J(N, 3)$, where $J(N, 3)$ is defined in Section 5.4. Then $\left|E\left(F_{q}^{*}\right)\right|=|E(J)|=\Omega\left(q r_{3}(q)\right)$. The main lemma we require counts independent sets of size τ in F_{q}^{*}.

Lemma 6.1. As $q \rightarrow \infty$ the number of independent sets of size τ in F_{q}^{*} is at most

$$
\left(1-\Omega\left(\frac{\tau^{3} r_{3}(q)}{q^{2}}\right)\right)\binom{q+1}{\tau}
$$

Proof. Let N be the number of non-independent sets of size τ in F_{q}^{*}. It is sufficient to show

$$
N=\Omega\left(\frac{\tau^{3} r_{3}(q)}{q^{2}}\right)\binom{q+1}{\tau} .
$$

Since $M:=\left|E\left(F_{q}^{*}\right)\right|=\Omega\left(q r_{3}(q)\right)$, by inclusion-exclusion,

$$
\begin{aligned}
N & \geqslant M \cdot\binom{q-2}{\tau-3}-\binom{M}{2}\binom{q-4}{\tau-5} \\
& =M \cdot\binom{q+1}{\tau} \frac{\tau(\tau-1)(\tau-2)}{(q+1) q(q-1)}\left(1-\frac{(M-1)(\tau-3)(\tau-4)}{2(q-2)(q-3)}\right) \\
& =\Omega\left(\frac{\tau^{3} r_{3}(q)}{q^{2}}\right)\binom{q+1}{\tau} .
\end{aligned}
$$

This is the required bound on N.
As before, we construct H_{q}^{*} by placing a randomly permuted copy of F_{q}^{*} in each edge of G_{q}. The expected number of independent sets of size $\lceil 2 \tau n / q\rceil$ in H_{q}^{*} is then at most

$$
\left(1-O\left(\frac{\tau^{3} r_{3}(q)}{q^{2}}\right)\right)^{n-2 n / \tau}\binom{n}{\lceil 2 \tau n / q\rceil}
$$

using Lemma 6.1 and Corollary 4.3 as in the proof of Theorem 1.1. Choose τ to satisfy

$$
\frac{4 \tau n \log n}{q}<\frac{n \tau^{3} r_{3}(q)}{q^{2}}
$$

which ensures that the expected number of independent sets is $o(1)$. It is sufficient to take

$$
\tau^{2}=(1+o(1)) \frac{4 q \log n}{r_{3}(q)}
$$

Then with high probability

$$
\alpha\left(H_{q}^{*}\right)<\frac{2 \tau n}{q}<\frac{8 n \sqrt{q \log n}}{q \sqrt{r_{3}(q)}}
$$

To obtain from this the lower bound on $R L\left(C_{3}, K_{t}^{3}\right)$, let $n=R L\left(C_{3}, K_{t}^{3}\right)$ so that

$$
\frac{8 n \sqrt{q \log n}}{q \sqrt{r_{3}(q)}}>t
$$

Since $r_{3}(q)>q / \exp (c \sqrt{\log q})$ for some $c>0$, this gives the lower bound on $R L\left(C_{3}, K_{t}^{r}\right)$ in Theorem 1.2.

Finally, we connect a bound on Ramsey numbers to $r_{3}(N)$. According to the above proof, if $n=$ $R L\left(C_{3}, K_{t}^{3}\right)=O\left(t^{3 / 2}(\log t)^{-3 / 4-c}\right)$, then

$$
\frac{n \sqrt{q \log n}}{q \sqrt{r_{3}(q)}}=\Omega(t)
$$

Put $N=q$. Recalling $n=N^{3}+o\left(N^{3}\right)$,

$$
r_{3}(N)=O\left(\frac{N^{5} \log N}{t^{2}}\right)
$$

The definition of n in terms of t gives

$$
t=\Omega\left(n^{2 / 3}(\log n)^{1 / 2+2 c / 3}\right)=\Omega\left(N^{2}(\log N)^{1 / 2+2 c / 3}\right)
$$

Therefore

$$
r_{3}(N)=O\left(\frac{N}{(\log N)^{4 c / 3}}\right) .
$$

This completes the proof of Theorem 1.2.

7. Proof of Theorem 1.3

For Theorem 1.3, which states that

$$
R\left(C_{k}, K_{t}^{r}\right)=\Omega^{*}\left(t^{1+\frac{1}{3 k-1}}\right)
$$

we let $G_{k, q}$ be an n-vertex $(q+1)$-uniform $(q+1)$-regular hypergraph with no cycles of length at most k, such that q is a maximum relative to n and such that $\lambda\left(G_{k, q}\right) \leqslant 2 \sqrt{q}$.

A construction of hypergraphs $G_{k, q}$ for primes $q \equiv 1 \bmod 4$ can be obtained from the construction of Ramanujan graphs of Lubotzsky, Phillips and Sarnak [16]. These $G_{k, q}$ are constructed from the following bipartite graphs of [16]: Let p, q be primes congruent to 1 modulo 4 with $p>16$. If $\left(\frac{p}{q}\right)=$ -1 , then $B_{p, q}$ is a bipartite $(q+1)$-regular graph with $p\left(p^{2}-1\right)$ vertices in each part and no cycle of length less than $4 \log _{q}(p / 4)$. If $\left(\frac{p}{q}\right)=1$, then $B_{p, q}$ is a bipartite $(q+1)$-regular graph with $p\left(p^{2}-1\right) / 2$ vertices in each part and no cycle of length less than $2 \log _{q} p$. In both cases $B_{p, q}$ has no cycle of length less than $2 \log _{q} p$ since $p>16$, and the second largest eigenvalue in absolute value except the first and last is at most $2 \sqrt{ } \bar{q}$.

So, given $k \geqslant 4$, we first choose a prime $q \equiv 1 \bmod 4$, then choose a smallest prime $p \equiv 1 \bmod 4$ with $p>q^{k}$. By the previous paragraph, for $n \in\left\{\frac{1}{2} p\left(p^{2}-1\right), p\left(p^{2}-1\right)\right\}$, there exists a $2 n$-vertex bipartite $(q+1)$-regular graph $B_{p, q}$ of girth greater than $2 k$. This $B_{p, q}$ is the bipartite incidence graph of a C_{k}-free $(q+1)$-graph $G_{k, q}$ on n vertices. And if we choose the smallest possible p, then $n<$ $(1+o(1)) q^{3 k}$. Furthermore, it follows that $\lambda\left(G_{k, q}\right) \leqslant 2 \sqrt{q}$.

Let $F_{k, q, r}$ denote the r-graph consisting of a vertex-disjoint union of $\tau=\lfloor 4 \log q\rfloor$ stars of size $\lfloor q / \tau\rfloor$ on q vertices. In each edge of $G_{k, q}$, put a randomly permuted copy of $F_{k, q, r}$ to get the r-graph $H_{k, q, r}$. Corollary 4.3 shows that if X is a set of at least $2 \tau n / q$ vertices of $H_{k, q, r}$, then at least $n-8 n / \tau$ edges of $G_{k, q}$ contain at least τ vertices of X. The expected number of independent sets in $H_{k, q, r}$ of size $2 \tau n / q$ is at most

$$
\left(1-\frac{\tau^{2}}{10 q}\right)^{n-8 n / \tau}\binom{n}{2 \tau n / q}<\exp \left(-\frac{\tau^{2} n}{20 q}+\frac{2 \tau n \log n}{q}\right)
$$

provided q is large enough. The choice of τ ensures this decays to zero. Therefore with positive probability,

$$
\alpha\left(H_{k, q, r}\right)=O\left(\frac{\tau n}{q}\right)=O\left(n^{1-1 / 3 k} \log n\right)
$$

as long as $q>c_{k} n^{1 / 3 k}$ for some constant c_{k} depending only on k.
Now suppose we are given $k \geqslant 4$ and an integer n not of the form required to construct $B_{p, q}$ and hence $G_{k, q}$ and $H_{k, q, r}$. For such an n, we will choose p, q so that the construction above is possible on n^{\prime} vertices with $n<n^{\prime}<8 n$, and then restrict the resulting $H_{k, q, r}$ (which has n^{\prime} vertices) to a subhypergraph with only n vertices. The resulting n-vertex r-graph would again have independence number $O\left(n^{1-1 / 3 k} \log n\right)$.

Given $k \geqslant 4$ and a sufficiently large n, choose a prime $q \equiv 1 \bmod 4$ such that

$$
\frac{1}{2}(2 n)^{1 / 3 k}<q<(2 n)^{1 / 3 k}
$$

Such a q exists by the prime number theorem in arithmetic progressions. Next choose a prime $p \equiv$ $1 \bmod 4$ such that

$$
(3 n)^{1 / 3}<p<2 n^{1 / 3} .
$$

Again, by the prime number theorem in arithmetic progressions, we can find such a p because n is sufficiently large. Now set $n^{\prime}=p\left(p^{2}-1\right) / 2$ or $p\left(p^{2}-1\right)$ depending on whether $\left(\frac{p}{q}\right)$ is 1 or -1 , and construct $H_{k, q, r}$ as described above. The resulting ($q+1$)-graph $H_{k, q, r}$ contains no C_{k} as $q<(2 n)^{1 / 3 k}<$ $(3 n)^{1 / 3 k}<p^{1 / k}$. Finally, observe that

$$
n^{\prime}>p^{3} / 2-p / 2>3 n / 2-n^{1 / 3}>n
$$

and $n^{\prime}<p^{3}<8 n$. Moreover, $q>c_{k} n^{1 / 3 k}$ so the above bound on the independence number holds as $n \rightarrow \infty$.

This shows that for any $r \geqslant 3$ and $k \geqslant 4$,

$$
R\left(C_{k}, K_{t}^{r}\right)=\Omega^{*}\left(t^{1+\frac{1}{3 k-1}}\right)
$$

7.1. Proof of Theorem 1.5

The specialization of the above arguments to $k=5$ comes from the existence of generalized hexagons (see [8] or [20]). The generalized hexagons G_{q} exist for prime powers q and can be viewed as ($q+1$)-uniform ($q+1$)-regular hypergraphs G_{q} on $q^{5}+q^{4}+q^{3}+q^{2}+q+1$ vertices containing no cycles of length at most five, and moreover the associated matrix $A\left(G_{q}\right)$ has $\lambda\left(G_{q}\right)=\sqrt{q}$ once more. Using the hypergraph $F_{k, q, r}$ in each edge of the hypergraph G_{q} as before gives the result: we obtain a hypergraph $H_{5, q, r}$ with

$$
\alpha\left(H_{5, q, r}\right)=O\left(n^{4 / 5} \log n\right)
$$

from which the lower bound on Ramsey numbers $R\left(C_{5}, K_{t}^{r}\right)=\Omega\left(t^{5 / 4}(\log t)^{-5 / 4}\right)$ for all $r \geqslant 3$ follows.

References

[1] M. Ajtai, J. Komlós, J. Pintz, J. Spencer, E. Szemerédi, A note on Ramsey numbers, J. Combin. Theory Ser. A 29 (1980) 354-360.
[2] M. Ajtai, J. Komlós, E. Szemerédi, A note on Ramsey numbers, J. Combin. Theory Ser. A 29 (1980) 354-360.
[3] N. Alon, F.R.K. Chung, Explicit construction of linear sized tolerant networks, Discrete Math. 72 (1989) 15-19.
[4] F. Behrend, On sets of integers which contain no three elements in arithmetic progression, Proc. Natl. Acad. Sci. 32 (1946) 331-332.
[5] C. Benson, Minimal regular graphs of girth 8 and 12, Canad. J. Math. 18 (1966) 1091-1094.
[6] C. Berge, Graphs and Hypergraphs, North-Holland Math. Library, vol. 6, North-Holland Publishing Co./American Elsevier Publishing Co., Inc., Amsterdam, London, New York, 1973, xiv+528 pp. Translated from French by Edward Minieka.
[7] T. Bohman, P. Keevash, The early evolution of the H-free process, Invent. Math. 181 (2) (2010) 291-336.
[8] A.E. Brouwer, A.M. Cohen, A. Neumaier, Distance-Regular Graphs, Springer-Verlag, Berlin, 1989.
[9] Y. Caro, Y. Li, C. Rousseau, Y. Zhang, Asymptotic bounds for some bipartite graph-complete graph Ramsey numbers, Discrete Math. 220 (2000) 51-56.
[10] P. Erdős, P. Frankl, V. Rödl, The asymptotic number of graphs not containing a fixed subgraph and a problem for hypergraphs having no exponent, Graphs Combin. 2 (1968) 113-121.
[11] W. Haemers, Interlacing eigenvalues and graphs, Linear Algebra Appl. 226/228 (1995) 593-616.
[12] P. Keevash, B. Sudakov, J. Verstraete, Bipartite Turán numbers and a conjecture of Erdős and Simonovits, preprint, 2011.
[13] J. Kim, The Ramsey number $R(3, t)$ has order of magnitude $t^{2} / \log t$, Random Structures Algorithms 7 (1995) 173-207.
[14] A. Kostochka, V. Rödl, Constructions of sparse uniform hypergraphs with high chromatic number, Random Structures Algorithms 36 (2010) 46-56.
[15] L. Lovász, On chromatic number of finite set-systems, Acta Math. Acad. Sci. Hungar. 19 (1968) 59-67.
[16] A. Lubotzky, R. Phillips, P. Sarnak, Ramanujan graphs, Combinatorica 8 (3) (1988) 261-277.
[17] K.F. Roth, On certain sets of integers, I, J. Lond. Math. Soc. 28 (1953) 104-109.
[18] I. Ruzsa, E. Szemerédi, Triple systems with no six points carrying three triangles, in: Combinatorics, vol. II, Keszthely, 1976, in: Coll. Math. Soc. J. Bolyai, vol. 18, 1978, pp. 939-945.
[19] T. Sanders, On Roth's theorem on progressions, Ann. of Math. (2) 174 (2011) 619-636.
[20] J.A. Thas, Generalized polygons, in: F. Buekenhout (Ed.), Handbook on Incidence Geometry, North-Holland, 1995, Chapter 9.
[21] J. Tits, Sur la trialité et certains groupes qui s'en d'eduisent, Publ. Math. Inst. Hautes Etudes Sci. 2 (1959) 14-60.
[22] I. Tomescu, Sur le problème du coloriage des graphes généralisés, C. R. Acad. Sci. Paris Sér. A-B 267 (1968) A250-A252 (in French).

[^0]: E-mail addresses: kostochk@math.uiuc.edu (A. Kostochka), mubayi@math.uic.edu (D. Mubayi), jverstra@math.ucsd.edu (J. Verstraete).
 ${ }^{1}$ Research of this author is supported in part by NSF grant DMS-0965587 and by grants 12-01-00448-a and 12-01-00631 of the Russian Foundation for Basic Research.
 ${ }^{2}$ Research supported in part by NSF grants DMS 0653946 and DMS 0969092.
 ${ }^{3}$ Research supported by NSF grant DMS 1101489.

