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A celebrated result in Ramsey Theory states that the order of
magnitude of the triangle-complete graph Ramsey numbers R(3, t)
is t2/ log t. In this paper, we consider an analogue of this problem
for uniform hypergraphs. A triangle is a hypergraph consisting
of edges e, f , g such that |e ∩ f | = | f ∩ g| = |g ∩ e| = 1 and
e ∩ f ∩ g = ∅. For all r � 2, let R(C3, K r

t ) be the smallest positive
integer n such that in every red–blue coloring of the edges of the
complete r-uniform hypergraph K r

n , there exists a red triangle or a
blue K r

t . We show that there exist constants a,br > 0 such that for
all t � 3,
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This determines up to a logarithmic factor the order of magnitude
of R(C3, K r

t ). We conjecture that R(C3, K r
t ) = o(t3/2) for all r � 3.

We also study a generalization to hypergraphs of cycle-complete
graph Ramsey numbers R(Ck, Kt) and a connection to r3(N), the
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maximum size of a set of integers in {1,2, . . . , N} not containing a
three-term arithmetic progression.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

A hypergraph is a pair (V , E) where V is a set whose elements are called vertices and E is a family
of subsets of V called edges. If all edges have size r, then the hypergraph is referred to as an r-graph.
Throughout this paper, Ck denotes a loose k-cycle, namely the hypergraph with edges e1, . . . , ek such
that |ei ∩ ei+1| = 1 for i = 1, . . . ,k − 1, |e1 ∩ ek| = 1, and ei ∩ e j = ∅ otherwise. In particular, a loose
triangle is a hypergraph consisting of three edges e, f , g such that |e ∩ f | = | f ∩ g| = |g ∩ e| = 1
and e ∩ f ∩ g = ∅. Since we consider only loose cycles and triangles, we will omit the word “loose”.
A hypergraph is linear if any pair of distinct edges of the hypergraph intersect in at most one vertex.

An independent set in a hypergraph is a set of vertices containing no edges of the hypergraph.
Let K r

t denote the t-vertex complete r-graph, i.e., the t-vertex r-graph whose edges are all r-element
subsets of the vertex set. In this paper we consider the cycle versus complete hypergraph Ramsey
numbers R(Ck, K r

t ) – this is the minimum n such that every n-vertex r-graph contains either a cy-
cle Ck or an independent set of t vertices. Our main effort will be on the triangle-complete hypergraph
Ramsey number R(C3, K r

t ). A celebrated result of Kim [13] together with earlier bounds by Ajtai, Kom-
lós and Szemerédi [2] shows that

R(C3, Kt) = Θ

(
t2

log t

)
as t → ∞.

This establishes the order of magnitude of these Ramsey numbers for graphs.

1.1. Triangle-free hypergraphs

The study of the independence number in triangle-free hypergraphs was initiated by Ajtai, Komlós,
Pintz, Spencer and Szemerédi [1] and used to give a counterexample to a conjecture of Erdős on the
Heilbronn problem [17] on the largest area of a triangle with vertices from n points in the unit square.
Motivated also by the triangle-complete graph Ramsey numbers, in this paper we determine for r � 3
the order of magnitude of the triangle-complete Ramsey numbers for r-graphs up to logarithmic
factors:

Theorem 1.1. There exist constants a,b3 > 0 such that for all t � 1,
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For each r > 3, there exist constants ar,br > 0 such that for all t � 1,

t
3
2

(log t)
3
4 + ar√

log log t

� R
(
C3, K r

t

)
� brt

3
2 .

We shall see that br � (2r)9/2 for all r � 3. The upper bound in Theorem 1.1 is proved in Section 3.
The lower bound in Theorem 1.1 comes from a construction that combines randomness and linear
algebra and a construction of triangle-free hypergraphs coming from sets with no three-term arith-
metic progressions, presented in Section 5. The preliminaries required to analyze this construction are
presented in Section 4. Some of the ideas of the construction were recently used in [14] to study a
related problem. In light of Theorem 1.1, we make the following conjecture:
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Conjecture 1.1. For all fixed r � 3,

R
(
C3, K r

t

) = o
(
t3/2) as t → ∞.

We shall see in Section 2 that if H is a triangle-free hypergraph (the edges may have arbitrary
size) on n vertices, then H contains an independent set of size at least �√n�. By Theorem 1.1, this is
not tight for r-uniform hypergraphs for each fixed r � 3. It would be interesting to see if it is tight
when edges whose size depends on n are allowed.

1.2. Linear triangle-free hypergraphs

We indicate a connection between independent sets in linear triangle-free hypergraphs and Roth’s
Theorem [17] on arithmetic progressions. Let r3(N) denote the largest size of a set of integers in
{1,2, . . . , N} containing no three-term arithmetic progressions. This problem has attracted much at-
tention, starting with the original theorem of Roth [17] showing that r3(N) = o(N). The best current
known bounds are as follows: for some constant c > 0,

N

ec
√

log N
� r3(N) � N

(log N)1−o(1)
.

The lower bound, which comes from a construction of Behrend [4], is essentially unchanged for more
than sixty years. The upper bound, due to Sanders [19] improves many earlier results which gave
smaller powers of log N in the denominator. Let RL(C3, K 3

t ) denote the minimum n such that every
linear triangle-free 3-graph on at least n vertices contains an independent set of size t . We prove the
following theorem:

Theorem 1.2. There are constants ã, b̃ > 0 such that for all t � 1
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Furthermore, if for some c > 0, RL(C3, K 3
t ) = O (t3/2(log t)−3/4−c), then

r3(N) = O
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(log N)
4c
3

)
.

It would be interesting if one could prove that r3(N) = o(N) using Theorem 1.2 above. The bound
RL(C3, K 3

t ) = O (t3/2/
√

log t) may also be evidence for Conjecture 1.1, that R(C3, K 3
t ) = o(t3/2).

1.3. k-Cycle-free hypergraphs

The construction used in Theorem 1.1 extends more generally to give lower bounds on all cycle-
complete hypergraph Ramsey numbers. The cycle C3 is precisely a hypergraph triangle. We give for all
k, r � 3 a construction of Ck-free r-graphs with low independence number, based on known results
on the Ck-free bipartite Ramanujan graphs of Lubotzky, Phillips and Sarnak [16]. Specifically, we prove
the following theorem by a suitable and fairly straightforward modification of the construction. We
write f = O ∗(g) to denote that for some constant c > 0, f (t) = O ((log t)c g(t)), and f = Ω∗(g) is
equivalent to g = O ∗( f ).

Theorem 1.3. For fixed r,k � 3,

R
(
Ck, K r

t

) = Ω∗(t1+ 1
3k−1

)
as t → ∞.
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The key point of this theorem is that the exponent 1+1/(3k−1) of t is bounded away from 1 by a
constant independent of r, and strictly improves for all r,k � 5 the lower bounds given by considering
appropriate random hypergraphs, namely

R
(
Ck, K r

t

) = Ω∗(t1+ 1
kr−r−k

)
as t → ∞.

In the case r = 2, namely for graphs, the best available constructions for lower bounds on r(Ck, K r
t )

indeed come from appropriate random graphs; in particular the Ck-free random graph process studied
by Bohman and Keevash [7].

By using the known constructions of extremal bipartite graphs of girth 12, arising from generalized
hexagons, we obtain the following improvement of the lower bound in Theorem 1.3 for C5, i.e. for
loose pentagons:

Theorem 1.4. For fixed r � 3, there exists a constant cr > 0 such that

R
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t

)
� cr

(
t

log t

) 5
4

as t → ∞.

The main part of this theorem is the exponent 5/4; we suspect that this exponent may be tight
as t → ∞, and perhaps even more generally, that r(Ck, K r

t ) = Θ∗(tk/(k−1)) for all r,k � 3. Our second
conjecture is as follows:

Conjecture 1.2. For all r � 3,

R
(
C5, K r

t

) = O
(
t5/4) as t → ∞.

For graphs, the best current bounds are a2t
4
3 / log t � R(C5, Kt) � b2t3/2/

√
log t , for some constants

a2 > 0 and b2 > 0, where the upper bound is due to Caro, Li, Rousseau and Zhang [9] and the lower
bound is from Bohman and Keevash [7].

2. Non-uniform hypergraphs

The goal of this section is to give a simple proof that any triangle-free hypergraph on n vertices has
an independent set of size at least �√n�. Recall that the chromatic number χ(H) of a hypergraph H
is the minimum k such that there is an assignment of k colors to the vertices such that no subset of
vertices of the same color forms an edge of H .

Theorem 2.1. Let H be any hypergraph on n vertices not containing a triangle and in which |e| � 2 for all
e ∈ H. Then

α(H)� �√n�.

Proof. Suppose for a contradiction that α(H) < �√n�. Then χ(H) > k := �√n�. So, H contains a
(k + 1)-vertex-critical subgraph H ′ , which means that χ(H ′) = k + 1 but χ(H ′ − v) � k for every
v ∈ V (H ′). By Corollary 3 on page 431 of [6] (see also [22] and [15]), the strong degree of each vertex
in H ′ is at least k, i.e. for each v ∈ V (H ′) there are k edges e1, e2, . . . , ek such that ei ∩ e j = {v} for
all 1 � i < j � k. In words, the ei s share v and nothing else. Choose a vertex vi in each ei\{v}. Since
H ′ has no triangles, the set {v1, . . . , vk} is an independent set of H of size k � �√n�, which is a
contradiction. �

This result is almost tight since R(C3, t) = Θ(t2/(log t)), so there are n-vertex triangle-free graphs
with independence number of order

√
n log n. It would be interesting to see if for hypergraphs (not

necessarily uniform) where every edge has size at least three, the above lower bound on the inde-
pendence number is tight.
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3. Proof of Theorem 1.1: Upper bound

The aim of this section is to prove the upper bound of Theorem 1.1. For r � 3, let �r denote the
family of all triangle-free hypergraphs each of whose edges has size at least three and at most r. The
upper bound on R(C3, K r

t ) in Theorem 1.1 will be derived as a direct consequence of the following
more general statement about hypergraphs in �r :

Theorem 3.1. For every r � 3 and G ∈ �r , α(G) � |V (G)|2/3/(8r3).

This section is devoted to the proof of Theorem 3.1, which gives the constant br = (8r3)3/2 =
(2r)9/2 in the upper bound in Theorem 1.1.

3.1. Expandable sets

In this section we state and prove a sequence of preliminary results needed for the proof of Theo-
rem 3.1.

A set S of vertices of G ∈ �r is called expandable if, for every T ⊆ V (G) − S with |T | � 2r, there is
an edge of G containing S and disjoint from T , otherwise S is non-expandable. For example, if S is an
edge of G , then it is expandable, and every set S ⊂ V (G) of size more than r is non-expandable.

Let G be an n-vertex graph in �r with the smallest
∑

e∈E(G) |e| for which Theorem 3.1 fails. Cer-
tainly G has at least one edge.

Lemma 3.2. No three expandable sets in G form a triangle.

Proof. If sets S1, S2, S3 form a triangle, then by the definition of expandable sets, there is an edge
e1 ⊇ S1 disjoint from (S2 ∪ S3) \ S1, there is an edge e2 ⊇ S2 disjoint from (e1 ∪ S3) \ S2, and there
is an edge e3 ⊇ S3 disjoint from (e1 ∪ e2) \ S3. Now e1, e2, e3 form a triangle in G , contradicting
G ∈ �r . �
Lemma 3.3. Let S ⊂ V (G) be an expandable set and |S| � 3. Then no edge of G of size more than |S| con-
tains S.

Proof. Suppose an expandable set S with |S| � 3 is contained in e ∈ E(G) with |e| � |S| + 1. Let
V (G ′) = V (G) and E(G ′) = E(G) − e + S . By Lemma 3.2, G ′ ∈ �r . Since

∑
e∈E(G ′) |e| <

∑
e∈E(G) |e|,

by the minimality of G , α(G ′) � |V (G ′)|2/3/8r3 = n2/3/8r3. But every independent set in G ′ is also
independent in G , and so α(G) � α(G ′)� n2/3/8r3, a contradiction to the choice of G . �
Lemma 3.4. For every 3 � i < j � r no i-element subset of V (G) is contained in more than (2r) j−i edges of
size j.

Proof. We use induction on j − i. If a ( j − 1)-element S ⊂ V (G) is contained in 2r + 1 edges of
size j in G , then S is expandable, a contradiction to Lemma 3.3. Suppose now that 3 � i � j − 2
and an i-element S ⊂ V (G) is contained in m � (2r) j−i + 1 edges e1, e2, . . . , em ∈ E(G) of size j. By
Lemma 3.3, S is not expandable. This means that for some set T of 2r vertices of V (G)\S , we have
(ei \ S) ∩ T �= ∅ for every 1 � i � m. In other words, T intersects the part outside S of every ei .

By the pigeonhole principle, there is an x ∈ T such that the set S ∪ {x} is contained in at least
(2r) j−i−1 + 1 edges among e1, e2, . . . , em , a contradiction. �
Corollary 3.5. For every 3 � j � k each 2-element non-expandable subset of V (G) is contained in at most
(2k) j−2 edges of size j.

Proof. Suppose that S = {x, y} is a non-expandable pair of vertices in G is contained in m �
(2k) j−2 + 1 edges e1, . . . , em of size j. Then some 2k vertices x1, . . . , x2k outside S intersect all edges
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of G containing S , and in particular, all edges e1, . . . , em . Then by the pigeonhole principle, for some
1 � t � 2k, the 3-element set S + xt is contained in at least (2k) j−3 + 1 edges among e1, . . . , em , a
contradiction to Lemma 3.4. �
3.2. Proof of Theorem 3.1

In this section we complete the proof of Theorem 3.1. For 3 � i � r, let Gi be the subgraph of G
consisting of all edges of size i, that is, E(Gi) = {e ∈ E(G): |e| = i}. For convenience, denote n = |V (G)|.

Lemma 3.6. For every 3 < j � r, |E(G j)| � (2r) j−2
(n

2

)
.

Proof. Let e ∈ E(G j) and x, y, z ∈ e. By Lemma 3.2, at least one of the pairs {x, y}, {x, z} and {y, z} is
non-expandable and thus, by Corollary 3.5, is contained in at most (2r) j−2 edges of G j . Since every
e ∈ E(G j) contains such a pair, the lemma follows. �
Lemma 3.7. |E(G3)| � n5/3/4r2 .

Proof. Suppose that |E(G3)| < n5/3/4r2. Let p = n−1/3/4r2 and let W be a random subset of V (G)

where each v ∈ V (G) is in W with probability p independently of all other vertices. By Lemma 3.6,
for j � 4, the expected number of edges of size j in G[W ] is at most

∣∣E(G j)
∣∣p j � (2r) j−2

(
n

2

)(
4r2)− j

n− j/3 � (2r)− jn2/3.

By assumption, the expected number of edges of size 3 in G[W ] is at most

n5/3 p3/4r2 = (2r)−8n2/3 � (2r)−5n2/3.

So, the expectation of |W | − |E(G[W ])| is at least

pn −
r∑

j=4

(2r)− jn2/3 − (2r)−5n2/3 � pn − 2(2r)−4n2/3 =
(

1 − 1

2r2

)
pn.

Thus there is a particular subset U of V (G) with |U |− |E(G[U ])|� 0.9pn. Then deleting a vertex from
each edge in G[U ] we obtain an independent subset U ′ of U with |U ′| � 0.9pn, so α(G) � n2/3/5r2 >

n2/3/8r3, a contradiction to the choice of G . �
The key part of the proof will be to produce an independent set in H = G3 of size at least n2/3/8r3

that is also an independent set in G , using the preceding lemmas. By Lemma 3.7, |E(H)| � (2r)−2n5/3.
Let d = 3|E(H)|/n be the average degree of H , so d � 3n2/3/4r2. An edge e ∈ H is called k-light if
exactly k pairs of vertices of e have codegree in H at most r. An edge is heavy if it is 0-light. We see
quickly that H has no heavy edges: for a heavy edge {x, y, z} ∈ H , since r + 1 � 4, we can greedily
choose distinct vertices a,b, c /∈ {x, y, z} such that edges {a, x, y}, {b, y, z}, {c, x, z} form a triangle,
since each of the pairs (x, y), (y, z), (z, x) has codegree at least r + 1 � 4. We now consider two cases.

Case 1. The number of edges in H that are 2-light or 3-light is at least 2|E(H)|/3.

For each vertex v , let d′(v) be the number of edges e of H containing v such that e is either
2-light or 3-light and v is incident to two light pairs of e. Then

∑
v d′(v) counts each such e one or

three times so
∑

v d′(v) � 2|E(H)|/3. Therefore some vertex v of H is in at least 2|E(H)|/3n = 2d/9
edges, where two pairs of codegree (in H) at most r in each edge contain v . Let e1, e2, . . . , em be such
a set of edges on v with m � 2d/9. Then the link graph L(v) consisting of pairs ei\{v} has maximum
degree at most r. It follows by Vizing’s Theorem that L(v) has a matching of size � � m/(r + 1).
This means that we have found edges, say e1, e2, . . . , e� sharing no vertices other than v , and such
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Fig. 1. Finding an independent set in Case 1.

Fig. 2. Finding an independent set in Case 2.

that in each ei the two pairs containing v have codegree at most r. Now pick x1, x2, . . . , x� where
xi ∈ ei\{v} for 1 � i � �. We claim that this is an independent set in the entire hypergraph G . If
not, then say e = {x1, . . . , x j} ∈ E(G). Then {e, e1, e2} is a triangle in G , since e1 and e2 share only v ,
e and e1 share only x1, and e and e2 share only x2 – see Fig. 1. This independent set has size
�� m/(r + 1) � 2d/9(r + 1) � n2/3/8r3. This completes the proof in Case 1.

Case 2. The number of 1-light edges in H is at least |E(H)|/3.

For each vertex v , let d′′(v) be the number of edges e of H containing v such that e is 1-light and
v is incident to the light pair of e. Then

∑
v d′′(v) counts each such e exactly twice so

∑
v d′′(v) �

2|E(H)|/3. By averaging, some v in H lies in at least 2|E(H)|/3n = 2d/9 1-light edges such that the
pair of codegree in H at most r in each edge contains v . Then there are at least 2d/9r distinct vertices
x1, x2, . . . , xm such that the codegree of (v, xi) is at most r, and there is a 1-light edge ei ⊃ {v, xi} for
all i ∈ {1,2, . . . ,m}. Since each ei is 1-light, exactly two pairs of vertices in ei have codegree at least
1 + r, and in particular, all ei s are distinct. We claim that {x1, x2, . . . , xm} is again an independent
set in G . Suppose not, and that {x1, . . . , x j} is an edge. Let ei\{xi, v} = {yi}. Note that every yi is
disjoint from {x1, . . . , x j}, otherwise if say yi = x j , then {v, xi} and {v, x j} both have codegree less
than 1 + r, but they lie in the edge ei , which has only one pair of codegree less than 1 + r – a
contradiction. So every yi is disjoint from {x1, . . . , x j}. Now we claim that y1 = y2 = · · · = y j . If say
y1 �= y2 (left drawing in Fig. 2), consider the triples {v, x1, y1}, {v, x2, y2} and the edge {x1, x2, . . . , x j}.
Since y1, y2, x1, . . . , x j are all distinct, this is a triangle. So y1 = y2 = · · · = y j = y. Now consider
the pairs {y, x1}, {y, x2} (shown in black bold lines in the right drawing in Fig. 2). Since {y, x1} and
{y, x2} are pairs in e1 and e2, respectively, and they do not contain v , by the choice of e1 and e2,
those pairs have codegree at least 1 + r. So we can pick z1 �= z2 with z1, z2 /∈ {x1, . . . , x j, y, v} such
that {x1, y, z1}, {x2, y, z2}, {x1, x2, . . . , x j} is a triangle – namely z1, z2, x1, . . . , x j are all distinct. This
shows that {x1, x2, . . . , xm} is independent, and it has size at least 2d/9r � n2/3/6r3.
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4. Generalized quadrangles and a spectral lemma

Generalized quadrangles were first constructed by Tits [21] and described as graphs by Benson [5].
Let Gq denote a generalized quadrangle of order q, which is a (q + 1)-regular (q + 1)-uniform C2, C3-free
hypergraph on q3 +q2 +q+1 vertices. Generalized quadrangles of order q exist whenever q is a prime
power.

4.1. A general spectral lemma

In this section, we employ a lemma which relates the distribution of edges in a bipartite graph to
spectral properties of its adjacency matrix. This lemma is an analog of a well-known spectral lemma
in graph theory (see for example [3]) which is frequently referred to as the expander mixing lemma,
and is used especially in the context of (n,d, λ)-graphs and pseudorandom graphs. The lemma we
give may be referred to as the expander mixing lemma for bipartite graphs, appears in a different
form in [11] and in [12]. For completeness, we give the proof here and it is very similar to the proof
for non-bipartite graphs in [3].

Lemma 4.1. Let G(U , V ) be a d-regular bipartite graph with adjacency matrix A and let λ1 � λ2 � · · · � λN
be the eigenvalues of A. Let λ = max{|λi |: i /∈ {1, N}}. Then for any sets X ⊆ U and Y ⊆ V , the number
e(X, Y ) of edges from X to Y satisfies∣∣∣∣e(X, Y ) − d

|V | |X ||Y |
∣∣∣∣ � λ

√|X ||Y |.

Proof. Let χX and χY denote the characteristic vectors of X and Y . Let x1, x2, . . . , xN be an orthonor-
mal basis of eigenvectors of A, where xi is the eigenvector corresponding to λi , and write

χX =
N∑

i=1

si xi, χY =
N∑

i=1

tixi .

Then

e(X, Y ) = 〈AχX ,χY 〉 = λ1s1t1 + λN sNtN +
N−1∑
i=2

λi siti .

The values of s1, t1, sN and tN are recovered quickly from the knowledge of the first and last eigen-
vectors, x1 and xN , recalling x1 is the constant unit vector and xN is the unit vector which is constant
on V (Gq) and minus that constant on E(Gq). Noting that ‖χX‖2 = |X | and ‖χY ‖2 = |Y |, and using
λ1 = d = −λN , it is straightforward to see that

e(X, Y ) = d

|V | |X ||Y | +
N−1∑
i=2

λi siti .

Finally, by the Cauchy–Schwarz inequality,

N−1∑
i=2

λi siti � λ(A)

(
N∑

i=1

s2
i

)1/2( N∑
i=1

t2
i

)1/2

and the sums are ‖χX‖ = √|X | and ‖χY ‖ = √|Y | respectively. �
This lemma will be used in the context of hypergraphs (in particular for the hypergraph H = Gq)

in the following way: if H is a hypergraph, then the bipartite incidence graph of H is the bipartite graph
B(H) whose parts are V (H) and E(H), and {v, e} ∈ E(B(H)) if and only if v ∈ e. We denote by A(H)

the adjacency matrix of the bipartite incidence graph B(H), and when |V (H)| = |E(H)| we denote
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by λ(H) the largest absolute value of the eigenvalues of A(H) other than λ1 and λN . Lemma 4.1 is
applied to B(H) to give the following hypergraph formulation:

Lemma 4.2. Let H be a d-uniform d-regular n-vertex hypergraph and let X ⊆ V (H) and Y ⊆ E(H). Then∣∣∣∣∑
e∈Y

|X ∩ e| − d

|V | |X ||Y |
∣∣∣∣ � λ(H)

√|X ||Y |.

In particular, if λ(H) � δ
√

d and |X | � 2τn/d, then the number of edges e ∈ E(H) such that |X ∩ e| � τ is at
least n − 2δ2n/τ .

Proof. For the first inequality, if H is a d-uniform d-regular hypergraph, then B(H) is d-regular. Ap-
plying Lemma 4.1 gives∣∣∣∣e(X, Y ) − d

|V | |X ||Y |
∣∣∣∣ � λ(H)

√|X ||Y |.

We note that

e(X, Y ) =
∑
e∈Y

|X ∩ e|.

This gives the first inequality of Lemma 4.2. Applying this inequality with λ(H) � δ
√

d, we obtain for
any Z ⊆ E(H),∣∣∣∣∑

e∈Z

|X ∩ e| − d

n
|X ||Z |

∣∣∣∣ � δ
√

d|X ||Z |.

Now let Y = {e ∈ E(H): |X ∩ e| � τ } and Z = E(H)\Y . Suppose for a contradiction that |Z | > 2δ2n/τ .
By the definition of Z ,∑

e∈Z

|X ∩ e| < τ |Z |.

By the preceding inequality,

τ |Z | >
∑
e∈Z

|X ∩ e| > d

n
|X ||Z | − δ

√
d|X ||Z |.

Since |X |� 2τn/d, we get

τ |Z | < δ
√

2τn|Z |.
This contradicts |Z | > 2δ2n/τ . �

We remark that for fixed |X |, d|X |/|V | is exactly the expected value of |X ∩e| when X is a random
set whose elements are chosen from V (H) independently with probability |X |/|V |.

4.2. Spectral properties of A(Gq)

In order to apply Lemma 4.2 to Gq , we determine λ(Gq). Since Gq is (q + 1)-uniform and
(q + 1)-regular, the bipartite incidence graph B(Gq) is (q + 1)-regular. Since B(Gq) is connected, this
implies q + 1 and −(q + 1) are eigenvalues of A = A(Gq) with multiplicity 1. By the definition of a
generalized quadrangle, for every vertices x and y in distinct partite sets of B(Gq), there exists exactly
one x, y-path of length 3. Since each entry a3

i, j of A3 is the number of i, j-walks of length 3, we have

A3 = J + q A



1500 A. Kostochka et al. / Journal of Combinatorial Theory, Series A 120 (2013) 1491–1507
where J is the block matrix

J =
(

0 K
K 0

)

and K is the square all 1 matrix with appropriate dimensions. If λ /∈ {−(q + 1),q + 1} is an eigen-
value of A, then an eigenvector x for λ is orthogonal to the constant unit vector and so K x = 0.
It follows that λ3 = qλ and therefore λ ∈ {−√

q,0,
√

q }. Since the eigenvalues of A(Gq) other than
−(q + 1) and (q + 1) are not all zero, λ(Gq) = √

q. A more complete analysis of these eigenvalues and
their multiplicities was achieved by Haemers [11]. Since we have λ(Gq) = √

q, Lemma 4.2 gives the
following:

Corollary 4.3. Let X ⊆ V (Gq) where |X | � 2τn/(q + 1), and let Y be the set of e ∈ E(Gq) such that
|X ∩ e| � τ . Then

|Y |� n − 2n

τ
.

Proof. Since λ(Gq) = √
q, applying Lemma 4.2 with δ = 1 and d = q + 1 gives the result. �

5. Proof of Theorem 1.1: Lower bound

Based on the generalized quadrangle Gq , we now specify the construction of a triangle-free
n-vertex hypergraph Hq with independence number O (n2/3

√
log n), which gives the lower bound in

Theorem 1.1 for r = 3. Let τ = �4 log q�. The idea is to place randomly a carefully chosen triangle-free
3-graph Fq on q + 1 vertices into each of the edges of Gq , independently for each edge of Gq , to form
a new hypergraph Hq with n = q3 + q2 + q + 1 vertices. We then use the spectral result in the form
of Corollary 4.3 to deduce that a set of 2τn/q vertices of Gq must intersect almost all edges of Gq

in roughly τ vertices. Together with some basic probability, we use this to deduce that the expected
number of independent sets of size 2τn/q in Hq is o(1), and therefore some Hq has independence
number 2τn/q, as required. A similar idea will be used in the lower bound in Theorems 1.2 and 1.4,
and the appropriate modifications to Fq will be made in Section 5.3 to obtain the lower bound in
Theorem 1.1 for r > 3.

5.1. The hypergraph Fq

Throughout this section, τ = �8
√

log q�. To describe Hq , we use the auxiliary hypergraph Fq with
vertex set [q + 1], defined as follows. Let V = {vij: 1 � i, j � τ } be a τ 2-element subset of [q + 1] and
let S1, . . . , Sτ , T1, . . . , Tτ be a partition of [q + 1] − V into sets whose sizes differ by at most one. Let
S = ⋃τ

i=1 Si and T = ⋃τ
j=1 T j . The edge set of Fq is the set of all triples {vij,a,b} such that a ∈ Si

and b ∈ T j . Note that Fq is actually 3-partite, with parts V , S and T . Then Hq is constructed by taking
independently for each e ∈ Gq a random bijection πe from V (Fq) to e and letting a triple in e be an
edge if its pre-image is an edge in Fq .

Lemma 5.1. Hq is triangle-free.

Proof. Since Gq is linear and triangle-free, it is sufficient to verify that Fq is triangle-free. Suppose
Fq has a triangle. Since Fq is 3-partite, some vertex in V belongs to two of the edges of the triangle.
Let this vertex be vij ∈ V , and these two edges be {vij, si, t j} and {vij, s′

i, t′
j}. Now the third edge

must be either {v, si, t′
j} or {v, s′

i, t j} for some v ∈ V . By definition of Fq , this implies that v = vij , a
contradiction. �

Next we bound from above the probability that a set of τ vertices of e ∈ E(Gq) is an independent
set in Hq .
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Lemma 5.2. Let I be a τ -element subset of e ∈ E(Gq). Then as q → ∞, the probability that I is independent

in Hq is at most 1 − τ 3−o(τ 3)
4eq .

Proof. Let N be the number of τ -sets X of V (Fq) = [q + 1] that are not independent in Fq . A lower
bound for N is obtained by picking an element vij ∈ V , an element s ∈ Si , an element t ∈ T j and
τ − 3 elements in [q + 1] − (V ∪ Si ∪ T j). As q → ∞, this gives

N �
∑

vi j∈V

|Si||T j|
(

q + 1 − |Si | − |T j| − |V |
τ − 3

)

� τ 2 ·
⌊

q

2τ

⌋2(q + 1 − 2
⌈ q+1−τ 2

2τ

⌉ − τ 2

τ − 3

)

� τ 2 ·
⌊

q

2τ

⌋2(
(1 − 1/τ )(q + 1) − τ 2

τ − 3

)

= (
1 − o(1)

)
τ 2

(
q

2τ

)2(
(1 − 1/τ )q

τ − 3

)

= (
1 − o(1)

)q2

4
(1 − 1/τ )τ−3 qτ−3

(τ − 3)!
= (

1 − o(1)
) τ 3

4eq

(q + 1)τ

τ !
= (

1 − o(1)
) τ 3

4eq

(
q + 1

τ

)
.

Now the probability that I ⊂ e is not independent in Hq is

|{πe: I is not independent under πe}|
(q + 1)! = Nτ !(q + 1 − τ )!

(q + 1)! = N(q+1
τ

) .

The lower bound on N now gives the desired result. �
5.2. Independence number of Hq

If n = q3 + q2 + q + 1 for some prime power q, then we show that with positive probability, Hq

has no independent set of size more than 2τn/q if n is large enough and τ = �8
√

log q�. Note that
2τn/q < 16n2/3

√
log n if n is large enough. If n is not of this form, pick the smallest prime power q

such that n � q3 + q2 + q + 1, and remove q3 + q2 + q + 1 − n vertices from Hq . The new hypergraph
H ′

q has α(H ′
q) � α(Hq). Since it is well-known that there exists a prime q: n1/3 � q � 2n1/3, H ′

q has

no independent set of size more than 2τn/q = O (n2/3
√

log n), as required to finish the proof of the
lower bound in Theorem 1.1.

Suppose that X ⊂ V (Hq) = V (Gq) is an independent set of size �2τn/q� in Hq . By Corollary 4.3, at
least n − 2n/τ of the edges of Gq contain at least τ vertices of I . Let Y = Y (X) be this set of edges.
For each e ∈ Y , X ∩ e is an independent set in the random hypergraph Fq on e. Let Be be the event
that X ∩ e is independent in Fq . By Lemma 5.2,

P (Be) � 1 − τ 3

11q

provided q is large enough. The events Be are independent over e ∈ Y , and therefore the expected
number of independent sets of size 2τn/q in Hq is at most
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∑
X: |X |=�2τn/q�

∏
e∈Y

P (Be)�
(

1 − τ 3 − o(τ 3)

4eq

)n−2n/τ(
n

�2τn/q�
)

� exp

(
−n(τ 3 − o(τ 3))

4eq
+ 2τn

q
log

n

q

)
. (1)

Since τ = �8
√

log q� and n = q3 + q2 + q + 1 , as q → ∞, we have

−n(τ 3 − o(τ 3))

4eq
+ 2τn

q
log

n

q
� nτ

q

[
−τ 2 − o(τ 2)

4e
+ 2 log q2

]

� nτ

q

[
− (1 − o(1))64 log q

4e
+ 4 log q

]
.

Thus the quantity in (1) decays to zero. Therefore with high probability, Hq has no independent set of
size more than 2τn/q < 16n2/3

√
log n if n is large enough. This proves the lower bound in Theorem 1.1

for r = 3. We next turn to the case r > 3.

5.3. The hypergraph Hq,r

In this section we prove the lower bound in Theorem 1.1 for r > 3. Take Hq,r to consist of ran-
domly placed copies of a carefully chosen hypergraph Fq,r on q + 1 vertices in the edges of Gq . The
hypergraph Fq,r takes the role of the hypergraph Fq in the preceding section. To describe Fq,r , we
first review a known construction of linear r-graphs based on a construction of dense sets without
three-term arithmetic progressions.

5.4. Description of Fq,r

Erdős, Frankl and Rödl [10] showed that for every r � 3 there is a constant cr > 0 such that for
each N ∈ N there exists a linear triangle-free r-partite r-graph J (N, r) with N vertices in each part
and at least N2/exp(cr

√
log N) edges. Their construction is based on and generalizes the construction

of Ruzsa and Szemerédi [18] for r = 3 of a dense linear triangle-free 3-graph. The Ruzsa–Szemerédi
construction is in turn derived from Behrend’s construction [4] of relatively dense sets of integers
with no three-term arithmetic progressions. Using the Erdős–Frankl–Rödl construction, we describe
a triangle-free (but not linear) r-graph Fq,r on q + 1 vertices for each r > 3. This is the key in the
description of Hq,r for the proof of Theorem 1.1.

Fix r > 3, and let Cr > 0 be a constant depending on r, to be chosen later. Let J be the Erdős–
Frankl–Rödl hypergraph J (τ , r − 1), where

τ = ⌈
(log q)1/2 exp(−Cr

√
log log q)

⌉ = (log q)1/2−o(1).

For convenience let m = |E( J )| and let V 1, . . . , Vr−1 be the parts of J . To define V (Fq,r), associate
pairwise disjoint sets S v to the vertices v ∈ V ( J ), and let W be a set of m vertices disjoint from all
the sets S v and indexed by the edges of J , namely W = {ve: e ∈ E( J )}. Then let

V (Fq,r) = W ∪
⋃

v∈V ( J )

S v

where the S v are as equal in size as possible subject to

q + 1 = m +
⋃

v∈V ( J )

S v .

This ensures that Fq,r has exactly q + 1 vertices. The edges of Fq,r are defined as follows. For every
e = {v1, . . . , vr−1} ∈ J (τ , r − 1) with vi ∈ V i , recall that ve ∈ W , and let

Fe = {
ve ∪ {x1, . . . , xr−1}: xi ∈ S vi , i = 1, . . . , r − 1

}
.
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Then

E(Fq,r) =
⋃

e∈ J (τ ,r−1)

Fe.

Loosely speaking, the edges e ∈ E( J ) are being replaced with complete (r − 1)-partite (r − 1)-graphs
K (e) with parts of size roughly q/(r − 1)τ , and then we form the edges of Fq,r by enlarging each of
the edges of K (e) with the new vertex ve . It is straightforward to check (by both the linearity of J
and the fact that J is triangle-free) that Fq,r is triangle-free (although it is not linear). The key lemma
about Fq,r is now as follows:

Lemma 5.3. Let r � 3 and I be a τ -element subset of e ∈ E(Gq). Then for some dr > 0, the probability that I
is independent in Hq,r is at most

1 − τ 3−dr/
√

log τ

q
.

Proof. Let N be the number of τ -element subsets of V (Fq,r) = [q + 1] that are not independent
in Fq,r . Since every τ -element set obtained by picking an element we ∈ W , an element from each
set S v such that v ∈ e, and then τ − r elements in [q + 1] \ (W ∪ ⋃

v∈e S v) is not independent, we
have

N �
∑

we∈W

(∏
v∈e

|S v |
)(

q + 1 − ∑
v∈e |S v | − |W |
τ − r

)
.

Since all S v have almost the same cardinality, as q → ∞ the right-hand side is at least

(
m + o(m)

) ·
(

q

τ

)r−1

·
(

q + 1 − q/τ

τ − r

)τ−r

�
(
m + o(m)

) · τ

qerr

(
q + 1

τ

)
.

So we can choose dr > 0 depending only on r such that the last expression is at least

τ 3−dr/
√

log τ

q

(
q + 1

τ

)
.

This bound proves the lemma. �
The rest of the proof for Hq,r carries through as for Hq , except at the end, the expected number

of independent sets of size 2τn/q in Hq,r is now by Lemma 5.3 at most(
1 − τ 3−dr/

√
log τ

q

)n−2n/τ(
n

2τn/q

)
< exp

(
−τ 3−dr/

√
log τ n

2q
+ 2τn log n

q

)
.

We have chosen τ to ensure

τ 3−dr/
√

log τ > 6τ logn.

This ensures that the expected number of independent sets of size 2τn/q in Hq,r , for large enough n,
is less than

exp

(
−τn log n

q

)
< exp

(−n2/3 logn
)
< 1.

We conclude that with positive probability, for large enough n and a large enough constant Cr ,

α(Hq,r) � 2τn/q � 2n2/3(log n)1/2+Cr/
√

log log n.

This gives the lower bound on Ramsey numbers in Theorem 1.1. �
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6. Proof of Theorem 1.2

To prove the upper bound in Theorem 1.2, it is sufficient to show that every n-vertex linear
triangle-free 3-graph has an independent set of size Ω(n2/3(log n)1/3). Let H be such a 3-graph. By
the main theorem in [1],

α(H) = Ω

(
n
√

log d√
d

)

where d is the average degree of H . The union of all pairs e\{v} for edges e containing a vertex v of
degree at least d in H is an independent set of 2d vertices in H , since H is linear and triangle-free.
Therefore

α(H) = Ω

(
min

d
max

{
d,

n
√

log d√
d

})
= Ω

(
n2/3(log n)1/3).

This completes the proof of the upper bound in Theorem 1.2.

6.1. Proof of Theorem 1.2: Lower bound

Based on the hypergraph Gq , for n = q3 +q2 +q +1 and q a prime power, we construct an n-vertex
linear triangle-free 3-graph H∗

q with α(H∗
q ) � n2/3 exp(A

√
log n) for some A > 0. If n is not of that

form, then as in the proof of Theorem 1.1 we use the distribution of primes and a large subhypergraph
of H∗

q to obtain the same result with perhaps a slightly larger implicit constant. Let N = �(q + 1)/3�
and let F ∗

q = J (N,3), where J (N,3) is defined in Section 5.4. Then |E(F ∗
q )| = |E( J )| = Ω(qr3(q)). The

main lemma we require counts independent sets of size τ in F ∗
q .

Lemma 6.1. As q → ∞ the number of independent sets of size τ in F ∗
q is at most(

1 − Ω

(
τ 3r3(q)

q2

))(
q + 1

τ

)
.

Proof. Let N be the number of non-independent sets of size τ in F ∗
q . It is sufficient to show

N = Ω

(
τ 3r3(q)

q2

)(
q + 1

τ

)
.

Since M := |E(F ∗
q )| = Ω(qr3(q)), by inclusion–exclusion,

N � M ·
(

q − 2

τ − 3

)
−

(
M

2

)(
q − 4

τ − 5

)

= M ·
(

q + 1

τ

)
τ (τ − 1)(τ − 2)

(q + 1)q(q − 1)

(
1 − (M − 1)(τ − 3)(τ − 4)

2(q − 2)(q − 3)

)

= Ω

(
τ 3r3(q)

q2

)(
q + 1

τ

)
.

This is the required bound on N . �
As before, we construct H∗

q by placing a randomly permuted copy of F ∗
q in each edge of Gq . The

expected number of independent sets of size �2τn/q� in H∗
q is then at most

(
1 − O

(
τ 3r3(q)

q2

))n−2n/τ(
n

�2τn/q�
)
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using Lemma 6.1 and Corollary 4.3 as in the proof of Theorem 1.1. Choose τ to satisfy

4τn log n

q
<

nτ 3r3(q)

q2

which ensures that the expected number of independent sets is o(1). It is sufficient to take

τ 2 = (
1 + o(1)

)4q log n

r3(q)
.

Then with high probability

α
(

H∗
q

)
<

2τn

q
<

8n
√

q log n

q
√

r3(q)
.

To obtain from this the lower bound on RL(C3, K 3
t ), let n = RL(C3, K 3

t ) so that

8n
√

q log n

q
√

r3(q)
> t.

Since r3(q) > q/exp(c
√

log q) for some c > 0, this gives the lower bound on RL(C3, K r
t ) in Theo-

rem 1.2.
Finally, we connect a bound on Ramsey numbers to r3(N). According to the above proof, if n =

RL(C3, K 3
t ) = O (t3/2(log t)−3/4−c), then

n
√

q log n

q
√

r3(q)
= Ω(t).

Put N = q. Recalling n = N3 + o(N3),

r3(N) = O

(
N5 log N

t2

)
.

The definition of n in terms of t gives

t = Ω
(
n2/3(log n)1/2+2c/3) = Ω

(
N2(log N)1/2+2c/3).

Therefore

r3(N) = O

(
N

(log N)4c/3

)
.

This completes the proof of Theorem 1.2. �
7. Proof of Theorem 1.3

For Theorem 1.3, which states that

R
(
Ck, K r

t

) = Ω∗(t1+ 1
3k−1

)
,

we let Gk,q be an n-vertex (q + 1)-uniform (q + 1)-regular hypergraph with no cycles of length at
most k, such that q is a maximum relative to n and such that λ(Gk,q) � 2

√
q.

A construction of hypergraphs Gk,q for primes q ≡ 1 mod 4 can be obtained from the construction
of Ramanujan graphs of Lubotzsky, Phillips and Sarnak [16]. These Gk,q are constructed from the
following bipartite graphs of [16]: Let p,q be primes congruent to 1 modulo 4 with p > 16. If (

p
q ) =

−1, then B p,q is a bipartite (q + 1)-regular graph with p(p2 − 1) vertices in each part and no cycle of
length less than 4 logq(p/4). If (

p
q ) = 1, then B p,q is a bipartite (q +1)-regular graph with p(p2 −1)/2

vertices in each part and no cycle of length less than 2 logq p. In both cases B p,q has no cycle of length
less than 2 logq p since p > 16, and the second largest eigenvalue in absolute value except the first
and last is at most 2

√
q.
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So, given k � 4, we first choose a prime q ≡ 1 mod 4, then choose a smallest prime p ≡ 1 mod 4
with p > qk . By the previous paragraph, for n ∈ { 1

2 p(p2 − 1), p(p2 − 1)}, there exists a 2n-vertex
bipartite (q + 1)-regular graph B p,q of girth greater than 2k. This B p,q is the bipartite incidence graph
of a Ck-free (q + 1)-graph Gk,q on n vertices. And if we choose the smallest possible p, then n <

(1 + o(1))q3k . Furthermore, it follows that λ(Gk,q) � 2
√

q.
Let Fk,q,r denote the r-graph consisting of a vertex-disjoint union of τ = �4 log q� stars of size

�q/τ� on q vertices. In each edge of Gk,q , put a randomly permuted copy of Fk,q,r to get the r-graph
Hk,q,r . Corollary 4.3 shows that if X is a set of at least 2τn/q vertices of Hk,q,r , then at least n − 8n/τ
edges of Gk,q contain at least τ vertices of X . The expected number of independent sets in Hk,q,r of
size 2τn/q is at most(

1 − τ 2

10q

)n−8n/τ(
n

2τn/q

)
< exp

(
−τ 2n

20q
+ 2τn log n

q

)
provided q is large enough. The choice of τ ensures this decays to zero. Therefore with positive
probability,

α(Hk,q,r) = O

(
τn

q

)
= O

(
n1−1/3k log n

)
,

as long as q > ckn1/3k for some constant ck depending only on k.
Now suppose we are given k � 4 and an integer n not of the form required to construct B p,q and

hence Gk,q and Hk,q,r . For such an n, we will choose p,q so that the construction above is possible
on n′ vertices with n < n′ < 8n, and then restrict the resulting Hk,q,r (which has n′ vertices) to a
subhypergraph with only n vertices. The resulting n-vertex r-graph would again have independence
number O (n1−1/3k log n).

Given k � 4 and a sufficiently large n, choose a prime q ≡ 1 mod 4 such that
1

2
(2n)1/3k < q < (2n)1/3k.

Such a q exists by the prime number theorem in arithmetic progressions. Next choose a prime p ≡
1 mod 4 such that

(3n)1/3 < p < 2n1/3.

Again, by the prime number theorem in arithmetic progressions, we can find such a p because n is
sufficiently large. Now set n′ = p(p2 − 1)/2 or p(p2 − 1) depending on whether (

p
q ) is 1 or −1, and

construct Hk,q,r as described above. The resulting (q+1)-graph Hk,q,r contains no Ck as q < (2n)1/3k <

(3n)1/3k < p1/k . Finally, observe that

n′ > p3/2 − p/2 > 3n/2 − n1/3 > n

and n′ < p3 < 8n. Moreover, q > ckn1/3k so the above bound on the independence number holds as
n → ∞.

This shows that for any r � 3 and k � 4,

R
(
Ck, K r

t

) = Ω∗(t1+ 1
3k−1

)
.

7.1. Proof of Theorem 1.5

The specialization of the above arguments to k = 5 comes from the existence of generalized
hexagons (see [8] or [20]). The generalized hexagons Gq exist for prime powers q and can be viewed
as (q + 1)-uniform (q + 1)-regular hypergraphs Gq on q5 + q4 + q3 + q2 + q + 1 vertices containing no
cycles of length at most five, and moreover the associated matrix A(Gq) has λ(Gq) = √

q once more.
Using the hypergraph Fk,q,r in each edge of the hypergraph Gq as before gives the result: we obtain
a hypergraph H5,q,r with

α(H5,q,r) = O
(
n4/5 logn

)
from which the lower bound on Ramsey numbers R(C5, K r

t ) = Ω(t5/4(log t)−5/4) for all r � 3 follows.
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