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A k-path is a hypergraph Pk = {e1, e2, . . . , ek} such that |ei ∩
ej | = 1 if |j − i| = 1 and ei ∩ ej = ∅ otherwise. A k-cycle is a 
hypergraph Ck = {e1, e2, . . . , ek} obtained from a (k−1)-path 
{e1, e2, . . . , ek−1} by adding an edge ek that shares one vertex 
with e1, another vertex with ek−1 and is disjoint from the 
other edges.
Let exr(n, G) be the maximum number of edges in an r-graph 
with n vertices not containing a given r-graph G. We prove 
that for fixed r ≥ 3, k ≥ 4 and (k, r) �= (4, 3), for large 
enough n:

exr(n, Pk) = exr(n,Ck) =
(
n
r

)
−

(
n− � k−1

2 �
r

)

+
{

0 if k is odd(n−� k−1
2 �−2

r−2

)
if k is even

and we characterize all the extremal r-graphs. We also solve 
the case (k, r) = (4, 3), which needs a special treatment. The 
case k = 3 was settled by Frankl and Füredi.
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This work is the next step in a long line of research beginning 
with conjectures of Erdős and Sós from the early 1970s. In 
particular, we extend the work (and settle a conjecture) of 
Füredi, Jiang and Seiver who solved this problem for Pk when 
r ≥ 4 and of Füredi and Jiang who solved it for Ck when 
r ≥ 5. They used the delta system method, while we use 
a novel approach which involves random sampling from the 
shadow of an r-graph.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

An r-uniform hypergraph, or simply r-graph, is a family of r-element subsets of a 
finite set. Given a set F of r-graphs, an F-free r-graph is an r-graph containing none of 
the members of F . Let the Turán number of F , exr(n, F), denote the maximum number 
of edges in an F-free r-graph on n vertices. When F = {F} we write exr(n, F ). An 
n-vertex F-free r-graph H is extremal for F if |H| = exr(n, F).

In this paper we promote the idea of determining exr(n, F) for certain classes F
by randomly sampling from the shadow of an F-free r-graph H and using Hall-type 
combinatorial lemmas to determine the structure of the shadow and hence the structure 
of H. This paper focuses solely on paths and cycles. Our next paper will consider more 
general structures.

1.1. Definitions of paths and cycles

There are several natural generalizations to hypergraphs of paths and cycles in graphs. 
A Berge k-cycle is a hypergraph consisting of k distinct edges e0, . . . , ek−1 such that 
there exist k distinct vertices v0, v1 . . . , vk−1 with vi ∈ ei−1 ∩ ei for all i = 0, 1, . . . , k− 1
(indices count modulo k). Let BCk denote the family of all Berge k-cycles. A minimal 
k-cycle is a Berge cycle {e0, e1, . . . , ek−1} such that ei∩ej �= ∅ if and only if |j− i| = 1 or 
{i, j} = {0, k−1}, and no vertex belongs to all edges. Let Ck denote the family of minimal 
k-cycles. Furthermore, a linear k-cycle is the member Ck ∈ Ck such that |ei ∩ ei+1| = 1
for all i = 0, 1, . . . , k − 1.

Every Berge (respectively, minimal and linear) k-path is obtained from a Berge (re-
spectively, minimal and linear) (k + 1)-cycle by deleting one edge. The family of Berge 
(respectively, minimal) k-paths is denoted by BPk (respectively, Pk). The linear k-path 
is denoted by Pk. The most restricted structures above are linear k-cycles and k-paths. 
We will refer to these simply as k-cycles and k-paths. In this paper, we study the extremal 
functions for k-paths and k-cycles and minimal k-paths and k-cycles.

1.2. The extremal function for k-cycles and k-paths

The extremal problem for Pk has been studied extensively. In the case of graphs, 
the Erdős–Gallai Theorem [9] shows ex(n, Pk) ≤ k−1n and this is tight whenever k|n. 
2
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Frankl [11] solved the simplest case for r-graphs, namely exr(n, P2), answering a ques-
tion of Erdős and Sós. As far as exact results are concerned, it appears that even the 
next smallest case exr(n, P3) was not determined until very recently. Füredi, Jiang and 
Seiver [14] determined exr(n, Pk) precisely for all r ≥ 4, k ≥ 3 and n large while also 
characterizing the extremal examples. They conjectured a similar result for r = 3. In 
this paper, we prove their conjecture and determine the extremal structures for large n.

The extremal problem for r-graphs for C3 is also well-researched [6,12], indeed, the 
case r = 2 is precisely Mantel’s theorem from 1907. Frankl and Füredi [12] showed that 
the unique extremal r-graph on [n] not containing C3 consists of all edges containing 
some x ∈ [n], for large enough n. For r = 3, Csákány and Kahn [6] proved the same result 
for all n ≥ 6. More recently, Füredi and Jiang [15] determined the extremal function for 
Ck for all k ≥ 3, r ≥ 5 and large n; their results substantially extend earlier results of 
Erdős and settled a conjecture of the last two authors for r ≥ 5. They used the delta 
system method.

Our main result extends the Füredi–Jiang Theorem to the case of r = 3, 4. To describe 
the result, we need some notation. Let [n] := {1, 2, . . . , n}, and for L ⊂ [n] let Sr

L(n)
denote the r-graph on [n] consisting of all r-element subsets of [n] intersecting L.

Theorem 1.1. Let r ≥ 3, k ≥ 4, and � = 	k−1
2 
. For sufficiently large n,

exr(n, Pk) =
(
n

r

)
−

(
n− �

r

)
+

{ 0 if k is odd(
n−�−2
r−2

)
if k is even

with equality only for Sr
L(n) if k is odd and Sr

L(n) ∪F where F is extremal for {P2, 2P1}
on n − � vertices. The same result holds for k-cycles except the case (k, r) = (4, 3), in 
which case

ex3(n,C4) =
(
n

r

)
−

(
n− 1
r

)
+ max

{
n− 3, 4

⌊
n− 1

4

⌋}

with equality only for 3-graphs of the form S3
L(n) ∪F where F is extremal for P2 on n −1

vertices.

Remarks. (1) By the Erdős–Ko–Rado Theorem [10], exr(n − �, {P2, 2P1}) =
(
n−�−2
r−2

)
for sufficiently large n, and a result of Erdős and Sós (see [11]) gives ex3(n − 1, P2) =
max{n − 3, 4	n−1

4 
}. These results account for the lower order terms in the expressions 
for exr(n, Pk) and exr(n, Ck) in Theorem 1.1.

(2) The proof of Theorem 1.1 restricted to the case of k-paths is substantially simpler 
than the proof for k-cycles.

(3) It was recently shown by Bushaw and Kettle [3] that the Turán problem for 
disjoint k-paths can be easily solved once we know the extremal function for a single 
k-path. As we have now solved the k-paths problem for all r ≥ 3, the corresponding 
extremal questions for disjoint k-paths are also completely solved (for large n). A similar 
situation likely holds for disjoint k-cycles, as recently observed by Gu, Li and Shi [16].
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1.3. The extremal function for minimal k-cycles and minimal k-paths

The related problems of determining ex(n, Pk) and exr(n, Ck) have also received con-
siderable attention, indeed the case of P2 is the celebrated Erdős–Ko–Rado theorem. 
The last two authors [24] proved that ex(n, P3) =

(
n−1
r−1

)
for all r ≥ 3 and n ≥ 2r. The 

case of C3 goes back to Chvátal [4] in 1973, and in [23] the last two authors proved that 
exr(n, C3) =

(
n−1
r−1

)
for all r ≥ 3 and n ≥ 3r/2 thereby settling an old conjecture of 

Erdős [7]. They also proved some bounds for all k, r and conjectured that both of these 
extremal functions are asymptotic to �

(
n

r−1
)
. Füredi, Jiang and Seiver [14] proved the 

conjecture in strong form and determined ex(n, Pk) for all k, r ≥ 3 and n large. Füredi 
and Jiang [15] later determined ex(n, Ck) exactly for all k ≥ 3, r ≥ 4 and n large. Our 
second theorem determines exr(n, Ck) as well as the extremal Ck-free r-graphs for all 
r ≥ 3 and n large.

Theorem 1.2. Let r ≥ 3, k ≥ 5, and � = 	k−1
2 
. Then for sufficiently large n,

exr(n, Ck) =
(
n

r

)
−

(
n− �

r

)
+

{
0 if k is odd,
1 if k is even

with equality only for r-graphs of the form Sr
L(n) with |L| = � if k is odd, and Sr

L(n) plus 
an edge when k is even. Also for each r ≥ 3,

exr(n, C4) =
(
n

r

)
−

(
n− 1
r

)
+

⌊
n− 1
r

⌋

with equality only for r-graphs of the form Sr
L(n) ∪ F where F comprises 	n−1

r 
 disjoint 
edges.

The proof is very similar to that of Theorem 1.1 and some steps are easier, so we 
only indicate the differences in the proofs. The reader may observe that the approach 
also yields a proof for minimal paths that is substantially shorter than that in [14]. 
Furthermore, we believe our methods with some additional refinements give polynomial 
bounds on n relative to r and k above which Theorem 1.1 and Theorem 1.2 hold.

1.4. The extremal problem for Berge k-paths and k-cycles

Interesting results on the Turán-type problems for Berge k-paths and Berge k-cycles, 
were obtained by Bollobás and Győri [1] and in a series of papers by Győri, Katona and 
Lemons, in particular, in [17–19]. The bounds differ from those in Theorems 1.1 and 1.2. 
In particular, they are linear in n for exr(n, BPk). We do not study exr(n, BCk) in this 
paper. But if we forbid the family of Berge k-cycles or Berge k-paths in which no vertex 
belongs to at least 3 edges, then the answer is the same as in Theorem 1.2, apart from 
k = 4: the proof of the upper bound simply applies here, and the construction of Sr

L(n)
if k is odd and Sr

L(n) plus one edge if k is even also applies. We remark that Turán-type 
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problems for Berge cycles with other additional restrictions have been extensively studied 
in the literature. Very recently, Jiang and Collier-Cartaino [5] showed that a 2-linear 
r-graph on n vertices with no 2k-cycle has O(n1+1/k) edges, generalizing the Even Cycle 
Theorem of Bondy and Simonovits [2]. As another instance, for the minimal 4-cycle 
C = {e, f, g, h} with e ∪ f = g ∪ h and e ∩ f = g ∩ h = ∅, Erdős [8] conjectured 
exr(n, C) = O(nr−1), and this was proved by Füredi [13] (see also [13,22,25]). It seems 
likely that in this case the extremal C-free r-graphs for r > 3 are those in Theorem 1.2
for k = 4, and Füredi [13] conjectured exr(n, C) ∼

(
n−1
r−1

)
.

1.5. Organization

We prove Theorem 1.1 in four steps in Section 6; first we give an asymptotic version, 
then a stability version followed by the proof of the exact result for cycles and the exact 
result for paths. The heart of the proof and all the new ideas lie in the proof of stability. 
The method of proof for the exact results in Sections 6.3 and 7 is not novel and the 
specific approach we take was used in [21].

Theorem 1.2 is proved in Section 7. In Sections 3–5 we prepare the background for 
passing from cycles and paths in the shadow of an r-graph to cycles and paths in the 
r-graph itself.

2. Notation and terminology

2.1. General notation

Edges of an r-graph H sometimes will be written as unordered lists, for instance, 
xyz represents {x, y, z}. For X ⊂ V (H), let H −X = {e ∈ H : e ∩X = ∅}. The codegree
of a set S = x1x2 . . . xs of vertices of H is dH(S) = |{e ∈ H : S ⊂ e}|; when s = r − 1, 
the neighborhood in H of S is NH(S) = {x : S ∪ {x} ∈ H}, so that |NH(S)| = dH(S). 
For vertices x, y in a hypergraph, an x, y-path is a path P = e0e1 . . . ek where x ∈ e0−e1
and y ∈ ek − ek−1. Throughout the rest of the paper, when we say k-cycle (path) we 
mean linear k-cycle (path).

2.2. Shadows in hypergraphs

Now we state the crucial definitions involving shadows in hypergraphs. Let ∂H denote 
the (r − 1)-graph of sets contained in some edge of H — this is the shadow of H. The 
edges of ∂H will be called the sub-edges of H. If G ⊂ ∂H and F ⊂ H is obtained from 
G by adding distinct vertices of V (H) − V (G) to each edge of G, then we say that G
expands to F .

For 2 ≤ s < r, let ∂1H := ∂H and ∂sH = ∂s−1∂H. The strategy to prove Theorem 1.1
is to find a cycle in the shadow of an r-graph that can be expanded to a cycle in the 
r-graph itself.
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Definition 2.1. Let H be an r-graph. For G ⊂ ∂H and e ∈ G, the list of e is

LG(e) = NH(e) − V (G).

The elements of LG(e) are called colors. We let LG =
⋃

e∈G LG(e) and

Ĝ =
{
e ∪ {x} : e ∈ G, x ∈ LG(e)

}
.

Note that all these definitions are relative to the fixed host hypergraph H and the 
fixed subgraph G of ∂H. A key idea is that if C is a k-cycle or k-path in ∂H and the 
family {LC(e) : e ∈ C} has a system of distinct representatives, then Ĉ contains a 
k-cycle or k-path, and so H contains a k-cycle or k-path.

3. Full, superfull and linear hypergraphs

3.1. Full subgraphs

An r-graph H is d-full if every sub-edge of H has codegree at least d. Thus H is d-full 
exactly when the minimum non-zero codegree in H is at least d.

The following lemma extends the well-known fact that any graph G has a subgraph 
of minimum degree at least d + 1 with at least |G| − d|V (G)| edges.

Lemma 3.1. For r ≥ 2, d ≥ 1, every n-vertex r-graph H has a (d + 1)-full subgraph F
with

|F | ≥ |H| − d|∂H|.

Proof. A d-sparse sequence S is a maximal sequence e1, e2, . . . , em ∈ ∂H such that 
dH(e1) ≤ d, and for all i > 1, ei is contained in at most d edges of H which contain none 
of e1, e2, . . . , ei−1. The r-graph F obtained by deleting all edges of H containing at least 
one member of a d-sparse sequence S is (d + 1)-full. Since S has length at most |∂H|, 
we have |F | ≥ |H| − d|∂H|. �
Lemma 3.2. Let r ≥ 3, k ≥ 3 and let H be a non-empty rk-full r-graph. Then 
Ck, Pk−1 ⊂ H.

Proof. Consider the graph F = ∂r−2H. Every edge of H yields a Kr in F , so F contains 
a 3-cycle C3. As H is rk-full, each edge of F is in at least rk triangles in F . We claim that 
F contains a k-cycle: we start from C3, and for i = 3, . . . , k − 1, obtain an (i + 1)-cycle 
Ci+1 from i-cycle Ci by using one of the at least rk− i + 2 triangles containing an edge 
of Ci and no other vertices of Ci. Let a k-cycle Ck in F have edges f1, . . . , fk. Choose 
in H edges e1 = f1 ∪ g1, . . . , ek = fk ∪ gk so that to maximize the size of Y =

⋃k
i=1 ei. 

Suppose C = {e1, . . . , ek} is not a k-cycle in H. Then there are distinct i, j such that 



A. Kostochka et al. / Journal of Combinatorial Theory, Series A 129 (2015) 57–79 63
gi ∩ gj �= ∅. Pick v ∈ gi ∩ gj . Let Z = {z ∈ V (H) : (fi ∪ gi ∪ {z}) − {v} ∈ H}. Since 
H is rk-full, |Z| ≥ rk. As C is not a k-cycle, |Y | < rk and so there exists z ∈ Z − Y . 
Replacing ei with e = (fi ∪ gi∪{z}) −{v}, we enlarge Y , a contradiction. So H contains 
Ck and thus Pk−1. �
3.2. Superfull subgraphs

Recall that � = 	(k − 1)/2
.

Definition 3.3. An �-full r-graph H is �-superfull if for every edge e of H at most one 
sub-edge of e has codegree less or equal to rk.

Lemma 3.4. Let k, r ≥ 3, and let H be an �-superfull r-graph such that H contains a min-
imal k-cycle (respectively, a minimal k-path). Then H contains a k-cycle (respectively, 
a k-path).

Proof. The proofs for paths and cycles are similar, so we only do the case of cycles. 
Let C ⊂ H be a minimal k-cycle with maximum |V (C)|. If C is not a k-cycle, then 
we find consecutive edges f, g ∈ C with |f ∩ g| ≥ 2. Let x, y ∈ f ∩ g. Since H is 
�-superfull, we may assume dH(f − {x}) ≥ rk. Since |V (C)| < rk, we find z /∈ V (C)
such that h = f ∪ {z} − {x} ∈ H. Then C ′ = C ∪ {h} − {f} has more vertices than C, 
a contradiction. �
Lemma 3.5. Let r ≥ 3, k ≥ 4 and let H be an �-superfull r-graph containing a set W of 
at least rk vertices such that every (r − 1)-subset of W has codegree exactly �. Let G be 
the set of all (r − 1)-subsets of W . If H has no k-cycle or no k-path, then for some set 
L of � vertices of H −W , LG(e) = L for every (r − 1)-set e ⊂ W .

Proof. If e ∪ {x} ∈ H for some x ∈ W , then all (r− 1)-subsets of e ∪ {x} have codegree 
exactly �, contradicting the fact that H is �-superfull. Thus, NH(e) ∩W = ∅ for all e ∈ G.

Suppose that LG(f) �= LG(e) for some e, f ∈ G. Then there are e1, e2 ∈ G such that 
|e1 ∩ e2| = 1 and LG(e2) �= LG(e1), since from |W | ≥ rk ≥ 4r, for every two distinct 
e, f ∈ G, there is g ∈ G sharing exactly one vertex with each of e and f . In particular,

∣∣LG(e1) ∪ LG(e2)
∣∣ ≥ � + 1. (1)

Case 1: � ≥ 2 and H has no k-cycle. Let e3, . . . , e�+1 ∈ G be such that C =
{e1, e2, . . . , e�+1} is an (� + 1)-cycle. By (1), the family {LG(ei) : 1 ≤ i ≤ � + 1} has 
a system of distinct representatives {vi ∈ LG(ei) : 1 ≤ i ≤ � + 1}. As observed above, 
vi /∈ W for all i.

Let ei ∩ ei+1 = {wi+1} and Xi = ei ∪{vi} −{wi, wi+1}, with subscripts modulo � +1. 
Then each of Xi ∪ {wi} and Xi ∪ {wi+1} has codegree at least rk in H, since H is 
�-superfull and ei has codegree exactly �. Thus for each 1 ≤ i ≤ �, we can select edges 
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fi, gi ∈ H with Xi ∪ {wi} ⊂ fi and Xi ∪ {wi+1} ⊂ gi forming a minimal (2� + 2)-cycle 
in H if k is even. We let f�+1 = g�+1 = e�+1 to obtain a minimal (2� + 1)-cycle if k is 
odd. In both cases, H contains a minimal k-cycle, and so by Lemma 3.4, H contains a 
k-cycle.

Case 2: � = 1 and H has no 4-cycle. Let e3 be a sub-edge such that {e1, e2, e3} is 
a 3-cycle. For i = 1, 2, 3, let LG(ei) = {vi} and ei ∩ ei+1 = {wi}. Note again that 
vi /∈ W . By symmetry, we may assume that v1 /∈ {v2, v3}. Since H is �-superfull and 
e1 has codegree exactly �, the sub-edges e′ = e1 − w1 + v1 and e′′ = e1 − w3 + v1 have 
codegrees at least 3r. So we can select edges g1 ⊃ e′ and g2 ⊃ e′′, so that {e2, e3, g1, g2}
is a minimal 4-cycle in H. Applying Lemma 3.4, we conclude that H contains a 4-cycle.

Case 3: H has no k-path. We repeat Case 1, except we use an (� + 1)-path instead 
of C. �
3.3. Linear hypergraphs

In the last two sections we showed how to pass from cycles and paths in the shadow 
of full and superfull subgraphs of an r-graph H to cycles and paths in H itself. Here we 
consider the case that all sub-edges have bounded codegrees. The following fact is due 
to Erdős (see Theorem 1 in [7]):

Proposition 3.6. (See Erdős [7].) For r, t ≥ 2 there exists n0 = n0(r, t) such that for all 
n > n0, every n-vertex r-graph H with |H| > nr−t1−r contains the complete r-partite 
r-graph Kr

t,...,t.

Definition 3.7. An n-vertex r-graph H is (t, c)-sparse if every t-set of vertices lies in at 
most c edges of H. If c = 1, then H is t-linear.

The famous Ruzsa–Szemerédi (6, 3)-Theorem [26] shows that any linear 3-graph on n
vertices and Ω(n2) edges contains C3. The following generalization was proved for r = 3
by Sárkőzy and Selkow [27] using the Regularity Lemma. We avoid the use of regularity 
for r > 3 and for these r the proof below actually gives a bound of O(nr−1−δ) for some 
δ > 0.

Proposition 3.8. Fix c > 0 and r, k ≥ 3. Let H be an n-vertex (r − 1, c)-sparse r-graph 
not containing Pk or not containing Ck. Then |H| = o(nr−1).

Proof. It suffices to prove the result for Ck since Pk ⊂ Ck+1. In view of the Ruzsa–
Szemerédi (6, 3)-Theorem [26], we consider only r ≥ 4. Consider the graph with vertex 
set H in which two vertices are adjacent if the intersection of the corresponding edges of 
H has size r − 1. Since H is (r − 1, c)-sparse, this graph has maximum degree less than 
rc, so it contains an independent set H0 of size at least |H|/rc. This means that H0 is 
an (r − 1)-linear r-graph.
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Assume that ε > 0, n is sufficiently large, and |H0| > εnr−1. A standard averaging 
argument shows that there is an r-partite subgraph of H0 with at least (r!/rr)|H0| edges. 
Let X1, . . . , Xr be the r parts and consider the edge-colored (r−1)-partite (r−1)-graph 
H ′ ⊂ ∂H0 with parts X1, . . . , Xr−1 where the color of the edge {x1, . . . , xr−1}, with 
xi ∈ Xi for i ∈ [r − 1] is the unique xr ∈ Xr such that {x1, . . . , xr} ∈ H0. Such xr

is unique as H0 is (r − 1)-linear. We will find a rainbow Ck in H ′ — in other words a 
k-cycle in H ′ whose colors are all unique. Since |H ′| > (εr!/rr)nr−1 and n is large, by 
Proposition 3.6, there is a complete (r − 1)-partite (r − 1)-graph K = Kk,k,...,k,s ⊂ H ′

where s = k2r−3 +1 that has the same (r−1)-partition as H ′. Since H0 is (r−1)-linear, 
every color class Sc in H ′ is (r − 2)-linear. Now construct a hypergraph H∗ with vertex 
set Xr (these are the colors of H ′) and s edges, where the ith edge consists of the set of 
colors on edges incident to the ith vertex of K in the part of size s. Note that H∗ need 
not be uniform, but its edges have size at most kr−2.

Pick a color c (recall that c is a vertex of H∗). The number of edges of H∗ (these 
correspond to vertices of K in Xr−1) containing c is at most kr−2 since Sc is (r−2)-linear. 
So H∗ has maximum degree at most kr−2, edges of size at most kr−2, and size s. Therefore 
H∗ has a matching M of size s′ = �s/k2r−4� > k (by the greedy algorithm). This means 
that K contains the complete (r− 1)-partite (r− 1)-graph K ′ = Kk,k,...,k,s′ with partite 
sets X ′

1, . . . , X
′
r−1, |X ′

1| = . . . = |X ′
r−2| = k, and |X ′

r−1| = s′ (here X ′
r−1 corresponds 

to M) such that

no two edges e, e′ with the same color are incident to different vertices in X ′
r−1.

(2)

Let x ∈ X ′
r−1. We claim that

there is a pair {e1, e2} of edges in K ′ of different colors such that e1 ∩ e2 = {x}.

(3)

Indeed consider two edges e = {x1, . . . , xr−2, x} and e′ = {x1, . . . , xr−3, x′
r−2, x} of K ′

that differ only in (r− 2)th coordinate. Since H0 is an (r− 1)-linear, they have different 
colors. Then for any edge e′′ ∈ K ′ that shares only x with e ∪e′, either {e, e′′} or {e′, e′′}
satisfies (3).

Consider a k-cycle C ′ = {e1, . . . , ek} in K ′ such that e1 and e2 satisfy (3) and for 
every i �= 1, the vertex vi ∈ ei ∩ ei+1 is not in X ′

r−1. By (2) and (3), C ′ is a rainbow 
k-cycle in K ′ and we expand it to a k-cycle in H. �
4. Cycles and paths from shadows

We now present the key lemmas which show how to expand k-paths and k-cycles in 
∂H to paths and cycles in H itself. Throughout this section, r, k ≥ 3 and � = 	k−1
.
2
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4.1. Paths

Lemma 4.1. Let k ≥ 3, let H be an r-graph and let P = {e0, e1, . . . , e22�+1−1} be a 
22�+1-path in ∂H. If |LP (e)| ≥ � + 1 for all e ∈ P , then P̂ contains a k-path whose first 
edge contains e0.

Proof. As 	(k − 1)/2
 = 	(k − 2)/2
 for k even, it is enough to consider even k ≥ 4. 
First we prove the lemma for k = 4, and then apply an inductive proof. The case k = 4
is split into two cases:

Case 1: LP (e0) ∩ LP (ei) �= ∅ for some i > 1.
Let α ∈ LP (e0) ∩ LP (ei) and let ei, f, g, h ∈ P form a path vertex-disjoint from e0 — 
this exists since P has eight edges. Define L′(e) = LP (e) − {α} for e ∈ P . If we find 
distinct β ∈ L′(f) and γ ∈ L′(g), then {e0 ∪ {α}, ei ∪ {α}, f ∪ {β}, g ∪ {γ}} is a 4-path. 
Otherwise, LP (f) = LP (g) = {α, α′} for some α′. The same argument with f in place of 
ei shows LP (g) = LP (h) = {α, α′}, in which case the required 4-path is {e0 ∪ {α}, ei ∪
{α}, f ∪ {α′}, h ∪ {α′}}.

Case 2: LP (e0) ∩ LP (ei) = ∅ for all i > 1.
Let LP (e0) = {α, β}. If LP (e0) ∩LP (e1) �= ∅, say, β ∈ LP (e1), then by the case, we may 
pick distinct γ ∈ LP (e2) and δ ∈ LP (e3) so that {e0 ∪ {α}, e1 ∪ {β}, e2 ∪ {γ}, e3 ∪ {δ}}
is a 4-path, as required. Suppose LP (e0) ∩ LP (e1) = ∅. If there is γ ∈ LP (e1) ∩ LP (e3), 
then choose any λ ∈ LP (e4) − γ, and the edges e0 ∪{α}, e1 ∪{γ}, e3 ∪{γ}, e4 ∪{λ} form 
a 4-path. Otherwise, as |LP (ei)| ≥ 2 for i ≥ 1, we can choose all distinct α1 ∈ LP (e1), 
α2 ∈ LP (e2), α3 ∈ LP (e3), and the edges in the set {ei{αi} : i = 1, 2, 3} together with 
e0 ∪ {α} form a 4-path.

Now suppose k ≥ 6. If for some i > 1 we have β ∈ LP (e0) ∩ LP (ei), let P ′ =
{ei+1, ei+2, . . . , ei+2k−3} if i ≤ 2k−3 +1 and P ′ = {ei−1, ei−2, . . . , ei−2k−3} if i > 2k−3 +1
(note that i − 2k−3 ≥ 2). Let e′0 = ei+1 if i ≤ 2k−3 + 1 and e′0 = ei−1 if i > 2k−3 + 1. Let 
us remove β from all lists of edges of P ′. Then P ′ is a 2k−3-path all of whose lists have 
size at least �. So by induction on k, P̂ − β has a (k − 2)-path {f2, f3, . . . , fk−1} where 
e′0 ⊂ f2. Set f0 = e0∪{β}, f1 = ei∪{β}. Then {f0, f1, . . . , fk} is the required k-path. So 
we may assume for all i > 1, LP (e0) ∩LP (ei) = ∅. If we find γ ∈ LP (e1) −LP (e0), then 
remove γ from all lists LP (ei) where i ≥ 2. Let P̂ ′ = P̂ − LP (e0) − {γ} if γ exists and 
P̂ ′ = P̂ − LP (e0) otherwise (in this case LP (e1) ⊂ LP (e0)). By induction, P̂ ′ contains a 
(k−2)-path {f2, f3, . . . , fk−1} with e2 ⊂ f2 as the lists sizes have reduced by at most one. 
Set f0 = e0∪{α}, f1 = e1∪{β} with α �= β, α ∈ LP (e0) and β ∈ LP (e1) ∪{γ} (if γ exists 
we may choose β = γ); this works since |LP (e)| ≥ 2 for e ∈ P . Now {f0, f1, . . . , fk−1} ⊂ P̂

is a k-path. �
4.2. Cycles

To extend Lemma 4.1 to k-cycles, we need the following technical definition.
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Definition 4.2. Let H be an r-graph where r ≥ 3. Let Ψt(H) be the set of complete 
(r− 1)-partite (r− 1)-graphs G ⊂ ∂H with parts of size t and |LG(e)| > � for all e ∈ G, 
and if r = 3 and k is odd, then in addition for xy ∈ G, there is xyα ∈ Ĝ such that

(a) min{dH(xα), dH(yα)} ≥ 2 and
(b) max{dH(xα), dH(yα)} ≥ 3k + 1.

The additional technical conditions for r = 3 and k odd will become apparent in the 
proof of Case 2 of Lemma 4.4 below. We also will use the following simple fact.

Lemma 4.3. Let p ≥ 1 and q ∈ {2p, 2p + 1}, and let S1, S2, . . . , Sq be sets such that

Si ∩ Sj = ∅ for i ≤ p and j ≥ p + 2, and |Si| ≥ p + 1 for i ≤ p (4)

and |Si| ≥ p for i ≥ p +1. Then {S1, S2, . . . , Sq} has a system of distinct representatives, 
unless q = 2p + 1 and all Sj for j > p are all equal and of size p.

Proof. If we find an SDR for {Sp+1, . . . , Sq}, then by (4) we can greedily extend it to 
an SDR for {S1, . . . , Sq}. So suppose we cannot. Since |Si| ≥ p for every i, this means 
q − p > p (i.e., q = 2p + 1) and all Sp+1, . . . , S2p+1 are the same. �
Lemma 4.4. Let r ≥ 3, k ≥ 4. Then there exists a t0 = t0(r, k) such that for all t > t0
and for all Ck-free r-graphs H, Ψt(H) = ∅.

Proof. Suppose G ∈ Ψt(H). Let M be a set of s = 2k−2(r − 1) pairwise disjoint edges 
of G. Suppose first that α ∈ LG(e) for all e ∈ M . Let F ⊂ G be a complete (r−1)-partite 
subgraph of G with parts of size 2k−2 and

• V (F ) ⊂ V (M),
• ∀f ∈ F , e ∈ M , |f ∩ e| ≤ 1
• ∀f ∈ F there exist r − 1 distinct e ∈ M with |f ∩ e| = 1.

We will show that F̂ contains a (k − 2)-path avoiding α. For k ≥ 5, F contains a 
2k−2-path, so by Lemma 4.1, F̂ contains a (k − 2)-path that does not use α on its 
lists. If k = 4 and F has lists of size 1 after removing α, we cannot use Lemma 4.1 to 
find a (k − 2)-path as k − 2 < 3. To find a 2-path in F̂ in this case, consider any 3-path 
{f1, f2, f3} in F . Suppose βi ∈ LG(fi) −α for i = 1, 2, 3. If β1 = β3, then {f1∪β1, f3∪β1}
is a 2-path; otherwise either {f1 ∪ β1, f2 ∪ β2} or {f2 ∪ β2, f3 ∪ β3} is a 2-path. For all 
k ≥ 4 we have found x, y ∈ V (F ) ⊂ V (M) and an xy-path P̂ ⊂ F̂ −{α} of length k− 2. 
Picking edges e, f ∈ M with x ∈ e and y ∈ f , P̂ ∪ {e ∪ {α}, f ∪ {α}} is a k-cycle in Ĝ, 
a contradiction. We conclude that

no color appears in the lists of s pairwise disjoint edges of G. (5)
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For every e ∈ G, fix a subset L′
G(e) of LG(e) with |L′

G(e)| = � + 1. Let m = 	t/(s + 2)
. 
For i ∈ [m], let Fi ⊂ G be vertex-disjoint complete (r − 1)-partite graphs with parts of 
size s + 2, and L′

i =
⋃
{L′

G(e) : e ∈ Fi}. Then |L′
1| ≤ (� + 1)|F1| ≤ (s + 2)r. For each 

color α ∈ L′
1, by (5), there are at most s different i for which α ∈ L′

i∩L′
1. So L′

i∩L′
1 �= ∅

for at most (s + 2)r+1 values i ∈ [m]. Choose t so that m > (s + 2)r+1. Then for some 
i > 1, L′

i ∩L′
1 = ∅, say for i = 2. Let F = F1 ∪F2 and let X, Y be two parts of F . Select 

e ∈ G with e ∩ V (F1) = {x} ⊂ X and e ∩ V (F2) = {y} ⊂ Y .

Case 1: r > 3, or r = 3 and k is even. Let e ∪ {α} ∈ Ĝ. By the symmetry between 
L′

1 and L′
2 we may suppose α /∈ L′

1. Let q = k − 1 and p = �. If p is odd, then let 
U = V (F1) ∩ X and V = V (F2) ∩ Y , while if p is even, then let U = V (F1) ∩ Y and 
V = V (F2) ∩X.

Let f be any edge f ∈ G with |f ∩U | = 1 = |f ∩ V | and |f ∩ V (F )| = 2. Since U and 
V are subsets of different parts in F and r > 3, or r = 3 and k is even, there is a q-path 
Q = {f1, f2, . . . , fq} from x to y in G with fi ⊂ F1 for i ≤ p, fp+1 = f , and fi ⊂ F2
for i > p + 1. Indeed, the case r > 3 is trivial as we have space to easily obtain Q while 
the case r− 1 = 2 and k even relies on the careful placement of the edge f based on the 
parity of p. If Q expands to a q-path Q̂ ⊂ Ĝ− α, then Q̂ ∪ {e ∪ {α}} is a k-cycle in Ĝ, 
a contradiction. Therefore

Q does not expand to a q-path in Ĝ− α. (6)

Now let Si = L′
G(fi) − α for 1 ≤ i ≤ q. Since L′

1 ∩ L′
2 = ∅, we have Si ∩ Sj = ∅ for 

i ≤ p and j > p + 1, and since α /∈ L′
1, |Si| > p for i ≤ p, and |Si| ≥ |L′

G(fi)| − 1 ≥ p

for i > p. By (6), the family {S1, S2, . . . , Sq} has no system of distinct representatives. 
By Lemma 4.3, all Si for i > p are identical of size p = �, and since |L′

g(fi)| = � + 1, we 
have α ∈ L′

G(f). Since f was any edge with |f ∩ U | = 1 = |f ∩ V | and |f ∩ V (F )| = 2, 
G is complete (r − 1)-partite, t is large, and |U |, |V | ≥ s, we have s disjoint edges of G
whose lists all contain α, contradicting (5). This finishes Case 1.

Case 2: r = 3 and k is odd. Let q = k − 2 and p = � − 1, so q = 2p + 1. Since 
G ∈ Ψt(H), some xyα ∈ Ĝ satisfies (a) and (b) in Definition 4.2. Again, since L′

1∩L′
2 = ∅, 

we may suppose α /∈ L′
1. By symmetry we may assume dH(xα) > 3k and dH(yα) > 1. 

Choose an edge yαβ ∈ H with β �= x. Note that possibly β ∈ V (G). For i = 1, 2, let 
Xi = X ∩ V (Fi) − {x, β} and Yi = Y ∩ V (Fi) − {y, β}. Let f ∈ G be such that

|f ∩X1| = 1 = |f ∩ Y2| if q ≡ 1 (mod 4),

|f ∩X2| = 1 = |f ∩ Y1| if q ≡ 3 (mod 4).

Since q is odd, there is a q-path Q = {f1, f2, . . . , fq} from x to y in G with fi ⊂ F1 for 
i ≤ p, fp+1 = f , and fi ⊂ F2 for i > p +1. If Q expands to a q-path Q̂ ⊂ Ĝ−α−β, then 
select γ ∈ V (H) −V (Q̂) −α−β so that xαγ ∈ H — this is possible since dH(xα) > 3k — 
and then Q̂ ∪ {xαγ, yαβ} is a k-cycle in Ĝ. So
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Q does not expand to a q-path in Ĝ− α− β. (7)

Let Si = L′
G(fi) −α−β. Since L′

1 ∩L′
2 = ∅, we have Si ∩Sj = ∅ for i ≤ p and j > p +1, 

and since α /∈ L′
1, |Si| = |L′

G(fi) − β| ≥ � > p for i ≤ p, and |Si| ≥ |L′
G(fi)| − 2 ≥ p for 

i > p. By (7), the family {S1, S2, . . . , Sq} has no system of distinct representatives. By 
Lemma 4.3, all Si for i > p are identical, and |Si| = p for all i, which forces α ∈ Si, in 
particular, α ∈ L′

G(f). Since f was an arbitrary edge joining X1 to Y2 or joining X2 to 
Y1 and |Xi|, |Yi| ≥ s for i = 1, 2, this contradicts (5). �
5. Random sampling

We use a random sampling technique and Lemmas 4.4 and 4.1 to find k-cycles and 
k-paths in an r-graph H when H has many sub-edges of codegree at least � + 1.

Lemma 5.1. Let δ > 0, r ≥ 3 and k ≥ 4. Let H be an r-graph, and E ⊂ ∂H with |E| >
δnr−1. Suppose that dH(f) ≥ � + 1 for every f ∈ E and, if r = 3 and k is odd, then in 
addition, for every f = xy ∈ E there is ef = xyα ∈ H such that min{dH(xα), dH(yα)} ≥
2 and max{dH(xα), dH(yα)} ≥ 3k+1. Then for large enough n, H contains Pk and Ck.

Proof. By Lemmas 4.4 and 4.1, it is enough to prove that Ψt(H) �= ∅ for a large enough t.
Let m = � + 1 and T be a random subset of V (H) obtained by picking each vertex 

independently with probability p = 1/2. Let

F =
{
f ∈ E : f ⊂ T,

∣∣NH(f) − T
∣∣ ≥ m, ef − f �⊂ T

}
.

For f ∈ E and any choice of edges e1, e2, . . . , em ∈ H containing f such that e1 = ef , 
the probability that f ⊂ T and ei− f �⊂ T for i ∈ [m] is exactly pr−1(1 − p)m. Therefore

E
(
|F |

)
≥ |E|pr−1(1 − p)m ≥ δ2−m−r+1nr−1.

So there is a T ⊂ V (H) with |F | ≥ δ2−m−r+1nr−1. If n is large enough, Proposition 3.6
gives a complete (r−1)-partite G ⊂ F with parts of size t. Since |LG(f)| ≥ |NH(f) −T | ≥
m for f ∈ G, G ∈ Ψt(H) for r ≥ 4 and for even k when r = 3. Suppose r = 3 and k is 
odd. Then since for every f ∈ G, ef ∈ Ĝ, again G ∈ Ψt(H). �
6. Proof of Theorem 1.1

6.1. Part I: asymptotics

Theorem 6.1. Let r ≥ 3, k ≥ 4.

(a) If H is an n-vertex (� +1)-full r-graph and Ck �⊂ H or Pk �⊂ H, then |H| = o(nr−1).
(b) exr(n, Pk) ∼ exr(n, Ck) ∼ �

(
n
)
.
r−1



70 A. Kostochka et al. / Journal of Combinatorial Theory, Series A 129 (2015) 57–79
Proof. To prove (a), we first show

|∂H| = o
(
nr−1). (8)

Suppose that |∂H| > δnr−1 where δ > 0, and n is large. If r > 3 or r = 3 and k is even, 
then by Lemma 5.1 with E = ∂H, if n is large enough, then H contains a k-cycle and a 
k-path, a contradiction.

For r = 3 and k odd, let H∗ be the set of edges of H containing no pair of codegree at 
least 3k. Then H∗ is (2, 3k)-sparse, so by Proposition 3.8, |H∗| = o(n2). Let F = ∂H −
∂H∗ so that for every f ∈ F , there is an edge e ∈ H containing f and containing a pair f ′

with dH(f ′) > 3k (possibly, f ′ = f). Then |F | ≥ |∂H| − |∂H∗| ≥ δn2 − o(n2) > (δ/2)n2

if n is large enough.
If all edges of H containing a pair f ∈ F have all their sub-edges of codegree greater 

than 3k, map f to itself. Otherwise, pick an edge of H containing f and containing some 
pair f ′ of codegree at most 3k, and map f to f ′ (again f = f ′ is possible). This map is at 
most 6k to one, and therefore we have a set E of (δ/12k)n2 pairs in ∂H each of codegree 
at least � + 1 in H and each f ∈ E is contained in some edge ef ∈ H in which some pair 
has codegree at least 3k + 1. Since H is (� + 1)-full, the conditions of Lemma 5.1 hold 
for E, and so H contains a k-cycle and a k-path, a contradiction. So we proved (8) in 
both cases.

Now by Lemma 3.1, H has an r(k + 1)-full subgraph H ′ with

|H ′| ≥ |H| − r(k + 1)|∂H|.

By Lemma 3.2, if H ′ �= ∅, then Pk, Ck ⊂ H ′ ⊂ H, which is a contradiction. We conclude 
H ′ = ∅, and so |H| ≤ r(k + 1)|∂H| = o(nr−1), which proves (a).

Now we determine the asymptotic value of exr(n, Ck) and exr(n, Pk). The construction 
Sr
L(n) in the statement of Theorem 1.1 shows exr(n, Ck), exr(n, Pk) ≥

(
n
r

)
−

(
n−�
r

)
∼

�
(

n
r−1

)
. Suppose H is an r-graph and Ck �⊂ H or Pk �⊂ H. By Lemma 3.1, H has an 

(� + 1)-full subgraph H ′ with |H ′| ≥ |H| − �|∂H|. By (a), |H ′| = o(nr−1). So |H| ≤
|H ′| + �|∂H| ≤ o(nr−1) + �

(
n

r−1
)
. �

6.2. Part II: stability

Theorem 6.2. Fix r ≥ 3, k ≥ 4 and let H be an n-vertex r-graph with |H| ∼ �
(

n
r−1

)
containing no k-cycle or no k-path. Then there exists G∗ ⊂ ∂H with |G∗| ∼

(
n

r−1
)

and a set L of � vertices of H such that LG∗(e) = L for every e ∈ G∗. In particular, 
|H − L| = o(nr−1).

Proof. Let H∗ be the set of edges of H not containing any sub-edge of codegree at 
least rk + 1. Then H∗ is (r − 1, rk)-sparse, so Proposition 3.8 implies |H∗| = o(nr−1). 
Let H ′ = H − H∗, so |H ′| ∼ |H|. We construct sequences f1, f2, . . . , fq ∈ ∂H ′ and 
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H0, H1, . . . , Hq ⊂ H with H0 = H ′ as follows. Suppose Hi is constructed and let di(f) =
dHi

(f). A sub-edge f of Hi is of type

(i) if di(f) < �,
(ii) if di(f) = � and some e ∈ Hi containing f contains a sub-edge g �= f with di(g) = �,
(iii) if � < di(f) < rk.

If Hi has no sub-edges of types (i)–(iii), let q = i and stop. Otherwise, let f be a sub-edge 
of Hi of minimum type, and Hi+1 = Hi − {e ∈ Hi : f ⊂ e} and fi+1 = f .

Every sub-edge f ∈ ∂Hq has dq(f) ≥ � (since f is not type (i)) so Hq is certainly 
�-full. Also, no edge has more than one sub-edge of codegree less than rk, for then we 
have a sub-edge of type (ii) or (iii). Therefore Hq is �-superfull.

Claim 1. |∂Hq| ∼
(

n
r−1

)
.

Proof. Let E be the set of fi of type (iii), and for each f ∈ E, let ef be any edge of 
H ′ containing f . Suppose |E| > δnr−1. If r ≥ 4 or r = 3 and k is even, this contradicts 
Lemma 5.1. Let r = 3 and k be odd. By definition every edge of Hi containing fi of 
type (iii) has each of its subedges of codegree at least � ≥ 2 and dH(fi) ≥ � + 1. Since 
every edge in H ′ contains some pair of codegree at least 3k + 1 in H, the conditions of 
Lemma 5.1 are met by E. Again, by this lemma, H contains Pk and Ck, a contradiction. 
So, |E| = o(nr−1). Since we have deleted q sub-edges, |∂Hq| ≤

(
n

r−1
)
− q. Note that if a 

sub-edge of type (ii) was chosen, then Hi+1 will have a sub-edge of type (i). So, if ε > 0
and q = ε

(
n

r−1
)
, then for n sufficiently large,

|Hq| ≥ |H ′| − q

(
�− 1

2

)
− rk|E| ≥ �|∂Hq| − o

(
nr−1) + ε

2

(
n

r − 1

)
− rk|E|

≥ �|∂Hq| +
ε

4

(
n

r − 1

)
.

By Lemma 3.1, Hq has an (� +1)-full subgraph with at least ε4
(

n
r−1

)
edges, contradicting 

Theorem 6.1. So q = o(nr−1), and �|∂Hq| ≤ |Hq| ≤ �|∂Hq| + o(nr−1), which imply 
|∂Hq| ∼

(
n

r−1
)
. �

Let G′ be the subgraph of ∂Hq formed by the sub-edges of codegree � in Hq.

Claim 2. |G′| ∼
(

n
r−1

)
.

Proof. Let G′′ = ∂Hq − G′. Since Hq is �-superfull, the codegree of every f ∈ G′′ is 
at least rk ≥ � + 1. So if r ≥ 4 or r = 3 and k is even, then by Lemma 5.1 with 
E = G′′, |G′′| = o(nr−1). If r = 3 and k is odd, then � ≥ 2 and since Hq is �-superfull, 
the conditions of Lemma 5.1 are satisfied. So again we get |G′′| = o(nr−1), and thus 
|G′| ∼

(
n

r−1
)

as required. �
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Claim 3. For some G∗ ⊂ G′, |G∗| ∼
(

n
r−1

)
and all edges of G∗ have the same list in Hq.

Proof. Let N be the number of rk-cliques in G′. Since |G′| ∼
(

n
r−1

)
, we easily see that 

N ∼
(
n
rk

)
. By averaging, some edge e∗ ∈ G′ is contained in at least

N

|G′|

(
rk

r − 1

)

rk-cliques in G′. By Lemma 3.5, for every rk-clique K in G′ containing e∗ and each 
e ∈ K, the set L := LHq

(e∗) is disjoint from V (K) and coincides with LHq
(e).

Let G∗ ⊂ G′ be the set of edges of G′ contained in a common rk-clique of G′ with e∗. 
By the previous paragraph, LHq

(f) = L for all f ∈ G∗. The number of pairs (K, f)
where K is an rk-clique in G′ containing e∗ and f ∈ K is disjoint from e∗ is at least

N
(

rk
r−1

)(
rk−r+1

r−1
)

|G′| .

The number of rk-cliques containing both e∗ and f is at most 
(

n
rk−2r+2

)
. We conclude

∣∣G∗∣∣ ≥ N
(

rk
r−1

)(
rk−r+1

r−1
)

|G′|
(

n
rk−2r+2

) .

Using |G′| ∼
(

n
r−1

)
and N ∼

(
n
rk

)
, a straightforward calculation shows |G∗| ∼

(
n

r−1
)
. �

6.3. Part IIIa: exact result for cycles

Fix r ≥ 3, k ≥ 4 and let n be large. Let H be an n-vertex r-graph containing 
no k-cycle and with |H| =

(
n
r

)
−

(
n−�
r

)
+ f(n, k, r), where f(n, k, r) = 0 if k is odd, 

f(n, k, r) = exr(n −�, {P2, 2P1}) =
(
n−�−2
r−2

)
if k is even and (k, r) �= (4, 3) and f(n, 4, 3) =

ex3(n − �, P2).
Let β = 1/10. Theorem 6.2 implies that for n sufficiently large, exr(n, Ck) < 2�

(
n

r−1
)

and consequently, there is a c = c(k, r) such that exr(n, Ck) < cnr−1 for all n ≥ 1. 
Choose α sufficiently small so that

c2r−1(k3rr
)r−1

α(r−2) < β/2. (9)

Finally, choose n sufficiently large so that all inequalities involving α, k, r in the proof 
below are valid. By Theorem 6.2, there exists L = {x1, . . . , x�} ⊂ [n] such that |H−L| ≤
αnr−1. Let B = H −L be the set of edges of H that are disjoint from L so |B| < αnr−1. 
If k is odd, then we shall show that B = ∅. If k is even then we shall show that B is an 
extremal family with no P2 and 2P1 unless k = 4, r = 3, in which case B is an extremal 
family with no P2. This proves both the extremal result and the characterization of 
equality. Let



A. Kostochka et al. / Journal of Combinatorial Theory, Series A 129 (2015) 57–79 73
M =
{
e ∈

(
[n]
r

)
−H : e ∩ L �= ∅

}
,

so that

|B| = |M | + f(n, k, r).

If M = ∅, then we are done, so we may suppose for a contradiction that M �= ∅ and 
|B| > f(n, k, r). Set m := |M | so that m ≤ |B| < αnr−1.

Claim 1. There exist pairwise disjoint (r− 2)-sets Z1, Z2, . . . , Zkr ⊂ V (H) −L such that 
for each i ∈ [kr] and j ∈ [�]

dH
(
Zi ∪ {xj}

)
≥ n− r + 1 − krm(

n−�
r−2

) .
If r ≥ 4 there exists an additional (r−2)-set Zkr+1 that is disjoint from Zi for i ∈ [kr−1]
and |Zkr+1 ∩ Zkr| = 1.

Proof. Pick an (r − 2)-set T ⊂ V (H) − L uniformly at random. Let H = {e ⊂ V (H) :
|e| = r, e /∈ H}. For j ∈ [�], let

Xj = dH
(
T ∪ {xj}

)
= n− r + 1 − dH

(
T ∪ {xj}

)
.

In other words, Xj counts the number of r-sets e /∈ H with T ∪ {xj} ⊂ e. The number 
of r-sets e ⊃ {xj} with e /∈ H is at most m. For each such e, let Xj(e) be the indicator 
for the event that T ⊂ e. Then

E(Xj) =
∑
e

E
(
Xj(e)

)
≤ m

(
r−1
r−2

)
(
n−�
r−2

) <
rm(
n−�
r−2

) .
By Markov’s inequality,

P

(
Xj >

krm(
n−�
r−2

)) < 1/k.

This implies that

P

(
∃j : Xj >

krm(
n−�
r−2

)) < �/k < 1/2.

In other words, the number of T for which dH(T ∪ {xj}) ≥ n − r + 1 − krm/
(
n−�
r−2

)
for 

all j is at least 
(
n−�
r−2

)
/2.

Now consider the family of all (r − 2)-sets described above, and let T1, . . . , Tt be a 
maximum matching in this family. If t < kr, then all other sets of this family have an 
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element within 
⋃

i Ti, which implies that the number of such T is less than 
(
n−�
r−2

)
/2, 

because n is sufficiently large. This contradiction shows that t ≥ kr.
If r ≥ 5, then by a result of Frankl [11] that exr−2(n − �, P2) = O(nr−4), we can 

find two sets T1, T2 with |T1 ∩ T2| = 1 and then find the remaining kr − 1 sets using 
the greedy procedure described above. If r = 4, then we use the fact that a graph with 
Ω(n2) edges has a 2-path together with a disjoint from it matching of size kr − 1. �
Claim 2. Let Z =

⋃
i Zi and Y = V (H) − (L ∪ Z). Then there exists a set D ⊂ Y such 

that H contains all edges of the form Zi∪{xj , y}, for all i ∈ [kr], xj ∈ L and y ∈ D and

|D| = n− �kr −
⌈
k3rrm

nr−2

⌉
.

Proof. For each i ∈ [kr] and j ∈ [�], let Si,j = {y ∈ Y : Zi ∪ {xj , y} /∈ H}. Claim 1
implies that |Si,j | < krm/

(
n−�
r−2

)
. Let S =

⋃
i,j Si,j . Then

|S| < (kr�)krm(
n−�
r−2

) <
k3rrm

nr−2 .

We may add points arbitrarily to S till D := Y − S has the required size. �
Claim 3. No two edges e, e′ ∈ B have |e ∩e′| = 1 and (e −e′) ∩D �= ∅ and (e′−e) ∩D �= ∅. 
If k ≥ 5 is odd, then no edge e ∈ B has |e ∩ D| ≥ 2. If k ≥ 6 is even and r = 3, then 
there are no two disjoint edges each with at least two points in D.

Proof. For k even and |e ∩ e′| = 1 suppose u ∈ e − e′, v ∈ e′ − e and u, v ∈ D. Then 
there is a path P of length k − 2 in H between u and v consisting of edges Zi ∪ {xj , y}
with y ∈ D and such that V (P ) ∩ (e ∪ e′) = {u, v}. All vertices of L will have degree 
two in P . Now P ∪ {e, e′} is a k-cycle in H. For k ≥ 5 odd and r ≥ 4, we repeat the 
same argument except that we use Zkr−1 and Zkr which have a common intersection 
point. Thus we use � − 1 of the xj ’s in two edges and the last xj together with Zkr and 
(e′ − e) ∩D. Lastly, for k ≥ 5 odd and r = 3, we use a particular Zi twice to complete 
the odd cycle (since |Zi| = 1, this approach is valid only for r = 3).

For k ≥ 5 odd, suppose u, v ∈ e ∩D. Then again there is a path P of length k−1 in H
between u and v consisting of edges Zi∪{xj , y} with y ∈ D such that V (P ) ∩e = {u, v}, 
and P ∪ {e} is a k-cycle in H.

Finally, if k ≥ 6 is even, r = 3, e = uvw, e′ = u′v′w′ with e ∩ e′ = ∅, 
and {u, v, u′, v′} ⊂ D, then we form a Ck as follows: If k = 6 we use the edges 
e, x1z1u, x1z2u

′, e′, x2z3v
′, x2z4v where Zi = {zi} for all i. If k > 6 then instead of the 

edge x2z4v, we use an edge x2z4y for some y ∈ D, expand the path using the remaining 
xi’s and zi’s, and close the path with x�z2�v. We obtain a cycle of length 2� + 2 = k as 
desired. �
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Claim 4. m >
(
n−3r−3k

r−2
)
.

Proof. Suppose that k is even and there are e, e′ ∈ B with |e ∩e′| = 1. Let u ∈ e −e′ and 
v ∈ e′− e and let f be an r-set with f ∩ (e ∪ e′) = {u} and |f ∩L| = 1. If no such r-set is 
an edge of H, then m ≥

(
n−|e∪e′∪L|

r−2
)

and we are done. So we may assume that there is 
such an f ∈ H. If k > 4, then let g be an r-set disjoint from f and with g∩ (e ∪e′) = {v}
and |g ∩L| = 1. If k = 4, then let g be an r-set with g ∩ (e ∪ e′ ∪ f) = {v} ∪ (f ∩L). Let 
us argue that g /∈ H. Indeed, if k > 4 and g ∈ H, then we find a path P of length k − 2
in H as in Claim 3 containing f and g, and P ∪ {e, e′} is a k-cycle in H. If k = 4, then 
e, e′, f, g is already a 4-cycle. Since g /∈ H we have g ∈ M and hence

m = |M | ≥
(
n− |e ∪ e′ ∪ f ∪ L|

r − 2

)
>

(
n− 3r − 3k

r − 2

)
.

If r > 3, then by Frankl’s theorem [11], |B| > f(n, k, r) implies that there exist 
e, e′ ∈ B with |e ∩ e′| = 1. Now we are done by the preceding argument. If r = 3 and 
k = 4, then by definition of f(n, 4, 3) we find e, e′ with |e ∩e′| = 1 and we are again done. 
If r = 3 and k ≥ 6 is even and we cannot find such e, e′ with a singleton intersection, 
then there are e, e′ ∈ B with e ∩ e′ = ∅ (this is easy to see since if we have more than 
f(n, k, 3) = n − � − 2 triples on n − � points and no singleton intersection, then we 
must have many disjoint complete 3-graphs on four points). Then for every i and every 
u ∈ e ∪ e′, dH(xiu) < 3k for otherwise we can build a k-cycle using e, e′ and k− 2 edges 
each containing some xi and at most one point of e ∪ e′ (many of the edges will not 
intersect e1 ∪ e2 if k is large). This immediately gives at least n − 9 − 3k triples in M
that contain both xi and u and Claim 4 is proved in this case.

If k is odd, then pick any edge e ∈ B and apply a similar argument. �
For 0 ≤ i ≤ r, define Br

i = {e ∈ B : |e ∩ (Y −D)| = i}.

Claim 5. |Br
r | < βm.

Proof. Recall that c satisfies exr(n, Ck) < cnr−1 for all n ≥ 1. As Br
r itself has no Ck, 

we can apply this weaker bound to obtain

∣∣Br
r

∣∣ ≤ exr

(
n− |D|, Ck

)
< c

(
n− |D|

)r−1
.

Since n is large, Claim 4 implies that c2r−1(�kr)r−1 < (β/2)m and Claim 2 gives

∣∣Br
r

∣∣ < c

(
�kr + k3rrm

nr−2

)r−1

< c2r−1
(

(�kr)r−1 +
(
k3rrm

nr−2

)r−1)
<

β

2m + c′
mr−1

n(r−2)(r−1)

where c′ = c2r−1(rrk3)r−1. By (9) and m < αnr−1,
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c′
mr−1

n(r−2)(r−1) = c′m

(
m

nr−1

)r−2

≤ c′mαr−2 <
β

2m

and the claim follows. �
Claim 6. |Br

r−1| < βm for r ≥ 4 and |B3
2 | < 3m/4.

Proof. Partition Br
r−1 into P r ∪ Qr, where P r comprises those r-sets e ∈ Br

r−1 with 
dBr

r−1
(e −D) = 1. Clearly |P r| <

(|Y |−|D|
r−1

)
< (β/2)m as in Claim 5.

Let us now focus on Qr. Let F be the collection of (r − 1)-sets f ⊂ Y −D such that 
there exists e ∈ Br

r−1 with f ⊂ e. We now partition the argument depending on whether 
r = 3 or r ≥ 4

Suppose that r = 3. Then F is a (graph) matching for if we have vw and vw′ in F , 
then we have (by definition of Q3) distinct vertices y, y′ and edges vwy, vw′y′ in B3

2 . This 
contradicts Claim 3. We will prove that |Q3| ≤ 2m/3. Suppose for contradiction that 
|Q3| > 2m/3. Then by averaging, there is a vertex u ∈ D with dB3

2
(u) ≥ �2m/(3n)� := t. 

Let v1w1, . . . , vtwt be the neighbors of u in Q3 (meaning that uviwi ∈ Q3 for all i). 
Note that these pairs form a matching. Given i < j, there are at least 2(|D| − 2) sets 
of M containing an element of {vi, wi} or at least 2(|D| − 2) edges of M containing 
an element of {vj , wj}. Indeed, if this is not the case, then we can form a copy of Ck

using uviwi and uvjwj . Since the pairs {viwi}ti=1 form a matching this implies that 
|M | ≥ 2(|D| − 2)(t − 1). Since m is large by Claim 4 and α is small this is at least 
2 × (0.9)n × (2m

3n − 1) > m, contradiction.
Next suppose that r ≥ 4. In this case F is a collection of (r − 1)-sets on D that 

have no singleton intersection by Claim 3. We conclude by a result of Keevash–Mubayi–
Wilson [20] that |F | <

(
n−|D|
r−3

)
and hence that

∣∣Qr
∣∣ < |F |n <

(
n− |D|
r − 3

)
n.

By Claim 2, there exists C depending only on k and r such that this is at most

Cn

(
m

nr−2

)r−3

= Cm
mr−4

n(r−2)(r−3)−1 .

Since m < nr−1, (r− 1)(r− 4) < (r− 2)(r− 3) − 1 and n is large, the last expression is 
at most (β/2)m and the claim follows. �

Since |B| = m +f(n, k, r), Claims 5 and 6 imply that |Br
r−1| +|Br

r | < (2β+3/4)m < m

and therefore |Br
0 ∪ . . . ∪Br

r−2| > f(n, k, r).
If k is odd, then Br

0 ∪ . . . ∪ Br
r−2 �= ∅. If k is even and r ≥ 4 then there are edges 

e, e′ ∈ Br
0 ∪ . . . ∪ Br

r−2 such that |e ∩ e′| = 1. This is because for r ≥ 4 the extremal 
function for P2 is the same as the extremal function for {P2, 2P1} by [11] as long as n is 
sufficiently large (in both cases the extremal example is obtained by taking all r-sets that 
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intersect a specific set of two points). If (k, r) = (4, 3), then by definition of f(n, 4, 3)
there are edges e, e′ ∈ B3

0 ∪ B3
1 such that |e ∩ e′| = 1. Finally, if k ≥ 6 is even, r = 3

and |B3
0 ∪ B3

1 | > f(n, k, 3) = n − � − 2 then we find two edges e, e′ ∈ B3
0 ∪ B3

1 with 
|e ∩ e′| ≤ 1. In all four cases above we contradict Claim 3. This completes the proof of 
Theorem 1.1. �
6.4. Part IIIb: exact result for paths

We closely follow the proof in Section 6.3 except that we replace f(n, k, r) by h(n, k, r), 
where h(n, k, r) = 0 if k is odd and h(n, k, r) = exr(n − �, {P2, 2P1}) if k is even. Claims 
1, 2 and 5 follow immediately and Claim 4 follows by a very similar proof. We strengthen 
Claim 3 as follows.

Claim 3′. No two edges e, e′ ∈ B have |e ∩ e′| ≤ 1, (e − e′) ∩D �= ∅ and (e′ − e) ∩D �= ∅. 
If k is odd, then no edge e ∈ B has |e ∩D| ≥ 1.

Proof. In the first case, we may form a path using the two vertices of e�e′ in D and 2�
other edges. This is a path of length 2� + 2 ≥ k. In the case when k is odd, we form a 
path of length 2� + 1 = k ending at e by the same procedure. �

If k is odd, then Claim 3′ implies that B = Br
r and Claim 5 implies the contradiction 

m ≤ |B| < βm. Let us suppose that k is even. We now observe that Claim 6 also holds (in 
fact we can improve the argument when r = 3 to obtain 4(|D| − 1) instead of 2(|D| − 1)
as it is easier to form a k-path), so |Br

0 ∪ . . . ∪ Br
r−2| > h(n, k, r) and we find a P2 or a 

2P1 in this union. This contradicts Claim 3′ and completes the proof. �
7. Proof of Theorem 1.2

In this short section we show how to modify the proof of Theorem 1.1 to prove 
Theorem 1.2. The case of minimal paths is easier than minimal cycles, so we concentrate 
only on minimal cycles. We only prove the case r = 3 as all other cases are covered by the 
result of Füredi–Jiang [15] (though our proof works just as easily for all r ≥ 3 and k ≥ 4). 
We closely follow the proof of Theorem 1.1. We may assume that k ≥ 4 is even as the 
case k = 3 is already solved in [6,12,23] and if k ≥ 5 is odd, then we apply Theorem 1.1
directly. Since Ck ∈ Ck, we immediately obtain a stability result (Theorem 6.2) for Ck. 
Now we repeat the proof in Section 6.3 with f(n, k, r) replaced by f(k), where f(k) = 0
if k is odd, f(k) = 	(n − 1)/r
 if k = 4 and f(k) = 1 if k ≥ 6 is even. The proofs of 
Claims 1, 2, 4, 5 and 6 remain the same or very similar and we do not repeat them. 
Claim 3 can be strengthened by replacing |e ∩ e′| = 1 with |e ∩ e′| ≥ 1 since it is enough 
to find a minimal cycle.

Suppose that k = 4, � = 1 and we are trying to find a minimal 4-cycle. Then |B3
2 | +

|B3
3 | < (β + 3/4)m ≤ (1/10 + 3/4)m < (6/7)m and therefore |B3

0 | + |B3
1 | = m + f(k) −
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|B3
2 | − |B3

3 | > f(k) + m/7. If |B3
0 | > f(k), then we find e, e′ ∈ B3

0 with e ∩ e′ �= ∅
which contradicts (the strengthened) Claim 3. So we may assume that |B3

0 | ≤ f(k) and 
|B3

1 | > m/7. Each edge of B3
1 has a vertex in Y −D, and since n is large, |Y −D| < m/7. 

Therefore there is a vertex v ∈ Y −D with dB3
1
(v) > 1. This again contradicts Claim 3.

Now we suppose that k ≥ 6 is even, and f(k) = 1. If |B3
0 | > f(k) = 1, then there 

are two edges e, e′ ⊂ D and this contradicts Claim 3 (no matter what their intersection 
size). We may therefore assume that |B3

1 | > m/7 and this again contradicts Claim 3 as 
above. �
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