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A graph G is ( j,k)-colorable if its vertices can be partitioned into
subsets V 1 and V 2 such that every vertex in G[V 1] has degree at
most j and every vertex in G[V 2] has degree at most k. We prove
that if k � 2 j + 2, then every graph with maximum average degree
at most 2(2 − k+2

( j+2)(k+1)
) is ( j,k)-colorable. On the other hand,

we construct graphs with the maximum average degree arbitrarily
close to 2(2 − k+2

( j+2)(k+1)
) (from above) that are not ( j,k)-colorable.

In fact, we prove a stronger result by establishing the best possible
sufficient condition for the ( j,k)-colorability of a graph G in terms
of the minimum, ϕ j,k(G), of the difference ϕ j,k(W , G) = (2 −

k+2
( j+2)(k+1)

)|W | − |E(G[W ])| over all subsets W of V (G). Namely,

every graph G with ϕ j,k(G) > −1
k+1 is ( j,k)-colorable. On the other

hand, we construct infinitely many non-( j,k)-colorable graphs G
with ϕ j,k(G) = −1

k+1 .
© 2013 Elsevier Inc. All rights reserved.

1. Introduction

A graph G is called improperly (d1, . . . ,dk)-colorable, or just (d1, . . . ,dk)-colorable, if the vertex set
of G can be partitioned into subsets V 1, . . . , Vk such that the graph G[V i] induced by the vertices of
V i has maximum degree at most di for all 1 � i � k. This notion generalizes those of proper k-coloring
(when d1 = · · · = dk = 0) and d-improper k-coloring (when d1 = · · · = dk = d � 1).

Proper and d-improper colorings have been widely studied. As shown by Appel and Haken [1,2],
every planar graph is 4-colorable, i.e. (0,0,0,0)-colorable. Cowen, Cowen and Woodall [8] proved that
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every planar graph is 2-improperly 3-colorable, i.e. (2,2,2)-colorable. This latter result was extended
by Havet and Sereni [10] to sparse graphs that are not necessarily planar: for every k � 0, every
graph G with mad(G) < 4k+4

k+2 is k-improperly 2-colorable, i.e. (k,k)-colorable.

Recall that for a graph G , mad(G) = max{ 2|E(H)|
|V (H)| , H ⊆ G} is the maximum over the average degrees

of the subgraphs of G . The girth, g(G), of a graph G is the length of a shortest cycle in G .
We will consider probably the simplest version of defective colorings, defective colorings with

two colors. For nonnegative integers j and k, let F ( j,k) denote the supremum of x such that every
graph G with mad(G) � x is ( j,k)-colorable. It is easy to see that F (0,0) = 2. Indeed, since the odd
cycle C2n−1 has mad(G) = 2 and is not (0,0)-colorable, F (0,0) � 2. On the other hand, each graph
with mad(G) < 2 has no cycles and therefore is bipartite, i.e., (0,0)-colorable.

Glebov and Zambalaeva [9] proved that every planar graph G with g(G) � 16 is (0,1)-colorable.
This was strengthened by Borodin and Ivanova [3] by proving that every graph G with mad(G) < 7

3 is
(0,1)-colorable, which implies that every planar graph G with g(G) � 14 is (0,1)-colorable. In [4], it
was proved that F (0,1) = 12

5 . In particular, this implies that every planar graph G with g(G) � 12 is
(0,1)-colorable.

For each integer k � 2, Borodin et al. [5] proved that every graph G with mad(G) < 3k+4
k+2 = 3− 2

k+2
is (0,k)-colorable. On the other hand, for all k � 2 Borodin et al. [5] constructed non-(0,k)-colorable
graphs with mad arbitrarily close to 3k+2

k+1 = 3 − 1
k+1 .

Recently, it was proved by Borodin et al. [7] that every graph G with mad(G) < 10k+22
3k+9 , where

k � 2, is (1,k)-colorable. On the other hand, [7] presents a construction of non-(1,k)-colorable graphs
whose maximum average degree is arbitrarily close to 14k

4k+1 .
The purpose of this paper is to prove an exact result for a wide range of j and k.

Theorem 1. Let

j � 0 and k � 2 j + 2. (1)

Then F ( j,k) = 2(2 − k+2
( j+2)(k+1)

).

In particular, together with [4], Theorem 1 yields exact values for F (0,k) for every k. If j � k <

2 j + 2, then we do not know the exact answer apart from the cases j = 0 and k ∈ {0,1}. Furthermore,
the formula for F (0,1) differs from that in Theorem 1.

In fact, to derive Theorem 1, we will need a more precise statement. For a graph G and W ⊆ V (G),
let

ϕ j,k(W , G) :=
(

2 − k + 2

( j + 2)(k + 1)

)
|W | − ∣∣E

(
G[W ])∣∣. (2)

By definition, mad(G) � 2(2 − k+2
( j+2)(k+1)

) if and only if ϕ j,k(W , G)� 0 for every W ⊆ V (G).

Theorem 2. Let j and k satisfy (1). Every graph G such that

ϕ j,k(W , G) > − 1

k + 1
for every W ⊆ V (G), (3)

is ( j,k)-colorable. Moreover, restriction (3) is sharp.

The second part of Theorem 2 means that there exist infinitely many non-( j,k)-colorable graphs G
for which the non-strict version of (3) holds.

Since each planar graph G satisfies mad(G) <
2g(G)

g(G)−2 , from Theorem 2 we easily deduce:

Corollary 1. Let G be a planar graph and

k � max

{
−1 + g(G) − 2

(g(G) − 4)( j + 2) − g(G) + 2
,2 j + 2

}
.
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Then G is ( j,k)-colorable. In particular, G is:

1) (0,2)-colorable if g(G) � 8,
2) (0,4)-colorable if g(G) � 7,
3) (1,4)-colorable if g(G) � 6, and
4) (2,6)-colorable if g(G) � 5.

Borodin et al. [5] constructed a planar graph with girth 6 which is not (0,k)-colorable for
any k, and proved that every planar graph G with g(G) � 7 is (0,8)-colorable and g(G) � 8 is
(0,4)-colorable. It follows from Borodin et al. [7] that every planar graph G with g(G) � 7 is
(1,2)-colorable, and with g(G) � 6 is (1,5)-colorable. Among other results, Borodin et al. [6] also
proved that planar graphs with girth 5 are (2,13)- and (3,7)-colorable. Note that all these bounds
are now strengthened by Corollary 1. Still, we suspect that Corollary 1 can be further improved. Also,
the result by Havet and Sereni [10] yields that every planar graph G with g(G) � 5 (respectively,
g(G) � 6, and g(G) � 8) is (4,4)-colorable (respectively, (2,2)-colorable, and (1,1)-colorable).

In the next section we show the sharpness of Theorem 2 and lay the ground for its proof. The
proof is delivered in Section 3.

2. Preliminaries and proof of the sharpness in Theorem 2

For i � 1 and a graph G , an i-flag in G is an (i + 2)-vertex pendant block B of G in which the
non-cut vertices induce K1,i and the cut vertex (we will call it the base vertex) is adjacent to all other
vertices.

For convenience, the two colors that we will use are j and k: each vertex of color j (respectively, k)
in a ( j,k)-coloring is adjacent to at most j (respectively, k) vertices of its color. By definition, in a
( j,k)-coloring, at least one vertex of each star K1, j+1 is colored with k. This yields the following
useful observation.

Claim 1. In any ( j,k)-coloring of a ( j + 1)-flag F , at least two vertices of F are colored with color k.

An (i, j)-host in a graph G is a vertex contained in i + 1 ( j + 1)-flags as the base vertex. An
(i, j)-host is peripheral if its degree in G is 1 + (i + 1)( j + 2). In other words, v ∈ V (G) is a peripheral
(i, j)-host if it is adjacent to only one vertex apart from the vertices of the i + 1 ( j + 1)-flags in which
v is the base vertex.

Claim 1 readily implies

Claim 2. In any ( j,k)-coloring of a graph G, each (k, j)-host is colored with j.

Let G0( j,k) be obtained from k+1 vertex-disjoint copies of the star K1, j+1 by adding a new vertex
v0 adjacent to all vertices in all copies of K1, j+1. By construction, v0 is a (k, j)-host in G0( j,k), and
hence by Claim 2 in any ( j,k)-coloring of G0( j,k), v0 must be colored with j.

Let G1( j,k) be obtained from j + 2 copies of G0( j,k) with (k, j)-hosts v0, v1, . . . , v j+1 by adding
the j + 1 edges connecting v0 with v1, . . . , v j+1. Suppose that G1( j,k) has a ( j,k)-coloring f . Then
by Claim 2, f (v0) = f (v1) = · · · = f (v j+1) = j, and so vertex v0 of color j has j + 1 neighbors of the
same color, a contradiction. Thus, G1( j,k) has no ( j,k)-coloring.

In order to calculate the minimum of ϕ j,k(W , G1( j,k)) over all W ⊆ V (G1( j,k)), observe the
following.

Claim 3.

(a) Adding to some W ⊆ V (G) a vertex w ∈ V (G) − W adjacent to exactly two vertices of W decreases
ϕ j,k(W , G) by k+2

( j+2)(k+1)
.

(b) Adding to some W ⊆ V (G) a ( j+1)-flag sharing with W exactly one vertex decreases ϕ j,k(W , G) by 1
k+1 .
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(c) Adding to some W ⊆ V (G) a peripheral (k, j)-host v together with its k + 1 ( j + 1)-flags such that v is
adjacent to a vertex in W decreases ϕ j,k(W , G) by k+2

( j+2)(k+1)
.

Indeed, (a) is evident. To see (b), observe that we add j + 2 vertices and 2 j + 3 edges, and so the
net gain in ϕ j,k is

( j + 2)

(
2 − k + 2

( j + 2)(k + 1)

)
− 2 j − 3 = 1 − k + 2

k + 1
= − 1

k + 1
.

Now (c) easily follows from the definition and (b).
We can obtain G1( j,k) from the star K1, j+1 by consecutive adding of ( j + 2)(k + 1) ( j + 1)-flags.

For the vertex set V 0 = {v0, v1, . . . , v j+1} inducing K1, j+1 in G1( j,k), we have

ϕ j,k
(

V 0, G1( j,k)
) = ( j + 2)

(
2 − k + 2

( j + 2)(k + 1)

)
− j − 1 = j + 2 − 1

k + 1
.

So by Claim 3(b),

ϕ j,k
(

V
(
G1( j,k)

)
, G1( j,k)

) = j + 2 − 1

k + 1
− ( j + 2)(k + 1)

1

k + 1
= − 1

k + 1
.

Since G1( j,k) can be obtained from every of its induced non-empty connected subgraphs by a
sequence of the operations described in Claim 3, we know that ϕ j,k(W , G1( j,k)) � − 1

k+1 for every
W ⊆ V (G1( j,k)). Thus G1( j,k) is one of the examples showing the sharpness of Theorem 2.

Let H1( j,k) be the graph obtained from G1( j,k) with host vertices v0, v1, . . . , v j+1 by deleting all
vertices (apart from v j+1) of one ( j + 1)-flag containing v j+1. By Claim 3(b),

ϕ j,k
(

V
(

H1( j,k)
)
, H1( j,k)

) = ϕ j,k
(

V
(
G1( j,k)

)
, G1( j,k)

) + 1

k + 1
= 0.

Repeating the argument of the previous paragraph, we conclude that ϕ j,k(W , H1( j,k)) � 0 for every
W ⊆ V (H1( j,k)).

By Claims 2 and 1 and the definition of ( j,k)-colorings, in each ( j,k)-coloring f of H1( j,k), the
following should hold:

(i) f (v0) = f (v1) = · · · = f (v j) = j, in particular, v0 has j neighbors of color j;
(ii) f (v j+1) = k and v j+1 has exactly k neighbors of color k.

Now we construct Gi( j,k) for i = 2,3 . . . . Suppose that Gi−1( j,k) is constructed and let x be a
peripheral (k, j)-host in it. Let y be a vertex of degree 2 in one of the ( j + 1)-flags containing x.
We obtain Gi( j,k) from Gi−1( j,k) and a copy of H1( j,k) by deleting edge xy and adding an edge
connecting y with the (k − 1, j)-host v j+1 in H1( j,k). Again, Gi( j,k) has no ( j,k)-coloring and in (3)
we have non-strict inequality. Thus we have infinitely many non-( j,k)-colorable graphs which satisfy
the non-strict version of (3).

3. Proof of Theorem 2

3.1. Some notation

A vertex of degree d (respectively, at least d, at most d) is called a d-vertex (respectively, d+-vertex,
d−-vertex). By a k-path we mean a path with precisely k internal vertices all of which have degree 2.
A (k1,k2, . . . ,kt)-vertex is a vertex v of degree t that is a starting point of a k1-, a k2-, . . . , and
a kt -path that are all distinct.

For a graph G , the vertices in ( j + 1)-flags that are not cut-vertices are called ghosts. The other
vertices of G are non-ghosts. By G̃ we denote the graph obtained from G by deleting ghosts. Recall
that each of H1( j,k) and G1( j,k) has exactly j + 2 non-ghosts and that H̃1( j,k) = G̃1( j,k) = K1, j+1.
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Let Z be obtained from G1( j,k) by deleting v j+1 and the vertices of all ( j + 1)-flags containing it. By
definition, Z is isomorphic to the subgraph of H1( j,k) obtained by deleting v j+1 and the vertices of
all ( j + 1)-flags containing it.

We say that a graph G is smaller than a graph G ′ if either G̃ has fewer vertices of degree at
least two than G̃ ′ , or if they have the same number of such vertices but |V (G̃)| < |V (G̃ ′)|, or both
these parameters are the same, and |E(G̃)| < |E(G̃ ′)|, or all these three parameters are the same, but
|V (G)| < |V (G ′)|.

For example, H1( j,k) is smaller than G1( j,k), since H̃1( j,k) = G̃1( j,k) and H1( j,k) has fewer
vertices. Graph Z is smaller that either of these graphs.

3.2. Structural properties of a minimum counterexample

Let G be a smallest counterexample to Theorem 2. Clearly, G is connected and has no pendant
vertices. For shortness, ϕ(W , H) will denote ϕ j,k(W , H), and ϕ(W ) will denote ϕ(W , G).

Lemma 1. G does not have (i, j)-hosts for i � k + 1.

Proof. Suppose to the contrary that v ∈ V (G) is an (i, j)-host for some i � k + 1. Delete the vertices
(apart from v) of one ( j + 1)-flag F based on v . Then the new graph G ′ is smaller than G and hence
has a ( j,k)-coloring c′ . By Claim 2, c′(v) = j. So, we may extend c′ to the whole G by coloring each
vertex of F − v with k (recall that k � 2 j + 2). �
Lemma 2. If W ⊆ V (G) and ∅ �= W �= V (G) then ϕ(W ) � 1

( j+2)(k+1)
.

Proof. Suppose that ∅ �= W �= V (G), ϕ(W ) � 0. Then there is a non-empty W ′ ⊆ W such that G[W ′]
is connected and ϕ(W ′) � 0. We may choose a maximal W ′ with this property that is distinct from
V (G). If G[W ′] contains a vertex w of degree at most 1 in it, then

ϕ
(
W ′ − v

)
� ϕ

(
W ′) −

(
2 − k + 2

( j + 2)(k + 1)

)
+ 1 � 0 − 2 + k + 2

( j + 2)(k + 1)
+ 1 � −1

k + 1
,

a contradiction to the choice of G . So, δ(G[W ′])� 2.
By Claim 3(a),

each w ∈ V (G) − W ′ has at most one neighbor in W ′. (4)

By Claim 3(b), a ( j + 1)-flag of G cannot have exactly one vertex in W ′ . So,

each ( j + 1)-flag of G either is completely in W ′ or is disjoint from W ′. (5)

It follows that G̃[W ′] is a subgraph of G̃ . Thus, G[W ′] is smaller than G . Since G[W ′] is a subgraph
of G , it satisfies the conditions of the theorem. So, G[W ′] has a ( j,k)-coloring c′ . Construct the graph
G∗ = G∗(W ′) from G − W ′ as follows:

(a) add to G − W ′ a copy of Z ;
(b) each w ∈ V (G − W ′) that is adjacent to a vertex of color j in c′ is joined by an edge to v0 in Z ;
(c) to each w ∈ V (G − W ′) that is adjacent to a vertex of color k in c′ add k + 1 ( j + 1)-flags based

on w .

We will prove the following three facts: (I) G∗ is smaller than G; (II) Condition (3) holds for G∗;
and (III) any ( j,k)-coloring c∗ of G∗ yields a ( j,k)-coloring of G . These three facts together will imply
the lemma.

By (4) and (5), if w ∈ V (G) − W ′ belongs to V (G̃∗), then it was in V (G̃). Furthermore, since the
edges connecting W ′ with V (G)− W ′ were not in ( j + 1)-flags, if w ∈ V (G)− W ′ is a non-leaf vertex
in G̃∗ , it was also a non-leaf in G̃ . Recall that Z contains exactly j + 1 vertices of G̃∗ , and at most
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one of them is a non-leaf in G̃∗ . Thus, if (I) does not hold, then W ′ contains at most one non-leaf
of G̃ . The only connected graph with at most one non-leaf is a star. So, the subgraph of G̃ contained
in W ′ is some star K1,i . If (I) does not hold, then i � j. But then by Lemma 1, W ′ contains at most
(i + 1)(k + 1) ( j + 1)-flags and hence by Claim 3(b),

ϕ
(
W ′) � (

2 − k + 2

( j + 2)(k + 1)

)
(i + 1) − i − (i + 1)(k + 1)

1

k + 1

= 1 − (i + 1)(k + 2)

( j + 2)(k + 1)
� 1 − ( j + 1)(k + 2)

( j + 2)(k + 1)
.

Since k > j, the last expression is positive, a contradiction to ϕ(W ′)� 0. This proves (I).
Choose now a set U with the minimum ϕ(U , G∗). If (II) does not hold, then ϕ(U , G∗) �− 1

k+1 . Let
U∗ = U − V (Z), U ′′ = U∗ ∩ V (G), and U ′ = U ∩ V (Z). By the minimality of ϕ(U , G∗), if a ( j + 1)-flag
shares a vertex with U , then it is contained in G∗[U ].

Suppose that exactly x edges in G connect U ′′ with vertices of color k in c′ , and exactly y edges
connect U ′′ with vertices of color j in c′ . Then by Claim 3(b), the x(k + 1) ( j + 1)-flags added to
vertices in U ′′ while constructing G∗ to form U∗ decrease ϕ(U ′′, G∗) by exactly x. Thus

ϕ
(
U , G∗) = ϕ

(
U ′, G∗) + ϕ

(
U ′′, G∗) − x − y = ϕ

(
U ′, Z

) + ϕ
(
U ′′, G

) − x − y. (6)

Define Y = W ′ ∪ U ′′ . Similarly to (6) we have

ϕ(Y , G) = ϕ
(
W ′, G

) + ϕ
(
U ′′, G

) − x − y. (7)

Since ϕ(U ′, G) � ϕ(V (Z), Z) > 0, comparing (6) with (7) we have ϕ(Y , G) < ϕ(U , G∗) � − 1
k+1 ,

a contradiction to (3). This proves (II).
By (I) and (II) and by the minimality of G , G∗ has a ( j,k)-coloring c∗ . We define c by letting

c(v) := c′(v) for v ∈ W ′ and c(v) := c∗(v) for v ∈ V (G) − W ′ . Recall that by Claim 2, all the j + 1
(k, j)-hosts in V (Z) and the vertices in V (G) − W ′ adjacent to vertices of color k in c′ are colored
with j. Furthermore, since v0 has j neighbors in Z of color j, all its neighbors in V (G∗) − V (Z) are
colored with k. Thus, c is a ( j,k)-coloring of G , a contradiction. �

For every vertex w ∈ V (G̃), let d̃(w) be the degree of w in G̃ and h(w) denote the number of
( j + 1)-flags based on w .

Lemma 3. For every w ∈ V (G̃), d̃(w) + h(w)� k + 2. In particular, every 2-vertex in G is a ghost.

Proof. Suppose that w ∈ V (G̃) and d̃(w) + h(w) � k + 1. Denote d := d̃(w) and h := h(w). Let
x1, . . . , xd be the neighbors of w in G̃ and F1, . . . , Fh be the ( j + 1)-flags based on w . If d = 0,
then V (G̃) = {w} and it is easy to ( j,k)-color G .

Suppose now that d = 1. Let G ′ = G − F1 − · · · − Fh − w . Since G ′ is less than G , it has a
( j,k)-coloring c′ . If c′(x1) = k, then we color w with j and each vertex in

⋃h
i=1 Fi − w with k. If

c′(x1) = j, then we color w with k and in each Fi based on w we color a vertex of degree j + 1 in
Fi − w with k and the remaining j + 1 vertices with j. It says “a vertex”, since for j = 0, there are
two such vertices in Fi − w .

Finally, let d � 2. Consider G∗ obtained from G − F1 − · · · − Fh − w by adding a ( j + 1)-flag F (s)
based on xs for every s = 1, . . . ,d. As in the previous lemma, we will prove that (I) G∗ is smaller
than G; (II) Condition (3) holds for G∗; and (III) any ( j,k)-coloring c∗ of G∗ yields a ( j,k)-coloring
of G .

Statement (I) holds, since we deleted a vertex w ∈ V (G̃) and added only ghost vertices. Suppose
that (II) fails, i.e., ϕ(W ∗, G∗) � − 1

k+1 for some W ∗ ⊆ V (G∗). Let W = W ∗ ∩ V (G). If |{x1, . . . , xd} ∩
W | � 1, then by Claim 3(b),

ϕ(W , G) � ϕ
(
W ∗, G∗) + 1 � 0,
k + 1
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a contradiction to Lemma 2. Suppose that |{x1, . . . , xd} ∩ W | = r � 2. Then ϕ(W , G) � ϕ(W ∗, G∗) +
r 1

k+1 and hence

ϕ(W + w, G) � ϕ
(
W ∗, G∗) + r

1

k + 1
+

(
2 − k + 2

( j + 2)(k + 1)

)
− r.

For r � 2, this is at most

ϕ
(
W ∗, G∗) + 2

k + 1
− k + 2

( j + 2)(k + 1)
� ϕ

(
W ∗, G∗),

since (k + 2) � 2( j + 2). It follows that (3) does not hold for G , a contradiction to the choice of G .
By (I) and (II) and by the minimality of G , G∗ has a ( j,k)-coloring c∗ . If c∗(x1) = · · · = c∗(xd) = k,

then we color w with j and each vertex in
⋃h

i=1 Fi − w with k. Suppose not. In this case we color w
with k and in each flag Fi based on w we color a vertex of degree j + 1 in Fi − w with k and the
remaining j+1 vertices with j. In this way, w will have at most (d−1)+h neighbors of color k. Recall
that by Claim 1, each xs had a neighbor of color k in F (s). Thus, we get a ( j,k)-coloring of G . �

Comparing Lemmas 1 and 3, we obtain

Corollary 2. G̃ has no isolated vertices. Furthermore, each pendant vertex in G̃ is a peripheral (k, j)-host.

If j � 1 and a peripheral (k, j)-host x is adjacent to another peripheral (k, j)-host y, then V (G̃) =
{x, y} and we can color x and y with j and the remaining vertices of G with k, a contradiction. From
this and Corollary 2 we deduce

Lemma 4. If j � 1, then peripheral (k, j)-hosts in G̃ are not adjacent. In particular, if j � 1, then G̃ has a
vertex of degree at least 2.

For every w ∈ V (G̃), let d1(w) denote the number of its neighbors that are peripheral (k, j)-hosts
and d2(w) = d̃(w) − d1(w). We are interested in vertices w with d2(w) = 1.

Lemma 5. Let w ∈ V (G̃) with d2(w) = 1. Then:

(a) h(w)� k;
(b) d1(w) � j;
(c) h(w) + d1(w) � k + j + 1.

Proof. For shortness, let h := h(w), d1 := d1(w). Let F1, . . . , Fh be the ( j + 1)-flags based on w and
x1, . . . , xd1 be the peripheral (k, j)-hosts adjacent to w . Let y be the remaining neighbor of w .

Suppose first that h � k − 1. Recall that by Lemma 3, h + d1 � k + 1. Thus by Claim 3, the graph G ′
obtained from G by deleting w, x1, . . . , xd1 together with all ( j + 1)-flags based on them and then
adding one ( j + 1)-flag F based on y satisfies (3). By construction, G ′ is smaller than G . So by the
minimality of G , G ′ has a ( j,k)-coloring c′ . Since y has a neighbor of color k in F , when we color
in G vertex w with k, there will be no conflict at y. Now we can color each xi with j and all vertices
in all ( j + 1)-flags based on xi with k. Finally, for each s = 1, . . . ,h, we color a vertex of degree j + 1
in Fs − w with k and all other vertices in Fs − w with j. Since h � k − 1, this will be a ( j,k)-coloring
of G .

Suppose now that d1 � j − 1. By Claim 3, the graph G ′′ obtained from G by deleting x1, . . . , xd1

together with all ( j + 1)-flags based on them and then adding d1 ( j + 1)-flags F ′
1, . . . , F ′

d1
based on w

satisfies (3). Since the number of vertices of G̃ decreases, G ′′ is smaller than G . So by the minimality
of G , G ′′ has a ( j,k)-coloring c′′ . Since w is in h + d1 � k + 1 ( j + 1)-flags, we have c′′(w) = j. Now
we delete flags F ′

1 − w, . . . , F ′
d − w and extend c′′ to the whole G as follows: color each xi with j
1
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and all vertices in all ( j + 1)-flags based on xi with k. To be on the safe side, recolor each vertex
(apart from w) in each flag based on w with k. Again, we get a ( j,k)-coloring of G .

Finally, suppose that h = k and d1 = j. Let G∗ be obtained from G by deleting w, x1, . . . , xd1 to-
gether with all ( j + 1)-flags based on them. Since G∗ is an induced subgraph of G , it is smaller
than G and satisfies (3). So, it has a ( j,k)-coloring c∗ . If c∗(y) = j, then we color the rest as in the
proof of (a), and if c∗(y) = k, then we color the rest as in the proof of (b). �
3.3. Discharging procedure

By (3), we have

∑
v∈V (G)

(
d(v) − 2

(
2 − k + 2

( j + 2)(k + 1)

))
<

2

k + 1
. (8)

The initial charge of each vertex v of G is μ(v) = d(v) − 2(2 − k+2
( j+2)(k+1)

), and the final charge
μ∗(v) is determined by applying the following rules:

(R1) Every w ∈ V (G̃) gives to the vertices of each ( j + 1)-flag F based on it the exact amount α
such that together with their own initial charges the total charge of vertices in F − w would
become 0.

(R2) If j � 1, then for every peripheral (k, j)-host x, its neighbor y in G̃ gives to x the exact amount β

to make the resulting charge of x equal to 0. If j = 0, then nothing happens.

First observe that by Lemma 4, Rule (R2) does not create confusion.
Second, let us understand what are the values of α and β . By definition, for each ( j + 1)-flag F

based on w , we have

∑
v∈F−w

μ(v) = ( j + 2) + 2( j + 1) − ( j + 2)2

(
2 − k + 2

( j + 2)(k + 1)

)
= − j − 2 + 2

k + 1
.

So, α = j + 2 − 2
k+1 . We will view this as if from the j + 2 edges connecting w with F − w , w leaves

for itself 2
k+1 of degree, and gives α to the vertices of F − w , and they share their charges so that

their modified charges are zeros.
After a peripheral (k, j)-host x leaves for itself 2

k+1 from each of the k + 1 ( j + 1)-flags based on x,

it also has degree 1 from the incident edge in G̃ . Thus after applying (R1), the charge of x is

2 + 1 − 2

(
2 − k + 2

( j + 2)(k + 1)

)
= −1 + 2(k + 2)

( j + 2)(k + 1)
.

So if j � 1, then β = 1 − 2(k+2)
( j+2)(k+1)

. We view it as if the neighbor of x from the edge connecting it

to x leaves for itself 2(k+2)
( j+2)(k+1)

and gives β to x to make its charge zero.
Now we evaluate the final charges of vertices. By above, the charges of all ghost vertices are zeros.

For j � 1, the charge of each peripheral (k, j)-host is zero, and for j = 0, it is 1
k+1 .

Let w be a vertex in G̃ with d̃(w) � 2. Let h := h(w), d1 := d1(w), and d2 = d2(w). Let F1, . . . , Fh
be the ( j + 1)-flags based on w and x1, . . . , xd1 be the peripheral (k, j)-hosts adjacent to w . Let
y1, . . . , yd2 be the remaining neighbors of w .

Case 0: d2 = 0. Then G̃ = K1,d1 with the center w . If d1 � j, then we can color w, x1, . . . , xd1

with j, and the remaining vertices of G with k. If h � k, then we can color x1, . . . , xd1 with j, the
remaining vertices in ( j + 1)-flags based on them with k, color w and one vertex in each ( j + 1)-flag
based on w with k, and the remaining vertices in the ( j + 1)-flags based on w with j. In both cases,
we obtain a ( j,k)-coloring of G . So, we may assume that h � k + 1 and d1 � j + 1. Then G contains
the graph G1( j,k) for which (3) fails, a contradiction.
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Case 1: d2 = 1. Since α > β , by Lemma 5, we know that w leaves for itself at least (k + 1) 2
k+1 +

j 2(k+2)
( j+2)(k+1)

from the edges connecting it with F1, . . . , Fh and x1, . . . , xd1 . It also has 1 from the edge
connecting it with y1. So since k � 2 j + 2,

μ∗(w) � (k + 1)
2

k + 1
+ j

2(k + 2)

( j + 2)(k + 1)
+ 1 − 2

(
2 − k + 2

( j + 2)(k + 1)

)

= −1 + 2
( j + 1)(k + 2)

( j + 2)(k + 1)
= j(k + 3) + 2

( j + 2)(k + 1)
� j(2 j + 5) + 2

( j + 2)(k + 1)
.

The last expression equals 1
k+1 when j = 0, and exceeds 2

k+1 when j � 1.
Case 2: d2 � 2. Since h + d1 + d2 � k + 2 and α > β , we have (since k � 2 j + 2)

μ∗(w) � 2 + k
2

k + 1
− 2

(
2 − k + 2

( j + 2)(k + 1)

)
= − 2

k + 1
+ 2(k + 2)

( j + 2)(k + 1)

= 2(k + 2 − j − 2)

( j + 2)(k + 1)
� 2((2 j + 2) − j)

( j + 2)(k + 1)
= 2

k + 1
.

Thus, in particular μ∗(w) � 0 for every w ∈ V (G). By (8), no vertex gets final charge at least 2
k+1

and at most one gets final charge at least 1
k+1 . Hence for j � 1 none of Cases 0, 1, and 2 may occur.

This contradicts Lemma 4.
Suppose now that j = 0. By Corollary 2, G̃ has at least two (non-isolated) vertices, and by the

analysis above, each of them gets charge at least 1
k+1 . This contradicts (8).

The theorem is proved.
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