

Contents lists available at ScienceDirect Journal of Combinatorial Theory, Series B

www.elsevier.com/locate/jctb

Defective 2-colorings of sparse graphs

O.V. Borodin^{a,1}, A.V. Kostochka^{b,a,2}

CrossMark

赠

Journal of Combinatorial

Theory

 ^a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, and Novosibirsk State University, Novosibirsk, 630090, Russia
 ^b Department of Mathematics, University of Illinois, Urbana, IL 61801, USA

ARTICLE INFO

Article history: Received 16 August 2011 Available online 5 November 2013

Keywords: Defective coloring Maximum average degree Improper coloring

ABSTRACT

A graph *G* is (j, k)-colorable if its vertices can be partitioned into subsets V_1 and V_2 such that every vertex in $G[V_1]$ has degree at most *j* and every vertex in $G[V_2]$ has degree at most *k*. We prove that if $k \ge 2j + 2$, then every graph with maximum average degree at most $2(2 - \frac{k+2}{(j+2)(k+1)})$ is (j, k)-colorable. On the other hand, we construct graphs with the maximum average degree arbitrarily close to $2(2 - \frac{k+2}{(j+2)(k+1)})$ (from above) that are not (j, k)-colorable. In fact, we prove a stronger result by establishing the best possible sufficient condition for the (j, k)-colorability of a graph *G* in terms of the minimum, $\varphi_{j,k}(G)$, of the difference $\varphi_{j,k}(W, G) = (2 - \frac{k+2}{(j+2)(k+1)})|W| - |E(G[W])|$ over all subsets *W* of *V*(*G*). Namely, every graph *G* with $\varphi_{j,k}(G) > \frac{-1}{k+1}$ is (j, k)-colorable. On the other hand, we construct infinitely many non-(j, k)-colorable graphs *G* with $\varphi_{j,k}(G) = \frac{-1}{k+1}$.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

A graph *G* is called *improperly* (d_1, \ldots, d_k) -colorable, or just (d_1, \ldots, d_k) -colorable, if the vertex set of *G* can be partitioned into subsets V_1, \ldots, V_k such that the graph $G[V_i]$ induced by the vertices of V_i has maximum degree at most d_i for all $1 \le i \le k$. This notion generalizes those of proper *k*-coloring (when $d_1 = \cdots = d_k = 0$) and *d*-improper *k*-coloring (when $d_1 = \cdots = d_k = d \ge 1$).

Proper and *d*-improper colorings have been widely studied. As shown by Appel and Haken [1,2], every planar graph is 4-colorable, i.e. (0, 0, 0, 0)-colorable. Cowen, Cowen and Woodall [8] proved that

0095-8956/\$ – see front matter @ 2013 Elsevier Inc. All rights reserved. http://dx.doi.org/10.1016/j.jctb.2013.10.002

E-mail addresses: brdnoleg@math.nsc.ru (O.V. Borodin), kostochk@math.uiuc.edu (A.V. Kostochka).

¹ Research of this author was supported by grants 12-01-00631 and 12-01-00448 of the Russian Foundation for Basic Research.

 $^{^2}$ Research of this author was supported by NSF grants DMS-0965587 and DMS-1266016.

every planar graph is 2-improperly 3-colorable, i.e. (2, 2, 2)-colorable. This latter result was extended by Havet and Sereni [10] to sparse graphs that are not necessarily planar: for every $k \ge 0$, every graph *G* with mad(*G*) < $\frac{4k+4}{k+2}$ is *k*-improperly 2-colorable, i.e. (*k*, *k*)-colorable. Recall that for a graph *G*, mad(*G*) = max{ $\frac{2|E(H)|}{|V(H)|}, H \subseteq G$ } is the maximum over the average degrees

of the subgraphs of G. The girth, g(G), of a graph G is the length of a shortest cycle in G.

We will consider probably the simplest version of defective colorings, defective colorings with two colors. For nonnegative integers j and k, let F(j,k) denote the supremum of x such that every graph G with mad(G) $\leq x$ is (j,k)-colorable. It is easy to see that F(0,0) = 2. Indeed, since the odd cycle C_{2n-1} has mad(*G*) = 2 and is not (0, 0)-colorable, $F(0, 0) \leq 2$. On the other hand, each graph with mad(G) < 2 has no cycles and therefore is bipartite, i.e., (0, 0)-colorable.

Glebov and Zambalaeva [9] proved that every planar graph *G* with $g(G) \ge 16$ is (0, 1)-colorable. This was strengthened by Borodin and Ivanova [3] by proving that every graph G with mad(G) < $\frac{7}{2}$ is (0, 1)-colorable, which implies that every planar graph G with $g(G) \ge 14$ is (0, 1)-colorable. In [4], it was proved that $F(0, 1) = \frac{12}{5}$. In particular, this implies that every planar graph *G* with $g(G) \ge 12$ is (0, 1)-colorable.

For each integer $k \ge 2$, Borodin et al. [5] proved that every graph *G* with $mad(G) < \frac{3k+4}{k+2} = 3 - \frac{2}{k+2}$ is (0, k)-colorable. On the other hand, for all $k \ge 2$ Borodin et al. [5] constructed non-(0, k)-colorable graphs with mad arbitrarily close to $\frac{3k+2}{k+1} = 3 - \frac{1}{k+1}$.

Recently, it was proved by Borodin et al. [7] that every graph *G* with $mad(G) < \frac{10k+22}{3k+9}$, where $k \ge 2$, is (1, k)-colorable. On the other hand, [7] presents a construction of non-(1, k)-colorable graphs whose maximum average degree is arbitrarily close to $\frac{14k}{4k+1}$. The purpose of this paper is to prove an exact result for a wide range of *j* and *k*.

Theorem 1. Let

$$j \ge 0$$
 and $k \ge 2j + 2.$ (1)
Then $F(j,k) = 2(2 - \frac{k+2}{(j+2)(k+1)}).$

In particular, together with [4], Theorem 1 yields exact values for F(0,k) for every k. If $j \le k < j \le k <$ 2i + 2, then we do not know the exact answer apart from the cases i = 0 and $k \in \{0, 1\}$. Furthermore, the formula for F(0, 1) differs from that in Theorem 1.

In fact, to derive Theorem 1, we will need a more precise statement. For a graph G and $W \subseteq V(G)$, let

$$\varphi_{j,k}(W,G) := \left(2 - \frac{k+2}{(j+2)(k+1)}\right)|W| - \left|E(G[W])\right|.$$
(2)

By definition, $mad(G) \leq 2(2 - \frac{k+2}{(j+2)(k+1)})$ if and only if $\varphi_{j,k}(W, G) \geq 0$ for every $W \subseteq V(G)$.

Theorem 2. Let *j* and *k* satisfy (1). Every graph G such that

$$\varphi_{j,k}(W,G) > -\frac{1}{k+1} \quad \text{for every } W \subseteq V(G),$$
(3)

is (*j*, *k*)-colorable. Moreover, restriction (3) is sharp.

The second part of Theorem 2 means that there exist infinitely many non-(j, k)-colorable graphs G for which the non-strict version of (3) holds.

Since each planar graph G satisfies $mad(G) < \frac{2g(G)}{g(G)-2}$, from Theorem 2 we easily deduce:

Corollary 1. Let G be a planar graph and

$$k \ge \max\left\{-1 + \frac{g(G) - 2}{(g(G) - 4)(j + 2) - g(G) + 2}, 2j + 2\right\}.$$

Then G is (j, k)-colorable. In particular, G is:

- 1) (0, 2)-colorable if $g(G) \ge 8$,
- 2) (0, 4)-colorable if $g(G) \ge 7$,
- 3) (1, 4)-colorable if $g(G) \ge 6$, and
- 4) (2, 6)-colorable if $g(G) \ge 5$.

Borodin et al. [5] constructed a planar graph with girth 6 which is not (0, k)-colorable for any k, and proved that every planar graph G with $g(G) \ge 7$ is (0, 8)-colorable and $g(G) \ge 8$ is (0, 4)-colorable. It follows from Borodin et al. [7] that every planar graph G with $g(G) \ge 7$ is (1, 2)-colorable, and with $g(G) \ge 6$ is (1, 5)-colorable. Among other results, Borodin et al. [6] also proved that planar graphs with girth 5 are (2, 13)- and (3, 7)-colorable. Note that all these bounds are now strengthened by Corollary 1. Still, we suspect that Corollary 1 can be further improved. Also, the result by Havet and Sereni [10] yields that every planar graph G with $g(G) \ge 5$ (respectively, $g(G) \ge 6$, and $g(G) \ge 8$) is (4, 4)-colorable (respectively, (2, 2)-colorable, and (1, 1)-colorable).

In the next section we show the sharpness of Theorem 2 and lay the ground for its proof. The proof is delivered in Section 3.

2. Preliminaries and proof of the sharpness in Theorem 2

For $i \ge 1$ and a graph *G*, an *i*-flag in *G* is an (i + 2)-vertex pendant block *B* of *G* in which the non-cut vertices induce $K_{1,i}$ and the cut vertex (we will call it the *base vertex*) is adjacent to all other vertices.

For convenience, the two colors that we will use are j and k: each vertex of color j (respectively, k) in a (j,k)-coloring is adjacent to at most j (respectively, k) vertices of its color. By definition, in a (j,k)-coloring, at least one vertex of each star $K_{1,j+1}$ is colored with k. This yields the following useful observation.

Claim 1. In any (j, k)-coloring of a (j + 1)-flag F, at least two vertices of F are colored with color k.

An (i, j)-host in a graph G is a vertex contained in i + 1 (j + 1)-flags as the base vertex. An (i, j)-host is *peripheral* if its degree in G is 1 + (i + 1)(j + 2). In other words, $v \in V(G)$ is a peripheral (i, j)-host if it is adjacent to only one vertex apart from the vertices of the i + 1 (j + 1)-flags in which v is the base vertex.

Claim 1 readily implies

Claim 2. In any (j, k)-coloring of a graph G, each (k, j)-host is colored with j.

Let $G_0(j,k)$ be obtained from k+1 vertex-disjoint copies of the star $K_{1,j+1}$ by adding a new vertex v_0 adjacent to all vertices in all copies of $K_{1,j+1}$. By construction, v_0 is a (k, j)-host in $G_0(j,k)$, and hence by Claim 2 in any (j,k)-coloring of $G_0(j,k)$, v_0 must be colored with j.

Let $G_1(j,k)$ be obtained from j + 2 copies of $G_0(j,k)$ with (k, j)-hosts $v_0, v_1, \ldots, v_{j+1}$ by adding the j + 1 edges connecting v_0 with v_1, \ldots, v_{j+1} . Suppose that $G_1(j,k)$ has a (j,k)-coloring f. Then by Claim 2, $f(v_0) = f(v_1) = \cdots = f(v_{j+1}) = j$, and so vertex v_0 of color j has j + 1 neighbors of the same color, a contradiction. Thus, $G_1(j,k)$ has no (j,k)-coloring.

In order to calculate the minimum of $\varphi_{j,k}(W, G_1(j,k))$ over all $W \subseteq V(G_1(j,k))$, observe the following.

Claim 3.

- (a) Adding to some $W \subseteq V(G)$ a vertex $w \in V(G) W$ adjacent to exactly two vertices of W decreases $\varphi_{j,k}(W, G)$ by $\frac{k+2}{(j+2)(k+1)}$.
- (b) Adding to some $W \subseteq V(G)$ a (j+1)-flag sharing with W exactly one vertex decreases $\varphi_{i,k}(W, G)$ by $\frac{1}{k+1}$.

(c) Adding to some $W \subseteq V(G)$ a peripheral (k, j)-host v together with its k + 1 (j + 1)-flags such that v is adjacent to a vertex in W decreases $\varphi_{j,k}(W, G)$ by $\frac{k+2}{(j+2)(k+1)}$.

Indeed, (a) is evident. To see (b), observe that we add j + 2 vertices and 2j + 3 edges, and so the net gain in $\varphi_{j,k}$ is

$$(j+2)\left(2-\frac{k+2}{(j+2)(k+1)}\right)-2j-3=1-\frac{k+2}{k+1}=-\frac{1}{k+1}.$$

Now (c) easily follows from the definition and (b).

We can obtain $G_1(j,k)$ from the star $K_{1,j+1}$ by consecutive adding of (j+2)(k+1) (j+1)-flags. For the vertex set $V_0 = \{v_0, v_1, \dots, v_{j+1}\}$ inducing $K_{1,j+1}$ in $G_1(j,k)$, we have

$$\varphi_{j,k}(V_0, G_1(j,k)) = (j+2)\left(2 - \frac{k+2}{(j+2)(k+1)}\right) - j - 1 = j+2 - \frac{1}{k+1}.$$

So by Claim 3(b),

$$\varphi_{j,k}(V(G_1(j,k)), G_1(j,k)) = j + 2 - \frac{1}{k+1} - (j+2)(k+1)\frac{1}{k+1} = -\frac{1}{k+1}$$

Since $G_1(j,k)$ can be obtained from every of its induced non-empty connected subgraphs by a sequence of the operations described in Claim 3, we know that $\varphi_{j,k}(W, G_1(j,k)) \ge -\frac{1}{k+1}$ for every $W \subseteq V(G_1(j,k))$. Thus $G_1(j,k)$ is one of the examples showing the sharpness of Theorem 2.

Let $H_1(j,k)$ be the graph obtained from $G_1(j,k)$ with host vertices $v_0, v_1, \ldots, v_{j+1}$ by deleting all vertices (apart from v_{j+1}) of one (j + 1)-flag containing v_{j+1} . By Claim 3(b),

$$\varphi_{j,k}(V(H_1(j,k)), H_1(j,k)) = \varphi_{j,k}(V(G_1(j,k)), G_1(j,k)) + \frac{1}{k+1} = 0.$$

Repeating the argument of the previous paragraph, we conclude that $\varphi_{j,k}(W, H_1(j,k)) \ge 0$ for every $W \subseteq V(H_1(j,k))$.

By Claims 2 and 1 and the definition of (j,k)-colorings, in each (j,k)-coloring f of $H_1(j,k)$, the following should hold:

(i) $f(v_0) = f(v_1) = \cdots = f(v_j) = j$, in particular, v_0 has *j* neighbors of color *j*;

(ii) $f(v_{i+1}) = k$ and v_{i+1} has exactly *k* neighbors of color *k*.

Now we construct $G_i(j,k)$ for i = 2, 3... Suppose that $G_{i-1}(j,k)$ is constructed and let x be a peripheral (k, j)-host in it. Let y be a vertex of degree 2 in one of the (j + 1)-flags containing x. We obtain $G_i(j,k)$ from $G_{i-1}(j,k)$ and a copy of $H_1(j,k)$ by deleting edge xy and adding an edge connecting y with the (k - 1, j)-host v_{j+1} in $H_1(j,k)$. Again, $G_i(j,k)$ has no (j,k)-coloring and in (3) we have non-strict inequality. Thus we have infinitely many non-(j, k)-colorable graphs which satisfy the non-strict version of (3).

3. Proof of Theorem 2

3.1. Some notation

A vertex of degree *d* (respectively, at least *d*, at most *d*) is called a *d*-vertex (respectively, d^+ -vertex, d^- -vertex). By a *k*-path we mean a path with precisely *k* internal vertices all of which have degree 2. A $(k_1, k_2, ..., k_t)$ -vertex is a vertex *v* of degree *t* that is a starting point of a k_1 -, a k_2 -, ..., and a k_t -path that are all distinct.

For a graph *G*, the vertices in (j + 1)-flags that are not cut-vertices are called *ghosts*. The other vertices of *G* are *non-ghosts*. By \tilde{G} we denote the graph obtained from *G* by deleting ghosts. Recall that each of $H_1(j,k)$ and $G_1(j,k)$ has exactly j + 2 non-ghosts and that $\tilde{H}_1(j,k) = \tilde{G}_1(j,k) = K_{1,j+1}$.

Let *Z* be obtained from $G_1(j,k)$ by deleting v_{j+1} and the vertices of all (j+1)-flags containing it. By definition, *Z* is isomorphic to the subgraph of $H_1(j,k)$ obtained by deleting v_{j+1} and the vertices of all (j+1)-flags containing it.

We say that a graph G is *smaller* than a graph G' if either \widetilde{G} has fewer vertices of degree at least two than \widetilde{G}' , or if they have the same number of such vertices but $|V(\widetilde{G})| < |V(\widetilde{G}')|$, or both these parameters are the same, and $|E(\widetilde{G})| < |E(\widetilde{G}')|$, or all these three parameters are the same, but |V(G)| < |V(G')|.

For example, $H_1(j,k)$ is smaller than $G_1(j,k)$, since $\widetilde{H}_1(j,k) = \widetilde{G}_1(j,k)$ and $H_1(j,k)$ has fewer vertices. Graph Z is smaller that either of these graphs.

3.2. Structural properties of a minimum counterexample

Let *G* be a smallest counterexample to Theorem 2. Clearly, *G* is connected and has no pendant vertices. For shortness, $\varphi(W, H)$ will denote $\varphi_{i,k}(W, H)$, and $\varphi(W)$ will denote $\varphi(W, G)$.

Lemma 1. *G* does not have (i, j)-hosts for $i \ge k + 1$.

Proof. Suppose to the contrary that $v \in V(G)$ is an (i, j)-host for some $i \ge k + 1$. Delete the vertices (apart from v) of one (j + 1)-flag F based on v. Then the new graph G' is smaller than G and hence has a (j, k)-coloring c'. By Claim 2, c'(v) = j. So, we may extend c' to the whole G by coloring each vertex of F - v with k (recall that $k \ge 2j + 2$). \Box

Lemma 2. If $W \subseteq V(G)$ and $\emptyset \neq W \neq V(G)$ then $\varphi(W) \ge \frac{1}{(i+2)(k+1)}$.

Proof. Suppose that $\emptyset \neq W \neq V(G)$, $\varphi(W) \leq 0$. Then there is a non-empty $W' \subseteq W$ such that G[W'] is connected and $\varphi(W') \leq 0$. We may choose a maximal W' with this property that is distinct from V(G). If G[W'] contains a vertex w of degree at most 1 in it, then

$$\varphi(W'-\nu) \leqslant \varphi(W') - \left(2 - \frac{k+2}{(j+2)(k+1)}\right) + 1 \leqslant 0 - 2 + \frac{k+2}{(j+2)(k+1)} + 1 \leqslant \frac{-1}{k+1},$$

a contradiction to the choice of *G*. So, $\delta(G[W']) \ge 2$.

By Claim 3(a),

each $w \in V(G) - W'$ has at most one neighbor in W'. (4)

By Claim 3(b), a (j + 1)-flag of G cannot have exactly one vertex in W'. So,

each
$$(j + 1)$$
-flag of G either is completely in W' or is disjoint from W'. (5)

It follows that $\tilde{G}[W']$ is a subgraph of \tilde{G} . Thus, G[W'] is smaller than G. Since G[W'] is a subgraph of G, it satisfies the conditions of the theorem. So, G[W'] has a (j, k)-coloring c'. Construct the graph $G^* = G^*(W')$ from G - W' as follows:

(a) add to G - W' a copy of Z;

- (b) each $w \in V(G W')$ that is adjacent to a vertex of color j in c' is joined by an edge to v_0 in Z;
- (c) to each $w \in V(G W')$ that is adjacent to a vertex of color k in c' add k + 1 (j + 1)-flags based on w.

We will prove the following three facts: (I) G^* is smaller than G; (II) Condition (3) holds for G^* ; and (III) any (j, k)-coloring c^* of G^* yields a (j, k)-coloring of G. These three facts together will imply the lemma.

By (4) and (5), if $w \in V(G) - W'$ belongs to $V(\widetilde{G}^*)$, then it was in $V(\widetilde{G})$. Furthermore, since the edges connecting W' with V(G) - W' were not in (j+1)-flags, if $w \in V(G) - W'$ is a non-leaf vertex in \widetilde{G}^* , it was also a non-leaf in \widetilde{G} . Recall that Z contains exactly j + 1 vertices of \widetilde{G}^* , and at most

one of them is a non-leaf in \tilde{G}^* . Thus, if (I) does not hold, then W' contains at most one non-leaf of \tilde{G} . The only connected graph with at most one non-leaf is a star. So, the subgraph of \tilde{G} contained in W' is some star $K_{1,i}$. If (I) does not hold, then $i \leq j$. But then by Lemma 1, W' contains at most (i + 1)(k + 1) (j + 1)-flags and hence by Claim 3(b),

$$\begin{split} \varphi \Big(W' \Big) &\ge \left(2 - \frac{k+2}{(j+2)(k+1)} \right) (i+1) - i - (i+1)(k+1) \frac{1}{k+1} \\ &= 1 - \frac{(i+1)(k+2)}{(j+2)(k+1)} \ge 1 - \frac{(j+1)(k+2)}{(j+2)(k+1)}. \end{split}$$

Since k > j, the last expression is positive, a contradiction to $\varphi(W') \leq 0$. This proves (I).

Choose now a set *U* with the minimum $\varphi(U, G^*)$. If (II) does not hold, then $\varphi(U, G^*) \leq -\frac{1}{k+1}$. Let $U^* = U - V(Z)$, $U'' = U^* \cap V(G)$, and $U' = U \cap V(Z)$. By the minimality of $\varphi(U, G^*)$, if a (j + 1)-flag shares a vertex with *U*, then it is contained in $G^*[U]$.

Suppose that exactly x edges in G connect U'' with vertices of color k in c', and exactly y edges connect U'' with vertices of color j in c'. Then by Claim 3(b), the x(k + 1) (j + 1)-flags added to vertices in U'' while constructing G^* to form U^* decrease $\varphi(U'', G^*)$ by exactly x. Thus

$$\varphi(U, G^*) = \varphi(U', G^*) + \varphi(U'', G^*) - x - y = \varphi(U', Z) + \varphi(U'', G) - x - y.$$
(6)

Define $Y = W' \cup U''$. Similarly to (6) we have

$$\varphi(\mathbf{Y},\mathbf{G}) = \varphi(\mathbf{W}',\mathbf{G}) + \varphi(\mathbf{U}'',\mathbf{G}) - \mathbf{x} - \mathbf{y}.$$
(7)

Since $\varphi(U', G) \ge \varphi(V(Z), Z) > 0$, comparing (6) with (7) we have $\varphi(Y, G) < \varphi(U, G^*) \le -\frac{1}{k+1}$, a contradiction to (3). This proves (II).

By (I) and (II) and by the minimality of *G*, *G*^{*} has a (j, k)-coloring *c*^{*}. We define *c* by letting c(v) := c'(v) for $v \in W'$ and $c(v) := c^*(v)$ for $v \in V(G) - W'$. Recall that by Claim 2, all the j + 1 (k, j)-hosts in V(Z) and the vertices in V(G) - W' adjacent to vertices of color *k* in *c'* are colored with *j*. Furthermore, since v_0 has *j* neighbors in *Z* of color *j*, all its neighbors in $V(G^*) - V(Z)$ are colored with *k*. Thus, *c* is a (j, k)-coloring of *G*, a contradiction. \Box

For every vertex $w \in V(\widetilde{G})$, let $\widetilde{d}(w)$ be the degree of w in \widetilde{G} and h(w) denote the number of (j+1)-flags based on w.

Lemma 3. For every $w \in V(\widetilde{G})$, $\widetilde{d}(w) + h(w) \ge k + 2$. In particular, every 2-vertex in G is a ghost.

Proof. Suppose that $w \in V(\widetilde{G})$ and $\widetilde{d}(w) + h(w) \leq k + 1$. Denote $d := \widetilde{d}(w)$ and h := h(w). Let x_1, \ldots, x_d be the neighbors of w in \widetilde{G} and F_1, \ldots, F_h be the (j + 1)-flags based on w. If d = 0, then $V(\widetilde{G}) = \{w\}$ and it is easy to (j, k)-color G.

Suppose now that d = 1. Let $G' = G - F_1 - \cdots - F_h - w$. Since G' is less than G, it has a (j,k)-coloring c'. If $c'(x_1) = k$, then we color w with j and each vertex in $\bigcup_{i=1}^h F_i - w$ with k. If $c'(x_1) = j$, then we color w with k and in each F_i based on w we color a vertex of degree j + 1 in $F_i - w$ with k and the remaining j + 1 vertices with j. It says "a vertex", since for j = 0, there are two such vertices in $F_i - w$.

Finally, let $d \ge 2$. Consider G^* obtained from $G - F_1 - \cdots - F_h - w$ by adding a (j + 1)-flag F(s) based on x_s for every $s = 1, \dots, d$. As in the previous lemma, we will prove that (I) G^* is smaller than G; (II) Condition (3) holds for G^* ; and (III) any (j, k)-coloring c^* of G^* yields a (j, k)-coloring of G.

Statement (I) holds, since we deleted a vertex $w \in V(\widetilde{G})$ and added only ghost vertices. Suppose that (II) fails, i.e., $\varphi(W^*, G^*) \leq -\frac{1}{k+1}$ for some $W^* \subseteq V(G^*)$. Let $W = W^* \cap V(G)$. If $|\{x_1, \ldots, x_d\} \cap W| \leq 1$, then by Claim 3(b),

$$\varphi(W,G) \leqslant \varphi(W^*,G^*) + \frac{1}{k+1} \leqslant 0,$$

a contradiction to Lemma 2. Suppose that $|\{x_1, \ldots, x_d\} \cap W| = r \ge 2$. Then $\varphi(W, G) \le \varphi(W^*, G^*) + r \frac{1}{k+1}$ and hence

$$\varphi(W+w,G) \leqslant \varphi(W^*,G^*) + r\frac{1}{k+1} + \left(2 - \frac{k+2}{(j+2)(k+1)}\right) - r$$

For $r \ge 2$, this is at most

$$\varphi(W^*,G^*) + \frac{2}{k+1} - \frac{k+2}{(j+2)(k+1)} \leqslant \varphi(W^*,G^*),$$

since $(k+2) \ge 2(j+2)$. It follows that (3) does not hold for *G*, a contradiction to the choice of *G*.

By (I) and (II) and by the minimality of G, G^* has a (j, k)-coloring c^* . If $c^*(x_1) = \cdots = c^*(x_d) = k$, then we color w with j and each vertex in $\bigcup_{i=1}^{h} F_i - w$ with k. Suppose not. In this case we color w with k and in each flag F_i based on w we color a vertex of degree j + 1 in $F_i - w$ with k and the remaining j + 1 vertices with j. In this way, w will have at most (d-1)+h neighbors of color k. Recall that by Claim 1, each x_s had a neighbor of color k in F(s). Thus, we get a (j, k)-coloring of G. \Box

Comparing Lemmas 1 and 3, we obtain

Corollary 2. \widetilde{G} has no isolated vertices. Furthermore, each pendant vertex in \widetilde{G} is a peripheral (k, j)-host.

If $j \ge 1$ and a peripheral (k, j)-host x is adjacent to another peripheral (k, j)-host y, then $V(\tilde{G}) = \{x, y\}$ and we can color x and y with j and the remaining vertices of G with k, a contradiction. From this and Corollary 2 we deduce

Lemma 4. If $j \ge 1$, then peripheral (k, j)-hosts in \tilde{G} are not adjacent. In particular, if $j \ge 1$, then \tilde{G} has a vertex of degree at least 2.

For every $w \in V(\widetilde{G})$, let $d_1(w)$ denote the number of its neighbors that are peripheral (k, j)-hosts and $d_2(w) = \widetilde{d}(w) - d_1(w)$. We are interested in vertices w with $d_2(w) = 1$.

Lemma 5. Let $w \in V(\widetilde{G})$ with $d_2(w) = 1$. Then:

(a) $h(w) \ge k$; (b) $d_1(w) \ge j$; (c) $h(w) + d_1(w) \ge k + j + 1$.

Proof. For shortness, let h := h(w), $d_1 := d_1(w)$. Let F_1, \ldots, F_h be the (j + 1)-flags based on w and x_1, \ldots, x_{d_1} be the peripheral (k, j)-hosts adjacent to w. Let y be the remaining neighbor of w.

Suppose first that $h \leq k - 1$. Recall that by Lemma 3, $h + d_1 \geq k + 1$. Thus by Claim 3, the graph G' obtained from G by deleting w, x_1, \ldots, x_{d_1} together with all (j + 1)-flags based on them and then adding one (j + 1)-flag F based on y satisfies (3). By construction, G' is smaller than G. So by the minimality of G, G' has a (j,k)-coloring c'. Since y has a neighbor of color k in F, when we color in G vertex w with k, there will be no conflict at y. Now we can color each x_i with j and all vertices in all (j + 1)-flags based on x_i with k. Finally, for each $s = 1, \ldots, h$, we color a vertex of degree j + 1 in $F_s - w$ with k and all other vertices in $F_s - w$ with j. Since $h \leq k - 1$, this will be a (j, k)-coloring of G.

Suppose now that $d_1 \leq j - 1$. By Claim 3, the graph G'' obtained from G by deleting x_1, \ldots, x_{d_1} together with all (j+1)-flags based on them and then adding d_1 (j+1)-flags F'_1, \ldots, F'_{d_1} based on w satisfies (3). Since the number of vertices of \widetilde{G} decreases, G'' is smaller than G. So by the minimality of G, G'' has a (j, k)-coloring c''. Since w is in $h + d_1 \geq k + 1$ (j+1)-flags, we have c''(w) = j. Now we delete flags $F'_1 - w, \ldots, F'_{d_1} - w$ and extend c'' to the whole G as follows: color each x_i with j

Finally, suppose that h = k and $d_1 = j$. Let G^* be obtained from G by deleting w, x_1, \ldots, x_{d_1} together with all (j + 1)-flags based on them. Since G^* is an induced subgraph of G, it is smaller than G and satisfies (3). So, it has a (j, k)-coloring c^* . If $c^*(y) = j$, then we color the rest as in the proof of (a), and if $c^*(y) = k$, then we color the rest as in the proof of (b). \Box

3.3. Discharging procedure

By (3), we have

$$\sum_{\nu \in V(G)} \left(d(\nu) - 2\left(2 - \frac{k+2}{(j+2)(k+1)}\right) \right) < \frac{2}{k+1}.$$
(8)

The *initial charge* of each vertex v of G is $\mu(v) = d(v) - 2(2 - \frac{k+2}{(j+2)(k+1)})$, and the *final charge* $\mu^*(v)$ is determined by applying the following rules:

- (R1) Every $w \in V(\widetilde{G})$ gives to the vertices of each (j + 1)-flag F based on it the exact amount α such that together with their own initial charges the total charge of vertices in F w would become 0.
- (R2) If $j \ge 1$, then for every peripheral (k, j)-host x, its neighbor y in \widetilde{G} gives to x the exact amount β to make the resulting charge of x equal to 0. If j = 0, then nothing happens.

First observe that by Lemma 4, Rule (R2) does not create confusion.

Second, let us understand what are the values of α and β . By definition, for each (j + 1)-flag F based on w, we have

$$\sum_{v \in F - w} \mu(v) = (j+2) + 2(j+1) - (j+2)2\left(2 - \frac{k+2}{(j+2)(k+1)}\right) = -j - 2 + \frac{2}{k+1}$$

So, $\alpha = j + 2 - \frac{2}{k+1}$. We will view this as if from the j + 2 edges connecting w with F - w, w leaves for itself $\frac{2}{k+1}$ of degree, and gives α to the vertices of F - w, and they share their charges so that their modified charges are zeros.

After a peripheral (k, j)-host x leaves for itself $\frac{2}{k+1}$ from each of the k+1 (j+1)-flags based on x, it also has degree 1 from the incident edge in \tilde{G} . Thus after applying (R1), the charge of x is

$$2+1-2\left(2-\frac{k+2}{(j+2)(k+1)}\right) = -1 + \frac{2(k+2)}{(j+2)(k+1)}$$

So if $j \ge 1$, then $\beta = 1 - \frac{2(k+2)}{(j+2)(k+1)}$. We view it as if the neighbor of *x* from the edge connecting it to *x* leaves for itself $\frac{2(k+2)}{(j+2)(k+1)}$ and gives β to *x* to make its charge zero.

Now we evaluate the final charges of vertices. By above, the charges of all ghost vertices are zeros. For $j \ge 1$, the charge of each peripheral (k, j)-host is zero, and for j = 0, it is $\frac{1}{k+1}$.

Let *w* be a vertex in \widetilde{G} with $\widetilde{d}(w) \ge 2$. Let h := h(w), $d_1 := d_1(w)$, and $d_2 = d_2(w)$. Let F_1, \ldots, F_h be the (j + 1)-flags based on *w* and x_1, \ldots, x_{d_1} be the peripheral (k, j)-hosts adjacent to *w*. Let y_1, \ldots, y_{d_2} be the remaining neighbors of *w*.

Case 0: $d_2 = 0$. Then $\tilde{G} = K_{1,d_1}$ with the center *w*. If $d_1 \leq j$, then we can color w, x_1, \ldots, x_{d_1} with *j*, and the remaining vertices of *G* with *k*. If $h \leq k$, then we can color x_1, \ldots, x_{d_1} with *j*, the remaining vertices in (j + 1)-flags based on them with *k*, color *w* and one vertex in each (j + 1)-flags based on *w* with *k*, and the remaining vertices in the (j + 1)-flags based on *w* with *j*. In both cases, we obtain a (j, k)-coloring of *G*. So, we may assume that $h \geq k + 1$ and $d_1 \geq j + 1$. Then *G* contains the graph $G_1(j, k)$ for which (3) fails, a contradiction.

Case 1: $d_2 = 1$. Since $\alpha > \beta$, by Lemma 5, we know that w leaves for itself at least $(k + 1)\frac{2}{k+1} + j\frac{2(k+2)}{(j+2)(k+1)}$ from the edges connecting it with F_1, \ldots, F_h and x_1, \ldots, x_{d_1} . It also has 1 from the edge connecting it with y_1 . So since $k \ge 2j + 2$,

$$\begin{split} \mu^*(w) &\ge (k+1)\frac{2}{k+1} + j\frac{2(k+2)}{(j+2)(k+1)} + 1 - 2\left(2 - \frac{k+2}{(j+2)(k+1)}\right) \\ &= -1 + 2\frac{(j+1)(k+2)}{(j+2)(k+1)} = \frac{j(k+3)+2}{(j+2)(k+1)} \ge \frac{j(2j+5)+2}{(j+2)(k+1)}. \end{split}$$

The last expression equals $\frac{1}{k+1}$ when j = 0, and exceeds $\frac{2}{k+1}$ when $j \ge 1$. *Case* 2: $d_2 \ge 2$. Since $h + d_1 + d_2 \ge k + 2$ and $\alpha > \beta$, we have (since $k \ge 2j + 2$)

$$\begin{split} \mu^*(w) &\ge 2 + k \frac{2}{k+1} - 2 \left(2 - \frac{k+2}{(j+2)(k+1)} \right) = -\frac{2}{k+1} + \frac{2(k+2)}{(j+2)(k+1)} \\ &= \frac{2(k+2-j-2)}{(j+2)(k+1)} \ge \frac{2((2j+2)-j)}{(j+2)(k+1)} = \frac{2}{k+1}. \end{split}$$

Thus, in particular $\mu^*(w) \ge 0$ for every $w \in V(G)$. By (8), no vertex gets final charge at least $\frac{2}{k+1}$ and at most one gets final charge at least $\frac{1}{k+1}$. Hence for $j \ge 1$ none of Cases 0, 1, and 2 may occur. This contradicts Lemma 4.

Suppose now that j = 0. By Corollary 2, \tilde{G} has at least two (non-isolated) vertices, and by the analysis above, each of them gets charge at least $\frac{1}{k+1}$. This contradicts (8).

The theorem is proved.

Acknowledgments

We thank Xuding Zhu for his idea of Lemma 2 and for helpful comments. We also thank a referee for helpful comments.

References

[1] K. Appel, W. Haken, Every planar map is four colorable. Part I. Discharging, Illinois J. Math. 21 (1977) 429-490.

[2] K. Appel, W. Haken, Every planar map is four colorable. Part II. Reducibility, Illinois J. Math. 21 (1977) 491–567.

- [3] O.V. Borodin, A.O. Ivanova, Near-proper list vertex 2-colorings of sparse graphs, Diskretn. Anal. Issled. Oper. 16 (2) (2009) 16–20 (in Russian); English translation in: J. Appl. Ind. Math. 4 (1) (2010) 21–23.
- [4] O.V. Borodin, A.V. Kostochka, Vertex partitions of sparse graphs into an independent vertex set and subgraph of maximum degree at most one, Sibirsk. Mat. Zh. 52 (5) (2011) 1004–1010 (in Russian); translation in: Sib. Math. J. 52 (5) (2011) 796–801.
- [5] O.V. Borodin, A.O. Ivanova, M. Montassier, P. Ochem, A. Raspaud, Vertex decompositions of sparse graphs into an edgeless subgraph and a subgraph of maximum degree at most k, J. Graph Theory 65 (2010) 83–93.
- [6] O.V. Borodin, A.O. Ivanova, M. Montassier, A. Raspaud, (k, j)-coloring of sparse graphs, Discrete Appl. Math. 159 (17) (2011) 1947–1953.
- [7] O.V. Borodin, A.O. Ivanova, M. Montassier, A. Raspaud, (k, 1)-coloring of sparse graphs, Discrete Math. 312 (6) (2012) 1128–1135.
- [8] LJ. Cowen, R.H. Cowen, D.R. Woodall, Defective colorings of graphs in surfaces: partitions into subgraphs of bounded valency, J. Graph Theory 10 (1986) 187–195.
- [9] A.N. Glebov, D.Zh. Zambalaeva, Path partitions of planar graphs, Sib. Elektron. Mat. Izv. 4 (2007) 450–459 (in Russian), http://semr.math.nsc.ru.
- [10] F. Havet, J.-S. Sereni, Improper choosability of graphs and maximum average degree, J. Graph Theory 52 (2006) 181-199.

80