Defective 2-colorings of sparse graphs

CrossMark

O.V. Borodin ${ }^{\mathrm{a}, 1}$, A.V. Kostochka ${ }^{\mathrm{b}, \mathrm{a}, 2}$
${ }^{\text {a }}$ Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, and Novosibirsk State University, Novosibirsk, 630090, Russia
${ }^{\text {b }}$ Department of Mathematics, University of Illinois, Urbana, IL 61801, USA

A R T I C L E I N F O

Article history:

Received 16 August 2011
Available online 5 November 2013

Keywords:

Defective coloring
Maximum average degree
Improper coloring

Abstract

A graph G is (j, k)-colorable if its vertices can be partitioned into subsets V_{1} and V_{2} such that every vertex in $G\left[V_{1}\right]$ has degree at most j and every vertex in $G\left[V_{2}\right]$ has degree at most k. We prove that if $k \geqslant 2 j+2$, then every graph with maximum average degree at most $2\left(2-\frac{k+2}{(j+2)(k+1)}\right)$ is (j, k)-colorable. On the other hand, we construct graphs with the maximum average degree arbitrarily close to $2\left(2-\frac{k+2}{(j+2)(k+1)}\right)$ (from above) that are not (j, k)-colorable. In fact, we prove a stronger result by establishing the best possible sufficient condition for the (j, k)-colorability of a graph G in terms of the minimum, $\varphi_{j, k}(G)$, of the difference $\varphi_{j, k}(W, G)=(2-$ $\left.\frac{k+2}{(j+2)(k+1)}\right)|W|-|E(G[W])|$ over all subsets W of $V(G)$. Namely, every graph G with $\varphi_{j, k}(G)>\frac{-1}{k+1}$ is (j, k)-colorable. On the other hand, we construct infinitely many non- (j, k)-colorable graphs G with $\varphi_{j, k}(G)=\frac{-1}{k+1}$.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

A graph G is called improperly $\left(d_{1}, \ldots, d_{k}\right)$-colorable, or just $\left(d_{1}, \ldots, d_{k}\right)$-colorable, if the vertex set of G can be partitioned into subsets V_{1}, \ldots, V_{k} such that the graph $G\left[V_{i}\right]$ induced by the vertices of V_{i} has maximum degree at most d_{i} for all $1 \leqslant i \leqslant k$. This notion generalizes those of proper k-coloring (when $d_{1}=\cdots=d_{k}=0$) and d-improper k-coloring (when $d_{1}=\cdots=d_{k}=d \geqslant 1$).

Proper and d-improper colorings have been widely studied. As shown by Appel and Haken [1,2], every planar graph is 4 -colorable, i.e. $(0,0,0,0)$-colorable. Cowen, Cowen and Woodall [8] proved that

[^0]every planar graph is 2 -improperly 3 -colorable, i.e. ($2,2,2$)-colorable. This latter result was extended by Havet and Sereni [10] to sparse graphs that are not necessarily planar: for every $k \geqslant 0$, every graph G with $\operatorname{mad}(G)<\frac{4 k+4}{k+2}$ is k-improperly 2 -colorable, i.e. (k, k)-colorable.

Recall that for a graph $G, \operatorname{mad}(G)=\max \left\{\frac{2|E(H)|}{|V(H)|}, H \subseteq G\right\}$ is the maximum over the average degrees of the subgraphs of G. The girth, $g(G)$, of a graph G is the length of a shortest cycle in G.

We will consider probably the simplest version of defective colorings, defective colorings with two colors. For nonnegative integers j and k, let $F(j, k)$ denote the supremum of x such that every graph G with $\operatorname{mad}(G) \leqslant x$ is (j, k)-colorable. It is easy to see that $F(0,0)=2$. Indeed, since the odd cycle $C_{2 n-1}$ has $\operatorname{mad}(G)=2$ and is not $(0,0)$-colorable, $F(0,0) \leqslant 2$. On the other hand, each graph with $\operatorname{mad}(G)<2$ has no cycles and therefore is bipartite, i.e., $(0,0)$-colorable.

Glebov and Zambalaeva [9] proved that every planar graph G with $g(G) \geqslant 16$ is $(0,1)$-colorable. This was strengthened by Borodin and Ivanova [3] by proving that every graph G with mad $(G)<\frac{7}{3}$ is $(0,1)$-colorable, which implies that every planar graph G with $g(G) \geqslant 14$ is $(0,1)$-colorable. In [4], it was proved that $F(0,1)=\frac{12}{5}$. In particular, this implies that every planar graph G with $g(G) \geqslant 12$ is (0,1)-colorable.

For each integer $k \geqslant 2$, Borodin et al. [5] proved that every graph G with $\operatorname{mad}(G)<\frac{3 k+4}{k+2}=3-\frac{2}{k+2}$ is $(0, k)$-colorable. On the other hand, for all $k \geqslant 2$ Borodin et al. [5] constructed non- $(0, k)$-colorable graphs with mad arbitrarily close to $\frac{3 k+2}{k+1}=3-\frac{1}{k+1}$.

Recently, it was proved by Borodin et al. [7] that every graph G with $\operatorname{mad}(G)<\frac{10 k+22}{3 k+9}$, where $k \geqslant 2$, is $(1, k)$-colorable. On the other hand, [7] presents a construction of non- $(1, k)$-colorable graphs whose maximum average degree is arbitrarily close to $\frac{14 k}{4 k+1}$.

The purpose of this paper is to prove an exact result for a wide range of j and k.

Theorem 1. Let

$$
\begin{equation*}
j \geqslant 0 \quad \text { and } \quad k \geqslant 2 j+2 \tag{1}
\end{equation*}
$$

Then $F(j, k)=2\left(2-\frac{k+2}{(j+2)(k+1)}\right)$.
In particular, together with [4], Theorem 1 yields exact values for $F(0, k)$ for every k. If $j \leqslant k<$ $2 j+2$, then we do not know the exact answer apart from the cases $j=0$ and $k \in\{0,1\}$. Furthermore, the formula for $F(0,1)$ differs from that in Theorem 1.

In fact, to derive Theorem 1, we will need a more precise statement. For a graph G and $W \subseteq V(G)$, let

$$
\begin{equation*}
\varphi_{j, k}(W, G):=\left(2-\frac{k+2}{(j+2)(k+1)}\right)|W|-|E(G[W])| \tag{2}
\end{equation*}
$$

By definition, $\operatorname{mad}(G) \leqslant 2\left(2-\frac{k+2}{(j+2)(k+1)}\right)$ if and only if $\varphi_{j, k}(W, G) \geqslant 0$ for every $W \subseteq V(G)$.
Theorem 2. Let j and k satisfy (1). Every graph G such that

$$
\begin{equation*}
\varphi_{j, k}(W, G)>-\frac{1}{k+1} \quad \text { for every } W \subseteq V(G) \tag{3}
\end{equation*}
$$

is (j, k)-colorable. Moreover, restriction (3) is sharp.
The second part of Theorem 2 means that there exist infinitely many non- (j, k)-colorable graphs G for which the non-strict version of (3) holds.

Since each planar graph G satisfies $\operatorname{mad}(G)<\frac{2 g(G)}{g(G)-2}$, from Theorem 2 we easily deduce:

Corollary 1. Let G be a planar graph and

$$
k \geqslant \max \left\{-1+\frac{g(G)-2}{(g(G)-4)(j+2)-g(G)+2}, 2 j+2\right\}
$$

Then G is (j, k)-colorable. In particular, G is:

1) $(0,2)$-colorable if $g(G) \geqslant 8$,
2) (0,4)-colorable if $g(G) \geqslant 7$,
3) (1,4)-colorable if $g(G) \geqslant 6$, and
4) $(2,6)$-colorable if $g(G) \geqslant 5$.

Borodin et al. [5] constructed a planar graph with girth 6 which is not $(0, k)$-colorable for any k, and proved that every planar graph G with $g(G) \geqslant 7$ is $(0,8)$-colorable and $g(G) \geqslant 8$ is $(0,4)$-colorable. It follows from Borodin et al. [7] that every planar graph G with $g(G) \geqslant 7$ is $(1,2)$-colorable, and with $g(G) \geqslant 6$ is (1,5)-colorable. Among other results, Borodin et al. [6] also proved that planar graphs with girth 5 are $(2,13)$ - and $(3,7)$-colorable. Note that all these bounds are now strengthened by Corollary 1 . Still, we suspect that Corollary 1 can be further improved. Also, the result by Havet and Sereni [10] yields that every planar graph G with $g(G) \geqslant 5$ (respectively, $g(G) \geqslant 6$, and $g(G) \geqslant 8)$ is (4,4)-colorable (respectively, (2,2)-colorable, and (1,1)-colorable).

In the next section we show the sharpness of Theorem 2 and lay the ground for its proof. The proof is delivered in Section 3.

2. Preliminaries and proof of the sharpness in Theorem 2

For $i \geqslant 1$ and a graph G, an i-flag in G is an ($i+2$)-vertex pendant block B of G in which the non-cut vertices induce $K_{1, i}$ and the cut vertex (we will call it the base vertex) is adjacent to all other vertices.

For convenience, the two colors that we will use are j and k : each vertex of color j (respectively, k) in a (j, k)-coloring is adjacent to at most j (respectively, k) vertices of its color. By definition, in a (j, k)-coloring, at least one vertex of each star $K_{1, j+1}$ is colored with k. This yields the following useful observation.

Claim 1. In any (j, k)-coloring of $a(j+1)$-flag F, at least two vertices of F are colored with color k.
An (i, j)-host in a graph G is a vertex contained in $i+1(j+1)$-flags as the base vertex. An (i, j)-host is peripheral if its degree in G is $1+(i+1)(j+2)$. In other words, $v \in V(G)$ is a peripheral (i, j)-host if it is adjacent to only one vertex apart from the vertices of the $i+1(j+1)$-flags in which v is the base vertex.

Claim 1 readily implies
Claim 2. In any (j, k)-coloring of a graph G, each (k, j)-host is colored with j.
Let $G_{0}(j, k)$ be obtained from $k+1$ vertex-disjoint copies of the star $K_{1, j+1}$ by adding a new vertex v_{0} adjacent to all vertices in all copies of $K_{1, j+1}$. By construction, v_{0} is a (k, j)-host in $G_{0}(j, k)$, and hence by Claim 2 in any ($j, k)$-coloring of $G_{0}(j, k), v_{0}$ must be colored with j.

Let $G_{1}(j, k)$ be obtained from $j+2$ copies of $G_{0}(j, k)$ with (k, j)-hosts $v_{0}, v_{1}, \ldots, v_{j+1}$ by adding the $j+1$ edges connecting v_{0} with v_{1}, \ldots, v_{j+1}. Suppose that $G_{1}(j, k)$ has a (j, k)-coloring f. Then by Claim 2, $f\left(v_{0}\right)=f\left(v_{1}\right)=\cdots=f\left(v_{j+1}\right)=j$, and so vertex v_{0} of color j has $j+1$ neighbors of the same color, a contradiction. Thus, $G_{1}(j, k)$ has no (j, k)-coloring.

In order to calculate the minimum of $\varphi_{j, k}\left(W, G_{1}(j, k)\right)$ over all $W \subseteq V\left(G_{1}(j, k)\right)$, observe the following.

Claim 3.

(a) Adding to some $W \subseteq V(G)$ a vertex $w \in V(G)-W$ adjacent to exactly two vertices of W decreases $\varphi_{j, k}(W, G)$ by $\frac{k+2}{(j+2)(k+1)}$.
(b) Adding to some $W \subseteq V(G) a(j+1)$-flag sharing with W exactly one vertex decreases $\varphi_{j, k}(W, G)$ by $\frac{1}{k+1}$.
(c) Adding to some $W \subseteq V(G)$ a peripheral (k, j)-host v together with its $k+1(j+1)$-flags such that v is adjacent to a vertex in W decreases $\varphi_{j, k}(W, G)$ by $\frac{k+2}{(j+2)(k+1)}$.

Indeed, (a) is evident. To see (b), observe that we add $j+2$ vertices and $2 j+3$ edges, and so the net gain in $\varphi_{j, k}$ is

$$
(j+2)\left(2-\frac{k+2}{(j+2)(k+1)}\right)-2 j-3=1-\frac{k+2}{k+1}=-\frac{1}{k+1}
$$

Now (c) easily follows from the definition and (b).
We can obtain $G_{1}(j, k)$ from the star $K_{1, j+1}$ by consecutive adding of $(j+2)(k+1)(j+1)$-flags. For the vertex set $V_{0}=\left\{v_{0}, v_{1}, \ldots, v_{j+1}\right\}$ inducing $K_{1, j+1}$ in $G_{1}(j, k)$, we have

$$
\varphi_{j, k}\left(V_{0}, G_{1}(j, k)\right)=(j+2)\left(2-\frac{k+2}{(j+2)(k+1)}\right)-j-1=j+2-\frac{1}{k+1}
$$

So by Claim 3(b),

$$
\varphi_{j, k}\left(V\left(G_{1}(j, k)\right), G_{1}(j, k)\right)=j+2-\frac{1}{k+1}-(j+2)(k+1) \frac{1}{k+1}=-\frac{1}{k+1}
$$

Since $G_{1}(j, k)$ can be obtained from every of its induced non-empty connected subgraphs by a sequence of the operations described in Claim 3, we know that $\varphi_{j, k}\left(W, G_{1}(j, k)\right) \geqslant-\frac{1}{k+1}$ for every $W \subseteq V\left(G_{1}(j, k)\right)$. Thus $G_{1}(j, k)$ is one of the examples showing the sharpness of Theorem 2 .

Let $H_{1}(j, k)$ be the graph obtained from $G_{1}(j, k)$ with host vertices $v_{0}, v_{1}, \ldots, v_{j+1}$ by deleting all vertices (apart from v_{j+1}) of one ($j+1$)-flag containing v_{j+1}. By Claim 3(b),

$$
\varphi_{j, k}\left(V\left(H_{1}(j, k)\right), H_{1}(j, k)\right)=\varphi_{j, k}\left(V\left(G_{1}(j, k)\right), G_{1}(j, k)\right)+\frac{1}{k+1}=0
$$

Repeating the argument of the previous paragraph, we conclude that $\varphi_{j, k}\left(W, H_{1}(j, k)\right) \geqslant 0$ for every $W \subseteq V\left(H_{1}(j, k)\right)$.

By Claims 2 and 1 and the definition of (j, k)-colorings, in each (j, k)-coloring f of $H_{1}(j, k)$, the following should hold:
(i) $f\left(v_{0}\right)=f\left(v_{1}\right)=\cdots=f\left(v_{j}\right)=j$, in particular, v_{0} has j neighbors of color j;
(ii) $f\left(v_{j+1}\right)=k$ and v_{j+1} has exactly k neighbors of color k.

Now we construct $G_{i}(j, k)$ for $i=2,3 \ldots$ Suppose that $G_{i-1}(j, k)$ is constructed and let x be a peripheral (k, j)-host in it. Let y be a vertex of degree 2 in one of the $(j+1)$-flags containing x. We obtain $G_{i}(j, k)$ from $G_{i-1}(j, k)$ and a copy of $H_{1}(j, k)$ by deleting edge $x y$ and adding an edge connecting y with the $(k-1, j)$-host v_{j+1} in $H_{1}(j, k)$. Again, $G_{i}(j, k)$ has no (j, k)-coloring and in (3) we have non-strict inequality. Thus we have infinitely many non- (j, k)-colorable graphs which satisfy the non-strict version of (3).

3. Proof of Theorem 2

3.1. Some notation

A vertex of degree d (respectively, at least d, at most d) is called a d-vertex (respectively, d^{+}-vertex, d^{-}-vertex). By a k-path we mean a path with precisely k internal vertices all of which have degree 2. A $\left(k_{1}, k_{2}, \ldots, k_{t}\right)$-vertex is a vertex v of degree t that is a starting point of a $k_{1}-$, a $k_{2}-, \ldots$, and a k_{t}-path that are all distinct.

For a graph G, the vertices in $(j+1)$-flags that are not cut-vertices are called ghosts. The other vertices of G are non-ghosts. By \widetilde{G} we denote the graph obtained from G by deleting ghosts. Recall that each of $H_{1}(j, k)$ and $G_{1}(j, k)$ has exactly $j+2$ non-ghosts and that $\widetilde{H}_{1}(j, k)=\widetilde{G}_{1}(j, k)=K_{1, j+1}$.

Let Z be obtained from $G_{1}(j, k)$ by deleting v_{j+1} and the vertices of all $(j+1)$-flags containing it. By definition, Z is isomorphic to the subgraph of $H_{1}(j, k)$ obtained by deleting v_{j+1} and the vertices of all $(j+1)$-flags containing it.

We say that a graph G is smaller than a graph G^{\prime} if either \widetilde{G} has fewer vertices of degree at least two than \widetilde{G}^{\prime}, or if they have the same number of such vertices but $|V(\widetilde{G})|<\left|V\left(\widetilde{G}^{\prime}\right)\right|$, or both these parameters are the same, and $|E(\widetilde{G})|<\left|E\left(\widetilde{G}^{\prime}\right)\right|$, or all these three parameters are the same, but $|V(G)|<\left|V\left(G^{\prime}\right)\right|$.

For example, $H_{1}(j, k)$ is smaller than $G_{1}(j, k)$, since $\widetilde{H}_{1}(j, k)=\widetilde{G}_{1}(j, k)$ and $H_{1}(j, k)$ has fewer vertices. Graph Z is smaller that either of these graphs.

3.2. Structural properties of a minimum counterexample

Let G be a smallest counterexample to Theorem 2. Clearly, G is connected and has no pendant vertices. For shortness, $\varphi(W, H)$ will denote $\varphi_{j, k}(W, H)$, and $\varphi(W)$ will denote $\varphi(W, G)$.

Lemma 1. G does not have (i, j)-hosts for $i \geqslant k+1$.
Proof. Suppose to the contrary that $v \in V(G)$ is an (i, j)-host for some $i \geqslant k+1$. Delete the vertices (apart from v) of one ($j+1$)-flag F based on v. Then the new graph G^{\prime} is smaller than G and hence has a (j, k)-coloring c^{\prime}. By Claim $2, c^{\prime}(v)=j$. So, we may extend c^{\prime} to the whole G by coloring each vertex of $F-v$ with k (recall that $k \geqslant 2 j+2$).

Lemma 2. If $W \subseteq V(G)$ and $\emptyset \neq W \neq V(G)$ then $\varphi(W) \geqslant \frac{1}{(j+2)(k+1)}$.
Proof. Suppose that $\emptyset \neq W \neq V(G), \varphi(W) \leqslant 0$. Then there is a non-empty $W^{\prime} \subseteq W$ such that $G\left[W^{\prime}\right]$ is connected and $\varphi\left(W^{\prime}\right) \leqslant 0$. We may choose a maximal W^{\prime} with this property that is distinct from $V(G)$. If $G\left[W^{\prime}\right]$ contains a vertex w of degree at most 1 in it, then

$$
\varphi\left(W^{\prime}-v\right) \leqslant \varphi\left(W^{\prime}\right)-\left(2-\frac{k+2}{(j+2)(k+1)}\right)+1 \leqslant 0-2+\frac{k+2}{(j+2)(k+1)}+1 \leqslant \frac{-1}{k+1},
$$

a contradiction to the choice of G. So, $\delta\left(G\left[W^{\prime}\right]\right) \geqslant 2$.
By Claim 3(a),
each $w \in V(G)-W^{\prime}$ has at most one neighbor in W^{\prime}.
By Claim 3(b), a ($j+1$)-flag of G cannot have exactly one vertex in W^{\prime}. So,
each $(j+1)$-flag of G either is completely in W^{\prime} or is disjoint from W^{\prime}.
It follows that $\widetilde{G}\left[W^{\prime}\right]$ is a subgraph of \widetilde{G}. Thus, $G\left[W^{\prime}\right]$ is smaller than G. Since $G\left[W^{\prime}\right]$ is a subgraph of G, it satisfies the conditions of the theorem. So, $G\left[W^{\prime}\right]$ has a (j, k)-coloring c^{\prime}. Construct the graph $G^{*}=G^{*}\left(W^{\prime}\right)$ from $G-W^{\prime}$ as follows:
(a) add to $G-W^{\prime}$ a copy of Z;
(b) each $w \in V\left(G-W^{\prime}\right)$ that is adjacent to a vertex of color j in c^{\prime} is joined by an edge to v_{0} in Z;
(c) to each $w \in V\left(G-W^{\prime}\right)$ that is adjacent to a vertex of color k in c^{\prime} add $k+1(j+1)$-flags based on w.

We will prove the following three facts: (I) G^{*} is smaller than G; (II) Condition (3) holds for G^{*}; and (III) any (j, k)-coloring c^{*} of G^{*} yields a ($\left.j, k\right)$-coloring of G. These three facts together will imply the lemma.

By (4) and (5), if $w \in V(G)-W^{\prime}$ belongs to $V\left(\widetilde{G}^{*}\right)$, then it was in $V(\widetilde{G})$. Furthermore, since the edges connecting W^{\prime} with $V(G)-W^{\prime}$ were not in ($j+1$)-flags, if $w \in V(G)-W^{\prime}$ is a non-leaf vertex in \widetilde{G}^{*}, it was also a non-leaf in \widetilde{G}. Recall that Z contains exactly $j+1$ vertices of \widetilde{G}^{*}, and at most
one of them is a non-leaf in \widetilde{G}^{*}. Thus, if (I) does not hold, then W^{\prime} contains at most one non-leaf of \widetilde{G}. The only connected graph with at most one non-leaf is a star. So, the subgraph of \widetilde{G} contained in W^{\prime} is some star $K_{1, i}$. If (I) does not hold, then $i \leqslant j$. But then by Lemma $1, W^{\prime}$ contains at most $(i+1)(k+1)(j+1)$-flags and hence by Claim 3(b),

$$
\begin{aligned}
\varphi\left(W^{\prime}\right) & \geqslant\left(2-\frac{k+2}{(j+2)(k+1)}\right)(i+1)-i-(i+1)(k+1) \frac{1}{k+1} \\
& =1-\frac{(i+1)(k+2)}{(j+2)(k+1)} \geqslant 1-\frac{(j+1)(k+2)}{(j+2)(k+1)}
\end{aligned}
$$

Since $k>j$, the last expression is positive, a contradiction to $\varphi\left(W^{\prime}\right) \leqslant 0$. This proves (I).
Choose now a set U with the minimum $\varphi\left(U, G^{*}\right)$. If (II) does not hold, then $\varphi\left(U, G^{*}\right) \leqslant-\frac{1}{k+1}$. Let $U^{*}=U-V(Z), U^{\prime \prime}=U^{*} \cap V(G)$, and $U^{\prime}=U \cap V(Z)$. By the minimality of $\varphi\left(U, G^{*}\right)$, if a ($\left.j+1\right)$-flag shares a vertex with U, then it is contained in $G^{*}[U]$.

Suppose that exactly x edges in G connect $U^{\prime \prime}$ with vertices of color k in c^{\prime}, and exactly y edges connect $U^{\prime \prime}$ with vertices of color j in c^{\prime}. Then by Claim $3(\mathrm{~b})$, the $x(k+1)(j+1)$-flags added to vertices in $U^{\prime \prime}$ while constructing G^{*} to form U^{*} decrease $\varphi\left(U^{\prime \prime}, G^{*}\right)$ by exactly x. Thus

$$
\begin{equation*}
\varphi\left(U, G^{*}\right)=\varphi\left(U^{\prime}, G^{*}\right)+\varphi\left(U^{\prime \prime}, G^{*}\right)-x-y=\varphi\left(U^{\prime}, Z\right)+\varphi\left(U^{\prime \prime}, G\right)-x-y \tag{6}
\end{equation*}
$$

Define $Y=W^{\prime} \cup U^{\prime \prime}$. Similarly to (6) we have

$$
\begin{equation*}
\varphi(Y, G)=\varphi\left(W^{\prime}, G\right)+\varphi\left(U^{\prime \prime}, G\right)-x-y \tag{7}
\end{equation*}
$$

Since $\varphi\left(U^{\prime}, G\right) \geqslant \varphi(V(Z), Z)>0$, comparing (6) with (7) we have $\varphi(Y, G)<\varphi\left(U, G^{*}\right) \leqslant-\frac{1}{k+1}$, a contradiction to (3). This proves (II).

By (I) and (II) and by the minimality of G, G^{*} has a (j, k)-coloring c^{*}. We define c by letting $c(v):=c^{\prime}(v)$ for $v \in W^{\prime}$ and $c(v):=c^{*}(v)$ for $v \in V(G)-W^{\prime}$. Recall that by Claim 2, all the $j+1$ (k, j)-hosts in $V(Z)$ and the vertices in $V(G)-W^{\prime}$ adjacent to vertices of color k in c^{\prime} are colored with j. Furthermore, since v_{0} has j neighbors in Z of color j, all its neighbors in $V\left(G^{*}\right)-V(Z)$ are colored with k. Thus, c is a (j, k)-coloring of G, a contradiction.

For every vertex $w \in V(\widetilde{G})$, let $\widetilde{d}(w)$ be the degree of w in \widetilde{G} and $h(w)$ denote the number of $(j+1)$-flags based on w.

Lemma 3. For every $w \in V(\widetilde{G}), \tilde{d}(w)+h(w) \geqslant k+2$. In particular, every 2-vertex in G is a ghost.
Proof. Suppose that $w \in V(\widetilde{G})$ and $\widetilde{\widetilde{d}}(w)+h(w) \leqslant k+1$. Denote $d:=\widetilde{d}(w)$ and $h:=h(w)$. Let x_{1}, \ldots, x_{d} be the neighbors of w in \widetilde{G} and F_{1}, \ldots, F_{h} be the $(j+1)$-flags based on w. If $d=0$, then $V(\widetilde{G})=\{w\}$ and it is easy to (j, k)-color G.

Suppose now that $d=1$. Let $G^{\prime}=G-F_{1}-\cdots-F_{h}-w$. Since G^{\prime} is less than G, it has a (j, k)-coloring c^{\prime}. If $c^{\prime}\left(x_{1}\right)=k$, then we color w with j and each vertex in $\bigcup_{i=1}^{h} F_{i}-w$ with k. If $c^{\prime}\left(x_{1}\right)=j$, then we color w with k and in each F_{i} based on w we color a vertex of degree $j+1$ in $F_{i}-w$ with k and the remaining $j+1$ vertices with j. It says "a vertex", since for $j=0$, there are two such vertices in $F_{i}-w$.

Finally, let $d \geqslant 2$. Consider G^{*} obtained from $G-F_{1}-\cdots-F_{h}-w$ by adding a ($j+1$)-flag $F(s)$ based on x_{s} for every $s=1, \ldots, d$. As in the previous lemma, we will prove that (I) G^{*} is smaller than G; (II) Condition (3) holds for G^{*}; and (III) any (j, k)-coloring c^{*} of G^{*} yields a (j, k)-coloring of G.

Statement (I) holds, since we deleted a vertex $w \in V(\widetilde{G})$ and added only ghost vertices. Suppose that (II) fails, i.e., $\varphi\left(W^{*}, G^{*}\right) \leqslant-\frac{1}{k+1}$ for some $W^{*} \subseteq V\left(G^{*}\right)$. Let $W=W^{*} \cap V(G)$. If $\mid\left\{x_{1}, \ldots, x_{d}\right\} \cap$ $W \mid \leqslant 1$, then by Claim 3(b),

$$
\varphi(W, G) \leqslant \varphi\left(W^{*}, G^{*}\right)+\frac{1}{k+1} \leqslant 0
$$

a contradiction to Lemma 2. Suppose that $\left|\left\{x_{1}, \ldots, x_{d}\right\} \cap W\right|=r \geqslant 2$. Then $\varphi(W, G) \leqslant \varphi\left(W^{*}, G^{*}\right)+$ r_{k+1} and hence

$$
\varphi(W+w, G) \leqslant \varphi\left(W^{*}, G^{*}\right)+r \frac{1}{k+1}+\left(2-\frac{k+2}{(j+2)(k+1)}\right)-r .
$$

For $r \geqslant 2$, this is at most

$$
\varphi\left(W^{*}, G^{*}\right)+\frac{2}{k+1}-\frac{k+2}{(j+2)(k+1)} \leqslant \varphi\left(W^{*}, G^{*}\right)
$$

since $(k+2) \geqslant 2(j+2)$. It follows that (3) does not hold for G, a contradiction to the choice of G.
By (I) and (II) and by the minimality of G, G^{*} has a (j, k)-coloring c^{*}. If $c^{*}\left(x_{1}\right)=\cdots=c^{*}\left(x_{d}\right)=k$, then we color w with j and each vertex in $\bigcup_{i=1}^{h} F_{i}-w$ with k. Suppose not. In this case we color w with k and in each flag F_{i} based on w we color a vertex of degree $j+1$ in $F_{i}-w$ with k and the remaining $j+1$ vertices with j. In this way, w will have at most $(d-1)+h$ neighbors of color k. Recall that by Claim 1, each x_{s} had a neighbor of color k in $F(s)$. Thus, we get a (j, k)-coloring of G.

Comparing Lemmas 1 and 3, we obtain
Corollary 2. \tilde{G} has no isolated vertices. Furthermore, each pendant vertex in \tilde{G} is a peripheral (k, j)-host.
If $j \geqslant 1$ and a peripheral (k, j)-host x is adjacent to another peripheral (k, j)-host y, then $V(\widetilde{G})=$ $\{x, y\}$ and we can color x and y with j and the remaining vertices of G with k, a contradiction. From this and Corollary 2 we deduce

Lemma 4. If $j \geqslant 1$, then peripheral (k, j)-hosts in \widetilde{G} are not adjacent. In particular, if $j \geqslant 1$, then \widetilde{G} has a vertex of degree at least 2 .

For every $w \in V(\widetilde{G})$, let $d_{1}(w)$ denote the number of its neighbors that are peripheral (k, j)-hosts and $d_{2}(w)=\widetilde{d}(w)-d_{1}(w)$. We are interested in vertices w with $d_{2}(w)=1$.

Lemma 5. Let $w \in V(\widetilde{G})$ with $d_{2}(w)=1$. Then:
(a) $h(w) \geqslant k$;
(b) $d_{1}(w) \geqslant j$;
(c) $h(w)+d_{1}(w) \geqslant k+j+1$.

Proof. For shortness, let $h:=h(w), d_{1}:=d_{1}(w)$. Let F_{1}, \ldots, F_{h} be the $(j+1)$-flags based on w and $x_{1}, \ldots, x_{d_{1}}$ be the peripheral (k, j)-hosts adjacent to w. Let y be the remaining neighbor of w.

Suppose first that $h \leqslant k-1$. Recall that by Lemma $3, h+d_{1} \geqslant k+1$. Thus by Claim 3, the graph G^{\prime} obtained from G by deleting $w, x_{1}, \ldots, x_{d_{1}}$ together with all $(j+1)$-flags based on them and then adding one $(j+1)$-flag F based on y satisfies (3). By construction, G^{\prime} is smaller than G. So by the minimality of G, G^{\prime} has a (j, k)-coloring c^{\prime}. Since y has a neighbor of color k in F, when we color in G vertex w with k, there will be no conflict at y. Now we can color each x_{i} with j and all vertices in all $(j+1)$-flags based on x_{i} with k. Finally, for each $s=1, \ldots, h$, we color a vertex of degree $j+1$ in $F_{s}-w$ with k and all other vertices in $F_{s}-w$ with j. Since $h \leqslant k-1$, this will be a (j, k)-coloring of G.

Suppose now that $d_{1} \leqslant j-1$. By Claim 3 , the graph $G^{\prime \prime}$ obtained from G by deleting $x_{1}, \ldots, x_{d_{1}}$ together with all $(j+1)$-flags based on them and then adding $d_{1}(j+1)$-flags $F_{1}^{\prime}, \ldots, F_{d_{1}}^{\prime}$ based on w satisfies (3). Since the number of vertices of \widetilde{G} decreases, $G^{\prime \prime}$ is smaller than G. So by the minimality of $G, G^{\prime \prime}$ has a (j, k)-coloring $c^{\prime \prime}$. Since w is in $h+d_{1} \geqslant k+1(j+1)$-flags, we have $c^{\prime \prime}(w)=j$. Now we delete flags $F_{1}^{\prime}-w, \ldots, F_{d_{1}}^{\prime}-w$ and extend $c^{\prime \prime}$ to the whole G as follows: color each x_{i} with j
and all vertices in all $(j+1)$-flags based on x_{i} with k. To be on the safe side, recolor each vertex (apart from w) in each flag based on w with k. Again, we get a (j, k)-coloring of G.

Finally, suppose that $h=k$ and $d_{1}=j$. Let G^{*} be obtained from G by deleting $w, x_{1}, \ldots, x_{d_{1}}$ together with all $(j+1)$-flags based on them. Since G^{*} is an induced subgraph of G, it is smaller than G and satisfies (3). So, it has a (j, k)-coloring c^{*}. If $c^{*}(y)=j$, then we color the rest as in the proof of (a), and if $c^{*}(y)=k$, then we color the rest as in the proof of (b).

3.3. Discharging procedure

By (3), we have

$$
\begin{equation*}
\sum_{v \in V(G)}\left(d(v)-2\left(2-\frac{k+2}{(j+2)(k+1)}\right)\right)<\frac{2}{k+1} \tag{8}
\end{equation*}
$$

The initial charge of each vertex v of G is $\mu(v)=d(v)-2\left(2-\frac{k+2}{(j+2)(k+1)}\right)$, and the final charge $\mu^{*}(v)$ is determined by applying the following rules:
(R1) Every $w \in V(\widetilde{G})$ gives to the vertices of each $(j+1)$-flag F based on it the exact amount α such that together with their own initial charges the total charge of vertices in $F-w$ would become 0 .
(R2) If $j \geqslant 1$, then for every peripheral (k, j)-host x, its neighbor y in \widetilde{G} gives to x the exact amount β to make the resulting charge of x equal to 0 . If $j=0$, then nothing happens.

First observe that by Lemma 4, Rule (R2) does not create confusion.
Second, let us understand what are the values of α and β. By definition, for each $(j+1)$-flag F based on w, we have

$$
\sum_{v \in F-w} \mu(v)=(j+2)+2(j+1)-(j+2) 2\left(2-\frac{k+2}{(j+2)(k+1)}\right)=-j-2+\frac{2}{k+1}
$$

So, $\alpha=j+2-\frac{2}{k+1}$. We will view this as if from the $j+2$ edges connecting w with $F-w$, w leaves for itself $\frac{2}{k+1}$ of degree, and gives α to the vertices of $F-w$, and they share their charges so that their modified charges are zeros.

After a peripheral (k, j)-host x leaves for itself $\frac{2}{k+1}$ from each of the $k+1(j+1)$-flags based on x, it also has degree 1 from the incident edge in \widetilde{G}. Thus after applying (R1), the charge of x is

$$
2+1-2\left(2-\frac{k+2}{(j+2)(k+1)}\right)=-1+\frac{2(k+2)}{(j+2)(k+1)}
$$

So if $j \geqslant 1$, then $\beta=1-\frac{2(k+2)}{(j+2)(k+1)}$. We view it as if the neighbor of x from the edge connecting it to x leaves for itself $\frac{2(k+2)}{(j+2)(k+1)}$ and gives β to x to make its charge zero.

Now we evaluate the final charges of vertices. By above, the charges of all ghost vertices are zeros. For $j \geqslant 1$, the charge of each peripheral (k, j)-host is zero, and for $j=0$, it is $\frac{1}{k+1}$.

Let w be a vertex in \widetilde{G} with $\tilde{d}(w) \geqslant 2$. Let $h:=h(w), d_{1}:=d_{1}(w)$, and $d_{2}=d_{2}(w)$. Let F_{1}, \ldots, F_{h} be the $(j+1)$-flags based on w and $x_{1}, \ldots, x_{d_{1}}$ be the peripheral (k, j)-hosts adjacent to w. Let $y_{1}, \ldots, y_{d_{2}}$ be the remaining neighbors of w.

Case $0: d_{2}=0$. Then $\widetilde{G}=K_{1, d_{1}}$ with the center w. If $d_{1} \leqslant j$, then we can color $w, x_{1}, \ldots, x_{d_{1}}$ with j, and the remaining vertices of G with k. If $h \leqslant k$, then we can color $x_{1}, \ldots, x_{d_{1}}$ with j, the remaining vertices in $(j+1)$-flags based on them with k, color w and one vertex in each ($j+1$)-flag based on w with k, and the remaining vertices in the $(j+1)$-flags based on w with j. In both cases, we obtain a (j, k)-coloring of G. So, we may assume that $h \geqslant k+1$ and $d_{1} \geqslant j+1$. Then G contains the graph $G_{1}(j, k)$ for which (3) fails, a contradiction.

Case 1: $d_{2}=1$. Since $\alpha>\beta$, by Lemma 5, we know that w leaves for itself at least $(k+1) \frac{2}{k+1}+$ $j \frac{2(k+2)}{(j+2)(k+1)}$ from the edges connecting it with F_{1}, \ldots, F_{h} and $x_{1}, \ldots, x_{d_{1}}$. It also has 1 from the edge connecting it with y_{1}. So since $k \geqslant 2 j+2$,

$$
\begin{aligned}
\mu^{*}(w) & \geqslant(k+1) \frac{2}{k+1}+j \frac{2(k+2)}{(j+2)(k+1)}+1-2\left(2-\frac{k+2}{(j+2)(k+1)}\right) \\
& =-1+2 \frac{(j+1)(k+2)}{(j+2)(k+1)}=\frac{j(k+3)+2}{(j+2)(k+1)} \geqslant \frac{j(2 j+5)+2}{(j+2)(k+1)} .
\end{aligned}
$$

The last expression equals $\frac{1}{k+1}$ when $j=0$, and exceeds $\frac{2}{k+1}$ when $j \geqslant 1$.
Case 2: $d_{2} \geqslant 2$. Since $h+d_{1}+d_{2} \geqslant k+2$ and $\alpha>\beta$, we have (since $k \geqslant 2 j+2$)

$$
\begin{aligned}
\mu^{*}(w) & \geqslant 2+k \frac{2}{k+1}-2\left(2-\frac{k+2}{(j+2)(k+1)}\right)=-\frac{2}{k+1}+\frac{2(k+2)}{(j+2)(k+1)} \\
& =\frac{2(k+2-j-2)}{(j+2)(k+1)} \geqslant \frac{2((2 j+2)-j)}{(j+2)(k+1)}=\frac{2}{k+1} .
\end{aligned}
$$

Thus, in particular $\mu^{*}(w) \geqslant 0$ for every $w \in V(G)$. By (8), no vertex gets final charge at least $\frac{2}{k+1}$ and at most one gets final charge at least $\frac{1}{k+1}$. Hence for $j \geqslant 1$ none of Cases 0,1 , and 2 may occur. This contradicts Lemma 4.

Suppose now that $j=0$. By Corollary $2, \widetilde{G}$ has at least two (non-isolated) vertices, and by the analysis above, each of them gets charge at least $\frac{1}{k+1}$. This contradicts (8).

The theorem is proved.

Acknowledgments

We thank Xuding Zhu for his idea of Lemma 2 and for helpful comments. We also thank a referee for helpful comments.

References

[1] K. Appel, W. Haken, Every planar map is four colorable. Part I. Discharging, Illinois J. Math. 21 (1977) 429-490.
[2] K. Appel, W. Haken, Every planar map is four colorable. Part II. Reducibility, Illinois J. Math. 21 (1977) 491-567.
[3] O.V. Borodin, A.O. Ivanova, Near-proper list vertex 2-colorings of sparse graphs, Diskretn. Anal. Issled. Oper. 16 (2) (2009) 16-20 (in Russian); English translation in: J. Appl. Ind. Math. 4 (1) (2010) 21-23.
[4] O.V. Borodin, A.V. Kostochka, Vertex partitions of sparse graphs into an independent vertex set and subgraph of maximum degree at most one, Sibirsk. Mat. Zh. 52 (5) (2011) 1004-1010 (in Russian); translation in: Sib. Math. J. 52 (5) (2011) 796-801.
[5] O.V. Borodin, A.O. Ivanova, M. Montassier, P. Ochem, A. Raspaud, Vertex decompositions of sparse graphs into an edgeless subgraph and a subgraph of maximum degree at most k, J. Graph Theory 65 (2010) 83-93.
[6] O.V. Borodin, A.O. Ivanova, M. Montassier, A. Raspaud, (k, j)-coloring of sparse graphs, Discrete Appl. Math. 159 (17) (2011) 1947-1953.
[7] O.V. Borodin, A.O. Ivanova, M. Montassier, A. Raspaud, ($k, 1$)-coloring of sparse graphs, Discrete Math. 312 (6) (2012) 1128-1135.
[8] L.J. Cowen, R.H. Cowen, D.R. Woodall, Defective colorings of graphs in surfaces: partitions into subgraphs of bounded valency, J. Graph Theory 10 (1986) 187-195.
[9] A.N. Glebov, D.Zh. Zambalaeva, Path partitions of planar graphs, Sib. Elektron. Mat. Izv. 4 (2007) 450-459 (in Russian), http://semr.math.nsc.ru.
[10] F. Havet, J.-S. Sereni, Improper choosability of graphs and maximum average degree, J. Graph Theory 52 (2006) 181-199.

[^0]: E-mail addresses: brdnoleg@math.nsc.ru (O.V. Borodin), kostochk@math.uiuc.edu (A.V. Kostochka).
 ${ }^{1}$ Research of this author was supported by grants 12-01-00631 and 12-01-00448 of the Russian Foundation for Basic Research.
 ${ }^{2}$ Research of this author was supported by NSF grants DMS-0965587 and DMS-1266016.

