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A graph G is k-critical if it has chromatic number k, but 
every proper subgraph of G is (k − 1)-colorable. Let fk(n)
denote the minimum number of edges in an n-vertex k-critical 
graph. We give a lower bound, fk(n) ≥ F (k, n), that is 
sharp for every n = 1 (mod k − 1). The bound is also 
sharp for k = 4 and every n ≥ 6. The result improves 
a bound by Gallai and subsequent bounds by Krivelevich 
and Kostochka and Stiebitz, and settles the corresponding 
conjecture by Gallai from 1963. It establishes the asymptotics 
of fk(n) for every fixed k. It also proves that the conjecture 
by Ore from 1967 that for every k ≥ 4 and n ≥ k + 2, 
fk(n + k − 1) = fk(n) + k−1

2 (k − 2
k−1 ) holds for each k ≥ 4

for all but at most k3/12 values of n. We give a polynomial-
time algorithm for (k− 1)-coloring of a graph G that satisfies 
|E(G[W ])| < F (k, |W |) for all W ⊆ V (G), |W | ≥ k. We also 
present some applications of the result.
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1. Introduction

A proper k-coloring, or simply k-coloring, of a graph G = (V, E) is a function f : V →
{1, 2, . . . , k} such that for each uv ∈ E, f(u) �= f(v). A graph G is k-colorable if there 
exists a k-coloring of G. The chromatic number, χ(G), of a graph G is the smallest k
such that G is k-colorable. A graph G is k-chromatic if χ(G) = k.

A graph G is k-critical if G is not (k − 1)-colorable, but every proper subgraph of G
is (k − 1)-colorable. Then every k-critical graph has chromatic number k and every 
k-chromatic graph contains a k-critical subgraph. This means that some problems for 
k-chromatic graphs may be reduced to problems for k-critical graphs, whose structure 
is more restricted. For example, every k-critical graph is 2-connected and (k − 1)-edge-
connected. Critical graphs were first defined and used by Dirac [4–6] in 1951–1952.

The only 1-critical graph is K1, and the only 2-critical graph is K2. The only 3-critical 
graphs are the odd cycles. For every k ≥ 4 and every n ≥ k + 2, there exists a k-critical 
n-vertex graph. Let fk(n) be the minimum number of edges in a k-critical graph with n
vertices. Since δ(G) ≥ k − 1 for every k-critical n-vertex graph G,

fk(n) ≥ k − 1
2 n (1)

for all n ≥ k, n �= k+1. Equality is achieved for n = k and for k = 3 and n odd. Brooks’ 
Theorem [3] implies that for k ≥ 4 and n ≥ k+ 2, the inequality in (1) is strict. In 1957, 
Dirac [8] asked to determine fk(n) and proved that for k ≥ 4 and n ≥ k + 2,

fk(n) ≥ k − 1
2 n + k − 3

2 . (2)

The result is tight for n = 2k−1 and yields fk(2k−1) = k2−k−1. Dirac used his bound 
to evaluate chromatic number of graphs embedded into fixed surfaces. Later, Kostochka 
and Stiebitz [17] improved (2) to

fk(n) ≥ k − 1
2 n + k − 3 (3)

when n �= 2k − 1, k. This yields fk(2k) = k2 − 3 and fk(3k − 2) = 3k(k−1)
2 − 2. In his 

fundamental papers [10,11], Gallai found exact values of fk(n) for k + 2 ≤ n ≤ 2k − 1:

Theorem 1. (See Gallai [11].) If k ≥ 4 and k + 2 ≤ n ≤ 2k − 1, then

fk(n) = 1
2
(
(k − 1)n + (n− k)(2k − n)

)
− 1.

He also proved the following general bound for k ≥ 4 and n ≥ k + 2:

fk(n) ≥ k − 1
n + k − 3

2 n. (4)
2 2(k − 3)
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For large n, this bound is much stronger than bounds (2) and (3). Gallai [10] also 
conjectured a lower bound on fk(n).

Conjecture 2. (See Gallai [10].) If k ≥ 4 and n = 1 (mod k − 1), then

fk(n) = (k2 − k − 2)n− k(k − 3)
2(k − 1) .

Gallai commented that possibly this will be hard to prove. Ore [24] in 1967 observed 
that Hajós’ construction [13] implies

fk(n + k − 1) ≤ fk(n) + (k − 2)(k + 1)
2 = fk(n) + k − 1

2

(
k − 2

k − 1

)
, (5)

which yields that φk := limn→∞
fk(n)

n exists and satisfies φk ≤ k
2 − 1

k−1 .
Gallai’s bound (3) gives φk ≥ 1

2 (k− 1 + k−3
k2−3 ). Ore believed that Hajós’ construction 

was best possible.

Conjecture 3. (See Ore [24].) If k ≥ 4, then

fk(n + k − 1) = fk(n) + k − 1
2

(
k − 2

k − 1

)
.

Much later, Krivelevich [23] improved Gallai’s bound to

fk(n) ≥ k − 1
2 n + k − 3

2(k2 − 2k − 1)n

and demonstrated nice applications of his bound: he constructed graphs with high chro-
matic number and low independence number such that the chromatic numbers of all 
their small subgraphs are at most 3 or 4. We discuss a couple of his applications in 
Subsection 6.3. Then Kostochka and Stiebitz [20] proved that for k ≥ 6 and n ≥ k + 2,

fk(n) ≥ k − 1
2 n + k − 3

k2 + 6k − 11 − 6/(k − 2)n.

The problem of finding fk(n) is Problem 5.3 in [14] and Problem 12 in the list of 
25 pretty graph coloring problems by Jensen and Toft [15]. It is a part of Problem P1 
in [28, p. 347]. Recently, Farzad and Molloy [9] have found the minimum number of edges 
in 4-critical n-vertex graphs in which the set of vertices of degree 3 induces a connected 
subgraph.

The main result of the present paper is a bound establishing Conjecture 2:
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Theorem 4. If k ≥ 4 and G is k-critical, then |E(G)| ≥ � (k+1)(k−2)|V (G)|−k(k−3)
2(k−1) �. In 

other words, if k ≥ 4 and n ≥ k, n �= k + 1, then

fk(n) ≥ F (k, n) :=
⌈

(k + 1)(k − 2)n− k(k − 3)
2(k − 1)

⌉
. (6)

This bound is exact for k = 4 and every n ≥ 6. For every k ≥ 5, the bound is exact 
for every n ≡ 1 (mod k − 1), n �= 1. Apart from Conjecture 2 from 1963, the result 
confirms Conjecture 3 from 1967 for k = 4 and every n ≥ 6 and also for k ≥ 5 and all 
n ≡ 1 (mod k− 1), n �= 1. In the second half of the paper we derive some corollaries and 
applications of the main result. The next two corollaries follow from Theorems 4 and 1
and from (5). Both will be proven in Section 5.

Corollary 5. For every k ≥ 4 and n ≥ k + 2,

0 ≤ fk(n) − F (k, n) ≤ k(k − 1)
8 − 1. In particular, φk = k

2 − 1
k − 1 .

Corollary 6. For each fixed k ≥ 4, Conjecture 3 holds for all but at most k
3

12 − k2

8 values 
of n.

Our proof of Theorem 4 is constructive. This allows us to give an algorithm for 
coloring graphs with no dense subgraphs. The idea of sparseness is expressed in terms 
of potentials.

Definition 7. For R ⊆ V (G), define the k-potential of R to be

ρk,G(R) = (k − 2)(k + 1)|R| − 2(k − 1)
∣∣E(

G[R]
)∣∣. (7)

When there is no chance for confusion, we will use ρk(R). Let Pk(G) =
min∅�=R⊆V (G) ρk(R).

Theorem 8. If k ≥ 4, then every n-vertex graph G with Pk(G) > k(k − 3) can be 
(k − 1)-colored in O(k3.5n6.5 log(n)) time.

The restriction Pk(G) > k(k − 3) is sharp for every k ≥ 4.
In Section 2 we prove several statements about list colorings that will be used in our 

proofs. In Section 3 we give definitions and prove several lemmas that will be used in 
Section 4, where we prove Theorem 4. In Section 5 we discuss the sharpness of our result. 
In Section 6 we present some applications. In Section 7 we prove Theorem 8. We finish 
the paper with some comments.

Our notation is standard. In particular, χ(G) denotes the chromatic number of 
graph G, G[W ] is the subgraph of a graph or digraph G induced by the vertex set W . 
For a vertex v in a graph G, dG(v) denotes the degree of vertex v in graph G, NG(v)
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is the set of neighbors of v and NG[v] = NG(v) ∪ {v}. If the graph G is clear from the 
context, we drop the subscript.

2. Orientations and list colorings

We consider loopless digraphs. A kernel in a digraph D is an independent set F of 
vertices such that each vertex in V (D) − F has an out-neighbor in F .

A digraph D is kernel-perfect if for every A ⊆ V (D), the digraph D[A] has a kernel. 
It is known that kernel-perfect orientations form a useful tool for list colorings. Recall 
that a list for a graph G is a mapping L of V (G) into the family of finite subsets of N. 
For a given list L, a graph G is L-colorable, if there exists a coloring f : V (G) → N
such that f(v) ∈ L(v) for every v ∈ V (G) and f(v) �= f(u) for every uv ∈ E(G). The 
following fact is well known but we include its proof for completeness.

Lemma 9. (Folklore.) If D is a kernel-perfect digraph and L is a list such that

∣∣L(v)
∣∣ ≥ 1 + d+(v) for every v ∈ V (D), (8)

then D is L-colorable.

Proof. We use induction on |V (D)|. If D has only one vertex, the statement is trivial. 
Suppose the statement holds for all pairs (D′, L) satisfying (8) with |V (D′)| ≤ n −1. Let 
|V (D)| = n and (D, L) satisfy (8). Let v ∈ V (D) and α be a color present in L(v). Let 
Vα be the set of vertices x ∈ V (D) with α ∈ L(x). Since D is kernel-perfect, D[Vα] has 
a kernel K. Color all vertices of K with α and consider (D′, L′), where D′ = D−K and 
L′(y) = L(y) −α for all y ∈ V (D′). Since the outdegree of every x ∈ Vα−K decreased by 
at least 1, (D′, L′) satisfies (8), and so by the induction assumption has an L′-coloring. 
Together with coloring of K by α, this yields an L-coloring of D, as claimed. �

It is known that every orientation of a bipartite multigraph is kernel-perfect. We prove 
a somewhat stronger result.

Lemma 10. Let A be an independent set in a graph G and B = V (G) − A. Let D be 
the digraph obtained from G by replacing each edge in G[B] by a pair of opposite arcs 
and by an arbitrary orientation of the edges connecting A with B. Then D is kernel-
perfect.

Proof. Let D be a counter-example with the fewest vertices. If every b ∈ B has an 
outneighbor in A, then A is a kernel. Otherwise, some b ∈ B has no outneighbors in A. 
Then N(b) = N−(b). We consider D′ = D− b −N−(b). By the minimality of D, D′ has 
a kernel K. Then K + b is a kernel of D. �
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For a graph G and disjoint vertex subsets A and B, let G(A, B) denote the bipartite 
graph with partite sets A and B whose edges are all edges of G connecting A with B. 
The main result of this section is the following.

Lemma 11. Let G be a k-critical graph. Let disjoint vertex subsets A and B be such that

(a) at least one of A and B is independent;
(b) d(a) = k − 1 for every a ∈ A;
(c) d(b) = k for every b ∈ B.

Under these conditions,

(i) δ(G(A, B)) ≤ 2 and
(ii) either some a ∈ A has at most one neighbor in B or some b ∈ B has at most three 

neighbors in A.

Proof. If A ∪ B = ∅, then both statements are trivial. Otherwise, since G is k-critical, 
there exists a (k−1)-coloring f of G −A −B. Fix any such f . For every x ∈ A ∪B, let L(x)
be the set of colors in {1, . . . , k− 1} not used in f on neighbors of x. Let G′ = G[A ∪B]. 
Then

for every a ∈ A,
∣∣L(a)

∣∣ ≥ dG′(a), and for every b ∈ B,
∣∣L(b)

∣∣ ≥ dG′(b) − 1. (9)

Case 1: δ(G(A, B)) ≥ 3. Let G′′ be obtained from G(A, B) by splitting each b ∈ B

into �dG(A,B)(b)/3� vertices of degree at most 3. In particular, a vertex b of degree 3 in 
G(A, B) is not split. The graph G′′ is bipartite with partite sets A and B′, where B′

is obtained from B by splitting. The degree of each a ∈ A in G′′ is at least 3, and the 
degree of each vertex b ∈ B′ is at most 3. So by Hall’s Theorem, G′′ has a matching M
covering A. We construct a digraph D from G′ as follows:

(1) replace each edge of G[B] or G[A] (whichever is nonempty) with two opposite arcs,
(2) orient every edge of G(A, B) corresponding to an edge in M towards A,
(3) orient all other edges of G(A, B) towards B.

By Lemma 10, D is kernel-perfect. Moreover, by (9), for every a ∈ A, d+(a) =
dG′(a) − 1 ≤ |L(a)| − 1, and for every b ∈ B,

d+(b) ≤ dG′(b) −
⌊

2
3dG(A,B)(b)

⌋
≤

(∣∣L(b)
∣∣ + 1

)
− 2 =

∣∣L(b)
∣∣− 1.

Thus by Lemma 9, G′ is L-colorable. But this means that G is (k − 1)-colorable, a con-
tradiction. This proves (i).
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Case 2: Each a ∈ A has at least two neighbors in B and each b ∈ B has at least 
four neighbors in A. Then we obtain G′′ by splitting each b ∈ B into �dG(A,B)(b)/2�
vertices of degree at most 2. Similarly to Case 1, the graph G′′ is bipartite with partite 
sets A and B′, where B′ is obtained from B. The degree of each a ∈ A in G′′ is at 
least 2, and the degree of each vertex b ∈ B′ is at most 2. So by Hall’s Theorem, G′′ has 
a matching M covering A. We construct the digraph D from G′′ according to rules
(1)–(3) in Case 1. Again, by Lemma 10, D is kernel-perfect, and by (9), for every a ∈ A, 
d+(a) = dG′(a) − 1 ≤ |L(a)| − 1. For every b ∈ B, since dG(A,B)(b) ≥ 4, by (9),

d+(b) ≤ dG′′(b) −
⌊

1
2dG(A,B)(b)

⌋
≤

(∣∣L(b)
∣∣ + 1

)
− 2 =

∣∣L(b)
∣∣− 1. �

Corollary 12. Let G be a k-critical graph. Let A and B be disjoint vertex subsets such 
that

(a) either A or B is independent;
(b) d(a) = k − 1 for every a ∈ A;
(c) d(b) = k for every b ∈ B;
(d) |A| + |B| ≥ 3.

Under these circumstances,

(i) e(G(A, B)) ≤ 2(|A| + |B|) − 4 and
(ii) e(G(A, B)) ≤ |A| + 3|B| − 3.

Proof. First we prove (i) by induction on |A| + |B|. If |A| + |B| = 3, then since G(A, B)
is bipartite, it has at most 2 = 2 · 3 − 4 edges. Suppose now that |A| + |B| = m ≥ 4 and 
the corollary holds for 3 ≤ |A| + |B| ≤ m − 1. By Lemma 11(i), G(A, B) has a vertex v
of degree at most two. By the minimality of m, G(A, B) − v has at most 2(m − 1) − 4
edges. Then e(G(A, B)) ≤ 2 + 2(m − 1) − 4 = 2m − 4, as claimed.

The base case |A| + |B| = 3 for (ii) is slightly more complicated. If |A| = 3, then 
e(G(A, B)) = 0 = |A| + 3|B| − 3. If |B| ≥ 1, then |A| + 3|B| ≥ 5 and e(G(A, B)) ≤ 2 =
5 − 3 ≤ |A| + 3|B| − 3. The proof of the induction step is very similar to the previous 
paragraph, using Lemma 11(ii). �
3. Preliminary results

Fact 13. For the k-potential defined by (7), we have

1. ρk,Kk
(V (Kk)) = k(k − 3),

2. ρk,K1(V (K1)) = (k − 2)(k + 1),
3. ρk,K2(V (K2)) = 2(k2 − 2k − 1),
4. ρk,Kk−1(V (Kk−1)) = 2(k − 2)(k − 1).
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A graph H is smaller than graph G, if either |E(G)| > |E(H)|, or |E(G)| = |E(H)| and 
G has fewer pairs of vertices with the same closed neighborhood. The definition implies 
that if |V (G)| ≥ |V (H)|, ρk(V (G)) ≤ ρk(V (H)), and at least one of these inequalities is 
strict, then H is smaller than G.

Note that (k − 2
k−1 )|V (G)| > 2|E(G)| + k(k−3)

k−1 is equivalent to ρk(V (G)) > k(k − 3). 
Let G be a minimal k-critical graph with respect to the relation “is smaller than” with 
ρk(V (G)) > k(k − 3). This implies that

if H is smaller than G and Pk(H) > k(k − 3), then H is (k − 1)-colorable. (10)

Definition 14. For a graph G, a set R ⊂ V (G) and a (k−1)-coloring φ of G[R], the graph 
Y (G, R, φ) is constructed as follows. First, for i = 1, . . . , k − 1, let R′

i denote the set of 
vertices in V (G) − R adjacent to at least one vertex v ∈ R with φ(v) = i. Second, let 
X = {x1, . . . , xk−1} be a set of new vertices disjoint from V (G). Now, let Y = Y (G, R, φ)
be the graph with vertex set V (G) − R + X, such that Y [V (G) − R] = G − R and 
N(xi) = R′

i ∪ ({x1, . . . , xk−1} − xi) for i = 1, . . . , k − 1.

Claim 15. Suppose R ⊂ V (G) and φ is a k−1 coloring of G[R]. Then χ(Y (G, R, φ)) ≥ k.

Proof. Let G′ = Y (G, R, φ). Suppose G′ has a (k − 1)-coloring φ′ : V (G′) → C. By 
construction of G′, the colors of all xi in φ′ are distinct. By changing the names of the 
colors, we may assume that φ′(xi) = i for 1 ≤ i ≤ k − 1. By construction of G′, for 
all vertices u ∈ R′

i, φ′(u) �= i. Therefore φ|R ∪ φ′|V (G)−R is a proper coloring of G, 
a contradiction. �
Claim 16. There is no R � V (G) with |R| ≥ 2 and ρk,G(R) ≤ (k − 2)(k + 1).

Proof. Let 2 ≤ |R| < |V (G)| and ρk(R) = m = min{ρk(W ) : W � V (G), |W | ≥ 2}. 
Suppose m ≤ (k − 2)(k + 1). Then |R| ≥ k. Since G is k-critical, G[R] has a proper 
coloring φ : R → C = {1, . . . , k − 1}. Let G′ = Y (G, R, φ). By Claim 15, G′ is not 
(k − 1)-colorable. Then it contains a k-critical subgraph G′′. Let W = V (G′′). Since 
|R| ≥ k > |X| and ρk(R) < ρk(X), G′′ is smaller than G. So, by the minimality of G, 
ρk,G′(W ) ≤ k(k − 3). Since G itself is k-critical, W ∩ X �= ∅. Since every non-empty 
subset of X has potential at least (k − 2)(k + 1),

ρk,G(W −X + R) ≤ ρk,G′(W ) − (k − 2)(k + 1) + m ≤ m− 2k + 2.

Since W −X + R ⊃ R, |W −X + R| ≥ 2. Since ρk,G(W −X + R) < ρk,G(R), by the 
choice of R, W − X + R = V (G). But then ρk,G(V (G)) ≤ m − 2k + 2 ≤ k(k − 3), 
a contradiction. �
Lemma 17. Let k ≥ 3 be an integer. Let R∗ = {u1, . . . , us} be a vertex set and w : R∗ →
{1, 2, . . .} be an integral positive weight function on R∗ such that w(u1) + · · · + w(us) ≥
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k − 1. Then for each 1 ≤ i ≤ (k − 1)/2, there exists a graph H with V (H) = R∗ and 
|E(H)| = i such that for every independent set M in H with |M | ≥ 2,

∑
u∈R∗−M

w(u) ≥ i. (11)

Proof. We may assume that w(u1) ≥ w(u2) ≥ · · · ≥ w(us).
Case 1: w(u2) + · · · + w(us) ≤ i. We let E(H) = {u1uj : 2 ≤ j ≤ s}. If M is any 

independent set with |M | ≥ 2, then u1 /∈ M and witnesses that (11) holds.
Case 2: w(u2) + · · · + w(us) ≥ i + 1. Choose the largest j such that w(uj) + · · · +

w(us) ≥ i. Let α = i −w(uj+1) +· · ·+w(us). Since i ≤ (k−1)/2 and w(u1) +· · ·+w(us) ≥
k − 1, we also have w(u1) + · · · + w(uj) ≥ i + α. By the choice of j and the ordering of 
the vertices, 0 < α ≤ w(uj) ≤ w(u1). We draw α edges connecting u1 with uj and i − α

edges connecting {uj+1, . . . , us} with {u1, . . . , uj} so that for each �, the degree of u� in 
the obtained multigraph H is at most w(u�). Let M be any nonempty independent set 
in H. By the definition of H, since M is independent,

∑
u∈R∗−M

w(u) ≥
∑

u∈R∗−M

dH(u) ≥ 1
2

∑
u∈R∗

dH(u) = i,

as claimed. If H has multiple edges, we replace each set of multiple edges with a single 
edge. �
Claim 18. If R � V (G), |R| ≥ 2 and ρk(R) ≤ 2(k − 2)(k − 1), then R is a Kk−1.

Proof. Let R have the minimum ρk(R) among proper subsets of vertices with size at 
least 2. Suppose m = ρk(R) ≤ 2(k− 2)(k− 1) and G[R] �= Kk−1. Then |R| ≥ k. Let i be 
the integer such that

1 + k(k − 3) + 2i(k − 1) ≤ ρk(R) ≤ k(k − 3) + 2(i + 1)(k − 1). (12)

By Claim 16, i ≥ 1. Since for k ≥ 3,

1 + k(k − 3) + k − 1
2 2(k − 1) > 2(k − 2)(k − 1), (13)

we have i ≤ k−2
2 .

For u ∈ R, let w(u) = |N(u) ∩ (V (G) − R)|. Let R∗ = {u ∈ R : w(u) ≥ 1}. Because 
κ(G) ≥ 2, |R∗| ≥ 2. Since G is k-critical, 

∑
u∈R∗

w(u) = |EG(R, V (G) − R)| ≥ k − 1. 
So by Lemma 17, we can add to G[R∗] a set E0 of at most i edges so that for every 
independent subset M of R∗ in G ∪ E0 with |M | ≥ 2, (11) holds. Let H = G[R] ∪ E0. 
Note that |E(G)| − |E(G[R])| ≥ k− 1 > i, so H is smaller than G. By the minimality of 
ρk(R) and the definition of i, for every U ⊆ R with |U | ≥ 2,
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ρk,H(U) ≥ ρk,G(U) − 2i(k − 1) ≥ ρk,G(R) − 2i(k − 1) ≥ 1 + k(k − 3).

Thus Pk(H) ≥ 1 + k(k − 3), and by (10) H has a proper (k − 1)-coloring φ with colors 
in C = {1, . . . , k − 1}.

As in Claim 16, we let G′ = Y (G, R, φ). Since |R| ≥ k, |V (G′)| < |V (G)|. Since

ρk,G′
(
V
(
G′)) = ρk,G

(
V (G)

)
− ρk(R) + ρk(X) ≥ ρk,G

(
V (G)

)
,

|E(G′)| < |E(G)| and so G′ is smaller than G. By Claim 15, G′ is not (k − 1)-colorable. 
Thus G′ contains a k-critical subgraph G′′. Let W = V (G′′). By the minimality of G, 
ρk,G′(W ) ≤ k(k − 3). Since G is k-critical by itself, W ∩X �= ∅.

Since every subset of X with at least two vertices has potential at least 2(k−2)(k−1), 
if |W ∩X| ≥ 2 then ρk,G(W −X +R) ≤ ρk,G′(W ) ≤ k(k− 3), a contradiction again. So, 
without loss of generality, assume that X ∩W = {x1}. But then

ρk,G
(
W − {x1} + R

)
≤

(
ρk,G′(W ) − (k − 2)(k + 1)

)
+ ρk,G(R)

≤ ρk,G(R) − 2k + 2. (14)

By the minimality of ρk,G(R), W − {x1} + R = V (G). This implies that W = V (G′) −
X + x1.

Let R1 = {u ∈ R∗ : φ(u) = φ(x1)}. If |R1| = 1, then

ρk,G(W − x1 ∪R1) = ρk,H(W ) ≤ k(k − 3),

a contradiction. Thus, |R1| ≥ 2. Since R1 is an independent set, by the construction 
of H, at least i edges connect the vertices in R∗ −R1 with V (G) −R. These edges were 
not counted in (14). So, in this case instead of (14), we have

ρk,G
(
W − {x1} + R

)
≤ ρk,G′(W ) − (k − 2)(k + 1) − 2i(k − 1) + ρk,G(R)

≤ ρk,G(R) − 2k + 2 − 2i(k − 1)

= ρk,G(R) − 2(i + 1)(k − 1)

≤ k(k − 3),

a contradiction. �
Claim 19. If d(x) = d(y) = k − 1 and x and y are in the same (k − 1)-clique, then 
N [x] = N [y].

Proof. By contradiction, assume that d(x1) = d(x2) = k − 1, N(x1) = X − x1 + a, 
N(x2) = X − x2 + b, and a �= b. If ab ∈ E(G), then define G′ = G − {x1, x2}. Otherwise 
define G′ = G −{x1, x2} +ab. Because ρk,G(W ) ≥ 2(k−2)(k−1) for all W ⊆ G −{x1, x2}
with |W | ≥ 2, and adding an edge decreases the potential of a set by 2(k − 1),
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Pk

(
G′) ≥ min

{
(k − 2)(k + 1), 2(k − 2)(k − 1) − 2(k − 1)

}
> 1 + k(k − 3).

So, since G′ cannot contain k-critical subgraphs, it has a proper (k− 1)-coloring φ′ with 
φ′(a) �= φ′(b). This easily extends to a proper (k − 1)-coloring of V (G). �
Definition 20. A cluster is a maximal set R ⊆ V (G) such that for every x ∈ R, d(x) = k−1
and for every pair x, y ∈ R, N [x] = N [y].

Claim 21. Let C be a cluster. Then |C| ≤ k−3. Furthermore, if C is in a (k−1)-clique X, 
then |C| ≤ k−1

2 .

Proof. A cluster with k− 2 vertices plus its two neighbors would form a set of potential 
at most k(k − 3) + 2(k − 1), which is less than 2(k − 2)(k − 1) when k ≥ 4.

Let {v} = N(C) −X. If |C| ≥ �k/2�, then ρk(X + v) ≤ 2(k− 2)(k− 1) − 2, a contra-
diction. �
Claim 22. Let xy ∈ E(G), N [x] �= N [y], x is in a cluster of size s, y is in a cluster of 
size t, and s ≥ t. Then x is in a (k − 1)-clique. Furthermore, t = 1.

Proof. Assume that x is not in a (k−1)-clique. Let G′ = G −y+x′, where N [x′] = N [x]. 
We have |E(G′)| = |E(G)|. If two vertices z and z′ distinct from y had the same closed 
neighborhood in G, then they would also have the same closed neighborhood in G′. Thus, 
since the cluster containing x is at least as large as the one containing y, G′ is smaller 
than G in our ordering. If G′ has a (k − 1)-coloring φ′ : V (G′) → C = {1, 2, . . . , k − 1}, 
then we extend it to a proper (k − 1)-coloring φ of G as follows: define φ|V (G)−x−y =
φ′|V (G′)−x−x′ , then choose φ(y) ∈ C−(φ′(N(y) −x)), and φ(x) ∈ {φ′(x), φ′(x′)} −{φ(y)}.

So, χ(G′) ≥ k and G′ contains a k-critical subgraph G′′. Let W = V (G′′). Since G′′

is smaller than G, ρk,G′(W ) ≤ k(k− 3). Since G′′ is not a subgraph of G, x′ ∈ W . Then 
ρk,G(W − x′) ≤ k(k − 3) − (k − 2)(k + 1) + 2(k − 1)(k − 1) = 2(k − 2)(k − 1). This 
contradicts Claim 18 because y /∈ W − x′ and so W − x′ �= V (G). �
4. Proof of Theorem 4

4.1. Case k = 4

Claim 23. Each edge of G is in at most 1 triangle. Moreover, each cluster has only one 
vertex.

Proof. The vertex set of a subgraph with 4 vertices and 5 edges has potential 10, which 
contradicts Claim 18. A cluster of size two would create an edge shared by two trian-
gles. �
Claim 24. Each vertex with degree 3 has at most 1 neighbor with degree 3.
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Proof. This follows directly from Claims 23 and 22. �
We will now use discharging to show that |E(G)| ≥ 5

3 |V (G)|, which will finish the 
proof to the case k = 4. Each vertex begins with charge equal to its degree. If d(v) ≥ 4, 
then v gives charge 16 to each neighbor with degree 3. Note that v will be left with charge 
at least 5

6d(v) ≥
10
3 . By Claim 24, each vertex of degree 3 will end with charge at least 

3 + 2
6 = 10

3 . �
4.2. Case k = 5

Claim 25. Each cluster has only one vertex.

Proof. Assume N [x] = N [y] and d(x) = d(y) = 4. Because G does not contain a K5, 
there exist a, b ∈ N [x] such that ab /∈ E(G). We obtain G′ from G by deleting x and y

and gluing a with b into a single vertex a ∗ b. If G′ is 4-colorable, then so is G. This is 
because a 4-coloring of G′ will have at most 2 colors on N [x] −{x, y} and therefore could 
be extended greedily to x and y.

So G′ contains a k-critical subgraph G′′. Let W = V (G′′). Since G′′ is smaller than G, 
ρ5,G′(W ) ≤ 10. Since G′′ is not a subgraph of G, a ∗ b ∈ W . But then ρ5,G(W − a ∗ b +
a + b + x + y) ≤ 10 + 54 − 40 = 24. Because ab /∈ E(G), W − a ∗ b + a + b + x + y is not 
a K4. By Claim 18, W − a ∗ b + a + b + x + y = V (G). But then we did not account for 
two of the edges incident to {x, y}, so ρ′G(W − a ∗ b + a + b + x + y) ≤ 24 − 2 · 8 = 8, 
a contradiction. �
Claim 26. Each K4-subgraph of G contains at most one vertex with degree 4. If d(x) =
d(y) = 4 and xy ∈ E(G), then each of x and y is in a K4.

Proof. The first statement follows from Claims 19 and 25. The second statement follows 
from Claims 22 and 25. �
Definition 27. We define H ⊆ V (G) to be the set of vertices of degree 5 not in a K4, and 
L ⊆ V (G) to be the set of vertices of degree 4 not in a K4. Set � = |L|, h = |H| and 
e0 = |E(L, H)|.

Claim 28. e0 ≤ 3h + �.

Proof. This is trivial if h + � ≤ 2 and follows from Corollary 12(ii) and Claim 26 for 
h + � ≥ 3. �

We will do discharging in two stages. Let every vertex v ∈ V (G) have initial charge 
d(v). The first half of discharging has one rule:

Rule R1: Each vertex in V (G) − H with degree at least 5 gives charge 1/6 to each 
neighbor.
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Claim 29. After the first round of discharging, each vertex in V (G) −H − L has charge 
at least 4.5.

Proof. Let v ∈ V (G) −H −L. If d(v) = 4, then v receives 1/6 from at least 3 neighbors 
and gives no charge. If d(v) = 5, then v gives 1/6 to 5 neighbors, but receives 1/6 from 
at least 2 neighbors. If d(v) ≥ 6, then v is left with charge at least 5d(v)/6 ≥ 5 ≥ 4.5. �

For the second round of discharging, all charge in H ∪ L is taken up and distributed 
evenly among the vertices in H ∪ L.

Claim 30. After the first round of discharging, the sum of the charges on the vertices in 
H ∪ L is at least 4.5|H ∪ L|.

Proof. By Rule R1, vertices in L receive from outside of H ∪ L the charge at least 
1
6(4� − |E(H, L)|). By Claim 28, |E(H, L)| ≤ 3h + �. So, the total charge on H ∪ L is at 
least

5h + 4� + 1
6
(
4�− (3h + �)

)
= 4.5(h + �),

as claimed. �
Combining Claims 29 and 30, the average degree of the vertices in G is at least 4.5, 

a contradiction.

4.3. Case k ≥ 6

Claim 31. Let T be a cluster in G and t = |T | ≥ 2.

(a) If N(T ) ∪T does not contain Kk−1, then dG(v) ≥ k− 1 + t for every v ∈ N(T ) −T ;
(b) If N(T ) ∪ T contains a Kk−1 with vertex set X, then dG(v) ≥ k − 1 + t for every 

v ∈ X − T .

Proof. Let v ∈ N(T ) −T such that k ≤ d(v) ≤ k−2 + t and if N(T ) ∪T contains a Kk−1
with vertex set X, then v ∈ X. Since ρk,G(N(T ) ∪ T ) > (k + 1)(k − 2), T is contained 
in at most one (k − 1)-clique, and so

N(T ) ∪ T − v does not contain Kk−1. (15)

By the choice of v, |N(v) − T | ≤ k − 2. Let u ∈ T and G′ = G − v + u′, where 
N [u′] = N [u]. Suppose G′ has a (k − 1)-coloring φ′ : V (G′) → C = {1, . . . , k − 1}. 
Then there is a (k − 1)-coloring φ of G as follows: set φ|V (G)−T−v = φ′|V (G′)−T−u′ , 
φ(v) ∈ C − φ′(N(v) − T ), and then color T using colors from φ′(T ∪ u′) − φ(v). This 
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is a contradiction, so there is no (k − 1)-coloring of G′. Thus G′ contains a k-critical 
subgraph G′′. Let W = V (G′′).

Because dG(v) ≥ k and dG′(u′) = k − 1, |E(G′)| < |E(G)|. So, G′′ is smaller than G
and hence ρk,G′(W ) ≤ k(k−3). Since G′′ is not a subgraph of G, u′ ∈ W . By symmetry, 
it follows that T ⊂ W . But then

ρk,G
(
W − u′) ≤ k(k − 3) − (k − 2)(k + 1) + 2(k − 1)(k − 1) = 2(k − 2)(k − 1).

This implies that G[W − u′] is a Kk−1, a contradiction to (15). �
Claim 32. If X is a (k − 1)-clique with a unique vertex of degree k− 1, then X contains 
at least (k − 1)/2 vertices with degree at least k + 1.

Proof. Let v be the unique vertex of X that has degree k− 1, and let {u} = N(v) −X. 
By way of contradiction, assume that X contains at least k/2 − 1 vertices with degree k. 
Note that |N(u) ∩X| < k/2, so there exists a w ∈ X such that uw /∈ E(G) and d(w) ≤ k. 
Let N(w) −X = {a, b}. Let G′ be obtained from G − v by adding edges ua and ub.

If G′ is not (k−1)-colorable, then it contains a k-critical subgraph G′′. Let W = V (G′′). 
Since |E(G′)| < |E(G)|, G′′ is smaller than G and so, ρk,G′(W ) ≤ k(k−3). If W = V (G′), 
then ρk,G(V (G)) ≤ k(k− 3) + (k− 2)(k+ 1)(1) − 2(k− 1)(k− 3) < k(k− 3) when k ≥ 6. 
If W �= V (G′) then ρk,G(W ) ≤ k(k− 3) + 2(k− 1)(2) < 2(k− 2)(k− 1), a contradiction.

Thus G′ has a (k−1)-coloring f . If f(u) is not used on X−w−v, then we recolor w with 
f(u). So, v will have two neighbors of color f(u), and we can extend the (k− 1)-coloring 
to v. �
Claim 33. If k = 6 and a cluster C is contained in a 5-clique X, then |C| = 1.

Proof. By Claim 21, assume that C = {v1, v2}. Let N(v1) −X = {y} and {u, u′, u′′} =
X − C. Obtain G′ from G − C by gluing u to y.

Suppose that G′ has a 5-coloring. We will extend this coloring to a coloring on G by 
greedily assigning colors to C. This can be done because only 3 different colors appear on 
the vertices {u, u′, u′′, y}. So we may assume that χ(G′) ≥ 6. Then G′ contains a k-critical 
subgraph G′′. Let W = V (G′′). Because |E(G′)| < |E(G)|, ρ6,G′(W ) ≤ 18. Since G′′ is 
not a subgraph of G, u ∗ y ∈ W . Let t = |{u′, u′′} ∩W |.

Case 1: t = 0. Then ρ6,G(W −u ∗y+y+X) ≤ 18 +28(5) −10(12) = 38. By Claim 18, 
W−u ∗y+y+X = V (G). But then we did not account for edges in E({u′, u′′}, V (G) −X). 
Thus ρ6,G(V (G)) ≤ 38 − 2 · 10 = 18.

Case 2: t = 1. Then ρ6,G(W − u ∗ y + y + u + C) ≤ 18 + 28(3) − 10(7) = 32. This is 
a contradiction to Claim 18 because V (G) �= (W − u ∗ y + y + u + C).

Case 3: t = 2. Then ρ6,G(W − u ∗ y + y + u +C) ≤ 18 + 28(3) − 10(9) = 12, which is 
a contradiction. �
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Definition 34. We partition V (G) into four classes: L0, L1, H0, and H1. Let H0 be the 
set of vertices with degree k, H1 be the set of vertices with degree at least k + 1, and 
H = H0 ∪H1. Let

L =
{
u ∈ V (G) : d(u) = k − 1

}
,

L0 =
{
u ∈ L : N(u) ⊆ H

}
,

and

L1 = L− L0.

Set � = |L0|, h = |H0| and e0 = |E(L0, H0)|.

Claim 35. e0 ≤ 2(� + h).

Proof. This is trivial if h + � ≤ 2 and follows from Corollary 12(i) for h + � ≥ 3. �
Let every vertex v ∈ V (G) have initial charge d(v). We first do a half-discharging with 

two rules:
Rule R1: Each vertex in H1 keeps charge k − 2/(k − 1) to itself and distributes the 

rest equally among its neighbors of degree k − 1.
Rule R2: If a Kk−1-subgraph C contains s (k−1)-vertices adjacent to a (k−1)-vertex x

outside of C and not in a Kk−1, then each of these s vertices gives charge k−3
s(k−1) to x.

Claim 36. Each vertex in H1 donates a charge of at least 1
k−1 to each neighbor of degree 

k − 1.

Proof. If v ∈ H1, then v donates at least d(v)−k+2/(k−1)
d(v) to each neighbor. Note that this 

function increases as d(v) increases, so the charge is minimized when d(v) = k + 1. But 
then each vertex gets charge at least (1 + 2/(k − 1))/(k + 1) = 1/(k − 1). �
Claim 37. Each vertex in L1 has charge at least k − 2/(k − 1).

Proof. Let v ∈ L1 be in a cluster C of size t.
Case 1: v is in a (k− 1)-clique X and t ≥ 2. By Claim 33, this case only applies when 

k ≥ 7.
By Claim 31 each vertex in X −C has degree at least k− 1 + t ≥ k+1, and therefore 

X−C ⊆ H1. Furthermore, each vertex in X−C has at least k−2 −t neighbors with degree 
at least k. Therefore each vertex u ∈ (X − C) donates charge at least d(u)−k+2/(k−1)

d(u)−k+2+t

to each neighbor of degree k − 1. Note that this function increases as d(u) increases, so 
the charge is minimized when d(u) = k − 1 + t. It follows that u gives charge at least 
t−1+2/(k−1) to v.
2t+1
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So, v has charge at least k − 1 + (k − 1 − t)( t−1+2/(k−1)
2t+1 ) − k−3

t(k−1) , which we claim is 
at least k − 2/(k − 1). Let

g1(t) = (k − 1 − t)
(
(t− 1)(k − 1) + 2

)
− (2t + 1)(k − 3)

(
1 + 1

t

)
.

We claim that g1(t) ≥ 0, which is equivalent to v having charge at least k − 2/(k − 1). 
Let

g̃1(t) = (k − 1 − t)
(
(t− 1)(k − 1) + 2

)
− (2t + 1)(k − 3)(3/2).

Note that g̃1(t) ≤ g1(t) when t ≥ 2, so we need to show that g̃1(t) ≥ 0 on the appropriate 
domain. The function g̃1(t) is quadratic with a negative coefficient at t2, so it suffices to 
check its values at the boundaries. They are

g̃1(2) = (k − 3)(k − 6.5)

and

4g̃1

(
k − 1

2

)
= (k − 1)

(
(k − 3)(k − 1) + 4

)
− 6k(k − 3)

= k3 − 11k2 + 29k − 7

= (k − 7)
(
k2 − 4k + 1

)
.

Each of these values is non-negative when k ≥ 7.
Case 2: t ≥ 2 and v is not in a (k−1)-clique. By Claim 31, each neighbor of v outside 

of C has degree at least k − 1 + t ≥ k + 1 and is in H1. Therefore v has charge at least 
k − 1 + (k − t)( t−1+2/(k−1)

k−1+t ). We define

g2(t) = (k − t)
(
t− 1 + 2

k − 1

)
− k − 3

k − 1(k − 1 + t)

= t(k − t) − 2
(

1 − 2
k − 1

)
(k − 1)

= t(k − t) − 2(k − 3).

Note that g2(t) ≥ 0 is equivalent to v having charge at least k− 2/(k− 1). The function 
g2(t) is quadratic with a negative coefficient at t2, so it suffices to check its values at the 
boundaries. They are

g2(2) = 2(k − 2) − 2(k − 3) = 2

and
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g2(k − 3) = (k − 3)(3) − 2(k − 3) = k − 3.

Each of these values is positive.
Case 3: t = 1. If v is not in a (k − 1)-clique X, then by Claim 22 the vertex adjacent 

to v with degree k − 1 is in a (k − 1)-clique and cluster of size at least 2. In this case v
will receive charge (k − 3)/(k − 1) in total from that cluster. Therefore we may assume 
that v is in a (k − 1)-clique X.

By Claim 32, there exists a Y ⊂ X such that |Y | ≥ k−1
2 and every vertex in Y has 

degree at least k + 1. Furthermore, each vertex in Y has at least k − 3 neighbors with 
degree at least k. Therefore each vertex u ∈ Y donates a charge of at least d(u)−k+2/(k−1)

d(u)−k+3
to each neighbor of degree k − 1. Note that this function increases as d(u) increases, so 
the charge is minimized when d(u) = k + 1. It follows that u gives a charge at least 
1+2/(k−1)

4 to v, and v has charge at least

k − 1 + k − 1
2

(
1 + 2/(k − 1)

4

)
= k + k − 7

8 ,

which is at least k − 2/(k − 1) when k ≥ 6. �
We then observe that after the half-discharging,

a) the charge of each vertex in H1 ∪ L1 is at least k − 2/(k − 1);
b) the charges of vertices in H0 did not decrease;
c) along every edge from H1 to L0 a charge of at least 1/(k − 1) is sent.

Thus by Claim 35, the total charge F of the vertices in H0 ∪ L0 is at least

kh + (k − 1)� + 1
k − 1

(
�(k − 1) − e(G0)

)
≥ k(h + �) − 1

k − 12(h + �)

= (h + �)
(
k − 2

k − 1

)
,

and so by a), the total charge of all the vertices of G is at least n(k− 2
k−1 ), a contradic-

tion. �
5. Sharpness

The next statement shows some cases when the bound (6) of Theorem 4 is exact.

Theorem 38. If one of the following holds:

1. n ≡ 1 (mod k − 1) and n ≥ k,
2. k = 4, n �= 5, and n ≥ 4, or
3. k = 5, n ≡ 2 (mod 4), and n ≥ 10,
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Fig. 1. Minimal k-critical graphs.

then

fk(n) = F (k, n) =
⌈

1
2

((
k − 2

k − 1

)
n− k(k − 3)

k − 1

)⌉
.

Proof. By (5), we only need to show that (6) is tight when

1. n = k,
2. k = 4, n = 6,
3. k = 4, n = 8, and
4. k = 5, n = 10.

The first case follows from Kk. The other three cases follow from Fig. 1. �
By Theorem 1, (6) is not sharp when k ≥ 5 and k + 2 ≤ n ≤ 2k − 2. We suspect 

that (6) is sharp only in the cases covered by Theorem 38.
Now we prove Corollary 5. First, we restate it:

Corollary 5. For k ≥ 4, 0 ≤ fk(n) −F (k, n) ≤ (1 +o(1))k
2

8 . In particular, φk = k
2 −

1
k−1 .

Proof. By Theorem 38, the corollary holds for k = 4. Let k ≥ 5. By (5) and Theorem 4, 
for every n ≥ k, n �= k + 1,

fk
(
n + (k − 1)

)
− F

(
k, n + (k − 1)

)
≤ fk(n) − F (k, n).

Thus, it is enough to check the inequality for k + 2 ≤ n ≤ 2k. There exists a k-critical 
2k-vertex graph with k2 − 3 edges. So,

fk(2k) − F (k, 2k) ≤ k2 − 3 − (k + 1)(k − 2)2k − k(k − 3)
2(k − 1) ≤ k(k − 3)

2(k − 1) <
k − 2

2 ,

and by the integrality of fk and F , fk(2k) − F (k, 2k) ≤ k−3
2 .

By Theorems 4 and 1, for k + 2 ≤ n ≤ 2k − 1,

fk(n) − F (k, n) ≤
(

1((k − 1)n + (n− k)(2k − n)
)
− 1

)
− (k + 1)(k − 2)n− k(k − 3)
2 2(k − 1)
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= −1 + 1
2

[
(n− k)

(
2k − k − 3

k − 1
− n

)]
. (16)

For every fixed k, the maximum of the last expression (quadratic in n) is attained at 
n = 1

2 (k + 2k − k−3
k−1 ). If k ≥ 5, then the closest half-integer to this point is 3k−1

2 . Thus,

fk(n) − F (k, n) ≤ fk

(
3k − 1

2

)
− F

(
k,

3k − 1
2

)
≤ −1 + 1

2

[
k − 1

2

(
k + 1

2 − k − 3
k − 1

)]

< −1 + k − 1
4

k

2 = −1 + k(k − 1)
8 . �

In particular, by the integrality of fk and F , f5(n) − F (5, n) ≤ 1 for all n ≥ 7.
Now we prove Corollary 6. First, we restate it:

Corollary 6. If k ≥ 4, then for all but k
3

12 − k2

8 values of n ≥ k + 2,

fk(n + k − 1) = fk(n) + (k − 1)
(
k − 2

k − 1

)
/2.

Proof. By Theorem 38, the corollary holds for k = 4. Let k ≥ 5. By (5) and Theorem 4, 
for every n ≥ k, n �= k + 1,

fk
(
n + (k − 1)

)
− F

(
k, n + (k − 1)

)
≤ fk(n) − F (k, n).

So the number of times when fk(n + k− 1) < fk(n) + (k− 1)(k− 2
k−1 )/2 is bounded by

2k∑
i=k+2

fk(n) − F (k, n).

Expanding (16), the above bound is at most

1
2

2k−2∑
i=k+2

(
−i2 + 3ik + k − 3

k − 1(k − i) − 2k2 − 2
)

+ 0 + k − 2
2

≤ −1
12

(
14k3 − 45k2 + 13k − 12

)
+ 9k3 − 27k2

4 −
(
k2 − 3k

4 · k − 3
k − 1

)

− k3 + 3k2 − k + 3 + k − 2
2

≤ k3

12 − k2

8 − 11k
6 + 7 ≤ k3

12 − k2

8 . �
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Fig. 2. The graph O5.

6. Some applications

6.1. Ore-degrees

The Ore-degree, Θ(G), of a graph G is the maximum of d(x) + d(y) over all edges xy
of G. Let Gt = {G : Θ(G) ≤ t}. It is easy to prove (see, e.g. [16]) that χ(G) ≤ 1 + �t/2�
for every G ∈ Gt. Clearly Θ(Kd+1) = 2d and χ(Kd+1) = d +1. The graph O5 in Fig. 2 is 
the only 9-vertex 5-critical graph with Θ at most 9. We have Θ(O5) = 9 and χ(O5) = 5. 
A natural question is to describe the graphs in G2d+1 with chromatic number d +1. Each 
(d + 1)-chromatic graph G contains a (d + 1)-critical subgraph G′. Since δ(G′) ≥ d and 
Θ(G′) ≤ Θ(G) ≤ 2d + 1,

Δ
(
G′) ≤ d + 1, and vertices of degree d + 1 form an independent set. (17)

Thus a description of the graphs in G2d+1 with chromatic number d + 1 is equivalent 
to a description of (d + 1)-critical graphs satisfying (17). Kierstead and Kostochka [16]
solved the problem for d ≥ 6 and Rabern [25] extended the result to d = 5:

Theorem 39. (See [16,25].) For d ≥ 5, the only (d + 1)-critical graph satisfying (17) is 
Kd+1.

The case d = 4 was settled by Kostochka, Rabern, and Stiebitz [22]:

Theorem 40. (See [22].) The only 5-critical graphs satisfying (17) are K5 and O5.

Theorem 4 and Corollary 12 yield simpler proofs of Theorems 39 and 40. The key 
observation is the following.

Lemma 41. Let d ≥ 4 and G′ be a (d + 1)-critical graph satisfying (17). If G′ has n
vertices of which h > 0 vertices have degree d + 1, then

(i) h ≥
⌈

(d− 2)n− (d + 1)(d− 2)
d

⌉
and (ii) h ≤

⌊
n− 3
d− 1

⌋
. (18)
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Proof. By definition, 2e(G′) = dn + h. So, by Theorem 4 with k = d + 1,

dn + h ≥
(
d + 1 − 2

d

)
n− (d + 1)(d− 2)

d
,

which yields (18)(i).
Let B be the set of vertices of degree d + 1 in G′ and A = V (G′) − B. By (17), 

e(G′(A, B)) = h(d + 1). So, by Corollary 12(ii) with k = d + 1,

h(d + 1) ≤ 3h + (n− h) − 3 = 2h + n− 3,

which yields (18)(ii). �
Another ingredient is the following old observation by Dirac.

Lemma 42. (See Dirac [7].) Let k ≥ 3. There are no k-critical graphs with k+1 vertices, 
and the only k-critical graph (call it Dk) with k + 2 vertices is obtained from the 5-cycle 
by adding k − 3 universal vertices.

Suppose G′ with n vertices of which h vertices have degree d +1 is a counter-example 
to Theorem 39 or 40. Since the graph Dd+1 from Lemma 42 has a vertex of degree d +2, 
n ≥ d + 4. So since d ≥ 4, by (18)(i),

h ≥
⌈

(d− 2)(d + 4) − (d + 1)(d− 2)
d

⌉
=

⌈
3(d− 2)

d

⌉
≥ 2.

On the other hand, if n ≤ 2d, then by (18)(ii), h ≤ �2d−3
d−1 � = 1. Thus n ≥ 2d + 1.

Combining (18)(i) and (18)(ii), we get [(d− 2)n− (d + 1)(d− 2)]/d ≤ (n− 3)/(d− 1). 
Solving with respect to n, we obtain

n ≤
⌊

(d + 1)(d− 1)(d− 2) − 3d
d2 − 4d + 2

⌋
. (19)

For d ≥ 5, the RHS of (19) is less than 2d +1, a contradiction to n ≥ 2d +1. This proves 
Theorem 39.

Suppose d = 4. Then (19) yields n ≤ 9. So, in this case, n = 9. By (18), we get h = 2. 
Let B = {b1, b2} be the set of vertices of degree 5 in G′. By a theorem of Stiebitz [26], 
G′ −B has at least two components. Since |B| = 2 and δ(G′) = 4, each such component 
has at least 3 vertices. Since |V (G′) − B| = 7, we may assume that G′ − B has exactly 
two components, C1 and C2, and that |V (C1)| = 3. Again because δ(G′) = 4, C1 = K3
and all vertices of C1 are adjacent to both vertices in B. So, if we color both b1 and b2
with the same color, this can extended to a 4-coloring of G′ − V (C2). Thus to have G′

5-chromatic, we need χ(C2) ≥ 4 which yields C2 = K4. Since δ(G′) = 4, e(V (C2), B) = 4. 
So, since each of b1 and b2 has degree 5 and 3 neighbors in C1, each of them has exactly 
two neighbors in C2. This proves Theorem 40. �
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6.2. Local vs. global graph properties

Krivelevich [23] presented several nice applications of his lower bounds on fk(n) and 
related graph parameters to questions of existence of complicated graphs whose small 
subgraphs are simple. We indicate here how to improve two of his bounds using Theo-
rem 4.

Let f(
√
n, 3, n) denote the maximum chromatic number over n-vertex graphs in which 

every 
√
n-vertex subgraph has chromatic number at most 3. Krivelevich proved that for 

every fixed ε > 0 and sufficiently large n,

f(
√
n, 3, n) ≥ n6/31−ε. (20)

He used his result that every 4-critical t-vertex graph with odd girth at least 7 has at 
least 31t/19 edges. If instead of this result, we use our bound on f4(n), then repeating 
almost word by word Krivelevich’s proof of his Theorem 4 (choosing p = n−0.8−ε′), we 
get that for every fixed ε and sufficiently large n,

f(
√
n, 3, n) ≥ n1/5−ε. (21)

Another result of Krivelevich is:

Theorem 43. (See [23].) There exists C > 0 such that for every s ≥ 5 there exists 
a graph Gs with at least C( s

ln s )
33
14 vertices and independence number less than s such 

that the independence number of each 20-vertex subgraph is at least 5.

He used the fact that for every m ≤ 20 and every m-vertex 5-critical graph H,

|E(H)| − 1
m− 2 ≥ �17m/8� − 1

m− 2 ≥ 33
14 .

From Theorem 4 we instead get

|E(H)| − 1
m− 2 ≥

�9m−5
4 � − 1
m− 2 ≥ 43

18 .

Then repeating the argument in [23] we can replace 33
14 in the statement of Theorem 43

with 43
18 .

6.3. Coloring planar graphs

One of the basic results on 3-coloring of planar graphs is Grötzsch’s Theorem [12]: 
every triangle-free planar graph is 3-colorable. The original proof of this theorem is 
somewhat sophisticated. There were subsequent simpler proofs (see, e.g. [1] or [27] and 
the references therein), but Theorem 4 yields a half-page proof. A disadvantage of this 
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proof is that the proof of Theorem 4 itself is not too simple. In [21], we give a shorter 
proof of the fact f4(n) = F (4, n) and a short proof of Grötzsch’s Theorem. In [2], we use 
Theorem 4 to give short proofs of some other known and new results on 3-colorability 
of planar graphs.

7. Algorithm

Recall that ρk,G(W ) = (k + 1)(k − 2)|W | − 2(k − 1)|E(G[W ])| and that Pk(G) is 
the minimum of ρk,G(W ) over all nonempty W ⊆ V (G). We will also use the related 
parameter P̃k(G) which is the minimum of ρk,G(W ) over all W ⊂ V (G) with 2 ≤ |W | ≤
|V (G)| − 1.

7.1. Procedure R1

The input of the procedure R1k(G) is a graph G. The output is one of the following 
five:

(S1) a nonempty set R ⊆ V (G) with ρk,G(R) ≤ k(k − 3), or
(S2) conclusion that k(k − 3) < P̃k(G) < (k + 1)(k − 2) and a nonempty set R � V (G)

with ρk,G(R) = P̃k(G), or
(S3) conclusion that P̃k(G) < 2(k− 1)(k− 2), and a set R ⊂ V (G) with 2 ≤ |R| ≤ n − 1

and ρk,G(R) = P̃k(G), or
(S4) conclusion that P̃k(G) = 2(k− 1)(k− 2), and a set R ⊂ V (G) with k ≤ |R| ≤ n − 1

and ρk,G(R) = 2(k − 1)(k − 2), or
(S5) conclusion that P̃k(G) ≥ 2(k − 1)(k − 2) and that every set R ⊆ V (G) with 

ρk,G(R) = 2(k − 1)(k − 2) has size k − 1 and induces Kk−1.

First we calculate ρk(V (G)), and if it is at most k(k − 3), then we are done. Sup-
pose

(k + 1)(k − 2)
∣∣V (G)

∣∣− 2(k − 1)
∣∣E(G)

∣∣ ≥ 1 + k(k − 3). (22)

Consider the auxiliary network H = H(G) with vertex set V ∪ E ∪ {s, t} and the 
set of arcs A = A1 ∪ A2 ∪ A3, where A1 = {sv : v ∈ V }, A2 = {et : e ∈ E}, and 
A3 = {ve : v ∈ V, e ∈ E, v ∈ e}. The capacity c of each sv ∈ A1 is (k + 1)(k − 2), of 
each et ∈ A2 is 2(k − 1), and of each ve ∈ A3 is ∞.

Since the capacity of the cut ({s}, V (H) − s) is finite, H has a maximum flow f . Let 
M(f) denote the value of f , and let (S, T ) be the minimum cut in it. By definition, s ∈ S

and t ∈ T . Let SV = S ∩ V , SE = S ∩E, TV = T ∩ V , and TE = T ∩ E.
Since c(ve) = ∞ for every v ∈ e,

no edge of H goes from SV to TE . (23)
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It follows that if e = vu in G and e ∈ TE , then v, u ∈ TV . On the other hand, if e = vu

in G, v, u ∈ TV and e ∈ SE , then moving e from SE to TE would decrease the capacity 
of the cut by 2(k − 1), a contradiction. So, we get

Claim 44. TE = E(G[TV ]).

By the claim,

M(f) = min
W⊆V

{
(k + 1)(k − 2)|W | + 2(k − 1)

(
|E| −

∣∣E(
G[W ]

)∣∣)}
= 2(k − 1)|E| + min

{
Pk(G), 0

}
. (24)

So, if M(f) < 2(k − 1)|E|, then Pk(G) < 0 and any minimum cut gives us a set with 
small potential. Otherwise, consider for every e0 ∈ E and every vertex v0 not incident 
to e0, the network He0,v0 that has the same vertices and edges and differs from H in the 
following:

(i) the capacity of the edge e0t is not 2(k−1) but 2(k−1) +2(k−1)(k−2) = 2(k−1)2;
(ii) for every v ∈ V (G) − v0, the capacity of the edge sv is (k + 1)(k − 2) − 1

2n ;
(iii) the capacity of the edge sv0 is (k + 1)(k − 2) − 1

2n + 2(k − 1)(k − 2) + 1.

Then for every e0 ∈ E and v0 ∈ V (G), the capacity of the cut (V (He0,v0) − t, t) is 
2(k − 1)|E| + 2(k − 1)(k − 2). Since this is finite, He0,v0 has a maximum flow fe0,v0 . As 
above, let M(fe0,v0) denote the value of fe0,v0 , and let (S, T ) be the minimum cut in 
He0,v0 . By definition, s ∈ S and t ∈ T . Let SV = S ∩ V , SE = S ∩ E, TV = T ∩ V , 
and TE = T ∩ E. By the same argument as above, (23) and Claim 44 hold. Let Mk(G)
denote the minimum value over M(fe0,v0).

By (22), for every e0 ∈ E and v0 ∈ V (G), the capacity of the cut (s, V (He0,v0) − s) is 
at least(

(k + 1)(k − 2) − 1
2n

)
n + 2(k − 1)(k − 2) + 1 ≥ 2(k − 1)|E| + 2(k − 1)(k − 2) + 1

2 .

If the potential of some nonempty W �= V is less than (k + 1)(k − 2), then G[W ]
contains some edge e0 and there is v0 ∈ V −W . So, in the network He0,v0 , the capacity 
of the cut ({s} ∪ (V −W ) ∪ (E − E(G[W ])), W ∪E(G[W ]) ∪ {t}) is

(
(k + 1)(k − 2) − 1

2n

)
|W | + 2(k − 1)

(
|E| −

∣∣E(
G[W ]

)∣∣)
= 2(k − 1)|E| + ρk,G(W ) − |W |

2n .

On the other hand, for every nonempty W �= V , every edge e0 and every v0 ∈ V , the 
capacity of the cut ({s} ∪ (V −W ) ∪ (E −E(G[W ])), W ∪ E(G[W ]) ∪ {t}) is at least
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(
(k + 1)(k − 2) − 1

2n

)
|W | + 2(k − 1)

(
|E| −

∣∣E(
G[W ]

)∣∣) > 2(k − 1)|E| + ρk,G(W ) − 1
2 .

Thus if Mk(G) ≤ k(k− 3) + 2(k− 1)|E|, then (S1) holds and if k(k− 3) + 2(k− 1)|E| <
Mk(G) < (k + 1)(k − 2) + 2(k − 1)|E|, then (S2) holds. Note that if a nonempty W is 
independent, then E(G[W ]) = ∅, and the capacity of the cut ({s} ∪ (V − W ) ∪ (E −
E(G[W ])), W ∪ E(G[W ]) ∪ {t}) is at least

2(k − 1)|E| + 2(k − 1)(k − 2) + (k + 1)(k − 2).

Thus, if

(k + 1)(k − 2) + 2(k − 1)|E| ≤ Mk(G) < 2(k − 1)(k − 2) − 1 + 2(k − 1)|E|,

then (S3) holds.
Similarly, if

2(k − 1)(k − 2) − 1 + 2(k − 1)|E| ≤ Mk(G) < 2(k − 1)(k − 2) + 2(k − 1)|E| − k − 1
2n ,

then there exists W ⊂ V with k ≤ |W | ≤ n −1 with potential 2(k−1)(k−2). Then (S4) 
holds. Finally, if Mk(G) ≥ 2(k − 1)(k − 2) + 2(k − 1)|E| − k−1

2n , then (S5) holds.
Since the complexity of the max-flow problem is at most Cn2

√
|E| and |E| ≤ kn, the 

procedure takes time at most Ck1.5n4.5.

7.2. Outline of the algorithm

We consider the outline for k ≥ 7. For k ≤ 6, everything is quite similar and easier.
Let the input be an n-vertex e-edge graph G. The algorithm will be recursive. The 

output will be either a coloring of G with k − 1 colors or return a nonempty R ⊆ V (G)
with ρk,G(R) ≤ k(k− 3). The algorithm runs through 7 steps, which are listed below. If 
a step is triggered, then a recursive call is made on a smaller graph G′. Some steps will 
then require a second recursive call on another graph G′′.

The algorithm does not make the recursive call if |E(G′)| ≤ k2/2. In this case, G′ is 
either (k − 2)-degenerate or Kk minus a matching, and so is easily (k − 1)-colorable in 
time O(k|V (G′)|2). This also holds for G′′.

After all calls have been made, the algorithm will return a coloring or a subgraph 
with low potential, skipping the other steps.

(1) We check whether G is disconnected or has a cut-vertex or has a vertex of degree at 
most k− 2. In the case of any “yes,” we consider smaller graphs (and at the end will 
reconstruct the coloring).

(2) We run R1k(G) and consider possible outcomes. If the outcome is (S1), we are done.
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(3) Suppose the outcome is (S2). The algorithm makes a recursive call on G′ = G[R], 
which returns a (k − 1)-coloring φ. Let G′′ be the graph Y (G, R, φ) described in 
Definition 14. The proof of Claim 16 yields that Pk(G′′) ≥ k(k − 3), and thus 
the recursive call will return with a coloring. Let φ′ be the coloring returned. It is 
straightforward to combine the colorings φ and φ′ into a (k − 1)-coloring of G.

(4) Suppose the outcome is (S3) or (S4). We choose i using (12) and add i edges to 
G[R] as in the proof of Claim 18. Denote the new graph G′. The algorithm makes 
a recursive call on G′ = G[R], which returns a (k−1)-coloring φ. Let G′′ be the graph 
Y (G, R, φ) described in Definition 14. The proof of Claim 18 yields that Pk(G′′) ≥
k(k−3), and thus the recursive call will return with a coloring. Let φ′ be the coloring 
returned. It is straightforward to combine the colorings φ and φ′ into a (k−1)-coloring 
of G.

(5) So, the only remaining possibility is (S5). For every (k − 1)-vertex v ∈ V (G), check 
whether there is a (k − 1)-clique K(v) containing v (since (S5) holds, such a clique 
is unique, if it exists). We certainly can do this in O(kn2) time. Let av denote the 
neighbor of v not in K(v) and Tv denote the set of (k − 1)-vertices in K(v). Then 
for every pair (v, K(v)) such that d(v) = k − 1 and K(v) exists, do the following:
(5.1) If there is w ∈ Tv − v with aw �= av, then consider the graph G′ = G − v −

w + avaw. By Claim 19, Pk(G′) > k(k− 3). So, the algorithm will return with 
a (k − 1)-coloring of G′, which we then extend to G.

(5.2) Suppose that |Tv| ≥ 2 and K(v) − Tv contains a vertex x of degree at most 
k − 2 + |Tv|. Let G′ = G − x + v′, where the closed neighborhood of v′ is 
the same as of v. By Claim 31, Pk(G′) > k(k − 3), so the algorithm returns 
a (k−1)-coloring of G′, which is then extended to G as in the proof of Claim 31.

(5.3) Suppose that Tv = {v} and K(v) contains at least k/2 −1 vertices of degree k. 
Since (S5) holds, there is x ∈ K(v) − v of degree at most k not adjacent to av. 
Let x1 and x2 be the neighbors of x outside of Kv. Let G′ be obtained from G −v

by adding edges avx1 and avx2. By the proof of Claim 32, Pk(G′) > k(k − 3), 
so the algorithm finds a (k− 1)-coloring of G′, which is then extended to G as 
in the proof of Claim 32.

(6) Let Cv denote the cluster of v, i.e. the set of vertices that have the same closed 
neighborhood as v. We certainly can find Cv for every (k − 1)-vertex v ∈ V (G) in 
O(kn2) time. Then for every pair (v, Cv) such that d(v) = k − 1, do the following:
(6.1) Suppose that |Cv| ≥ 2 and N(v) − Cv contains a vertex x of degree at most 

k − 2 + |Tv|. Then do the same as in (5.2).
(6.2) Suppose that N(v) −Cv contains a (k− 1)-vertex w and that |Cw| ≤ |Cv|. If v

is not in a (k− 1)-clique, then consider G′ = G −w+ v′, where the v′ is a new 
vertex whose closed neighborhood is the same as that of v. By the proof of 
Claim 22, Pk(G′) > k(k− 3), and so we find a (k− 1)-coloring of G′ and then 
extend it to G as in the proof of Claim 22.

(7) Let L0, H0, and e0 be as defined in Definition 34. If e0 ≥ 2(|L0| + |H0|), then 
iteratively remove vertices in L0 with at most two neighbors in H0 and vertices 
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in H0 with at most two neighbors in L0. Let H be the graph that remains, and 
G′ = G − V (H). Clearly Pk(G′) > k(k − 3), so the recursive call returns a coloring 
of G′. Give each vertex v ∈ V (H) a list of colors L(v) = {c1, . . . , ck−1}, then remove 
from that list the colors on N(v) ∩ V (G′). Orient the edges of H as in Case 1 of 
the proof of Lemma 11. Then extend the coloring of G′ to a coloring of G by list 
coloring H using the system described in the proof to Lemma 9.

7.3. Analysis of correctness and running time

The proof of Theorem 4 consists in proving that at least one of the situations in 
steps (1) through (7) described above must happen. Moreover, the main theorem proves 
that G′, G′′ ≺ G by a partial order with finite descending chains, and therefore the 
algorithm will terminate. We claim that the algorithm makes at most O(k2n2 log(n))
recursive calls, and each call only takes O(k1.5n4.5) time, so the algorithm runs in 
O(k3.5n6.5 log(n)) time.

If a call of the recursive algorithm terminates on step (2), we will refer to this as 
‘Type 1’, a call terminating on step (1), (3), (4), (5.1), (5.3), (6.1), or (7) is ‘Type 2’,
and a call terminating on step (5.2) or (6.2) is ‘Type 3’. If a call is made on a Type 1, 
then the whole algorithm stops.

If a Type 3 happens, then the algorithm makes one recursive call with a graph with 
the same number of edges and strictly more pairs of vertices with the same closed neigh-
borhood. The proof of Claim 21 shows that the number of pairs of vertices with the same 
closed neighborhood is bounded by kn. Then at least one out of every kn consecutive 
recursive calls is Type 1 or 2.

Consider an instance of a Type 2 call with input graph H. If H ′ is the graph in 
the first recursive call and H ′′ is the graph in the second call (if necessary), then 
|E(H ′)|, |E(H ′′)| < |E(H)| and |E(H)| ≥ |E(H ′)| + |E(H ′′)| − k2/2. Let gk(e, i) de-
note the number of Type 2 recursive calls made on graphs with i edges. Note that if 
i ≤ k2/2 then gk(e, i) = 0 and gk(e, e) = 1. By tracing calls up through their parent 
calls, it follows that

e ≥ i +
(
gk(e, i) − 1

)(
i− k2/2

)
when i > k2/2. Therefore

gk(e, i) <
e

(i− k2/2) .

The total number of calls that our algorithm makes is at most

kn
e∑

i=k2/2+1

gk(e, i) < kne log(e).

Because e ≤ nk, we have that the total number of calls is O(k2n2 log(n)).
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A call may run algorithm R1 once, which will take O(k1.5n4.5) time. Constructing the 
appropriate graphs for recursion in steps (3), (4), (5), and (6) will take O(kn2) time. 
Combining colorings in steps (1), (3), (4), (5), and (6) will take O(n) time. Coloring a 
degenerate graph will take O(kn2) time, which happens at most twice. The only thing left 
to consider is step (7). Iteratively removing vertices will take O(n2) time. Splitting the 
vertices and orienting the edges using network flows will take O(n2.5k0.5) time. Finding 
a kernel will take O(n2) time, which happens at most n times. Therefore each instance 
of the algorithm takes O(k1.5n4.5) time.

8. Concluding remarks

Many open questions remain:
1. It would be good to find exact values of fk(n) for all k and n.
2. Similar questions for list coloring look much harder. Some results are in [19]. Very 

recently, Kierstead and Rabern obtained new impressive bounds.
3. One can ask how few edges can there be in an n-vertex k-critical graph not con-

taining a given subgraph, for example, with bounded clique number. Krivelevich [23] has 
interesting results on the topic. Very recently, Postle obtained interesting results in this 
direction.

4. Brooks-type results (characterizing the graphs for which (6) is sharp) would be 
interesting.

5. A similar problem for hypergraphs was considered in [18,20], but the bounds there 
are good only for large k.

6. In our coloring algorithm, testing for subgraphs with low potential for every vertex–
edge pair seems needlessly expensive, and it is likely that there are algorithms with much 
better performance than ours.
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