A Hypergraph Version of a Graph Packing Theorem by Bollobás and Eldridge

Alexandr Kostochka, ${ }^{1}$ Christopher Stocker, ${ }^{2}$ and Peter Hamburger ${ }^{3}$
${ }^{1}$ DEPARTMENT OF MATHEMATICS UNIVERSITY OF ILLINOIS, URBANA, IL 61801, SOBOLEV INSTITUTE OF MATHEMATICS NOVOSIBIRSK 630090, RUSSIA
E-mail: kostochk@math.uiuc.edu
${ }^{2}$ DEPARTMENT OF MATHEMATICS UNIVERSITY OF ILLINOIS, URBANA, IL 61801
E-mail: stocker2@illinois.edu
${ }^{3}$ DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE WESTERN KENTUCKY UNIVERSITY BOWLING GREEN, KY 42101-1078
E-mail: peter.hamburger@wku.edu

Received June 7, 2011; Revised August 30, 2012

Published online 4 December 2012 in Wiley Online Library (wileyonlinelibrary.com).
DOI 10.1002/jgt. 21706

Abstract

Two n-vertex hypergraphs G and H pack, if there is a bijection $f: V(G) \rightarrow V(H)$ such that for every edge $e \in E(G)$, the set $\{f(v): v \in e\}$ is not an edge in H. Extending a theorem by Bollobás and Eldridge on graph packing to hypergraphs, we show that if $n \geq 10$ and n-vertex hypergraphs

[^0]G and H with $|E(G)|+|E(H)| \leq 2 n-3$ with no edges of size $0,1, n-1$ and n do not pack, then either
(i) one of G and H contains a spanning graph-star, and each vertex of the other is contained in a graph edge, or
(ii) one of G and H has $n-1$ edges of size $n-2$ not containing a given vertex, and for every vertex x of the other hypergraph some edge of size $n-2$ does not contain x.
© 2012 Wiley Periodicals, Inc. J. Graph Theory 74: 222-235, 2013
Keywords: graph packing; hypergraph

1. INTRODUCTION

By a hypergraph we mean a pair (V, E) where V is a finite set (elements of V are called vertices) and E is a family of subsets of V (members of E are called edges). An empty edge is also allowed. An important instance of combinatorial packing problems is that of (hyper)graph packing. Two n-vertex hypergraphs G and H pack, if there is a bijection $f: V(G) \rightarrow V(H)$ such that for every edge $e \in E(G)$, the set $\{f(v): v \in e\}$ is not an edge in H. For graphs, this means that G is a subgraph of the complement \bar{H} of H, or, equivalently, H is a subgraph of the complement \bar{G} of G.

Some milestone results on extremal graph packing problems were obtained in the seventies. At the same time, fundamental papers by Bollobás and Eldridge [1] and Sauer and Spencer [7] have appeared. The papers gave sufficient conditions for packing of graphs under different conditions. Some of these results were also obtained by Catlin in his Ph.D. Thesis [3] and in [2]. Surveys on the topic are [10] and [9].

In particular, Sauer and Spencer [7] proved the following.
Theorem 1 ([7]). Let G and H be n-vertex graphs with $|E(G)|+|E(H)|<1.5 n-1$. Then G and H pack.

The result is sharp, since if H is the star $K_{1, n-1}$ and G is the graph with $\lceil n / 2\rceil$ edges and minimum degree 1, then $|E(G)|+|E(H)|=\lceil 1.5 n\rceil-1$ but G and H do not pack. An important feature of this example is that H has a universal vertex. By a universal vertex in a hypergraph F we mean a vertex v such that for every other vertex $w \in V(F)$, the graph edge $v w$ belongs to $E(F)$.

Bollobás and Eldridge [1] obtained the following refinement of Theorem 1.
Theorem 2 ([1]). Let G and H be n-vertex graphs with $|E(G)|+|E(H)| \leq 2 n-3$. If neither of G and H has a universal vertex, and the pair $\{G, H\}$ is none of the seven pairs in Figure 1, then G and H pack.

Corollary 1 in [1] yields that Theorem 2 can be restated as follows.
Theorem 3 ([1]). Let G and H be n-vertex graphs with $|E(G)|+|E(H)| \leq 2 n-3$. Then G and H do not pack if and only if either $\{G, H\}$ is one of the seven pairs in Figure 1, or one of G and H has a universal vertex and the other has no isolated vertices.

FIGURE 1. Bad pairs in Theorem 2.

To see that Theorem 3 yields Theorem 1, observe that for each pair (G, H) in Figure $1,|E(G)|+|E(H)|=2 n-3 \geq 1.5 n-1$ and that if H has a universal vertex and G has no isolated vertices, then $|E(G)|+|E(H)| \geq(n-1)+\lceil n / 2\rceil$.

If G and H are n-vertex nonuniform hypergraphs, then packing may become more complicated. By i-edge we will mean an edge of size i. Sometimes, edges of size 2 will be called graph edges, and edges of size at least 3 will be called hyperedges.

Edges of size $0,1, n-1$ or n make harder for hypergraphs to pack. For example, if $V(G)$ is an edge in G and $V(H)$ is an edge in H, then G and H do not pack. Similarly, if \emptyset is an edge in both G and H, then G and H do not pack. Also if the total number of 1-edges or the total number of $n-1$ edges in G and H is at least $n+1$, then G and H again do not pack. These examples indicate that edges of size i and $n-i$ behave similarly. Indeed, a bijection $f: V(G) \rightarrow V(H)$ maps edge $e \in E(G)$ onto edge $g \in E(H)$ if and only if it maps set $V(G)-e$ onto $V(H)-g$. This motivates our notion of the orthogonal hypergraph: For a hypergraph F, the orthogonal hypergraph F^{\perp} has the same set of vertices as F and $E\left(F^{\perp}\right):=\{V(F)-e: e \in E(F)\}$. By definition, two n-vertex hypergraphs G and H pack if and only if G^{\perp} and H^{\perp} pack.

Pilśniak and Woźniak [5] proved that if an n-vertex hypergraph G has at most $n / 2$ edges and neither \emptyset nor $V(G)$ is an edge in G, then G packs with itself. They also asked whether
every such G packs with each n-vertex hypergraph H satisfying the same conditions. Recently, Naroski [4] proved the following stronger result.
Theorem 4. Let G and H be n-vertex hypergraphs with no 0 -edges and n-edges. If $|E(G)|+|E(H)| \leq n$, then G and H pack.

By the above examples, the bound of n in Theorem 4 is sharp. We will prove a corresponding bound for n-vertex hypergraphs with no $0-, 1-,(n-1)$-, and n-edges. This result also generalizes Theorem 3 and extends it to hypergraphs.

We define a bad pair of hypergraphs to be either one of the pairs $(G(i), H(i))$ in Figure 1, or one of the pairs $\left(G(i)^{\perp}, H(i)^{\perp}\right)$.

Our main result is the following.
Theorem 5. Let G and H be n-vertex hypergraphs with $|E(G)|+|E(H)| \leq 2 n-3$ containing no 0-, 1-, $(n-1)$-, and n-edges. Let $|E(G)| \leq|E(H)|$. Then G and H do not pack if and only if either
(i) (G, H) or (H, G) is a bad pair, or
(ii) H has a universal vertex and every vertex of G is incident to a graph edge, or
(iii) H^{\perp} has a universal vertex and every vertex of G^{\perp} is incident to a graph edge.

Since each of the graphs in Figure 1 has at most nine vertices, for $n \geq 10$, the theorem says that $\ldots G$ and H do not pack if and only if either H has a universal vertex and every vertex of G is incident to a graph edge or H^{\perp} has a universal vertex and every vertex of G^{\perp} is incident to a graph edge. Note that the theorem is sharp even for graphs: for infinitely many n there are n-vertex graphs G_{n} and H_{n} such that $|E(G)|+|E(H)|=2 n-2$, neither of G_{n} and H_{n} has a universal vertex, and G_{n} and H_{n} do not pack (see, e.g., [1,8]).

In the same way Theorem 3 yields Theorem 1, Theorem 5 yields the following extension of Theorem 1 to hypergraphs.
Corollary 1. Let G and H be n-vertex hypergraphs with $|E(G)|+|E(H)|<n-1+$ $\lceil n / 2\rceil$ containing no $0-, 1-,(n-1)$-, and n-edges. Then G and H pack.

Very recently we have learned that Pilśniak and Woźniak [6] independently obtained a weaker version of Theorem 5. They proved that every n-vertex hypergraph with $n-2$ edges not containing $0-, 1-,(n-1)-$, and n-edges packs with itself.

To prove Theorem 5, we consider a counterexample (G, H) with the fewest vertices. In the next section, we set up the proof and derive simple properties of (G, H). In Section 3, we prove two more advanced properties of (G, H). In the last section, we deliver the proof of Theorem 5.

2. PRELIMINARIES

Consider a counterexample (G, H) to Theorem 5 with the least number of vertices n. This means that $|E(G)|+|E(H)| \leq 2 n-3,|E(G)| \leq|E(H)|$, neither (G, H) nor (H, G) is a bad pair, G and H do not pack, and if H (respectively, H^{\perp}) has a universal vertex, then G (respectively, G^{\perp}) has a vertex not incident with graph edges. If at least one of G, H, G^{\perp}, and H^{\perp} is an ordinary graph, then the statement holds by Theorem 3. So we will assume that

$$
\begin{equation*}
\text { each of } G, H, G^{\perp} \text {, and } H^{\perp} \text { has at least one hyperedge. } \tag{1}
\end{equation*}
$$

Naroski [4] used the following hypergraph operation: For an n-vertex hypergraph F, the hypergraph \widetilde{F} is obtained from F by replacing each edge $e \in E(F)$ of size at least $(n+1) / 2$ with $V(F)-e$ and deleting multiple edges if they occur. This operation has the following useful property.

Lemma 1 ([4]). Let F_{1} and F_{2} be n-vertex hypergraphs with no edge with size less than k and no edge with size greater than $n-k$. Then
(a) $\left|E\left(\widetilde{F}_{1}\right)\right| \leq\left|E\left(F_{1}\right)\right|$ and $\left|E\left(\widetilde{F}_{2}\right)\right| \leq\left|E\left(F_{2}\right)\right|$,
(b) both \widetilde{F}_{1} and \widetilde{F}_{2} have no edges of size less than k and no edges of size greater than $\left\lfloor\frac{n}{2}\right\rfloor$, and
(c) if \widetilde{F}_{1} and \widetilde{F}_{2} pack, then F_{1} and F_{2} pack.

Lemma 2. If \widetilde{H} has a universal vertex and every vertex of \widetilde{G} is incident to a graph edge, then G and H pack.

Proof. Let S be the set of 2-edges of \widetilde{G} and \widetilde{H} that are 2-edges in G and H. Let S^{\prime} be the set of 2-edges of \widetilde{G} and \widetilde{H} whose complementary $(n-2)$-edges exist in G and H. Suppose that \widetilde{H} contains a universal vertex v. Then \widetilde{G} contains at most $n-2$ edges and hence some vertex of \widetilde{G} is contained in at most one 2-edge. We consider two cases.

Case 1: All 2-edges in \widetilde{H} that contain v are contained in S (respectively, S^{\prime}). By the symmetry between H and H^{\perp}, we may assume that they all are in S. Then under the conditions of the theorem, some vertex $w \in V(\widetilde{G})$ is not contained in any edge in S. We let H^{\prime} be the hypergraph obtained from H by deleting v, and all 2-edges containing v, and replacing each hyperedge $e \in E(H)$ that contains v by $e-v$. We let G^{\prime} be the hypergraph obtained from G by deleting w and replacing each edge $e \in E(G)$ containing w by the edge $e-w$. Then since $\left|E\left(G^{\prime}\right)\right|+\left|E\left(H^{\prime}\right)\right| \leq 2 n-3-(n-1)=n-2$, Theorem 4 yields that G^{\prime} and H^{\prime} pack. We extend this packing to a packing of G and H by mapping v to w.

Case 2: Vertex v is contained in a 2-edge of \widetilde{H} that is not in S and in a 2-edge of \widetilde{H} that is not in S^{\prime}. Let w_{1} be a vertex of \widetilde{G}, which is contained in exactly one 2-edge (if no such vertex exists, then some vertex w of \widetilde{G} is not incident to 2-edges at all, and we proceed as in Case 1 (deleting all 2-edges of \widetilde{H} incident with v)). Let $w_{1} w_{2}$ be the 2-edge in \widetilde{G} containing w_{1}. By symmetry, we may assume that $w_{1} w_{2} \in S$. Let $v v^{\prime}$ be an edge of \widetilde{H}, which is not in S. We let $H^{\prime \prime}$ be the hypergraph obtained from H^{\perp} by first deleting v, v^{\prime}, and all 2-edges containing v and then removing v and v^{\prime} from each edge e that contains any of them. We let $G^{\prime \prime}$ be the hypergraph obtained from G^{\perp} by first deleting w_{1}, w_{2}, and the edge $w_{1} w_{2}$ and then truncating all edges containing either of w_{1} and w_{2}. Then since $\left|E\left(G^{\prime}\right)\right|+\left|E\left(H^{\prime}\right)\right| \leq 2 n-3-(n-1)-1=n-3$, Theorem 4 yields that $G^{\prime \prime}$ and $H^{\prime \prime}$ pack. We extend this packing to a packing of G and H by mapping v to w_{1} and v^{\prime} to w_{2}.

In view of Lemmas 1 and 2, we will assume that G and H have no edges of size greater than $\frac{n}{2}$. We will study properties of the pair (G, H) and finally come to a contradiction.

Throughout the proof, for $i \in\left\{2, \ldots,\left\lfloor\frac{n}{2}\right\rfloor\right\}, G_{i}$ (respectively, H_{i}) denotes the subgraph of G (respectively, of H) formed by all of its edges of size i, and $d_{i}(v, G)$ (respectively, $d_{i}(v, H)$) denotes the degree of vertex v in G_{i} (respectively, in H_{i}). In particular, G_{2} and H_{2} are formed by graph edges in G and H, respectively. Then we let $l_{i}:=\left|E\left(G_{i}\right)\right|$ and $m_{i}:=\left|E\left(H_{i}\right)\right|$. Also, for brevity, let $m:=\sum_{i=2}^{n} m_{i}, l:=\sum_{i=2}^{n} l_{i}, \bar{m}=m-m_{2}$ and
$\bar{l}=l-l_{2}$. In other words, \bar{l} is the number of hyperedges in G, and \bar{m} is the number of hyperedges in H. Recall that by the choice of G,

$$
\begin{equation*}
l \leq n-2 . \tag{2}
\end{equation*}
$$

For n-vertex hypergraphs F_{1} and F_{2}, let $x\left(F_{1}, F_{2}\right)$ denote the number of bijections from $V\left(F_{1}\right)$ onto $V\left(F_{2}\right)$ that are not packings. Since we have chosen G and H that do not pack,

$$
\begin{equation*}
x(G, H)=n!. \tag{3}
\end{equation*}
$$

A nice observation of Naroski is
Lemma 3 ([4]).

$$
\begin{equation*}
x(G, H) \leq 2(n-2)!m_{2} l_{2}+3!(n-3)!\bar{m} \bar{l} . \tag{4}
\end{equation*}
$$

Proof. For edges $e \in G$ and $f \in H$, let $X_{e f}$ be the set of bijections in X that map the edge e onto the edge f. Then

$$
\begin{aligned}
x(G, H)= & \left|\bigcup_{e \in E(G), f \in E(H)} X_{e f}\right| \leq \sum_{e, f}\left|X_{e f}\right|=\sum_{i=2}^{\left\lfloor\frac{n}{2}\right\rfloor} \sum_{e, f:|e|=|f|=i}\left|X_{e f}\right| \\
= & \sum_{i=2}^{\left\lfloor\frac{n}{2}\right\rfloor} \sum_{e, f:|e|=|f|=i} i!(n-i)!=\sum_{i=2}^{\left\lfloor\frac{n}{2}\right\rfloor} m_{i} l_{i} i!(n-i)!\leq 2(n-2)!m_{2} l_{2} \\
& +3!(n-3)!\sum_{i=3}^{\left\lfloor\frac{n}{2}\right\rfloor} m_{i} l_{i} \leq 2(n-2)!m_{2} l_{2}+3!(n-3)!\sum_{i=3}^{\left\lfloor\frac{n}{2}\right\rfloor} m_{i} \sum_{i=3}^{\left\lfloor\frac{n}{2}\right\rfloor} l_{i} \\
= & 2(n-2)!m_{2} l_{2}+3!(n-3)!\bar{m} \bar{l} .
\end{aligned}
$$

Lemma 4. The number n of vertices in G is at least 8 .

Proof. If $n \leq 5$, then $\left\lfloor\frac{n}{2}\right\rfloor \leq 2$, and G and H are graphs, a contradiction to (1). Suppose now that $n=7$. By (4), $x(G, H) \leq 2 \cdot 5!m_{2} l_{2}+(3!)(4!) \bar{m} \bar{l} . \mathrm{By}(1), \bar{m} \geq 1$ and $\bar{l} \geq 1$. And the maximum of the expression $2 \cdot 5!m_{2} l_{2}+(3!)(4!) \bar{m} \bar{l}$ under the conditions that $m_{2}+l_{2}+\bar{m}+\bar{l} \leq 11, \bar{m} \geq 1$ and $\bar{l} \geq 1$ is attained at $l_{2}=4, m_{2}=5, \bar{m}=\bar{l}=1$ and is equal to

$$
2 \cdot 5!\cdot 4 \cdot 5+(3!)(4!)=4800+144<5040=7!
$$

a contradiction to (3).
Finally, suppose that $n=6$. Similarly to the case for $n=7, x(G, H) \leq 2 \cdot 4!m_{2} l_{2}+$ $(3!)^{2} \bar{m} \bar{l}, \bar{m} \geq 1$ and $\bar{l} \geq 1$. Since $2 \cdot 4!\geq(3!)^{2}$, for nonnegative integers m_{2}, l_{2} and positive integers \bar{m}, \bar{l}, the maximum of the expression $2 \cdot 4!m_{2} l_{2}+(3!)^{2} \bar{m} \bar{l}$ under the condition that $m_{2}+l_{2}+\bar{m}+\bar{l} \leq 9$ is exactly 6 ! and is attained only if $m_{2}=l_{2}=0, \bar{l}=4$, and $\bar{m}=5$. So, G and H are 3-uniform hypergraphs with 4 and 5 edges, respectively.

Now we show that even in this extremal case $x(G, H)<6$!. In the proof of Lemma 3, for every pair of edges $e \in G$ and $f \in H$, we considered the cardinality of the set
of bijections $X_{e f}$ from $V(G)$ onto $V(H)$ that map the edge e onto the edge f and estimated $\Sigma:=\sum_{e \in E(G)} \sum_{f \in E(H)}\left|X_{e f}\right|$. We will show that some bijection $F: V(G) \rightarrow V(H)$ maps at least two edges of G onto two edges of H, thus this bijection is counted at least twice in Σ. For this, it is enough to (and we will) find edges $e_{1}, e_{2} \in E(G)$ and $f_{1}, f_{2} \in E(H)$ such that $\left|e_{1} \cap e_{2}\right|=\left|f_{1} \cap f_{2}\right|$, since in this case we can map e_{1} onto f_{1} and e_{2} onto f_{2}.

If G has two disjoint edges e and e^{\prime}, then any third edge of G shares one vertex with one of e and e^{\prime} and two vertices with the other. So, we may assume that any two edges in G intersect. Similarly, we may assume that any two edges in H intersect.

Now we show that
H has a pair of edges with intersection size 1 and a pair of edges with intersection

If the intersection of each two distinct edges in H contains exactly one vertex, then each vertex belongs to at most two edges, which yields $|E(H)| \leq 2 \cdot 6 / 3=4$, a contradiction to $\bar{m}=5$. Finally, suppose that $\left|f_{1} \cap f_{2}\right|=2$ for all distinct $f_{1}, f_{2} \in E(H)$. If two vertices in H, say v_{1} and v_{2}, are in the intersection of at least three edges, then every other edge also must contain both v_{1} and v_{2}. Since $n=6$ and $\bar{m}=5$, this is impossible. Hence, we may assume that each pair of vertices is the intersection of at most two edges. Given the edges $\left\{v_{1}, v_{2}, v_{3}\right\}$ and $\left\{v_{1}, v_{2}, v_{4}\right\}$, every other edge must contain v_{3}, v_{4}, and one of v_{1} or v_{2}. Hence, each edge of H is contained in $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$. Thus, H has at most 4 edges, a contradiction. This proves (5). Hence, the lemma holds.

Lemma 5. $m_{2} l_{2}>\frac{(n-2)^{2}}{2}$, where l_{2} (respectively, m_{2}) is the number of graph edges in G (respectively, in H).

Proof. Suppose that $m_{2} l_{2}=C \leq \frac{(n-2)^{2}}{2}$. It suffices to show that $x(G, H)<n!$. So, by Lemmas 3 and 4, it is enough to show that for $n \geq 8$ and any nonnegative integers m_{2}, l_{2} and positive integers \bar{m}, \bar{l} such that $m_{2}+l_{2}+\bar{m}+\bar{l} \leq 2 n-3$, the expression $Y:=2(n-2)!m_{2} l_{2}+3!(n-3)!\bar{m} \bar{l}$ is less than $n!$. Since $C \leq \frac{(n-2)^{2}}{2}, m_{2}+l_{2} \geq 2 \sqrt{C}$. Therefore, $\bar{m}+\bar{l} \leq 2 n-3-2 \sqrt{C}$ and so $\bar{m} \bar{l} \leq(n-1.5-\sqrt{C})^{2}$. It follows that

$$
\begin{array}{r}
Y \leq 2!(n-3)!\left((n-2) C+3(n-1.5-\sqrt{C})^{2}\right) \\
=2!(n-3)!\left((n+1) C+3(n-1.5)^{2}-6(n-1.5) \sqrt{C}\right) .
\end{array}
$$

The second derivative w.r.t. C of the last expression is positive, and so it is enough to check $C=0$ and $C=\frac{(n-2)^{2}}{2}$. If $C=0$, then $Y \leq 2!(n-3)!3(n-1.5)^{2}$, which is less than $n!$ for $n \geq 8$. Similarly, if $C=\frac{(n-2)^{2}}{2}$ and $n \geq 8$, then

$$
\begin{aligned}
\frac{Y}{n!} & <\frac{2(n-2)!\frac{(n-2)^{2}}{2}+3!(n-3)!\left(n-\frac{n-2}{\sqrt{2}}\right)^{2}}{n!}=\frac{(n-2)^{3}+6\left(n-\frac{n-2}{\sqrt{2}}\right)^{2}}{n(n-1)(n-2)} \\
& =\frac{n^{3}-6 n^{2}+12 n-8+6 n^{2}-6 n(n-2) \sqrt{2}+3(n-2)^{2}}{n(n-1)(n-2)} \\
& =\frac{n^{3}-6 n(n-2) \sqrt{2}+3 n^{2}+4}{n(n-1)(n-2)}<1
\end{aligned}
$$

a contradiction to 3 .

Corollary 2. The number m_{2} of graph edges in G is greater than $n / 2$.
Proof. Suppose that $m_{2} \leq n / 2$. By Lemma 5, $l_{2} m_{2}>\frac{(n-2)^{2}}{2}$. Therefore

$$
l_{2}>\frac{(n-2)^{2}}{2} \cdot \frac{2}{n}>n-4
$$

Also, by (2) and (1), $l_{2} \leq n-3$. So, $l_{2}=n-3$, and thus $l=n-2$ and $m \leq n-1$. Hence by Lemma 3, for $n \geq 8$

$$
\begin{gathered}
x(G, H) \leq 2(n-2)!m_{2}(n-3)+3!(n-3)!\left(m-m_{2}\right) \cdot 1 \\
\leq 2 \cdot(n-3)!\left((n-2)(n-3) m_{2}+3\left(n-1-m_{2}\right)\right) \\
\leq 2 \cdot(n-3)!\left((n-2)(n-3) \frac{n}{2}+3(0.5 n-1)\right)=(n-2)!((n-3) n+3)<n!
\end{gathered}
$$

a contradiction to 3 .

3. TWO MORE LEMMAS

We need some definitions.
Definition. For a hypergraph F without 1-edges and $A \subset V(F)$, the hypergraph $F-A$ has vertex set $V(F)-A$ and $E(F-A):=\{e-A: e \in E(F)$ and $|e-A| \geq 2\}$, where multiple edges are replaced with a single edge.

An edge e of G belongs to a component C of G_{2} if strictly more than $|e| / 2$ vertices of e are in $V(C)$. By definition, each e belongs to at most one component of G_{2}. A component C of G_{2} is clean if no hyperedge belongs to C. A clean tree-component of G is a clean component of G_{2}, which is a tree. In particular, each single-vertex component of G_{2} is a clean tree-component. By definition, for each component C of G_{2}, at least $|V(C)|-1$ graph edges belong to C. Moreover,
if exactly $|V(C)|-1$ edges belong to C, then C is a clean tree-component.
Since $l_{2} \leq n-3, G_{2}$ has at least three tree-components. Since $l \leq n-2$, by (6), at least two components of G_{2} are clean tree-components. Since each nonclean component has at least two vertices,
the smallest clean tree-component of G_{2} has at $\operatorname{most} \max \left\{\frac{n}{3}, \frac{n-2}{2}\right\}=\frac{n-2}{2}$ vertices.
Lemma 6. Among the smallest clean tree-components of G_{2}, there exists a component T such that $G-T$ does not have a universal vertex.

Proof. Let T be the vertex set of a smallest clean tree-component of G_{2} and let $|V(T)|=t$.

Case 1: $|E(G)| \leq n-3$. Since $G-T$ is an $n-t$ vertex hypergraph containing only $n-t-2$ edges, $G-T$ cannot have a universal vertex.

Case 2: $|E(G)|=n-2$. Assume that $G-T$ contains a universal vertex, say w. Since $G-T$ has at most $n-t-1$ edges, each edge in $G-T$ is a graph edge connecting w with some other vertex. In particular, every hyperedge in G has all but two of its vertices
in T. Hence for each hyperedge e in G, the edge $e-T$ connects an isolated vertex of G_{2} to w. Since G_{2} contains at least three components, we get that G_{2} contains at least one isolated vertex. Then since any isolated vertex is a clean tree-component, $t=1$.

Assume that G_{2} contains k isolated vertices $v_{1}, v_{2}, \ldots, v_{k}$. Each of these vertices then forms a smallest clean tree-component. If $G-v_{i}$ does not contain a universal vertex for some $i \leq k$, we are done. Hence, we may assume that $G-v_{i}$ contains a universal vertex w_{i} for each $i \leq k$. It follows that every edge of G has size at most 3 and contains w_{i} for every i. In particular, G_{2} has at most one nonsingleton component. Since $l_{2} \leq l-1 \leq n-3$, G_{2} has at least three components. Hence, $k \geq 2$. Furthermore, each of the $v_{i}^{\prime} s$ is contained in each 3-edge, hence $k \leq 3$. If $k=3$, then we have exactly one 3 -edge $v_{1} v_{2} v_{3}$ in G. But then one the vertices of this edge is w_{i} for some i and hence is incident with $n-3$ graph edges. Since $n \geq 8$, vertex of degree $n-2$ is not isolated. So, $k=2$.

Since G contains a 3-edge, we have an edge $v_{1} v_{2} w$ where w is necessarily the universal vertex in $G-v_{1}$ and in $G-v_{2}$. Thus, $v_{1} v_{2} w$ is the only 3-edge in G, and so $w u$ is an edge of G_{2} for every $u \in V(G)-v_{1}-v_{2}-w$.

Case 2.1: H_{2} contains an isolated vertex y. Since $m=n-1$ and $n \geq 8$, there exist vertices y_{1} and y_{2} such that $\left\{y, y_{1}, y_{2}\right\}$ is not a 3-edge in H. Then, we may map w to y, v_{1} to y_{1}, and v_{2} to y_{2}, and the rest of $V(G)$ arbitrarily to the rest of $V(H)$ to get a packing of G and H, a contradiction to their choice.

Case 2.2: H_{2} has no isolated vertices. Since $\left|E\left(H_{2}\right)\right| \leq n-2, H_{2}$ necessarily contains a vertex y of degree 1 . Suppose $y y_{1} \in E\left(H_{2}\right)$. Since H contains at most $n-1-n / 2$ 3-edges, there exists some $y_{2} \in V(H)$ which is not in a 3-edge with y and y_{1}. Then we may pack G and H as in Case 2.1.

Lemma 7. Let $t \leq(n-2) / 2$. Let T be a t-vertex clean tree in G_{2} and let $S \subset V(H)$ with $|S|=t$ be such that S intersects at least $t+1$ graph edges. If $G[T]$ and $H[S]$ pack, then either $G^{\prime}:=G-T$ or $H^{\prime}:=H-S$ has a universal vertex.

Proof. Assume that the lemma does not hold. Since the (graph) edges of T and the graph edges in H incident with S do not correspond to any edge in G^{\prime} and H^{\prime}, we have

$$
\begin{equation*}
\left|E\left(G^{\prime}\right)\right|+\left|E\left(H^{\prime}\right)\right| \leq|E(G)|+|E(H)|-(t-1)-(t+1) \leq 2(n-t)-3 . \tag{8}
\end{equation*}
$$

We claim that if G^{\prime} and H^{\prime} pack, then so do G and H. Indeed suppose that σ^{\prime} is a packing of G^{\prime} onto H^{\prime} and $\sigma^{\prime \prime}$ is a packing of $G[T]$ onto $H[S]$. We will check that $\sigma^{\prime} \cup \sigma^{\prime \prime}$ is a packing of G onto H. Suppose the contrary: that an edge A of G is mapped onto edge B of H. If $A \subset T$, this is impossible, since $\sigma^{\prime \prime}$ is a packing of $G[T]$ onto $H[S]$. So, suppose $A^{\prime}:=A \cap V\left(G^{\prime}\right) \neq \emptyset$ and $B^{\prime}:=B \cap V\left(H^{\prime}\right) \neq \emptyset$. Since T is a clean component of G_{2}, $\left|A^{\prime}\right| \geq 2$. So, $\left|B^{\prime}\right|$ is also at least 2 . Then, by the definition of $G-T$ and $H-S, A^{\prime}$ is an edge of G^{\prime} and B^{\prime} is an edge of H^{\prime}. Hence σ^{\prime} does not send A^{\prime} to B^{\prime}, a contradiction to the choice of A and B. Thus, since G and H do not pack, neither do G^{\prime} and H^{\prime}. So by (8) and the minimality of n, either $\left(G^{\prime}, H^{\prime}\right)$ is a bad pair or the lemma holds. Hence we may assume that $\left(G^{\prime}, H^{\prime}\right)$ is a bad pair.

Let $k=n-t$. Note that for each bad pair $(G(i), H(i))$ in Figure 1, the total number of edges in $G(i)$ and $H(i)$ is $2|V(G(i))|-3=2|V(H(i))|-3$. Hence, $|E(H)|-\mid E(H-$ $S) \mid=t+1$ and S covers exactly $t+1$ graph edges. Then

$$
\begin{equation*}
|E(G(i))|+|E(H(i))|=2 k-3 \quad \text { and } \quad|V(G)|=|V(H)| \leq 2 k-2 . \tag{9}
\end{equation*}
$$

By the definition of bad pairs, either all edges in G^{\prime} and H^{\prime} are graph edges or all of them are $(k-2)$-edges. In the latter case, H has only $t+1 \leq n / 2$ graph edges, a contradiction to Corollary 2. Thus, we may assume that $\left\{G^{\prime}, H^{\prime}\right\}=\{G(i), H(i)\}$ in Figure 1 for some $i \in\{1, \ldots, 8\}$.

Case 1: $\bar{l}+\bar{m} \geq 2 k-3$. Then $l_{2}+m_{2} \leq(2 n-3)-(2 k-3)=2 n-2 k$, and hence $l_{2} m_{2} \leq(n-k)^{2}$. Since $4 \leq k \leq 9$ and $k \geq(n+2) / 2$, we get

$$
l_{2} m_{2} \leq(n-k)^{2} \leq\left(\frac{n-2}{2}\right)^{2}<\frac{(n-2)^{2}}{2}
$$

a contradiction to Lemma 5.
Since we proved that $\bar{l}+\bar{m}<2 k-3$ at least one edge of G^{\prime} or H^{\prime} is a graph edge in G or H. Furthermore, since T was a clean component, all the hyperedges of G become graph edges of G^{\prime}. Let e_{G} be some such edge of G^{\prime}. If none of the edges of H^{\prime} was obtained from a hyperedge of H, then it is enough to pack $G^{\prime}-e_{G}$ with H^{\prime}, which is possible by Theorem 3. So, there are $e \in E\left(G^{\prime}\right)$ and $f \in E\left(H^{\prime}\right)$ such that one of them is a graph edge and the other is a hyperedge in (G, H).

Case 2: $\left(G^{\prime}, H^{\prime}\right)$ is one of the unordered pairs $\{G(1), H(1)\}$, $\{G(3), H(3)\}$, $\{G(4), H(4)\},\{G(7), H(7)\}$. By symmetry, we may assume that $e=x_{1} x_{2}$ and $f=y_{1} y_{2}$. In all cases, we define mapping $\phi\left(x_{j}\right)=y_{j}$ for $j=1, \ldots, k$. This mapping together with the packing of $G[T]$ with $H[S]$ yields a packing of G with H, a contradiction.

Case 3: $\left(G^{\prime}, H^{\prime}\right)$ is one of the unordered pairs $\{G(2), H(2)\}$, $\{G(5), H(5)\}$, $\{G(6), H(6)\}$. By symmetry, we may assume that $e=x_{1} x_{2}$ and either $f=y_{1} y_{2}$ or $f=y_{k-1} y_{k}$. If $f=y_{1} y_{2}$, then we let $\phi\left(x_{j}\right)=y_{j}$ for $j=1, \ldots, k$, and if $f=y_{k-1} y_{k}$, then we let $\phi\left(x_{j}\right)=y_{k+1-j}$ for $j=1, \ldots, k$.

Remark. Practically, the same proof will verify the lemma with the roles of G and H switched, that is, with T being be a t-vertex clean tree in H_{2} and S being a subset of $V(G)$ with $|S|=t$ such that S intersects at least $t+1$ graph edges in G. The only difference is that if all edges of G^{\prime} and H^{\prime} are $(k-2)$-edges, then H has only $t-1 \leq n / 2$ graph edges (those that are the graph edges of T), and we get the same contradiction to Corollary 2.

4. PROOF OF THEOREM 5

By Lemma 6, there is a smallest clean tree-component T of G_{2} such that

$$
\begin{equation*}
G-T \text { does not contain a universal vertex. } \tag{10}
\end{equation*}
$$

We let $t=|V(T)|$.
Case 1: $t=1$. Let $V(T)=\{u\}$. By Corollary $2, \Delta\left(H_{2}\right) \geq 2$. Let $w \in V(H)$ with $d_{2}(w, H)=\Delta\left(H_{2}\right)$. Let $G^{\prime}=G-u$ and let $H^{\prime}=H-w$. By Lemma 7 and (10), H^{\prime} contains a universal vertex, say w^{\prime}.

Let $y=\Delta\left(H_{2}\right)$. Since H contains at least $n-2$ edges forming the star in H^{\prime} plus y graph edges incident to w, we get that $l+(n-2)+y \leq l+m \leq 2 n-3$. Since $l_{2} \leq l-1$, we get $l_{2}+y \leq n-2$. By Lemma 5, $m_{2}>\frac{(n-2)^{2}}{2 l_{2}}$. Also, w^{\prime} is contained in at least $n-2-y$ 3-edges, hence

$$
\left(l_{2}+1\right)+\frac{(n-2)^{2}}{2 l_{2}}+(n-2-y)<l+m \leq 2 n-3
$$

which gives that $l_{2}-y+\frac{(n-2)^{2}}{2 l_{2}}<n-2$. Adding these expressions gives

$$
\left(l_{2}+y\right)+\left(l_{2}-y+\frac{(n-2)^{2}}{2 l_{2}}\right)<2(n-2)
$$

or $l_{2}+\frac{(n-2)^{2}}{4 l_{2}}<n-2$. This can be rewritten as $\left(2 l_{2}-(n-2)\right)^{2}<0$ which is false. This contradiction finishes Case 1, so below we assume that $t>1$.

Case 2: $t=2$. Let $V(T)=\left\{v_{1}, v_{2}\right\}$. If H contains a vertex w with $d_{2}(w, H)>n / 2$, let w^{\prime} be a nonneighbor of w in H_{2}. Then $G^{\prime}=G-v_{1}-v_{2}$, and $H^{\prime}=H-w-w^{\prime}$ are ($n-2$)-vertex graphs with $\left|E\left(G^{\prime}\right)\right|+\left|E\left(H^{\prime}\right)\right|<\frac{3(n-2)-2}{2}$, so G^{\prime} and H^{\prime} pack by the minimality of n (we simply apply Corollary 1). Mapping v_{1} to w and v_{2} to w^{\prime} will complete the packing of G with H. So, $\Delta\left(H_{2}\right) \leq n / 2$.

Case 2.1: $\Delta\left(H_{2}\right) \geq 3$. Given nonadjacent vertices w_{1} and w_{2} in H_{2} with $d_{2}\left(w_{1}, H\right)=$ $\Delta\left(H_{2}\right)$, we let $G^{\prime}=G-v_{1}-v_{2}$ and $H^{\prime}=H-w_{1}-w_{2}$. By Lemma 7 and (10), H^{\prime} contains a universal vertex.

Let $y=\Delta\left(H_{2}\right) \leq n / 2$. Then $l+(n-3)+y \leq l+m \leq 2 n-3$. Since H^{\prime} contains a universal vertex, $m-m_{2} \geq n-3-y$, so $l+m_{2}+(n-3-y) \leq l+m \leq 2 n-3$. Adding these gives $2(2 n-3) \geq 2 l+m_{2}+2(n-3)$, or

$$
\begin{equation*}
2 n \geq 2 l+m_{2} \tag{11}
\end{equation*}
$$

By Lemma 5, $l_{2}>\frac{(n-2)^{2}}{2 m_{2}}$. So if $l-l_{2} \geq 2$ or $m-m_{2} \geq n-1-y$, then $2 n>4+m_{2}+$ $\frac{(n-2)^{2}}{m_{2}}$. And since $m_{2}+\frac{n-2)^{2}}{m_{2}} \geq 2(n-2)$, we get $2 n>2 n$, a contradiction. Hence we may assume that $l-l_{2}=1$ and that $m-m_{2} \leq n-2-y$. Furthermore, if $l_{2} m_{2} \leq \frac{(n-1)^{2}}{2}$, Lemma 3 gives

$$
\begin{aligned}
x(G, H) & \leq 2(n-2)!\frac{(n-1)^{2}}{2}+3!(n-3)!1(n-2-y) \\
& \leq 2(n-2)!\frac{(n-1)^{2}}{2}+3!(n-3)!1(n-5) \\
& =(n-1)!\left[(n-1)+\frac{6(n-5)}{(n-1)(n-2)}\right] \\
& <n!(\text { since } n \geq 8),
\end{aligned}
$$

a contradiction to (3). Thus $l_{2} m_{2}>\frac{(n-1)^{2}}{2}$ which gives $l=1+l_{2}>1+\frac{(n-1)^{2}}{2 m_{2}}$. Applying this to (11), we obtain $2 n>2+m_{2}+\frac{(n-1)^{2}}{m_{2}} \geq 2+2(n-1)=2 n$, a contradiction.

Case 2.2: $\Delta\left(H_{2}\right) \leq 2$. By Corollary $2, \Delta\left(H_{2}\right) \geq 2$. Thus $\Delta\left(H_{2}\right)=2$. Let w_{1} be a vertex with $d_{2}\left(w_{1}, H\right)=2$. If there exists some w_{2} in H with $w_{1} w_{2} \notin E(H)$ and $d_{2}\left(w_{2}, H\right) \geq 1$, then we proceed as in Case 2.1. Hence we may assume that every vertex in H_{2} that is not adjacent to w_{1} is an isolated vertex. We then have that $m_{2} \leq 3$, and $m_{2} l_{2} \leq 3(n-3)$. Lemma 5 then gives that $3(n-3)>(n-2)^{2} / 2$ or $(n-5)^{2}<3$, a contradiction to $n \geq 8$.

Case 3: $t \geq 3$ and H_{2} has an isolated vertex w. Let y be a leaf of T and let x be the neighbor of y in G_{2}. Let $G^{\prime}=G-x$ and let $H^{\prime}=H-w$. Since $t \geq 3, d_{2}(x, G) \geq 2$ and hence $\left|E\left(G^{\prime}\right)\right| \leq n-4$. Therefore, $\left|E\left(G^{\prime}\right)\right|+\left|E\left(H^{\prime}\right)\right| \leq 2(n-1)-3$, and G^{\prime} does not have a universal vertex. Thus by the remark to Lemma $7, H^{\prime}$ has a universal vertex, say
w^{\prime}. Let $G^{\prime \prime}=G^{\prime}-y$ and let $H^{\prime \prime}=H^{\prime}-w^{\prime}$. Since w^{\prime} was universal in H^{\prime},

$$
\begin{aligned}
\left|E\left(G^{\prime \prime}\right)\right|+\left|E\left(H^{\prime \prime}\right)\right| & =\left|E\left(G^{\prime}\right)\right|+\left|E\left(H^{\prime}\right)\right|-(n-2) \leq 2(n-1)-3-(n-2) \\
& =n-3<\frac{3(n-2)-2}{2} .
\end{aligned}
$$

So by the minimality of n and Corollary $1, G^{\prime \prime}$ and $H^{\prime \prime}$ pack. We may then extend the packing of $G^{\prime \prime}$ and $H^{\prime \prime}$ to a packing of G and H by mapping x to w and y to w^{\prime}. This finishes Case 3.

If n_{1} vertices of G are in clean tree-components, then $l \geq \frac{n_{1}(t-1)}{t}+\left(n-n_{1}\right)$. Moreover, if $n=n_{1}$, then (since G has a hyperedge) $l \geq 1+\frac{n_{1}(t-1)}{t} \geq 2+\frac{(n-2)(t-1)}{t}$. Since $n-n_{1} \neq$ 1 , we conclude that $l \geq n-\left\lfloor\frac{n-2}{t}\right\rfloor$. So

$$
\begin{equation*}
m \leq 2 n-3-l \leq n-3+\left\lfloor\frac{n-2}{t}\right\rfloor . \tag{12}
\end{equation*}
$$

We consider two cases depending on the maximum degree of H_{2}.
Case 4: $t \geq 3$ and $\Delta\left(H_{2}\right) \geq\left\lfloor\frac{n-2}{t}\right\rfloor$. Let w_{1} be a vertex of maximum degree in H_{2}. Let v_{1} be a leaf in T and choose $v_{2}, v_{3}, \ldots, v_{t}$ in T so that for each i with $2 \leq i \leq t$, the set $\left\{v_{1}, v_{2}, \ldots, v_{i}\right\}$ induce a tree in G_{2} with v_{i} as a leaf with neighbor $v_{(i-1)^{\prime}}$. We map v_{1} to w_{1} and proceed by induction to pack $V(T)$ into $V(H)$ so that for every $i=1, \ldots, t$, the image, W_{i}, of $\left\{v_{1}, v_{2}, \ldots, v_{i}\right\}$ is incident to at least $\left\lfloor\frac{n-2}{t}\right\rfloor+i-1$ graph edges. Assume that $v_{1}, v_{2}, \ldots, v_{i}$ have been mapped in this way to $w_{1}, w_{2}, \ldots, w_{i}$, so that $W_{i}=\left\{w_{1}, w_{2}, \ldots, w_{i}\right\}$. In particular, W_{i} is incident to at least $\left\lfloor\frac{n-2}{t}\right\rfloor+i-1$ graph edges in H.

Case 4.1: W_{i} is incident to at least $\left\lfloor\frac{n-2}{t}\right\rfloor+i$ graph edges. It suffices to map v_{i+1} to a vertex w_{i+1} in $V(H)$ such that for each $j \leq i, w_{j} \neq w_{i+1}$ and $w_{j} w_{i+1}$ is not an edge. Since v_{i+1} is adjacent only to $v_{i^{\prime}}$ in $\left\{v_{1}, v_{2}, \ldots, v_{i}\right\}$, if $i+d_{2}\left(w_{i^{\prime}}, H-W_{i}\right)<n$, then we can choose as w_{i+1} any vertex in $V(H)-W_{i}$ not adjacent to $w_{i^{\prime}}$ in H_{2}. Hence we may assume that $d_{2}\left(w_{i^{\prime}}, H-W_{i}\right) \geq n-i$. Since G_{2} contains no isolated vertices, by the choice of G and $H, \Delta\left(H_{2}\right) \leq n-2$, so $i \neq 1$. Since v_{1} is a leaf in T and $i \geq 2, i^{\prime} \neq 1$. So, by the choice of w_{1},

$$
m_{2} \geq d_{2}\left(w_{i^{\prime}}, H-W_{i}\right)+d_{2}\left(w_{1}, H-w_{i^{\prime}}\right) \geq 2 d_{2}\left(w_{i^{\prime}}, H-W_{i}\right) \geq 2(n-i) .
$$

Also, $i \leq t-1$. Hence $m \geq 1+m_{2} \geq 1+2(n-i) \geq 2 n-2 t+3$. So, by $12,2 n-2 t+$ $3 \leq n-3+\frac{n-2}{t}$. This gives $0 \leq 2 t^{2}-(n+6) t+(n-2)$, but for $2 \leq t \leq \frac{n-2}{2}$, this expression is at most -6 .

Case 4.2: W_{i} is incident to exactly $\left\lfloor\frac{n-2}{t}\right\rfloor+i-1$ graph edges. If there exists some $w_{i+1} \in V(H)-W_{i}$ not adjacent to W_{i} in H_{2}, then we can map v_{i+1} onto this w_{i+1}. Hence, we may assume that $i+\left\lfloor\frac{n-2}{t}\right\rfloor+i-1 \geq n$. This yields $0 \leq 2 t^{2}-(n+3) t+(n-2)$, but for $2 \leq t \leq \frac{n-2}{2}$, this expression is at most -3 .

So, we can pack T into H in such a way that at least $\left\lfloor\frac{n-2}{t}\right\rfloor+t-1$ graph edges of H are covered. Let $G^{\prime}=G-v_{1}-v_{2}-\cdots-v_{t}$ and $H^{\prime}=H-w_{1}-w_{2}-\cdots-w_{t}$. Since by (7), $\left\lfloor\frac{n-2}{t}\right\rfloor \geq 2$, Lemma 7 and (10) yield that H^{\prime} has a universal vertex. But

$$
\left|E\left(H^{\prime}\right)\right| \leq n-3+\left\lfloor\frac{n-2}{t}\right\rfloor-\left\lfloor\frac{n-2}{t}\right\rfloor-t+1=n-t-2,
$$

a contradiction.

Case 5: $t \geq 3$ and $\Delta\left(H_{2}\right) \leq\left\lfloor\frac{n-2}{t}\right\rfloor-1$. By Corollary 2, $\Delta\left(H_{2}\right) \geq 2$. Hence $2 \leq$ $\left\lfloor\frac{n-2}{t}\right\rfloor-1$, which yields $t \leq(n-2) / 3$. Define $v_{1}, v_{2}, \ldots, v_{t}$ as in Case 4 . We map v_{1} to a vertex w_{1} of maximum degree in H_{2}. Since $\Delta\left(H_{2}\right) \geq 2$, we may proceed as in Case 4 , to get a packing of T into H, which covers at least $\Delta\left(H_{2}\right)+t-1 \geq t+1$ graph edges in H. Again by Lemma 7 and (10), H^{\prime} has a universal vertex, say z. Then z is contained in at least $n-t-1-\Delta\left(H_{2}\right)$ hyperedges in H. Hence, $m-m_{2} \geq n-t-\left\lfloor\frac{n-2}{t}\right\rfloor \geq n-t-\frac{n-2}{t}$. We also have that $m-m_{2} \leq 2 n-3-\left(l_{2}+m_{2}\right)-\left(l-l_{2}\right)$. These inequalities together give

$$
\begin{equation*}
\left(l_{2}+m_{2}\right)+\left(l-l_{2}\right) \leq n-3+t+\frac{n-2}{t} . \tag{13}
\end{equation*}
$$

By Lemma 5, $l_{2}+m_{2}>\sqrt{2}(n-2)$.
We consider two cases.
Case 5.1: $l-l_{2} \geq 2$. Then by (13) and Lemma 5 we have $\sqrt{2}(n-2)+2<$ $n-3+t+\frac{n-2}{t}$. As $n-3+t+\frac{n-2}{t}$ achieves its maximum for extremal values of t, we need only to check the inequality for $t=3$ and $t=\frac{n-2}{3}$. For $t=3$ we get $\sqrt{2}(n-2)<(4 / 3)(n-2)$ and for $t=\frac{n-2}{3}$ we get $\sqrt{2}<4 / 3$; both inequalities are false.

Case 5.2: $l-l_{2}=1$. By (13), we have $l_{2}+m_{2} \leq n-2+t+\frac{n-2}{t}$. For fixed n, the expression $n-2+t+\frac{n-2}{t}$ achieves its maximum at extremal values of t. So, we check $t=3$ and $t=\frac{n-2}{3}$. In either case,

$$
\begin{equation*}
l_{2}+m_{2} \leq \frac{4(n-2)}{3}+1 \tag{14}
\end{equation*}
$$

Since $l-l_{2}=1$ and $l+m \leq 2 n-3$, by Lemma 3, the number $x(G, H)$ of "bad" bijections from $V(G)$ onto $V(H)$ satisfies

$$
\begin{aligned}
& x(G, H) \leq m_{2} l_{2} 2(n-2)!+3!(n-3)!\left(m-m_{2}\right) \\
& \leq m_{2} l_{2} 2(n-2)!+3!(n-3)!\left(2 n-3-l_{2}-1-m_{2}\right)
\end{aligned}
$$

So, denoting $y:=\left(l_{2}+m_{2}\right) / 2$, we have

$$
x(G, H) \leq h(y):=y^{2} 2 \cdot(n-2)!+3!(n-3)!(2 n-4-2 y) .
$$

Since $y \geq m_{2} / 2>n / 4 \geq 2$, we have $h^{\prime}(y)=4 \cdot(n-2)!y-3!(n-3)!2=4 \cdot(n-$ $3)$! $((n-2) y-3)>0$. Thus by (14),

$$
\begin{aligned}
& \frac{x(G, H)}{n!} \leq \frac{h(2(n-2) / 3+1 / 2)}{n!}=\frac{|X|}{n!} \\
& \leq \frac{1}{n!}\left[2(n-2)!\left(\frac{2}{3}(n-2)+\frac{1}{2}\right)^{2}+3!(n-3)!\frac{2 n-7}{3}\right] \\
& =\frac{16 n^{3}-72 n^{2}+177 n-302}{18 n(n-1)(n-2)} .
\end{aligned}
$$

As this is less than 1 for $n \geq 8, x(G, H)<n!$, a contradiction to (3).

REFERENCES

[1] B. Bollobás and S. E. Eldridge, Packing of graphs and applications to computational complexity, J Comb Theory Ser B 25 (1978), 105-124.
[2] P. A. Catlin, Subgraphs of graphs. I. Disc. Math. 10 (1974), 225-233.
[3] P. A. Catlin, Embedding subgraphs and coloring graphs under extremal degree conditions, Ph.D. thesis, Ohio State University, Columbus, 1976.
[4] P. Naroski, Packing of nonuniform hypergraphs-product and sum of sizes conditions, Discuss. Math. Graph Theory 29 (2009), 651-656.
[5] M. Pilśniak and M. Woźniak, A note on packing of two copies of a hypergraph, Discuss Math Graph Theory 27 (2007), 45-49.
[6] M. Pilśniak and M. Woźniak, On packing of two copies of a hypergraph, Discrete Math Theor Comp Sci 13 (3) (2011), 67-74.
[7] N. Sauer and J. Spencer, Edge disjoint placement of graphs, J Combin Theory Ser B 25 (1978), 295-302.
[8] S. K. Teo and H. P. Yap, Packing two graphs of order n having total size at most $2 n-2$, Graphs Combin 6 (1990), 197-205.
[9] M. Woźniak, Packing of graphs, Dissertationes Math. 362 (1997), 1-78.
[10] H. P. Yap, Packing of graphs-A survey, Disc Math 72 (1988), 395-404.

[^0]: Contract grant sponsor: NSF; Contract grant number: DMS-0965587; Contract grant sponsor: Russian Foundation for Basic Research; Contract grant number: 09-01-00244.

 Journal of Graph Theory
 © 2012 Wiley Periodicals, Inc.

