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Abstract: Two n-vertex hypergraphs G and H pack, if there is a bijection
f : V (G) → V (H ) such that for every edge e ∈ E (G), the set {f (v ) : v ∈ e}
is not an edge in H. Extending a theorem by Bollobás and Eldridge on graph
packing to hypergraphs, we show that if n ≥ 10 and n-vertex hypergraphs

Contract grant sponsor: NSF; Contract grant number: DMS-0965587; Contract
grant sponsor: Russian Foundation for Basic Research; Contract grant number:
09-01-00244.

Journal of Graph Theory
C© 2012 Wiley Periodicals, Inc.
222



A HYPERGRAPH VERSION OF A GRAPH PACKING THEOREM 223

G and H with |E (G)| + |E (H )| ≤ 2n − 3 with no edges of size 0, 1, n − 1
and n do not pack, then either

(i) one of G and H contains a spanning graph-star, and each vertex of
the other is contained in a graph edge, or

(ii) one of G and H has n − 1 edges of size n − 2 not containing a given
vertex, and for every vertex x of the other hypergraph some edge of
size n − 2 does not contain x.

C© 2012 Wiley Periodicals, Inc. J. Graph Theory 74: 222–235, 2013
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1. INTRODUCTION

By a hypergraph we mean a pair (V, E ) where V is a finite set (elements of V are called
vertices) and E is a family of subsets of V (members of E are called edges). An empty
edge is also allowed. An important instance of combinatorial packing problems is that
of (hyper)graph packing. Two n-vertex hypergraphs G and H pack, if there is a bijection
f : V (G) → V (H) such that for every edge e ∈ E(G), the set { f (v) : v ∈ e} is not an
edge in H. For graphs, this means that G is a subgraph of the complement H of H, or,
equivalently, H is a subgraph of the complement G of G.

Some milestone results on extremal graph packing problems were obtained in the
seventies. At the same time, fundamental papers by Bollobás and Eldridge [1] and Sauer
and Spencer [7] have appeared. The papers gave sufficient conditions for packing of
graphs under different conditions. Some of these results were also obtained by Catlin in
his Ph.D. Thesis [3] and in [2]. Surveys on the topic are [10] and [9].

In particular, Sauer and Spencer [7] proved the following.

Theorem 1 ([7]). Let G and H be n-vertex graphs with |E(G)| + |E(H)| < 1.5n − 1.
Then G and H pack.

The result is sharp, since if H is the star K1,n−1 and G is the graph with �n/2� edges
and minimum degree 1, then |E(G)| + |E(H)| = �1.5n� − 1 but G and H do not pack.
An important feature of this example is that H has a universal vertex. By a universal
vertex in a hypergraph F we mean a vertex v such that for every other vertex w ∈ V (F ),
the graph edge vw belongs to E(F ).

Bollobás and Eldridge [1] obtained the following refinement of Theorem 1.

Theorem 2 ([1]). Let G and H be n-vertex graphs with |E(G)| + |E(H)| ≤ 2n − 3. If
neither of G and H has a universal vertex, and the pair {G, H} is none of the seven pairs
in Figure 1, then G and H pack.

Corollary 1 in [1] yields that Theorem 2 can be restated as follows.

Theorem 3 ([1]). Let G and H be n-vertex graphs with |E(G)| + |E(H)| ≤ 2n − 3.
Then G and H do not pack if and only if either {G, H} is one of the seven pairs in
Figure 1, or one of G and H has a universal vertex and the other has no isolated vertices.
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FIGURE 1. Bad pairs in Theorem 2.

To see that Theorem 3 yields Theorem 1, observe that for each pair (G, H) in
Figure 1, |E(G)| + |E(H)| = 2n − 3 ≥ 1.5n − 1 and that if H has a universal vertex
and G has no isolated vertices, then |E(G)| + |E(H)| ≥ (n − 1) + �n/2�.

If G and H are n-vertex nonuniform hypergraphs, then packing may become more
complicated. By i-edge we will mean an edge of size i. Sometimes, edges of size 2 will
be called graph edges, and edges of size at least 3 will be called hyperedges.

Edges of size 0, 1, n − 1 or n make harder for hypergraphs to pack. For example, ifV (G)

is an edge in G and V (H) is an edge in H, then G and H do not pack. Similarly, if ∅ is an
edge in both G and H, then G and H do not pack. Also if the total number of 1-edges or the
total number of n − 1 edges in G and H is at least n + 1, then G and H again do not pack.
These examples indicate that edges of size i and n − i behave similarly. Indeed, a bijection
f : V (G) → V (H) maps edge e ∈ E(G) onto edge g ∈ E(H) if and only if it maps set
V (G) − e onto V (H) − g. This motivates our notion of the orthogonal hypergraph: For
a hypergraph F , the orthogonal hypergraph F⊥ has the same set of vertices as F and
E(F⊥) := {V (F ) − e : e ∈ E(F )}. By definition, two n-vertex hypergraphs G and H
pack if and only if G⊥ and H⊥ pack.

Pilśniak and Woźniak [5] proved that if an n-vertex hypergraph G has at most n/2 edges
and neither ∅ nor V (G) is an edge in G, then G packs with itself. They also asked whether
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every such G packs with each n-vertex hypergraph H satisfying the same conditions.
Recently, Naroski [4] proved the following stronger result.

Theorem 4. Let G and H be n-vertex hypergraphs with no 0-edges and n-edges. If
|E(G)| + |E(H)| ≤ n, then G and H pack.

By the above examples, the bound of n in Theorem 4 is sharp. We will prove a
corresponding bound for n-vertex hypergraphs with no 0-, 1-, (n − 1)-, and n-edges.
This result also generalizes Theorem 3 and extends it to hypergraphs.

We define a bad pair of hypergraphs to be either one of the pairs (G(i), H(i)) in
Figure 1, or one of the pairs (G(i)⊥, H(i)⊥).

Our main result is the following.

Theorem 5. Let G and H be n-vertex hypergraphs with |E(G)| + |E(H)| ≤ 2n − 3
containing no 0-, 1-, (n − 1)-, and n-edges. Let |E(G)| ≤ |E(H)|. Then G and H do not
pack if and only if either

(i) (G, H) or (H, G) is a bad pair, or
(ii) H has a universal vertex and every vertex of G is incident to a graph edge, or

(iii) H⊥ has a universal vertex and every vertex of G⊥ is incident to a graph edge.

Since each of the graphs in Figure 1 has at most nine vertices, for n ≥ 10, the theorem
says that . . . G and H do not pack if and only if either H has a universal vertex and every
vertex of G is incident to a graph edge or H⊥ has a universal vertex and every vertex of G⊥

is incident to a graph edge. Note that the theorem is sharp even for graphs: for infinitely
many n there are n-vertex graphs Gn and Hn such that |E(G)| + |E(H)| = 2n − 2, neither
of Gn and Hn has a universal vertex, and Gn and Hn do not pack (see, e.g., [1, 8]).

In the same way Theorem 3 yields Theorem 1, Theorem 5 yields the following exten-
sion of Theorem 1 to hypergraphs.

Corollary 1. Let G and H be n-vertex hypergraphs with |E(G)| + |E(H)| < n − 1 +
�n/2� containing no 0-, 1-, (n − 1)-, and n-edges. Then G and H pack.

Very recently we have learned that Pilśniak and Woźniak [6] independently obtained
a weaker version of Theorem 5. They proved that every n-vertex hypergraph with n − 2
edges not containing 0-, 1-, (n − 1)-, and n-edges packs with itself.

To prove Theorem 5, we consider a counterexample (G, H) with the fewest vertices.
In the next section, we set up the proof and derive simple properties of (G, H). In
Section 3, we prove two more advanced properties of (G, H). In the last section, we
deliver the proof of Theorem 5.

2. PRELIMINARIES

Consider a counterexample (G, H) to Theorem 5 with the least number of vertices n. This
means that |E(G)| + |E(H)| ≤ 2n − 3, |E(G)| ≤ |E(H)|, neither (G, H) nor (H, G) is
a bad pair, G and H do not pack, and if H (respectively, H⊥) has a universal vertex, then
G (respectively, G⊥) has a vertex not incident with graph edges. If at least one of G, H,
G⊥, and H⊥ is an ordinary graph, then the statement holds by Theorem 3. So we will
assume that

each of G, H, G⊥, and H⊥ has at least one hyperedge. (1)
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Naroski [4] used the following hypergraph operation: For an n-vertex hypergraph F ,
the hypergraph F̃ is obtained from F by replacing each edge e ∈ E(F ) of size at least
(n + 1)/2 with V (F ) − e and deleting multiple edges if they occur. This operation has
the following useful property.

Lemma 1 ([4]). Let F1 and F2 be n-vertex hypergraphs with no edge with size less than
k and no edge with size greater than n − k. Then

(a) |E(F̃1)| ≤ |E(F1)| and |E(F̃2)| ≤ |E(F2)|,
(b) both F̃1 and F̃2 have no edges of size less than k and no edges of size greater than

� n
2�, and

(c) if F̃1 and F̃2 pack, then F1 and F2 pack.

Lemma 2. If H̃ has a universal vertex and every vertex of G̃ is incident to a graph edge,
then G and H pack.

Proof. Let S be the set of 2-edges of G̃ and H̃ that are 2-edges in G and H. Let S′

be the set of 2-edges of G̃ and H̃ whose complementary (n − 2)-edges exist in G and H.
Suppose that H̃ contains a universal vertex v. Then G̃ contains at most n − 2 edges and
hence some vertex of G̃ is contained in at most one 2-edge. We consider two cases.

Case 1: All 2-edges in H̃ that contain v are contained in S (respectively, S′). By the
symmetry between H and H⊥, we may assume that they all are in S. Then under the
conditions of the theorem, some vertex w ∈ V (G̃) is not contained in any edge in S. We
let H ′ be the hypergraph obtained from H by deleting v, and all 2-edges containing v, and
replacing each hyperedge e ∈ E(H) that contains v by e − v. We let G′ be the hypergraph
obtained from G by deleting w and replacing each edge e ∈ E(G) containing w by
the edge e − w. Then since |E(G′)| + |E(H ′)| ≤ 2n − 3 − (n − 1) = n − 2, Theorem 4
yields that G′ and H ′ pack. We extend this packing to a packing of G and H by mapping
v to w.

Case 2: Vertex v is contained in a 2-edge of H̃ that is not in S and in a 2-edge of H̃ that
is not in S′. Let w1 be a vertex of G̃, which is contained in exactly one 2-edge (if no such
vertex exists, then some vertex w of G̃ is not incident to 2-edges at all, and we proceed
as in Case 1 (deleting all 2-edges of H̃ incident with v)). Let w1w2 be the 2-edge in G̃
containing w1. By symmetry, we may assume that w1w2 ∈ S. Let vv′ be an edge of H̃,

which is not in S. We let H ′′ be the hypergraph obtained from H⊥ by first deleting v, v′,
and all 2-edges containing v and then removing v and v′ from each edge e that contains
any of them. We let G′′ be the hypergraph obtained from G⊥ by first deleting w1, w2, and
the edge w1w2 and then truncating all edges containing either of w1 and w2. Then since
|E(G′)| + |E(H ′)| ≤ 2n − 3 − (n − 1) − 1 = n − 3, Theorem 4 yields that G′′ and
H ′′ pack. We extend this packing to a packing of G and H by mapping v to w1 and v′ to w2.

�
In view of Lemmas 1 and 2, we will assume that G and H have no edges of size greater

than n
2 . We will study properties of the pair (G, H) and finally come to a contradiction.

Throughout the proof, for i ∈ {2, . . . , � n
2�}, Gi (respectively, Hi) denotes the subgraph

of G (respectively, of H) formed by all of its edges of size i, and di(v, G) (respectively,
di(v, H)) denotes the degree of vertex v in Gi (respectively, in Hi). In particular, G2

and H2 are formed by graph edges in G and H, respectively. Then we let li := |E(Gi)|
and mi := |E(Hi)|. Also, for brevity, let m := ∑n

i=2 mi, l := ∑n
i=2 li, m = m − m2 and
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l = l − l2. In other words, l is the number of hyperedges in G, and m is the number of
hyperedges in H. Recall that by the choice of G,

l ≤ n − 2. (2)

For n-vertex hypergraphs F1 and F2, let x(F1, F2) denote the number of bijections from
V (F1) onto V (F2) that are not packings. Since we have chosen G and H that do not pack,

x(G, H) = n!. (3)

A nice observation of Naroski is

Lemma 3 ([4]).

x(G, H) ≤ 2(n − 2)! m2l2 + 3!(n − 3)! ml. (4)

Proof. For edges e ∈ G and f ∈ H, let Xe f be the set of bijections in X that map the
edge e onto the edge f . Then

x(G, H) =
∣∣∣∣∣∣

⋃
e∈E(G), f ∈E(H)

Xe f

∣∣∣∣∣∣ ≤
∑
e, f

|Xe f | =
� n

2 �∑
i=2

∑
e, f :|e|=| f |=i

|Xe f |

=
� n

2 �∑
i=2

∑
e, f :|e|=| f |=i

i!(n − i)! =
� n

2 �∑
i=2

milii!(n − i)! ≤ 2(n − 2)!m2l2

+ 3!(n − 3)!

� n
2 �∑

i=3

mili ≤ 2(n − 2)!m2l2 + 3!(n − 3)!

� n
2 �∑

i=3

mi

� n
2 �∑

i=3

li

= 2(n − 2)!m2l2 + 3!(n − 3)! ml. �

Lemma 4. The number n of vertices in G is at least 8.

Proof. If n ≤ 5, then � n
2� ≤ 2, and G and H are graphs, a contradiction to (1).

Suppose now that n = 7. By (4), x(G, H) ≤ 2 · 5!m2l2 + (3!)(4!)ml. By (1), m ≥ 1 and
l ≥ 1. And the maximum of the expression 2 · 5!m2l2 + (3!)(4!)ml under the conditions
that m2 + l2 + m + l ≤ 11, m ≥ 1 and l ≥ 1 is attained at l2 = 4, m2 = 5, m = l = 1 and
is equal to

2 · 5! · 4 · 5 + (3!)(4!) = 4800 + 144 < 5040 = 7!,

a contradiction to (3).
Finally, suppose that n = 6. Similarly to the case for n = 7, x(G, H) ≤ 2 · 4!m2l2 +

(3!)2ml, m ≥ 1 and l ≥ 1. Since 2 · 4! ≥ (3!)2, for nonnegative integers m2, l2 and posi-
tive integers m, l, the maximum of the expression 2 · 4!m2l2 + (3!)2ml under the condition
that m2 + l2 + m + l ≤ 9 is exactly 6! and is attained only if m2 = l2 = 0, l = 4, and
m = 5. So, G and H are 3-uniform hypergraphs with 4 and 5 edges, respectively.

Now we show that even in this extremal case x(G, H) < 6!. In the proof of
Lemma 3, for every pair of edges e ∈ G and f ∈ H, we considered the cardinality of the set
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of bijections Xe f from V (G) onto V (H) that map the edge e onto the edge f and estimated
� := ∑

e∈E(G)

∑
f ∈E(H) |Xe f |. We will show that some bijection F : V (G) → V (H)

maps at least two edges of G onto two edges of H, thus this bijection is counted at
least twice in �. For this, it is enough to (and we will) find edges e1, e2 ∈ E(G) and
f1, f2 ∈ E(H) such that |e1 ∩ e2| = | f1 ∩ f2|, since in this case we can map e1 onto f1

and e2 onto f2.
If G has two disjoint edges e and e′, then any third edge of G shares one vertex with

one of e and e′ and two vertices with the other. So, we may assume that any two edges in
G intersect. Similarly, we may assume that any two edges in H intersect.

Now we show that

H has a pair of edges with intersection size 1 and a pair of edges with intersection

size 2. (5)

If the intersection of each two distinct edges in H contains exactly one vertex, then each
vertex belongs to at most two edges, which yields |E(H)| ≤ 2 · 6/3 = 4, a contradiction
to m = 5. Finally, suppose that | f1 ∩ f2| = 2 for all distinct f1, f2 ∈ E(H). If two vertices
in H, say v1 and v2, are in the intersection of at least three edges, then every other edge
also must contain both v1 and v2. Since n = 6 and m = 5, this is impossible. Hence, we
may assume that each pair of vertices is the intersection of at most two edges. Given the
edges {v1, v2, v3} and {v1, v2, v4}, every other edge must contain v3, v4, and one of v1 or
v2. Hence, each edge of H is contained in {v1, v2, v3, v4}. Thus, H has at most 4 edges, a
contradiction. This proves (5). Hence, the lemma holds. �

Lemma 5. m2l2 > (n−2)2

2 , where l2 (respectively, m2) is the number of graph edges in
G (respectively, in H).

Proof. Suppose that m2l2 = C ≤ (n−2)2

2 . It suffices to show that x(G, H) < n!. So,
by Lemmas 3 and 4, it is enough to show that for n ≥ 8 and any nonnegative integers
m2, l2 and positive integers m, l such that m2 + l2 + m + l ≤ 2n − 3, the expression
Y := 2(n − 2)! m2l2 + 3!(n − 3)! ml is less than n!. Since C ≤ (n−2)2

2 , m2 + l2 ≥ 2
√

C.
Therefore, m + l ≤ 2n − 3 − 2

√
C and so ml ≤ (n − 1.5 − √

C)2. It follows that

Y ≤ 2! (n − 3)!((n − 2)C + 3(n − 1.5 −
√

C)2)

= 2!(n − 3)!((n + 1)C + 3(n − 1.5)2 − 6(n − 1.5)
√

C).

The second derivative w.r.t. C of the last expression is positive, and so it is enough to
check C = 0 and C = (n−2)2

2 . If C = 0, then Y ≤ 2! (n − 3)!3(n − 1.5)2, which is less

than n! for n ≥ 8. Similarly, if C = (n−2)2

2 and n ≥ 8, then

Y

n!
<

2(n − 2)! (n−2)2

2 + 3!(n − 3)!
(
n − n−2√

2

)2

n!
=

(n − 2)3 + 6
(
n − n−2√

2

)2

n(n − 1)(n − 2)

= n3 − 6n2 + 12n − 8 + 6n2 − 6n(n − 2)
√

2 + 3(n − 2)2

n(n − 1)(n − 2)

= n3 − 6n(n − 2)
√

2 + 3n2 + 4

n(n − 1)(n − 2)
< 1,

a contradiction to 3. �
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Corollary 2. The number m2 of graph edges in G is greater than n/2.

Proof. Suppose that m2 ≤ n/2. By Lemma 5, l2m2 > (n−2)2

2 . Therefore

l2 >
(n − 2)2

2
· 2

n
> n − 4.

Also, by (2) and (1), l2 ≤ n − 3. So, l2 = n − 3, and thus l = n − 2 and m ≤ n − 1.
Hence by Lemma 3, for n ≥ 8

x(G, H) ≤ 2(n − 2)! m2(n − 3) + 3!(n − 3)! (m − m2) · 1
≤ 2 · (n − 3)!((n − 2)(n − 3)m2 + 3(n − 1 − m2))

≤ 2 · (n − 3)!((n − 2)(n − 3)
n

2
+ 3(0.5n − 1)) = (n − 2)!((n − 3)n + 3) < n!,

a contradiction to 3. �

3. TWO MORE LEMMAS

We need some definitions.

Definition. For a hypergraph F without 1-edges and A ⊂ V (F ), the hypergraph F − A
has vertex set V (F ) − A and E(F − A) := {e − A : e ∈ E(F ) and |e − A| ≥ 2}, where
multiple edges are replaced with a single edge.

An edge e of G belongs to a component C of G2 if strictly more than |e|/2 vertices of e
are in V (C). By definition, each e belongs to at most one component of G2. A component
C of G2 is clean if no hyperedge belongs to C. A clean tree-component of G is a clean
component of G2, which is a tree. In particular, each single-vertex component of G2 is
a clean tree-component. By definition, for each component C of G2, at least |V (C)| − 1
graph edges belong to C. Moreover,

if exactly |V (C)| − 1 edges belong to C, then C is a clean tree-component. (6)

Since l2 ≤ n − 3, G2 has at least three tree-components. Since l ≤ n − 2, by (6), at
least two components of G2 are clean tree-components. Since each nonclean component
has at least two vertices,

the smallest clean tree-component of G2 has at most max{ n
3 , n−2

2 } = n−2
2 vertices. (7)

Lemma 6. Among the smallest clean tree-components of G2, there exists a component
T such that G − T does not have a universal vertex.

Proof. Let T be the vertex set of a smallest clean tree-component of G2 and let
|V (T )| = t.

Case 1: |E(G)| ≤ n − 3. Since G − T is an n − t vertex hypergraph containing only
n − t − 2 edges, G − T cannot have a universal vertex.

Case 2: |E(G)| = n − 2. Assume that G − T contains a universal vertex, say w. Since
G − T has at most n − t − 1 edges, each edge in G − T is a graph edge connecting w
with some other vertex. In particular, every hyperedge in G has all but two of its vertices
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in T . Hence for each hyperedge e in G, the edge e − T connects an isolated vertex of G2

to w. Since G2 contains at least three components, we get that G2 contains at least one
isolated vertex. Then since any isolated vertex is a clean tree-component, t = 1.

Assume that G2 contains k isolated vertices v1, v2, . . . , vk. Each of these vertices then
forms a smallest clean tree-component. If G − vi does not contain a universal vertex for
some i ≤ k, we are done. Hence, we may assume that G − vi contains a universal vertex wi

for each i ≤ k. It follows that every edge of G has size at most 3 and contains wi for every
i. In particular, G2 has at most one nonsingleton component. Since l2 ≤ l − 1 ≤ n − 3,
G2 has at least three components. Hence, k ≥ 2. Furthermore, each of the v′

is is contained
in each 3-edge, hence k ≤ 3. If k = 3, then we have exactly one 3-edge v1v2v3 in G. But
then one the vertices of this edge is wi for some i and hence is incident with n − 3 graph
edges. Since n ≥ 8, vertex of degree n − 2 is not isolated. So, k = 2.

Since G contains a 3-edge, we have an edge v1v2w where w is necessarily the universal
vertex in G − v1 and in G − v2. Thus, v1v2w is the only 3-edge in G, and so wu is an edge
of G2 for every u ∈ V (G) − v1 − v2 − w.

Case 2.1: H2 contains an isolated vertex y. Since m = n − 1 and n ≥ 8, there exist
vertices y1 and y2 such that {y, y1, y2} is not a 3-edge in H. Then, we may map w to y, v1

to y1, and v2 to y2, and the rest of V (G) arbitrarily to the rest of V (H) to get a packing
of G and H, a contradiction to their choice.

Case 2.2: H2 has no isolated vertices. Since |E(H2)| ≤ n − 2, H2 necessarily contains
a vertex y of degree 1. Suppose yy1 ∈ E(H2). Since H contains at most n − 1 − n/2
3-edges, there exists some y2 ∈ V (H) which is not in a 3-edge with y and y1. Then we
may pack G and H as in Case 2.1. �

Lemma 7. Let t ≤ (n − 2)/2. Let T be a t-vertex clean tree in G2 and let S ⊂ V (H)

with |S| = t be such that S intersects at least t + 1 graph edges. If G[T ] and H[S] pack,
then either G′ := G − T or H ′ := H − S has a universal vertex.

Proof. Assume that the lemma does not hold. Since the (graph) edges of T and the
graph edges in H incident with S do not correspond to any edge in G′ and H ′, we have

|E(G′)| + |E(H ′)| ≤ |E(G)| + |E(H)| − (t − 1) − (t + 1) ≤ 2(n − t) − 3. (8)

We claim that if G′ and H ′ pack, then so do G and H. Indeed suppose that σ ′ is a packing
of G′ onto H ′ and σ ′′ is a packing of G[T ] onto H[S]. We will check that σ ′ ∪ σ ′′ is a
packing of G onto H. Suppose the contrary: that an edge A of G is mapped onto edge B
of H. If A ⊂ T , this is impossible, since σ ′′ is a packing of G[T ] onto H[S]. So, suppose
A′ := A ∩ V (G′) �= ∅ and B′ := B ∩ V (H ′) �= ∅. Since T is a clean component of G2,
|A′| ≥ 2. So, |B′| is also at least 2. Then, by the definition of G − T and H − S, A′ is an
edge of G′ and B′ is an edge of H ′. Hence σ ′ does not send A′ to B′, a contradiction to
the choice of A and B. Thus, since G and H do not pack, neither do G′ and H ′. So by (8)
and the minimality of n, either (G′, H ′) is a bad pair or the lemma holds. Hence we may
assume that (G′, H ′) is a bad pair.

Let k = n − t. Note that for each bad pair (G(i), H(i)) in Figure 1, the total number of
edges in G(i) and H(i) is 2|V (G(i))|− 3 = 2|V (H(i))| − 3. Hence, |E(H)| − |E(H −
S)| = t + 1 and S covers exactly t + 1 graph edges. Then

|E(G(i))| + |E(H(i))| = 2k − 3 and |V (G)| = |V (H)| ≤ 2k − 2. (9)
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By the definition of bad pairs, either all edges in G′ and H ′ are graph edges or all of them
are (k − 2)-edges. In the latter case, H has only t + 1 ≤ n/2 graph edges, a contradiction
to Corollary 2. Thus, we may assume that {G′, H ′} = {G(i), H(i)} in Figure 1 for some
i ∈ {1, . . . , 8}.

Case 1: l + m ≥ 2k − 3. Then l2 + m2 ≤ (2n − 3) − (2k − 3) = 2n − 2k, and hence
l2m2 ≤ (n − k)2. Since 4 ≤ k ≤ 9 and k ≥ (n + 2)/2, we get

l2m2 ≤ (n − k)2 ≤
(

n − 2

2

)2

<
(n − 2)2

2
,

a contradiction to Lemma 5.
Since we proved that l + m < 2k − 3 at least one edge of G′ or H ′ is a graph edge in

G or H. Furthermore, since T was a clean component, all the hyperedges of G become
graph edges of G′. Let eG be some such edge of G′. If none of the edges of H ′ was
obtained from a hyperedge of H, then it is enough to pack G′ − eG with H ′, which is
possible by Theorem 3. So, there are e ∈ E(G′) and f ∈ E(H ′) such that one of them is
a graph edge and the other is a hyperedge in (G, H).

Case 2: (G′, H ′) is one of the unordered pairs {G(1), H(1)}, {G(3), H(3)},
{G(4), H(4)}, {G(7), H(7)}. By symmetry, we may assume that e = x1x2 and f = y1y2.
In all cases, we define mapping φ(x j) = y j for j = 1, . . . , k. This mapping together with
the packing of G[T ] with H[S] yields a packing of G with H, a contradiction.

Case 3: (G′, H ′) is one of the unordered pairs {G(2), H(2)}, {G(5), H(5)},
{G(6), H(6)}. By symmetry, we may assume that e = x1x2 and either f = y1y2 or
f = yk−1yk. If f = y1y2, then we let φ(x j) = y j for j = 1, . . . , k, and if f = yk−1yk,
then we let φ(x j) = yk+1− j for j = 1, . . . , k. �

Remark. Practically, the same proof will verify the lemma with the roles of G and H
switched, that is, with T being be a t-vertex clean tree in H2 and S being a subset of V (G)

with |S| = t such that S intersects at least t + 1 graph edges in G. The only difference is
that if all edges of G′ and H ′ are (k − 2)-edges, then H has only t − 1 ≤ n/2 graph edges
(those that are the graph edges of T ), and we get the same contradiction to Corollary 2.

4. PROOF OF THEOREM 5

By Lemma 6, there is a smallest clean tree-component T of G2 such that

G − T does not contain a universal vertex. (10)

We let t = |V (T )|.
Case 1: t = 1. Let V (T ) = {u}. By Corollary 2, �(H2) ≥ 2. Let w ∈ V (H) with

d2(w, H) = �(H2). Let G′ = G − u and let H ′ = H − w. By Lemma 7 and (10), H ′

contains a universal vertex, say w′.
Let y = �(H2). Since H contains at least n − 2 edges forming the star in H ′ plus y graph

edges incident to w, we get that l + (n − 2) + y ≤ l + m ≤ 2n − 3. Since l2 ≤ l − 1, we
get l2 + y ≤ n − 2. By Lemma 5, m2 > (n−2)2

2l2
. Also, w′ is contained in at least n − 2 − y

3-edges, hence

(l2 + 1) + (n − 2)2

2l2
+ (n − 2 − y) < l + m ≤ 2n − 3,
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which gives that l2 − y + (n−2)2

2l2
< n − 2. Adding these expressions gives

(l2 + y) + (
l2 − y + (n − 2)2

2l2

)
< 2(n − 2)

or l2 + (n−2)2

4l2
< n − 2. This can be rewritten as (2l2 − (n − 2))2 < 0 which is false. This

contradiction finishes Case 1, so below we assume that t > 1.
Case 2: t = 2. Let V (T ) = {v1, v2}. If H contains a vertex w with d2(w, H) > n/2,

let w′ be a nonneighbor of w in H2. Then G′ = G − v1 − v2, and H ′ = H − w − w′ are
(n − 2)-vertex graphs with |E(G′)| + |E(H ′)| < 3(n−2)−2

2 , so G′ and H ′ pack by the
minimality of n (we simply apply Corollary 1). Mapping v1 to w and v2 to w′ will
complete the packing of G with H. So, �(H2) ≤ n/2.

Case 2.1: �(H2) ≥ 3. Given nonadjacent vertices w1 and w2 in H2 with d2(w1, H) =
�(H2), we let G′ = G − v1 − v2 and H ′ = H − w1 − w2. By Lemma 7 and (10), H ′

contains a universal vertex.
Let y = �(H2) ≤ n/2. Then l + (n − 3) + y ≤ l + m ≤ 2n − 3. Since H ′ contains

a universal vertex, m − m2 ≥ n − 3 − y, so l + m2 + (n − 3 − y) ≤ l + m ≤ 2n − 3.

Adding these gives 2(2n − 3) ≥ 2l + m2 + 2(n − 3), or

2n ≥ 2l + m2. (11)

By Lemma 5, l2 > (n−2)2

2m2
. So if l − l2 ≥ 2 or m − m2 ≥ n − 1 − y, then 2n > 4 + m2 +

(n−2)2

m2
. And since m2+ n−2)2

m2
≥ 2(n − 2), we get 2n > 2n, a contradiction. Hence we

may assume that l − l2 = 1 and that m − m2 ≤ n − 2 − y. Furthermore, if l2m2 ≤ (n−1)2

2 ,
Lemma 3 gives

x(G, H) ≤ 2(n − 2)!
(n − 1)2

2
+ 3!(n − 3)! 1(n − 2 − y)

≤ 2(n − 2)!
(n − 1)2

2
+ 3!(n − 3)! 1(n − 5)

= (n − 1)!

[
(n − 1) + 6(n − 5)

(n − 1)(n − 2)

]
< n! (since n ≥ 8),

a contradiction to (3). Thus l2m2 > (n−1)2

2 which gives l = 1 + l2 > 1 + (n−1)2

2m2
. Applying

this to (11), we obtain 2n > 2 + m2 + (n−1)2

m2
≥ 2 + 2(n − 1) = 2n, a contradiction.

Case 2.2: �(H2) ≤ 2. By Corollary 2, �(H2) ≥ 2. Thus �(H2) = 2. Let w1 be a vertex
with d2(w1, H) = 2. If there exists some w2 in H with w1w2 /∈ E(H) and d2(w2, H) ≥ 1,
then we proceed as in Case 2.1. Hence we may assume that every vertex in H2 that is
not adjacent to w1 is an isolated vertex. We then have that m2 ≤ 3, and m2l2 ≤ 3(n − 3).
Lemma 5 then gives that 3(n − 3) > (n − 2)2/2 or (n − 5)2 < 3, a contradiction to
n ≥ 8.

Case 3: t ≥ 3 and H2 has an isolated vertex w. Let y be a leaf of T and let x be the
neighbor of y in G2. Let G′ = G − x and let H ′ = H − w. Since t ≥ 3, d2(x, G) ≥ 2 and
hence |E(G′)| ≤ n − 4. Therefore, |E(G′)| + |E(H ′)| ≤ 2(n − 1) − 3, and G′ does not
have a universal vertex. Thus by the remark to Lemma 7, H ′ has a universal vertex, say
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w′. Let G′′ = G′ − y and let H ′′ = H ′ − w′. Since w′ was universal in H ′,

|E(G′′)| + |E(H ′′)| = |E(G′)| + |E(H ′)| − (n − 2) ≤ 2(n − 1) − 3 − (n − 2)

= n − 3 <
3(n − 2) − 2

2
.

So by the minimality of n and Corollary 1, G′′ and H ′′ pack. We may then extend the
packing of G′′ and H ′′ to a packing of G and H by mapping x to w and y to w′. This
finishes Case 3.

If n1 vertices of G are in clean tree-components, then l ≥ n1(t−1)

t + (n − n1). Moreover,
if n = n1, then (since G has a hyperedge) l ≥ 1 + n1(t−1)

t ≥ 2 + (n−2)(t−1)

t . Since n − n1 �=
1, we conclude that l ≥ n − � n−2

t �. So

m ≤ 2n − 3 − l ≤ n − 3 +
⌊

n − 2

t

⌋
. (12)

We consider two cases depending on the maximum degree of H2.
Case 4: t ≥ 3 and �(H2) ≥ � n−2

t �. Let w1 be a vertex of maximum degree in H2.
Let v1 be a leaf in T and choose v2, v3, . . . , vt in T so that for each i with 2 ≤ i ≤ t,
the set {v1, v2, . . . , vi} induce a tree in G2 with vi as a leaf with neighbor v(i−1)′ . We
map v1 to w1 and proceed by induction to pack V (T ) into V (H) so that for every
i = 1, . . . , t, the image, Wi, of {v1, v2, . . . , vi} is incident to at least � n−2

t � + i − 1 graph
edges. Assume that v1, v2, . . . , vi have been mapped in this way to w1, w2, . . . , wi, so that
Wi = {w1, w2, . . . , wi}. In particular, Wi is incident to at least � n−2

t � + i − 1 graph edges
in H.

Case 4.1: Wi is incident to at least � n−2
t � + i graph edges. It suffices to map vi+1 to a

vertex wi+1 in V (H) such that for each j ≤ i, wj �= wi+1 and wjwi+1 is not an edge. Since
vi+1 is adjacent only to vi′ in {v1, v2, . . . , vi}, if i + d2(wi′, H − Wi) < n, then we can
choose as wi+1 any vertex in V (H) − Wi not adjacent to wi′ in H2. Hence we may assume
that d2(wi′, H − Wi) ≥ n − i. Since G2 contains no isolated vertices, by the choice of G
and H, �(H2) ≤ n − 2, so i �= 1. Since v1 is a leaf in T and i ≥ 2, i′ �= 1. So, by the
choice of w1,

m2 ≥ d2(wi′, H − Wi) + d2(w1, H − wi′ ) ≥ 2d2(wi′, H − Wi) ≥ 2(n − i).

Also, i ≤ t − 1. Hence m ≥ 1 + m2 ≥ 1 + 2(n − i) ≥ 2n − 2t + 3. So, by 12, 2n − 2t +
3 ≤ n − 3 + n−2

t . This gives 0 ≤ 2t2 − (n + 6)t + (n − 2), but for 2 ≤ t ≤ n−2
2 , this

expression is at most −6.
Case 4.2: Wi is incident to exactly � n−2

t � + i − 1 graph edges. If there exists some
wi+1 ∈ V (H) − Wi not adjacent to Wi in H2, then we can map vi+1 onto this wi+1. Hence,
we may assume that i + � n−2

t � + i − 1 ≥ n. This yields 0 ≤ 2t2 − (n + 3)t + (n − 2),
but for 2 ≤ t ≤ n−2

2 , this expression is at most −3.
So, we can pack T into H in such a way that at least � n−2

t � + t − 1 graph edges of H
are covered. Let G′ = G − v1 − v2 − · · · − vt and H ′ = H − w1 − w2 − · · · − wt . Since
by (7), � n−2

t � ≥ 2, Lemma 7 and (10) yield that H ′ has a universal vertex. But

|E(H ′)| ≤ n − 3 +
⌊

n − 2

t

⌋
−

⌊
n − 2

t

⌋
− t + 1 = n − t − 2,

a contradiction.
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Case 5: t ≥ 3 and �(H2) ≤ � n−2
t � − 1. By Corollary 2, �(H2) ≥ 2. Hence 2 ≤

� n−2
t � − 1, which yields t ≤ (n − 2)/3. Define v1, v2, . . . , vt as in Case 4. We map v1 to a

vertex w1 of maximum degree in H2. Since �(H2) ≥ 2, we may proceed as in Case 4, to
get a packing of T into H, which covers at least �(H2) + t − 1 ≥ t + 1 graph edges in H.
Again by Lemma 7 and (10), H ′ has a universal vertex, say z. Then z is contained in at least
n − t − 1 − �(H2) hyperedges in H. Hence, m − m2 ≥ n − t − � n−2

t � ≥ n − t − n−2
t .

We also have that m − m2 ≤ 2n − 3 − (l2 + m2) − (l − l2). These inequalities together
give

(l2 + m2) + (l − l2) ≤ n − 3 + t + n − 2

t
. (13)

By Lemma 5, l2 + m2 >
√

2(n − 2).
We consider two cases.
Case 5.1: l − l2 ≥ 2. Then by (13) and Lemma 5 we have

√
2(n − 2) + 2 <

n − 3 + t + n−2
t . As n − 3 + t + n−2

t achieves its maximum for extremal values of
t, we need only to check the inequality for t = 3 and t = n−2

3 . For t = 3 we get√
2(n − 2) < (4/3)(n − 2) and for t = n−2

3 we get
√

2 < 4/3; both inequalities are
false.

Case 5.2: l − l2 = 1. By (13), we have l2 + m2 ≤ n − 2 + t + n−2
t . For fixed n, the

expression n − 2 + t + n−2
t achieves its maximum at extremal values of t. So, we check

t = 3 and t = n−2
3 . In either case,

l2 + m2 ≤ 4(n − 2)

3
+ 1. (14)

Since l − l2 = 1 and l + m ≤ 2n − 3, by Lemma 3, the number x(G, H) of “bad”
bijections from V (G) onto V (H) satisfies

x(G, H) ≤ m2l22(n − 2)! + 3!(n − 3)!(m − m2)

≤ m2l22(n − 2)! + 3!(n − 3)!(2n − 3 − l2 − 1 − m2).

So, denoting y := (l2 + m2)/2, we have

x(G, H) ≤ h(y) := y22 · (n − 2)! + 3!(n − 3)!(2n − 4 − 2y).

Since y ≥ m2/2 > n/4 ≥ 2, we have h′(y) = 4 · (n − 2)!y − 3!(n − 3)!2 = 4 · (n −
3)!((n − 2)y − 3) > 0. Thus by (14),

x(G, H)

n!
≤ h(2(n − 2)/3 + 1/2)

n!
= |X |

n!

≤ 1

n!

[
2(n − 2)!

(
2

3
(n − 2) + 1

2

)2

+ 3!(n − 3)!
2n − 7

3

]

= 16n3 − 72n2 + 177n − 302

18n(n − 1)(n − 2)
.

As this is less than 1 for n ≥ 8, x(G, H) < n!, a contradiction to (3).
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