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Abstract: A graph G is equitably k-choosable if for every k-list assign-
ment L there exists an L-coloring of G such that every color class has at
most �|G|/k� vertices. We prove results toward the conjecture that ev-
ery graph with maximum degree at most r is equitably (r + 1)-choosable.
In particular, we confirm the conjecture for r ≤ 7 and show that every
graph with maximum degree at most r and at least r3 vertices is equitably
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(r + 2)-choosable. Our proofs yield polynomial algorithms for correspond-
ing equitable list colorings. C© 2012 Wiley Periodicals, Inc. J. Graph Theory 74: 309–334, 2013
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1. INTRODUCTION

In several applications of graph coloring such as the mutual exclusion scheduling prob-
lem, scheduling in communication systems, construction timetables, and round-a-clock
scheduling (see [1, 11, 12]), there is an additional requirement that color classes be not
so large or be of approximately the same size. A model imposing such a requirement is
equitable coloring—a proper coloring such that color classes differ in size by at most
one. Perhaps these applications make even more sense in the model of equitable list
coloring.

First we formalize these notions. Let G be a graph. An equitable k-coloring of G is a
proper coloring such that any two color classes differ in size by at most one. In particular,
each color class in an equitable k-coloring of G has size at most �|G|/k�. Hajnal and
Szemerédi [4] answered a question of Erdős [2] by proving that if the maximum degree,
�(G), of a graph G is strictly less than k, then G has an equitable k-coloring. In this
article, we investigate list-coloring versions of this theorem.

A list-assignment for G is a function L that assigns a set (list) L(v) of colors to each
v ∈ V (G). For a list-assignment L, an L-coloring f of G is a proper coloring of G such
that f (v) ∈ L(v) for each v ∈ V (G). An L-coloring f is defined to be t-equitable if the
size of every color class is at most �|G|/t�. A k-list-assignment for G is a list-assignment
L such that |L(v)| = k for each v ∈ V (G). The graph G is equitably k-choosable if it has
a k-equitable L-coloring for every k-list assignment L. Notice that in the list setting, it is
unrealistic to require that any two color classes differ in size by at most one, since the list
of some vertex might only contain colors that are in no other lists, while all other lists
could be identical. In [8] the following theorem is proved:

Theorem 1 (Kostochka, Pelsmajer, and West [8]). If G is a graph and k ≥
max{�(G), |G|/2}, then G is equitably k-choosable unless G contains Kk+1 or is Kk,k

(with k odd in the latter case). In particular, if k ≥ max{�(G) + 1, |G|/2} then G is
equitably k-choosable.

Since we will use the last sentence of Theorem 1, we give its short proof: Fix a k-list
assignment L for G. By the Hajnal–Szemerédi Theorem, G has an equitable k-coloring
p with classes of size at most 2. Let H be the complete k-partite graph whose parts are
the color classes of p. Erdős, Rubin, and Taylor [3] proved that every complete k-partite
graph whose partite sets have size at most 2 is k-list-colorable. So, H has an L-coloring
f , and f must be a k-equitable coloring of G, since the classes of f are refinements of
the classes of p.

The purpose of this article is to attack the following conjecture:

Conjecture 2 (Kostochka, Pelsmajer, and West [8]). Every graph G with �(G) ≤ r is
equitably (r + 1)-choosable.

Some progress has already been made. Pelsmajer [10] and independently Wang and
Lih [13] proved the following special cases:
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Theorem 3. Let G be a graph with �(G) ≤ r.

(a) ([10] and [13]) If r ≤ 3 then G is equitably (r + 1)-choosable.

(b) ([10]) G is equitably (2 + (r
2))-choosable and ([13]) equitably (r − 1)2-choosable.

In this article, we strengthen these results by proving:

Theorem 4. Let G be a graph with �(G) ≤ r.

(a) If r ≤ 7 and k ≥ r + 1 then G is equitably k-choosable.
(b) G is equitably k-choosable, if

k ≥ r +

⎧⎪⎨
⎪⎩

1 + r − 1

7
if r ≤ 30

r

6
if r ≥ 31

(c) If |G| ≥ r3 and k ≥ r + 2, then G is equitably k-choosable.
(d) If ω(G) ≤ r and |G| ≥ 3(r + 1)r8, then G is equitably (r + 1)-choosable.

If we could remove the restriction on the size of |G| in (d) then Conjecture 2 would
follow (see Proposition 41). The proof of Theorem 4 is based on our short proof
(see [6]) of the Hajnal–Szemerédi Theorem. However, the list setting introduces new
complications—not just that some colors may not be available for a vertex, but also that
there may be classes of various sizes. These difficulties require generalizations of our
previous techniques.

We shall prove each part of Theorem 4 using the same general set-up. This set-up will
be developed in the next three sections. In Section 5, we prove Statements (a), (b), and
(c), and in Section 6 we prove (d).

The original proof of the Hajnal–Szemerédi Theorem did not provide a polynomial
time algorithm for the coloring. Recently, Mydlarz and Szemerédi [9] and independently
the authors [5] provided such algorithms. Ideas of both teams were combined in [7]:

Theorem 5 ([7]). There exists an O(rn2) time algorithm that finds an (r + 1)-equitable
coloring for each n-vertex graph with maximum degree at most r.

The proofs of Theorem 3 in [10] yield a polynomial time algorithm that for r ≤ 3, a
graph G with �(G) ≤ r and an (r + 1)-list L for G produces an equitable L-coloring.
In Section 7 (Theorem 40), we provide polynomial time algorithms for each of the
colorings whose existence is asserted by Theorem 4(a), (b), and (c). In Section 8, we use
Theorem 4(d) to prove the following theorem.

Theorem 6. There is a deterministic algorithm that decides for each positive integer r
which of the following possibilities is true:

(a) Conjecture 2 holds for r, i.e., every graph G with �(G) ≤ r is (r + 1)-choosable.
(b) Only finitely many graphs G with �(G) ≤ r are not (r + 1)-choosable.
(c) Infinitely many graphs G with �(G) ≤ r are not (r + 1)-choosable.

We also use the techniques for the proof of Theorem 6 to provide (Theorem 44), for
each fixed integer r, a polynomial time algorithm that for any graph G with �(G) ≤ r
and any (r + 1)-list assignment L either L-colors G or decides that this is impossible.
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A. Notation

Our notation is mostly standard, but some possible exceptions include the following.
Let G = (V, E ) be a graph with x, y ∈ V and A, B ⊆ V . Set |G| := |V | and ‖G‖ :=
|E|. The subgraph of G induced by A is denoted by G[A]. Let N(x) := NG(x) denote
the neighborhood of x, and set NA(x) := N(x) ∩ A, when G is clear from the context.
Similarly, d(x) := |N(x)| and dA(x) := |NA(x)|. For digraphs, N−(x) denotes the in-
neighborhood of x and d−(x) := |N−(x)| denotes the in-degree of x. Also E(A, B) :=
{xy ∈ E : (x, y) ∈ A × B}. If x has a neighbor in A, we say that x is adjacent to A and
write x ∼ A; otherwise x is nonadjacent to A, and we write x � A. An x, y-path is a path
that begins with x and ends with y. An A, B-path is an x, y-path with x ∈ A and y ∈ B that
has no internal vertices in A ∪ B.

A coloring of G is a function f : V → C, where C is a set of colors. We identify f with
the family of labeled classes {Vγ : γ ∈ C}, where each Vγ := Vγ ( f ) := {v ∈ V : f (v) =
γ } is a (color) class of f . For a list assignment L, we may somewhat abuse notation by
treating Vγ and γ interchangeably, for example, by writing W ∈ L(v) when we mean
W = Vγ and γ ∈ L(v).

We write A − x for A \ {x} and A + x for A ∪ {x}. As usual for graphs, G − x :=
G[V − x]. For a positive integer n, the set {1, . . . , n} is denoted by [n].

2. SET-UP

We argue by contradiction. Let r ≥ 3 and k ≥ r + 1 be nonnegative integers, g = k −
r − 1, and suppose there exists a graph G := (V, E ) with �(G) ≤ r that is not equitably
k-choosable. (Conjecture 2 asserts that this is impossible even when g = 0; the parameter
g is the gap between the conjecture and what we are trying to prove). Choose such a G
that is edge-minimal, and let L be a k-list assignment that witnesses that G is not equitably
k-choosable. Let C := ⋃

x∈V L(x) be the set of colors that appear in the lists of L. Let s
be the integer such that

k(s − 1) < |G| ≤ ks. (1)

Thus every color class should have size at most s (but since G is a minimal counter
example, one will not). By Theorem 1, we may assume s ≥ 3.

By the minimality of G, for each xy ∈ E(G), the graph G − xy has an equitable L-
coloring with x and y in the same color class. Since |L(y)| > d(y), when we add back
the edge xy, we can move y to some other color class W ∈ L(y) to obtain a new coloring
with exactly one color class V + having size s + 1. Such a coloring f is said to be nearly
equitable. An h-class is a class with exactly h members. Similarly, an h−-class is a
nonempty class with less than h members; an h∗-class is a class with at least h members.

Construct the auxiliary digraph H := H( f ) as follows. The vertices of H are the
classes of f . A directed edge V ′V ′′ belongs to E(H) if there exists a vertex x ∈ V ′ such
that V ′′ ∈ L(x) and x � V ′′. In this case x is called a witness for the edge V ′V ′′, and notice
that if x is a witness for V ′V ′′ then we can obtain a new proper L-coloring by moving x
from V ′ to V ′′.

Let A0 := A0( f ) denote the family of s−-classes. Call a class U accessible, if there
exists a U,A0-path P in the digraph H. We say that the path P witnesses that U is
accessible. For every class U ∈ A0, the one-vertex path U witnesses that U is accessible.
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Let A := A( f ) denote the family of accessible classes, A0 := ⋃
A0 and A := ⋃

A.
Denote the number of accessible s-classes by c := |A \ A0|.

Let F be a spanning subgraph of H[A] with no directed cycles such that every vertex
has out-degree at most one in F . We call F a directed forest, and the vertices with out-
degree zero are called roots. Furthermore, chooseF so that its roots are exactly the classes
of A0. Then for every class U ∈ A, there exists a U,A0-path in F . For Z ∈ A \ A0 let
p(Z) be the out-neighbor of Z in F and pZ be a fixed witness of the edge Z p(Z). We say
that p(Z) is the parent of Z and Z is a child of p(Z). Let N−

F (W ) = {Z ∈ A : p(Z) = W }
and d−

F (W ) = |N−
F (W )|.

The following lemma shows the first of three ways that we can make progress toward
an equitable coloring. However, since we are arguing by contradiction, it is phrased
negatively.

Lemma 7. The large class V + is not accessible.

Proof. Suppose for a contradiction that P = V +U1 . . .Ut is a path in H that witnesses
that V + is accessible. Then moving the witness pV + to U1 and each witness pUi to Ui+1

results in an equitable L-coloring, contradicting the choice of G. �
Set B := V (G) − A and let B be the set classes contained in B. Note that all classes

in B − V + are s-classes, and by Lemma 7 the (s + 1)-class V + is also in B. Let B′ ⊆ B
be the family of classes U such that there exists a V +,U-path in H. The one-vertex
path V + witnesses that V + is in B′. Let B′ = ⋃

B′. Set b := |B| and b′ := |B′|. Then
|B| = sb + 1, |B′| = sb′ + 1, and |A| ≤ (k − b)s − 1. It is convenient to set ã := k − b.
Then |A| ≤ ãs − 1 and |L(v) ∩ A| ≥ ã for all vertices v. However, |A| might be bigger
than ã. It follows that:

∀v ∈ B′ ∀W ∈ L(v) \ B′, v ∼ W, dV\B′ (v) ≥ k − b′ and dB′ (v) ≤ b′ − 1 − g. (2)

∀v ∈ B ∀W ∈ L(v) ∩ A, v ∼ W, dA(v) ≥ k − b = ã and dB(v) ≤ b − 1 − g. (3)

The following proposition shows the utility of B′. In the proofs of nonlist versions
[4, 6], one could assume inductively that G[B] − y had an equitable b-coloring for any
y ∈ B. In the list setting, we only get this for y ∈ B′. For a set of classes D ⊆ C, let LD be
the restriction of L to D, i.e., LD(v) = L(v) ∩ D.

Proposition 8. For every y ∈ B′, graph G[B′] − y has a b′-equitable LB′-coloring and
graph G[B] − y has a b-equitable LB-coloring.

Proof. Obtain an equitable LB′-coloring of G[B′] − y by switching witnesses along a
V +,Vf (y)-path in H[B]. �

For a class W ∈ A, let M(W ) be the set of classes X ∈ A − W such that there is
no X,A0-path in H − W . Call Wterminal if M(W ) = ∅. Let A′ be the set of terminal
classes and A′ := ⋃

A′. Classes in A \ A′ are called nonterminal. Let t := |A \ A′| be
the number of nonterminal classes, and q := |A0 \ A′| be the number of nonterminal
s−-classes.

An edge zy is solo if Z := Vf (z) ∈ L(y) ∩ A, y ∈ B, and NZ(y) = {z}, i.e., z is the
only neighbor of y in Z. Ends of solo edges are called solo vertices, and are called solo
neighbors of each other. Let Sz denote the set of solo neighbors of z ∈ A and Sy denote
the set of solo neighbors of y ∈ B. For y ∈ B, set
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Sy := {X ∈ L(y) ∩ A : dX (y) = 1} and T y = {X ∈ A : dX (y) ≥ 1} \ Sy.

So Sy = {Vf (z) : z ∈ Sy}. Every class in L(y) ∩ A contains a neighbor of y; each class
X ∈ T y contains an extra neighbor of y, in the sense that either X /∈ L(y) or dX (y) ≥ 2.

Let y ∈ B′. Since y has neighbors in at least k − b′ color classes in L(y) \ B′, we have

|T y| ≤ r − (k − b′) − dB′ (y) = b′ − g − 1 − dB′ (y) (4)

and hence

|Sy| = |L(y) ∩ A \ T y| ≥ ã − |T y| ≥ ã − b′ + g + 1 + dB′ (y). (5)

The following lemma and its corollary show the second way that we can make progress.
Again they are phrased negatively.

Lemma 9. Suppose zy is a solo edge with z ∈ Z ∈ A and y ∈ B′. (a) For all U ∈
A ∩ L(z) − Z, if z � U then U ∈ M(Z). In this case, (b) if w witnesses an edge WZ on
a U,A0-path in H then yw ∈ E(G). In particular, (c) there exists W ∈ M(Z) ∩ N−

F (Z)

with ypW ∈ E.

Proof. By Proposition 8, B − y has a b-equitable LB-coloring. Suppose z � U . If
U /∈ M(Z) then there exists a U,A0-path P in H − Z. Moving z to U and y to Z − z
yields an a-equitable LC\B-coloring of A + y, and a (U + z),A0-path P , contradicting
Lemma 7. So z is only movable to classes in M(Z).

Let Q be a U,A0-path in H. Then there is an edge WZ ∈ E(Q), and possibly another
edge ZX ∈ E(Q). In the latter case, we have just seen that z does not witness ZX . If w
is a witness for WZ and yw /∈ E(G) then moving z to U and y to Z − z yields the same
contradiction as before. �

For y ∈ B′, set

T̃ y := {W ∈ A : ypW ∈ E(G) ∧ W ∈ M(p(W ))} and S̃y := Sy \ {p(W ) : W ∈ T̃ y}.
Notice that T̃ y ⊆ T y: If W ∈ L(y) and pW is the only neighbor of y in W , then we can
move y into W , move the witnesses along the W,A0-path in F , and apply Proposition 8
to B′ − y. This would yield an equitable L-coloring of G, a contradiction. Moreover,
Sy ∩ A′ ⊆ S̃y: If Z ∈ A′ then M(Z) = ∅, and so Z �= p(W ) for any W ∈ T̃ y.

The vertices in S̃y := Sy ∩ (
⋃

S̃y) are called good solo vertices. If z ∈ Sy is in a terminal
class then z is a good solo vertex. Good solo vertices in A play a role similar to solo
vertices in A′ in our previous proof [6], as seen by the following corollary.

Corollary 10. Let y ∈ B′ and z ∈ Z ∈ S̃y. If z ∈ S̃y, then z is adjacent to every class in
L(z) ∩ A − Z, and so dB(z) ≤ b − g.

Proof. Suppose z � U ∈ A ∩ L(z) − Z. By Lemma 9(a,c), U ∈ M(Z) and ypW ∈
E(G) for some W ∈ N−

F (Z). By the definition of T̃ y, W ∈ T̃ y. Thus p(W ) = Z /∈ S̃y, a
contradiction. �

Corollary 11. Every class W ∈ A has at most s − 1 vertices with solo neighbors in B′.

Proof. If |W | < s then this is trivial. Otherwise |W | = s and pW is defined. Since pW

is movable to p(W ) /∈ M(W ), Lemma 9(a) implies pW has no solo neighbor in B′. �
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Among all nearly equitable L-colorings of G, choose a coloring f such that

(C0) |A0| is as large as possible;
(C1) subject to (C0), |A| is as large as possible.

The following proposition collects easy facts about the above definitions.

Proposition 12. For all v ∈ X ∈ A \ A0 and Z ∈ A \ A′:

(a) If W ∈ L(v) is an (s − 1)−-class then v ∼ W.
(b) Each class W ∈ M(Z) is an s-class.
(c) Z is an (s − 1)∗-class.
(d) M(Z) ∩ A′ �= ∅.

Proof. Suppose (a) fails. Then after moving v from X to W , both X − v and W + v
are s−-classes. Thus |A0| increases by one, contradicting (C0).

Since Z /∈ A′, we have M(Z) �= ∅.

(b) Since there is no W,A0-path in H − Z, W /∈ A0; so W is an s-class.
(c) Let W ∈ M(Z) and P be a W,A0-path in H. Then only the last class of P is

an s−-class and by (a) it is an (s − 1)-class. Since Z is a vertex of P , it is an
(s − 1)∗-class, proving (c).

(d) Choose W ∈ M(Z) such that M(W ) is minimal. Then M(W ) = ∅, since X ∈
M(W ) implies M(X ) ⊂ M(W ), contradicting the minimality of W . So W ∈ A′,
proving (d). �

The following lemma and its corollary (phrased negatively) show our third way of
making progress.

Lemma 13. Suppose zy and zy′ are solo edges with z ∈ Z ∈ A, y ∈ B, y′ ∈ B′, and
yy′ /∈ E(G). Then there exists W ∈ M(Z) ∩ N−

F (Z) such that y′ is adjacent to every
witness of WZ.

Proof. Suppose that (*) there is no such W . Let f ′ be the equitable L-coloring of
G − z obtained by moving y′ to Z and applying Proposition 8 to B′ − y′.

We claim A( f ) ⊆ A( f ′) (after identifying Z with Z − z + y′): Consider U ∈ A( f ).
Let P be a U,V −-path in H( f ); if possible choose P so that Z /∈ V (P ); otherwise
U ∈ M( f )(Z), and we choose P ⊆ F ( f ). If Z /∈ V (P ) then P is also a U,V −-path in
H( f ′), and so U ∈ A( f ′). So suppose ZY ⊆ V (P ). If z were the witness for ZY , then
we would obtain an equitable L-coloring of G from f ′ by moving z to Y and switching
witnesses along YPV −, a contradiction. Finally suppose WZ ⊆ P . Then W ∈ N−

F ( f )(Z).
By (*) WZ has a witness, even in f ′. So again P ⊆ H( f ′), and U ∈ A( f ′).

Since k > r, z has no neighbors in some class U ∈ L(z) of f ′. If U ∈ A( f ′), then
we move z into U and move the witnesses along the U,A0-path in H( f ′) to obtain an
equitable L-coloring of G, a contradiction. Thus U ∈ B( f ′). Moving z to U extends f ′

to a nearly equitable L-coloring f ′′ of G. Since yz was a solo edge and yy′ /∈ E, y is
nonadjacent to Z − z + y′. Thus y witnesses that Vf ′′(y) ∈ A( f ′′) \ A( f ), contradicting
(C1). �

In light of Lemma 13, we call a solo edge zy′ with y′ ∈ B′useful if there exists y ∈ Sz ∩ B
such that yy′ /∈ E. Then by Lemma 13, there exists Z′ ∈ N−

F (Z) such that y′ pZ′ ∈ E.

Journal of Graph Theory DOI 10.1002/jgt



316 JOURNAL OF GRAPH THEORY

Corollary 14. If y′ ∈ B′ and z ∈ S̃y′
then y′ is adjacent to every y ∈ Sz . In particular,

|Sz ∩ B′| ≤ b′ − g.

Proof. By the definition of z ∈ S̃y′
, if W ∈ M(Z) ∩ N−

F (Z) then y′ is not adjacent to
the witness pW (Z) of WZ. So the contrapositive of Lemma 13 implies y′ is adjacent to
every y ∈ Sz.

Let y′ ∈ Sz ∩ B′. Using (2), yields

|Sz ∩ B′| ≤ dB′ (y′) + 1 ≤ b′ − g. �

Proposition 15. There exist at least two s−-classes.

Proof. We may assume |C| > r + 1, since otherwise all lists are identical and we are
done by the Hajnal–Szemerédi Theorem. Since |V +| = s + 1 and |G| ≤ ks, there is at
least one s−-class W . If W is the only s−-class, then by Proposition 12(c), |W | = s − 1
and there is an empty class X ∈ C; suppose X ∈ L(x) and x ∈ U . Move x to X . Then X
is an s−-class of the new L-coloring. Moreover, since s ≥ 3, each s−-class of f is still an
s−-class. So the new coloring has a larger |A0|. This contradicts (C0). �

Proposition 16. b ≤ r − 1 and so ã ≥ 2 + g. Moreover, c ≤ ã − 2.

Proof. Suppose b ≥ r. By (3) every vertex v ∈ B satisfies dA(v) ≥ ã. Thus e(A, B) ≥
ã|B| > ãrs. Since |A| < ãs, there exists x ∈ A with d(x) > r, a contradiction. This also
shows that if c = 0 then c ≤ ã − 2. If c ≥ 1 then there exists an A \ A0,A0-path, and
it ends in an (s − 1)-class by Proposition 12(a). By Proposition 15, there is another
nonempty class. Thus |A0| ≥ s. It follows that c ≤ |A|−s

s < ã − 1. �

A. Review of Notation

Unfortunately our arguments require a large amount of notation. The following table
provides a quick reference for the more common items.

Graphs Sets of color classes Vertex sets Numbers

G = (V, E ) A0 = {V : |V | < s} A0 = ⋃A0 c = |A \ A0|
�(G) ≤ r A = {V : V reaches A0} A = ⋃A ã = k − b
n = |G| = |V | A′ = {V ∈ A : V is terminal} A′ = ⋃A′ t = |A \ A′|
k = r + 1 + g M(V ) = {W ∈ A : V cuts W } |V +| = s + 1 q = |A0 \ A′|
k (s − 1) < n ≤ ks B = A = C \ A B = ⋃B b = |B|
H auxiliary digraph B′ = {V ∈ B : V + reaches V } B′ = ⋃B′ b′ = |B′|
F spanning forest

3. LOWER BOUNDS ON b′

In this section, we prove propositions that are useful for the case r > b + b′, or equiva-
lently, ã ≥ b′ + g + 2.
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Proposition 17. Let J be a maximal independent set in G[B′]. Then the number of solo
edges in E(A, J) is at least

∑
y∈J

|Sy| ≥ |J|(ã − b′ + g) + sb′ + 1. (6)

Proof. Since J is a maximal independent subset of B′,

∑
y∈J

(dB′ (y) + 1) ≥ |B′| = sb′ + 1. (7)

By (5) and (7)

∑
y∈J

|Sy| ≥ |J|(ã − b′ + g) +
∑
y∈J

(dB′ (y) + 1) ≥ |J|(ã − b′ + g) + sb′ + 1. �

Proposition 18. (a) b′ > ã − t + g and (b) 2b′ ≥ ã + 2g + 1. Furthermore, (c) if gs +
1 ≥ r(r − 2) then b′ ≥ ã + g.

Proof. Let J be a maximal independent set in G[B′] with V + ⊆ J.
Suppose (a) fails; then ã − t + g ≥ b′. Using this, (6) and |J| ≥ s, we have

∑
y∈J

|Sy ∩ A′| ≥
∑
y∈J

(|Sy| − |Sy \ A′|) ≥
∑
y∈J

|Sy| − |J|t

≥ |J|(ã + g − b′) + sb′ + 1 − |J|t ≥ s(ã + g − t) + 1. (8)

By Proposition 12(c), |A − A′| = ts − q, and so we have |A′| ≤ s(ã − t) + q − 1. By
Proposition 12(d,b), the number of s-classes in A′ is at least q, and by Corollary 11
each contains a vertex with no solo neighbor in B′. So A′ has at most s(ã − t) − 1 solo
vertices. By (8), some vertex z ∈ A′ has two solo neighbors in J ⊆ B′. This contradicts
Corollary 14, since J is independent.

Next suppose (b) fails; then 2b′ ≤ ã + 2g. Using (4), (5), (7) and |T̃ y| ≤ |T y|, we have

∑
y∈J

|S̃y| ≥
∑
y∈J

(|Sy| − |T y|) ≥ |J|(ã − 2b′ + 2g) + 2b′s + 2.

Since 2b′ ≤ ã + 2g and |J| ≥ s,

∑
y∈J

|S̃y| =
∑
y∈J

|S̃y| ≥ s(ã − 2b′ + 2g) + 2b′s + 2 > ãs > |A|.

Thus there exist y, y′ ∈ J with S̃y ∩ S̃y′ �= ∅. Since J is independent, this contradicts
Corollary 14. We conclude that 2b′ ≥ ã + 2g + 1.

Finally, suppose gs + 1 ≥ r(r − 2), and (c) fails; then b′ < ã + g. This time we
estimate

∑
y∈J |T̃ y| and

∑
y∈J |S̃y| differently:
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∑
y∈J

|T̃ y| ≤
∑

Z∈A−A0

dB′ (pZ ) ≤ (ã − 2)r ≤ (r − 2)r.

∑
y∈J

|S̃y| ≥
∑
y∈J

(|Sy| − |T̃ y|) ≥ |J|(ã − b′ + g) + sb′ + 1 −
∑
y∈J

|T̃ y|.
∑
y∈J

|S̃y| =
∑
y∈J

|S̃y| ≥ ãs − b′s + sb′ + 1 + gs − r(r − 2)

≥ ãs > |A|.
So again we contradict Corollary 14. �

4. DISCHARGING

In this section, we study the case r ≤ b + b′. This is equivalent to ã ≤ b′ + 1 + g. Before
proceeding, we refine the choice of the spanning forest F . For X ∈ C, let F[X] be the
subtree of F with root X , and F (X ) := F[X] − X . Notice that M(X ) ⊆ F (X ), but the
containment may be proper. Let U1, . . . ,Uq be the sequence of all s−-classes in A \ A′

ordered so that m(U1) ≥ · · · ≥ m(Uq), where m(U ) := |F[U]|. By Proposition 12(c),
every Ui is an (s − 1)-class. By Proposition 16, 2 + c ≤ ã. Thus,

if 2 ≤ j ≤ q then 2m(Uj) ≤ m(U1) + m(Uj) ≤ 2 + c ≤ ã. (9)

Among all eligible choices for F , choose one that:
(D1) minimizes the sum of the in-degrees of U2, . . . ,Uq.

Remark 1. The complexity of finding F could be high, but the proof, and in particular
the algorithm in Section 7, will use only the weaker property that the sum of the in-
degrees of U2, . . . , Uq in each eligible F ′ that can be obtained from F by deleting one
edge and adding one edge is at least this sum in F .

For a set D ⊆ A, the (2, 1)-discharging from (B′, B) to D is defined as follows: for
every y ∈ B and W ∈ (L(y) ∩ D), the vertex y distributes a charge of 1 evenly among its
neighbors in W , and in addition, if y ∈ B′ then y distributes another charge of 1 evenly
among its neighbors in W . For z ∈ Z ∈ D, let ch(z) be the total charge distributed to z
and ch(Z) = ∑

z∈Z ch(z). Then

ch(z) ≤ dB(z) + |Sz ∩ B′|.

Proposition 19. Suppose x ∈ X ∈ A′. Consider the (2, 1)-discharging from (B′, B) to
{X}. Then the following hold:

(a) if Sx ∩ B′ �= ∅ then ch(x) ≤ b + b′ − 2g;
(b) if X ∈ M(Uj) and Sx ∩ B′ = ∅ then ch(x) ≤ r − ã + m(Uj); and
(c) if X ∈ M(Uj) and 2 ≤ j ≤ q then ch(X ) < s(b + b′ − 2g) − 1.

Proof.

(a) Since x ∈ Sy, by Corollary 10, dB(x) ≤ b − g. By Corollary 14, Sx ∩ B′ is a clique.
By (2), dB′ (y) ≤ b′ − 1 − g for all y ∈ B′. Thus |Sx ∩ B′| ≤ b′ − g. By (4),

ch(x) ≤ dB(x) + |Sx ∩ B′| ≤ b − g + (b′ − g) ≤ b + b′ − 2g.
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(b) Since X ∈ M(Uj), x has a neighbor in every class of L(x) ∩ A \ F[Uj]. Thus

ch(x) ≤ dB(x) + |Sz ∩ B′| ≤ dB(x) ≤ r − ã + m(Uj).

(c) By (9), m(Uj) ≤ ã
2 . By Proposition 18(b), ã

2 < b′ − g. Thus

r − ã + m(Uj) ≤ b − g − 1 + ã

2
< b − g − 1 + b′ − g.

By Lemma 9(a), pX has no solo neighbor in B′. Thus (a) and (b) imply

ch(X ) < s(b + b′ − 2g) − 1. �

Proposition 20. If r ≤ b + b′, then A \ A′ contains at least two (s − 1)-classes.

Proof. Recall t = |A \ A′|. By Proposition 12, A′ �= ∅ and every X ∈ A \ A′ is an
(s − 1)∗-class. Suppose that A \ A′ contains at most one (s − 1)-class U1. Then

|B ∪ (A \ A′)| ≥ (bs + 1) + (ts − 1) = s(b + t),

and so

0 < |A′| = |G| − |B ∪ (A \ A′)| ≤ (ã − t)s.

Consider the (2, 1)-discharging from (B′, B) to A′. For each y ∈ B, |L(y) ∩ A′| ≥
ã − t. Thus the total charge distributed from B is at least

(ã − t)
(
s(b′ + b) + 2

)
> (ã − t)s(b + b′) ≥ |A′|(b + b′).

Thus ch(x) > b + b′ ≥ r for some vertex x ∈ A′. Using (4), x has a solo neighbor in B′,
contradicting Proposition 19(a). �

Lemma 21. Suppose r ≤ b + b′. Let 1 < j ≤ q and u ∈ Uj. Consider the (2, 1)-
discharging from (B′, B) to {Uj}. Then

(a) if Su ∩ B′ = ∅ then ch(u) ≤ r;
(b) if ch(u) > b + b′ − 2g then for all y ∈ Su ∩ B′ there exists W ∈ N−

F (Uj) ∩ M(Uj)

such that ypW ∈ E and dB(pW ) ≤ b − g + m(W );
(c) ch(Uj) ≤ (s − 1)(b + b′) + d−

F (Uj)(b − g) − 1.

Proof.

(a) By (4), ch(u) ≤ dB(u) + |Su ∩ B′| ≤ r.
(b) Suppose y ∈ Su ∩ B′. We first show that there exists W ∈ M(Uj) ∩ N−

F (Uj) with
ypW ∈ E. If there exists Z ∈ L(u) ∩ A − Uj such that u � Z, then by Lemma 9(c),
there exists W ∈ M(Uj) ∩ N−

F (Uj) with ypW ∈ E. Otherwise u ∼ Z for every
Z ∈ L(u) ∩ A − Uj. Then dB(u) ≤ r − (ã − 1) = b − g. So

b + b′ − 2g < ch(u) ≤ dB(u) + |Su ∩ B′| ≤ b − g + |Su ∩ B′|.
It follows that |Su ∩ B′| > b′ − g. By (2), �(G[B′]) ≤ b′ − g − 1. So for each y ∈
Su ∩ B′ there exists another y′ ∈ Su ∩ B′ with yy′ /∈ E(G). Thus every y ∈ Su ∩ B′

is useful, and so by Lemma 13, there exists W ∈ M(Uj) ∩ N−
F (Uj) such that

ypW ∈ E.

Journal of Graph Theory DOI 10.1002/jgt



320 JOURNAL OF GRAPH THEORY

Since W ∈ M(Uj), pW is not movable to any class of A \ F[Uj]. By (D1), pW

is not movable to any class X ∈ F (Uj) \ F[W ], since otherwise F − WUj + WX
would be a better choice thanF . Thus dA(pW ) ≥ ã − m(W ) − 1, and so dB(pW ) ≤
b + m(W ) − g.

(c) Let U ′ := {u ∈ Uj : ch(u) > b + b′}. First note that d−
F (Uj)(b − g) − 1 ≥ 0: by

Proposition 12(d), d−
F (Uj) ≥ 1, and by Propositions 18(b) and 16, b − g ≥ (ã +

1)/2 ≥ 1. If ch(Uj) ≤ (s − 1)(b + b′) then we are done. So suppose ch(Uj) >

(s − 1)(b + b′); thus U ′ �= ∅. By the definition of solo edges, if u �= u′ then Su ∩
Su′ = ∅. By (4),

ch(Uj) ≤ (s − 1 − |U ′|)(b + b′) +
∑
u∈U ′

(dB(u) + |Su ∩ B′|). (10)

Suppose u ∈ U ′. By (a), Su ∩ B′ �= ∅. Thus by Lemma 9, dA(u) ≥ ã − m(Uj). By (9),
m(Uj) ≤ ã/2. So

∀u ∈ U ′, dB(u) ≤ r − ã + m(Uj) ≤ r ≤ b + b′. (11)

By (b), each y ∈ Su ∩ B′ is adjacent to a witness pW with W ∈ N−
F (Uj), and each pW is

adjacent to at most b − g + m(W ) such vertices in y ∈ Su ∩ B′. So∑
u∈U ′

|Su ∩ B′| ≤
∑

W∈N−
F (Uj )

(b − g + m(W ))

≤ d−
F (Uj)(b − g) +

∑
W∈N−

F (Uj )

m(W )

≤ d−
F (Uj)(b − g) + m(Uj) − 1. (12)

Combining (10), (11), (12), U ′ �= ∅ and (9), we have

ch(Uj) ≤ (s − 1 − |U ′|)(b + b′) +
∑
u∈U ′

(r − ã + m(Uj)) + d−
F (Uj)(b − g) + m(Uj) − 1

≤ (s − 1)(b + b′) + |U ′|(−b − b′ + r − ã + m(Uj))

+ d−
F (Uj)(b − g) + m(Uj) − 1

≤ (s − 1)(b + b′) − ã + m(Uj) + d−
F (Uj)(b − g) + m(Uj) − 1

≤ (s − 1)(b + b′) + d−
F (Uj)(b − g) − 1. �

Proposition 22. If r ≤ b + b′ then b > (2s + 1)g.

Proof. Let U := {U2, . . . ,Uq}, Q = A′ ∪ U , Q = ⋃
Q, P = A \ Q, P = ⋃

P , and
p = |P|. By Proposition 12, every Z ∈ P is an s-class, except U1. So

|B ∪ P| = (1 + bs) + (ps − 1) = (b + p)s (13)

0 < |Q| ≤ (ã − p)s. (14)

By Proposition 12, for 2 ≤ j ≤ q and W ∈ N−
F (Uj) there exists XW ∈ ({W } ∪ M(W )) ∩

A′. Set A′
j = {XW : W ∈ N−

F (Uj)}, A∗ := A′ \ ⋃q
j=2 A′

j, A′
j := ⋃

A′
j, and A∗ := ⋃

A∗.
Then Q = A∗ ∪ ⋃q

j=2(Uj ∪ A′
j).
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Consider the (2, 1)-discharging from (B′, B) to Q. Each vertex x ∈ B distributes charge
at least 1, and at least 2 if v ∈ B′, to each class in L(v) \ B. There are at least ã of these
classes. So the total charge distributed to Q is

ch(Q) ≥ (ã − p)
(
2 + s(b′ + b)

)
> |Q|(b + b′). (15)

By Proposition 19 and (4), ch(x) ≤ r ≤ b + b′ for each x ∈ A∗. So ch(A∗) ≤ (b + b′)|A∗|.
It follows that there exists j with 2 ≤ j ≤ q such that,

ch(Uj ∪ A′
j) > (b + b′)(|Uj| + |A′

j|) = (b + b′)(s − 1 + d−
F (Uj)s). (16)

By Proposition 19 and Lemma 21,

ch(Uj ∪ A′
j) < (s − 1)(b + b′) + d−

F (U )(b − g) + d−
F (Uj)s(b + b′ − 2g)

< (b + b′)(s − 1 + d−
F (Uj)s) + d−

F (Uj)(b − g − 2gs). (17)

Combining (16) and (17), we have b > (2s + 1)g. �

5. PROOF OF THEOREM 4(a)–(c)

In this section, we prove the first three of the four statements of Theorem 4. The fourth
proof is long and will take the next section.

A. Proof of Theorem 4(a)

Recall that c is the number of s-classes in A, t is the number of nonterminal classes and q
is the number of nonterminal (s − 1)-classes. By Proposition 16, c ≤ ã − 2. Also, there
are t − q nonterminal s-classes. For all distinct, nonterminal (s − 1)-classes Ui and Uj,
both F (Ui) contains a terminal s-class, and F (Ui) ∩ F (Uj) = ∅. By Proposition 18(a),
ã − t < b′. It follows that

ã − b′ + 1 ≤ t ≤ c ≤ ã − 2. (18)

Suppose r ≤ 7 and g = 0. We consider two cases.

Case 1: ã ≥ b′ + 2. Then by Proposition 18(b),

b′ + 2 ≤ ã ≤ 2b′ − 1 ≤ b′ + b − 1 ≤ b′ + r − ã ≤ b′ + 7 − ã.

By the first two inequalities, b′ ≥ 3, and thus ã ≥ 5. So equality holds throughout. In
particular, ã = 5 and b′ = 3 = b. Thus by (18), t = 3 = c.

Let J ⊆ B′ be a maximal independent set. The number σ of solo vertices in A satisfies
σ ≤ ãs − 1 − c, since witnesses are not solo (Lemma 9(a)). The number τ of solo
vertices in A with at least two solo neighbors in J satisfies τ ≥ 1

r−1 (
∑

y∈J |Sy| − σ ). By
Proposition 17,

∑ |Sy| ≥ |J|(ã − b′) + sb′ + 1. Since J is independent, the number μ of
useful solo edges incident to J is
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μ ≥
∑
y∈J

|Sy| − σ + τ

≥
(

1 + 1

r − 1

) ⎛
⎝∑

y∈J

|Sy| − σ

⎞
⎠

≥
(

1 + 1

r − 1

)
((s + |J| − s)(ã − b′) + b′s + 1) − (ãs − 1 − c))

≥
(

1 + 1

r − 1

)
((|J| − s)(ã − b′) + c + 2). (19)

For each useful solo edge zy with z ∈ Z ∈ A, there exists W ∈ M(Z) with p(W ) = Z
and pW y ∈ E. Thus W ∈ T̃ y ⊆ T y. If z′y with z′ ∈ Z′ is another useful solo edge incident
to y then Z �= Z′. Thus, the number of useful solo edges incident to y is at most |T y|.
Thus, using Equations (4) and (7), we have

μ ≤
∑
y∈J

|T y| ≤ b′|J| −
∑
y∈J

(1 + dB′ (y)) = b′(|J| − s) − 1. (20)

Combining (19) and (20), and substituting ã = 5, b = 3 = c, yields

b′(|J| − s) − 1 ≥ μ ≥
(

1 + 1

r − 1

)
((|J| − s)(ã − b′) + c + 2) (21)

|J| − s = (|J| − s)(2b′ − ã) > c + 3 = 6. (22)

Substituting (22) into (19) yields μ ≥ � 7
6 (2 × 7 + 5)� = 23 useful edges. Each of them

is incident to one of c witnesses, and so some witness w satisfies d(w) ≥ � 23
c � = 8, a

contradiction.
Case 2: ã ≤ b′ + 1. Then r ≤ b′ + b. Using Proposition (16),

4 ≤ 2ã ≤ b′ + 1 + ã = b′ + 1 + (r + 1 − b) ≤ 9,

and so ã ≤ �9/2� = 4. By Proposition 20, there exist at least two (s − 1)-classesU1,U2 ∈
A \ A′. Thus A′ has two s-classes Wj ∈ M(Uj) ∩ A′ for j = 1, 2. So ã ≥ 4; thus ã = 4.
This accounts for all, but possibly one vertex u, of the vertices of A. If u exists, its class
is {u}, and {u} is terminal, by Proposition 12.

Consider the (2, 1)-discharging from (B′, B) to A′. Set β := b + b′ ≥ r. By
Proposition (19), each vertex in A′ gets charge at most β. Moreover, the two mov-
able witnesses pWj , j = 1, 2 have no solo neighbors in B′ by Lemma 13, and so
have charge at most ch(pWj ) ≤ r − ã + m(Uj) = r − 2. So the total charge received
by A′ is at most β(2s − 1) + 2r − 4. The total charge distributed to A′ is at least
(ã − 2)(|B| + |B′|) = 2(βs + 2). Thus,

0 ≤ (β(2s − 1) + 2r − 4) − 2(βs + 2) = 2r − β − 8 ≤ r − 8 < 0,

a contradiction.
If g ≥ 1 then Theorem 4(b) applies, since 1 ≥ max{ r

6 − 1, r−1
7 } when r ≤ 8.

B. Proof of Theorem 4(b)

Assume g is an integer satisfying g ≥ max{ r
6 − 1, r−1

7 }.

Journal of Graph Theory DOI 10.1002/jgt



EQUITABLE LIST COLORING OF GRAPHS WITH BOUNDED DEGREE 323

Proposition 23. If g ≥ r
6 − 1 then r ≤ b + b′.

Proof. If b′ ≥ 3g + 3 then b + b′ ≥ 6(g + 1) ≥ r. So suppose b′ ≤ 3g + 2. By Propo-
sition 18(b),

r = ã + b − g − 1 ≤ 2

(
b′ − g − 1

2

)
+ b − g − 1 ≤ b + b′ + (b′ − 3g − 2) ≤ b + b′.

�
Recall that s ≥ 3. By Proposition 23, r ≤ b + b′. Thus by Propositions 16 and 22, we

have the contradiction

r − 1 ≥ b > (2s + 1)g ≥ 7g ≥ r − 1.

So G is k-choosable, for

k ≥ r +

⎧⎪⎨
⎪⎩

1 + r − 1

7
if r ≤ 30

r

6
if r ≥ 31

.

C. Proof of Theorem 4(c)

Suppose |G| ≥ r3 and g ≥ 1. Then

gs = g

⌈ |G|
r + 1 + g

⌉
≥ r2 − 2r = r(r − 2).

Thus by Proposition 18(c), b + b′ ≥ r. So by Proposition 22, b > g(2s + 1) > r, a con-
tradiction. So G is k-choosable, for k = r + 1 + g ≥ r + 2.

6. PROOF OF THEOREM 4(d)

Assume s is sufficiently large. A set is said to contain almost no elements,if it has less
than m elements, where m is a constant that does not depend on s. A set whose cardinality
is unbounded as s increases is said to contain many elements. Recall that G is a counter
example to Conjecture 2 when g = 0. It suffices to show the following technical statement.

Theorem 24. Let g = 0. If s is sufficiently large then ω(G) = r + 1.

We shall prove a sequence of results that ends with the conclusion of the theorem. Call
a vertex y ∈ B′ dense if it is in a b′-clique Q ⊆ B′; otherwise it is sparse. Call a vertex v
rich if |L(v) ∩ A| > ã; otherwise it is poor.

Proposition 25. If v ∈ V is poor then L(v) ∩ B = B.

Proposition 26. If y ∈ B′ is dense then it is not movable.

Proof. By definition y is not movable to any class in A ∪ B \ B′, and since it is in a
b′-clique contained in B′, it is not movable to any class of B′. �

Proposition 27. If a vertex v is not movable then it has exactly one neighbor in each
class of L(v) − f (v), and thus no neighbors in any other classes.
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Corollary 28. The neighbors in A of a dense vertex y ∈ B′ are solo neighbors of y, and
are not movable to any class in A. In particular, they do not witness any edge of H[A].

Proof. By Propositions 26 and 27, the neighbors in A of y are solo neighbors of y.
Suppose z ∈ NA(y) and z ∈ Z ∈ A. If z is movable to a class X ∈ A then by Lemma 9X ∈
M(Z) and y is adjacent to a witness w of an edge WZ. Then Z /∈ M(W ) and this
contradicts Lemma 9 applied to W . �

Corollary 29. Each dense vertex y ∈ B′ is a member of a unique b′-clique contained in
B′, and has no other neighbors in B′.

For each dense vertex y ∈ B′, let Qy ⊆ B′ be the unique b′-clique to which it belongs.

Corollary 30. No vertex x ∈ A has two dense neighbors y and y′ in different b′-cliques
of B′.

Proof. Suppose not. By Corollary 29, yy′ /∈ E. By Corollary 28, xy and xy′ are
solo. Moreover, y is not adjacent to any witness of any edge in H[A]. This contradicts
Lemma 13. �

Let B′
g ⊆ B′ be the set of dense, poor vertices of B′.

Proposition 31. Almost no vertices of B′ are sparse or rich; indeed |B′ \ B′
g| < r4.

Proof. Let s′ be the the number of b′-cliques in B′. Using Corollary 29, B′ has s′b′

dense vertices and (s − s′)b′ + 1 sparse vertices.

Case 1: ã > b′. By Propositions 18(b) and 16, we have b′ ≥ � ã+1
2 � ≥ 2. For each b′-clique

Q choose a vertex v ∈ Q, preferring a rich vertex. Let J1 be the set of chosen vertices and
J0 ⊆ J1 be the set of rich chosen vertices. By Corollary 29, J1 is independent. Then B′

has at most b′|J0| + (s − s′)b′ + 1 vertices that are either sparse or rich.

Let H ⊆ G be the subgraph induced by the sparse vertices. By (2), �(H) ≤ b′ − 1.
Since ω(H) ≤ b′ − 1, Brooks’ Theorem implies that χ(H) ≤ b′ − 1. Thus, H has a
maximum independent set J2 with

|J2| ≥ (s − s′)b′

b′ − 1
= s − s′ + s − s′

b′ − 1
.

Set J := J1 ∪ J2. Then J is a maximum independent subset of G[B′] and |J| ≥ s + s−s′
b′−1 .

Set �(y) := |L(y) ∩ A| − ã. Then, as in (5), for each y ∈ B′,

|Sy| = |L(y) ∩ A \ T y| = ã + �(y) − |T y| ≥ ã + �(y) − b′ + 1 + dB′ (y).
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Since by Corollary 14 S̃y ∩ S̃y′ = ∅ for distinct y, y′ ∈ J, ãs − 1 ≥ |A| ≥ ∑
y∈J |S̃y|. As at

the end of Section 3,

ãs − 1 ≥
∑
y∈J

|S̃y| ≥
∑
y∈J

(|Sy| − |T̃ y|)

≥
∑
y∈J

(ã + �(y) − b′ + 1 + dB′ (y) − |T̃ y|)

≥ |J|(ã − b′) + |J0| + sb′ + 1 −
∑
y∈J

|T̃ y|

≥ ãs − b′s + |J| − s + |J0| + sb′ + 1 − r(r − 2)

≥ ãs + |J| − s + |J0| + 1 − r2.

Since |J| ≥ s + s−s′
b′−1 , we conclude that

r2 ≥ s − s′

b′ − 1
+ |J0|.

It follows that the number of vertices that are sparse or rich is at most b′2r2 ≤ r4. So
|B′ \ B′

g| < r4.

Case 2: ã ≤ b′. Let j be the number of rich vertices in B′. As in the proof of Proposition 22,
and using the same notation, consider the (2, 1)-discharging from (B′, B) to Q. As in the
justification of (15), each vertex v ∈ B sends a charge of 1 or 2 to each class in L(v) \ B,
and there are at least ã of these classes. But if v is rich then v ∈ B′ and |L(v) \ B| ≥ ã + 1.
In this case, (15) undercounts the number of classes to which v distributes charge 2. So
the total charge distributed to Q is bounded by

ch(Q) ≥ (ã − p)(2 + s(b′ + b)) + 2 j > |Q|(b + b′) + 2 j.

Set U := ⋃
U . By Lemma 21(c),

ch(U ) ≤
q∑

j=2

((s − 1)(b + b′) + b · d−
F (Uj))

≤ |U |(b + b′) + b
q∑

j=2

d−
F (Uj) ≤ |U |(b + b′) + br.

By Proposition 19 and (4), each z ∈ A′ receives charge ch(z) ≤ b + b′; moreover, if
Sz ∩ B′ is not a b′-clique then ch(z) ≤ b + b′ − 1 by (4). If z and z′ are in the same class
of A then Sz ∩ Sz′ = ∅. Thus

ch(A′) ≤
∑
Z∈A′

(s(b + b′ − 1) + s′) = |A′|(b + b′ − s + s′).

Since the classes in A′ are terminal and those in U are nonterminal,

(b + b′)|Q| + 2 j < ch(Q) ≤ (b + b′)|Q| + br − s + s′,

which means

2 j + s − s′ < br.

Thus |B′ \ B′
g| ≤ j + (s − s′)b′ + 1 ≤ r3. �
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Call a vertex z ∈ A defective if it has a neighbor in B′ \ B′
g or fewer than b′ neighbors

in B′; otherwise z is nondefective. In the latter case, set Qz := NB′ (z). By Corollary 30,
Qz is a b′-clique. So Qz + z is a clique. Let Ag ⊆ A be the set of nondefective vertices.

Proposition 32. If z is a nondefective vertex whose neighbors in B are not movable,
then NB(z) is a clique.

Proof. Let y ∈ NB′ (z), y′ ∈ NB\B′ (z) and y′′ ∈ NB(z). Since z is nondefective,
|NB′ (z)| = b and each vertex of NB′ (z) is dense. So Corollary 30 implies NB′ (z) is the
b′-clique Qz = Qy. Since the neighbors of z in B are not movable, Proposition 27 implies
they are all solo neighbors of z. By Lemma 13 and Corollary 28, both NB′ (z) + y′ and
NB′ (z) + y′′ are cliques. Moreover, E(Qy, B′ \ Qy) = ∅. It follows that y and y′ are neither
witnesses nor adjacent to witness of any edge in H[B′]. Thus switching y with y′ yields a
new nearly equitable L-coloring f ∗ with B′( f ) = B′( f ∗) after identifying the class W of y
in f with the class W − y + y′ in f ∗. Applying the above argument to f ∗ shows y′y′′ ∈ E.
Since the arbitrary vertex y′′ ∈ NB(z) is adjacent to the arbitarty vertices y ∈ NB′ and
y′ ∈ NB \ B′′, it follows that NB(z) is a clique. �

Proposition 33. Almost no z ∈ A is defective; indeed |A \ Ag| ≤ 2r5.

Proof. Let α be the number of vertices in A that have a neighbor in B′ \ B′
g. By

Proposition 31, α < r|B′ \ B′
g| < r5. Let β be the number of vertices of A with fewer than

b′ neighbors in B′. Each vertex in B′
g is poor, and so has exactly ã neighbors in A. Thus

ã(b′s − r4) ≤ |E(A, B′
g)| < ãsb′ − β,

which yields β ≤ ãr4 < r5. It follows that |A \ Ag| ≤ α + β ≤ 2r5. �
Now assume that apart from (C0) and (C1), f satisfies
(C2) among nearly equitable L-colorings satisfying (C0) and (C1), f has the maximal

b′.

Proposition 34. No z ∈ Ag is movable.

Proof. Suppose that z ∈ Ag is movable. By Corollary 28, since z is nondefective,
it is not movable to a class in A. So z is movable to a class Y ∈ B. Again, since z is
nondefective, Y ∈ B \ B′. Let vz be the unique vertex in Qz ∩ V +. We can obtain a new
nearly equitable L-coloring f ∗ by moving z to Y and vz to Z := Vf (z). By Propositions 26
and 27, Z ∈ L(vz), and so this is allowed. Moreover, A( f ∗) ⊇ A( f ) (where Z is replaced
by Z − z + vz): By Corollary 28, z does not witness any edge of H[A]; so removing z
does not destroy any edge of H[A]. Also by Corollary 28, vz is not adjacent to a witness
of any edge of H[A], and so does not destroy edge of H[A].

By the maximality of A, A( f ∗) = A( f ). Recall that z ∈ V +( f ∗) and is movable to
V +( f ) − vz, since vz was the only neighbor of z in V +( f ). Furthermore, since every class
Y ′ ∈ B′( f ) was reachable from V +( f ) and vz was in a b′-clique, Y ′ is still reachable from
V +( f ) − vz. But then B′( f ∗) ⊇ B′( f ) + (Y + z). This contradicts the maximality of
b′. �

Proposition 35. Almost no z ∈ Ag is rich; indeed at most r5 such z are rich.
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Proof. Let R be the set of rich vertices in Ag andQ := {Qz : z ∈ R}. Suppose |R| > r5.
Since |{z : Q = Qz}| ≤ r for each Q ∈ Q, we have |Q| > r4. Consider any z ∈ R and
y ∈ Qz ∩ V +. By Propositions 34 and 26, neither z nor y is movable, and so by Proposition
27, Vf (y) ∈ L(z) and Vf (z) ∈ L(y). Moreover, y is the only neighbor of z in Vf (y) and z is the
only neighbor of y in Vf (z). So switching z with y yields a new nearly equitable coloring
f ′. Since y is solo, by Lemma 9(a), no neighbor of y (including z) witnesses an edge
of F . So |A( f )| = |A( f ′)| and |A( f )| = |A( f ′)|, and so (C0) and (C1) are maintained.
Since y was not movable in f and y ∈ V +( f ), we have b′( f ) = b′( f ′), and so (C2) is
maintained. Repeating this construction |Q| > r4 times contradicts Proposition 31. �

Now refine the choice of f so that
(C3) subject to (C0), (C1), and (C2), B′ has as many sparse vertices as possible.

Proposition 36. Let R := B′ − B′
g be the set of vertices in B′ that are rich or sparse. Let

y ∈ (B − B′) ∩ (N(B′) − N(R)). Then y is not movable to B′.

Proof. Suppose that such a y belongs to a class Y ∈ B − B′ and is movable to a
class Y ′ ∈ B′. By hypothesis, y has a dense, poor neighbor v ∈ B′. Let v′ ∈ Qv ∩ Y ′.
Then v′y /∈ E, since y is movable to Y ′. Since v is dense, y is its unique neighbor in Y
(Propositions 27, 26). Thus moving v to Y , y to Y ′, and v′ to Vf (v), yields a new proper
coloring f ∗. By Propositions 27 and 26, f ∗ is an L-coloring. Since the sizes of color classes
did not change, and classes in A did not change at all, f ∗ is a nearly equitable coloring
satisfying (C0) and (C1). Moreover, since all witnesses for edges of H[B′]( f ) were in R
(Corollary 29), and the changed vertices were in Qv + y, and so had no neighbors in R,
we have B′( f ∗) ⊇ B′( f ). So, f ∗ satisfies (C2). But the b′ ≥ 2 vertices of Qv( f ) + y − v
are not dense in B′( f ∗). Moreover, since y has no neighbors in R, no vertices of B′( f )
became dense. This contradicts (C3). �

Observation 37. Let Q be a b′-clique in B′. Then permuting vertices of Q within B′, we
again obtain a nearly equitable L-coloring of G satisfying (C0)–(C3).

Proof. Let f ∗ be the new coloring. Since G[Q] is a component of G[B′], f ∗ is proper.
By Propositions 27, 26, f ∗ is an L-coloring. Since f |A does not change, (C0) and (C1)
hold for f ∗. Since all witnesses for edges of H[B′]( f ) were in B′( f ) \ B′

g( f ), and had no
neighbors in Q, B′ did not change, and so (C2) and (C3) continue to hold. �

Proposition 38. Let R := B′ − B′
g be the set of vertices in B′ that are rich or sparse. At

most r6 vertices x ∈ (B − B′) ∩ (N(B′) − N(R)) are movable.

Proof. Let X be the set of movable vertices x ∈ (B − B′) ∩ (N(B′) − N(R)), and
suppose |X | > r6. There exists a class W ∈ B \ B′ such that X ′ := X ∩ W satisfies |X ′| >

|X |/r > r5. For each x ∈ X ′, let Yx ∈ B be a class to which x can be moved. By Proposition
36, Yx /∈ B′. There exists a class Y ∈ B \ B′ such that X ′′ := {x ∈ X ′ : Yx = Y } satisfies
|X ′′| > |X ′|/r > r4. For x ∈ X ′′ choose vx ∈ B′

g so that xvx ∈ E, which is possible by the
definition of X . Since vx is poor and dense, it has a unique neighbor in every class of
B − Vf (vx ) and B ⊆ L(vx) by Propositions 25, 26, 27. In particular, this holds for W and
Y . So V ′ := {vx : x ∈ X ′′} satisfies |X ′| = |V ′|. For x ∈ X ′′ let ux be the unique neighbor
of vx in Y , and set U := {ux : x ∈ X ′′}. Then |U | = |V ′| > r4.
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Consider any x ∈ X ′′. By Observation 37, we may assume vx ∈ V +. Let fx be the color-
ing obtained from f by moving x to Y and vx to W . Then fx is a nearly equitable L-coloring
with large class V +( fx) = Y + x that satisfies (C0) and (C1). Applying Proposition 31
to f (x) yields |B′( fx) \ B′

g( fx)| < r4 < |U |. Thus there exists z ∈ U such that B ⊆ L(z).
If z = x then z is movable to V +( f ), and thus B′( f ) + V +( fx) ⊆ B′( fx), contradicting
(C2). Otherwise, replace x by z in the above argument (which does not change L(z)). �

Proposition 39. If s ≥ 3r8 then ω(G) = r + 1.

Proof. Suppose that v ∈ B is movable. Then v is not dense. So v ∈ R = B′ − B′
g

or v ∈ B \ B′. In the latter case, by Proposition 38, v ∈ N(R) or is one of at most r6

exceptional vertices. By Proposition 31, |R| = |B′ − B′
g| ≤ r4, and so |N(R)| ≤ r5. Thus

at most r4 + r5 + r6 ≤ 2r6 vertices in B are movable or rich. So at most 2r7 vertices of
A have movable neighbors in B. At most 2r5 vertices of A are defective. By Proposition
35, at most r5 nondefective vertices of A are rich. Thus less than 3r8 vertices of B′ have
neighbors in A that are rich, defective or adjacent to movable vertices of B.

Since s ≥ 3r8, we can choose y ∈ B′ whose neighbors in A are all poor, nondefective,
and not adjacent to movable vertices of B. We will show that K := N(y) + y is an
(r + 1)-clique. First note that y is dense and not movable. Since y is not movable,
|N(y) + y| = r + 1. Since y is dense, Qy is defined, and by Propositions 16, 18, b′ ≥ 2.
Choose y′ ∈ Qy − y. Consider any z ∈ NA(y). Since y is dense, Corollary 28 implies
z ∈ Sy and z is not movable to any class in A. By Proposition 32, NB(z) is a clique, and
so y is the only neighbor of z in Vf (y). Thus, we can switch z and y to obtain a new nearly
equitable coloring f ′. Since z is poor, and y is not movable, Propositions 25 and 27 imply
that f ′ is an L-coloring. Since z is not movable to any class in A( f ), it does not witness
an edge of F[A]( f ). By Lemma 9(a), y is not adjacent to the witness of any edge in
F[A]( f ). Thus H[A]( f ) ⊆ H[A]( f ′), and so f ′ satisfies (C0) and (C1). Moreover, no
z′ ∈ NA( f )(y) is movable to a class of A( f ′).

By Proposition 32, NB( f ′)(y) + y = NB( f )(y) + z + y is a clique. Since this argument
applies to every z ∈ NA(y), it suffices to show that zz′ ∈ E for all distinct z, z′ ∈ NA( f )(y).
Consider z′ ∈ NA( f )(y). We have just shown that y′ ∈ N(z). So the choice of y implies
that y′ is not movable in f . Nor is y′ movable in f ′, since f ′ is obtained by switching
two neighbors of y′. As above, obtain a new nearly equitable coloring f ∗ from f ′ that
satisfies (C0) and (C1) by switching y′ and z′. Since z, z′ ∈ NB( f ∗)(y′), Proposition 32
implies z, z′ ∈ E. �

This completes the proof of Theorem 4(d).

7. ALGORITHM

In fact, the proof of Theorem 4 is algorithmic. In this section, we show how to adapt this
proof to derive the following.

Theorem 40. There exists a polynomial time (in terms of n) algorithm that for any k-list
assignment L of any n-vertex graph G with �(G) ≤ r, finds an equitable L-coloring of
G in each of the following cases:

(a) r ≤ 7 and k = r + 1;
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(b)

k ≥ r +

⎧⎪⎨
⎪⎩

1 + r − 1

7
if r ≤ 30

r

6
if r ≥ 31

;

(c) |G| ≥ r3 and k ≥ r + 2.

A. General Outline

The input is an n-vertex graph G = (V, E ) with maximum degree at most r and a k-list
L for G. If r, k, and n satisfy the conditions in Theorem 4(a), (b), or (c), then the output
is an equitable L-coloring.

Let V := {v1, . . . , vn}. We start by greedily constructing an equitable L-coloring f0 for
the edgeless spanning subgraph G0 ⊆ G. The main part of the algorithm is the following
Main Procedure: it takes a graph with a list assignment L satisfying the conditions of one
of (a), (b), or (c) of Theorem 4 together with a nearly equitable L-coloring f and produces
an equitable L-coloring f ∗. The procedure will be described in the next subsection.

For i = 1, . . . , n − 1, let Gi denote the spanning subgraph of G whose edges are exactly
the edges of G incident with at least one of v1, . . . , vi. Note that Gn−1 = G. Suppose that
we have an equitable L-coloring fi−1 of Gi−1. Consider it as an improper L-coloring of
Gi. By definition, every monochromatic edge contains vi. If there are no such edges, we
already have fi. Suppose that there are conflicts. Since |L(vi)| ≥ r + 1, there is a color
class Z ∈ L(vi) not containing neighbors of vi. Moving vi into Z, we obtain a nearly
equitable proper L-coloring f of Gi. Now applying Main Procedure, we produce an
equitable L-coloring fi of Gi. So, after the initialization, it is enough to perform Main
Procedure at most n − 1 times.

B. Main Procedure

As mentioned above, the input is a graph Gi together with the list assignment L and a
nearly equitable proper L-coloring f of Gi. The output is an equitable L-coloring f ∗ of Gi.
Let C := ⋃

v∈V L(v). By definition, |C| ≤ kn ≤ n2. The procedure starts by constructing
the auxiliary digraph H := H( f ) with the vertex set C as described in Section 2. If H has
a (directed) path from the large class V + to a class in A0, then we recolor the witnesses
along this path, and the procedure ends. We need to work harder when there is no such
path. Then we define A,B,B′ and related parameters as in Section 2. Then we find the
related directed forest F . By Remark 1 to Property (D1), we can find such a forest in
polynomial time.

Then we do Check 1: We check whether for every solo edge zy with z ∈ Z ∈ A and
y ∈ B′, the statement of Lemma 9 holds. If at least once it does not, then we return an
equitable L-coloring fi of Gi. There are at most rn solo edges and each check takes time
at most n2.

If Check 1 is successful, we call our Main Subroutine. This subroutine receives our f
and returns a proper L-coloring f ∗ such that either

(i) f ∗ is an equitable L-coloring of Gi (and then the Main Procedure ends), or
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(ii) f ∗ is nearly equitable and |A0( f ∗)| > |A0( f )|, or
(iii) f ∗ is nearly equitable, |A0( f ∗)| = |A0( f )| and |A( f ∗)| > |A( f )|.
Since |C| ≤ n2, Main Subroutine will be called at most n3 times. So, it is enough to

prove that Main Subroutine works efficiently.

C. Main Subroutine

First, we do Check 2: We check whether for every v ∈ X ∈ A \ A0, the statement of
Proposition 12(a) holds and whether there exist at least two s−-classes. If at least once
the answer is “No”, then we return f ∗ with |A0( f ∗)| > |A0( f )|. By Theorem 5, Check
2 needs fewer that n3 elementary operations.

If Check 2 is successful, then we perform Check 3: We check whether for every two
solo edges zy and zy′ with z ∈ Z ∈ A, y ∈ B, y′ ∈ B′ and yy′ /∈ E(G), the statement of
Lemma 13 holds. If at least once it does not, then we return f ∗ with |A0( f ∗)| = |A0( f )|
and |A( f ∗)| > |A( f )|.

We perform Check 3 for fewer than r2n pairs of solo edges, and for each pair, it takes
at most Cn3 elementary operations.

The rest of the proofs in Sections 2– 5 is devoted to showing that it is impossible that
all Checks 1, 2, and 3 are successful. So, each time Main Subroutine will need time at
most Cn6 to complete. Hence Main Procedure will need time at most Cn9, and the whole
algorithm will take time at most Cn10. This is a rough estimate and can be improved.

8. ALGORITHM FOR A FIXED r AND k = r + 1

Finally, we prove Theorem 6 and an algorithmic version of Theorem 4(d). Throughout
this section, G is a graph with �(G) ≤ r, and L is an (r + 1)-list assignment for G, where
r is either the input to an algorithm or a fixed parameter, depending on the context, and
|G| = (r + 1)s.

Call a vertex of G strongly dense if it is in an (r + 1)-clique of G; otherwise it is
strongly sparse. Define the core G′ := (V ′, E ′) of G to be the subgraph of G induced
by the strongly sparse vertices and the remainder G′′ := (V ′′, E ′′) to be the subgraph of
G induced by the strongly dense vertices. Set s′ := |G′|/(r + 1) and s′′ := |G′′|/(r + 1).
Then G′′ is the disjoint union of s′′ disjoint (r + 1)-cliques, G = G′ + G′′ and s = s′ + s′′.
By Theorem 4(d), if |G′| ≥ c1 := 3(r + 1)r8 then G′ is equitably (r + 1)-choosable.
Since no color can be used more than once on an (r + 1)-clique, we have the following:

Proposition 41. Suppose H is a graph such that G′ ⊆ H ⊆ G and every vertex of G − H
is strongly dense in G − H. Then every equitable L-coloring of H has an extension to an
L-coloring of G, and every such extension is an equitable L-coloring of G.

A blocking set 
 for (G, L) is a set of colors such that for any L-coloring of G there
exists a class α ∈ 
 such that |Vα| > s. Then G has an equitable L-coloring if and only if
there is no blocking set for (G, L).

Proposition 42. If there exists an (r + 1)-list assignment L′ for G′ with a blocking set

 such that |
| ≤ r + 1, then G is not equitably (r + 1)-choosable.
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Proof. We may assume |
| = r + 1. Extend L′ to an (r + 1)-list assignment L by
setting L(v) := 
 for each strongly dense vertex v. Then for every L-coloring f there
exists a color γ ∈ 
 such that |Vγ | = |Vγ ∩ V ′| + |Vγ ∩ V ′′| > s′ + s′′ = s. �

Set c2 := c1(r + 1)3.

Proposition 43. If no (r + 1)-list assignment for G′ has a blocking set of size at most
r + 1, and |G| ≥ c2 = c1(r + 1)3, then G is equitably (r + 1)-choosable.

Proof. Consider any (r + 1)-list assignment L, and let L′ be the restriction of L to G′.
If |G′| ≥ c1 then G′ has an (r + 1)-equitable L′-coloring f ′, and by Proposition 41 f ′ can
be extended greedily to an equitable L-coloring f of G.

So suppose |G′| < c1. Consider any L-coloring f ′′ of G′′, and let 
 be a set consisting
of the r + 1 largest color classes of f ′′ (breaking ties arbitrarily). By hypothesis, 
 is not
a blocking set for (G′, L′). So there exists an L′-coloring f ′ of G′ such that no class in 


is oversized. Set f := f ′ ∪ f ′′. We claim that f is an (r + 1)-equitable L-coloring of G.
Consider any color α. If α ∈ 
 then |Vα| ≤ s′ + s′′ = s. If α /∈ 
 then Vα ∩ V ′′ is

not one of the r + 1 largest classes of f ′′, and so |Vα ∩ V ′′| ≤ (r + 1)s′′/(r + 2). Also,
|Vα ∩ V ′| ≤ |V ′| = (r + 1)s′. Since s = |G|/(r + 1) ≥ c2/(r + 1) = c1(r + 1)2,

|Vα| ≤ (r + 1)(s − s′)
r + 2

+ (r + 1)s′ ≤ (r + 1)s + (r + 1)2s′

r + 2

≤ (r + 1)s + c1(r + 1)2

r + 2
≤ s.

�

Proof of Theorem 6. Consider a fixed graph G as above. If |G′| ≥ c1 = 3(r + 1)r8

then by Theorem 4(d), G′ is equitably (r + 1)-choosable. Otherwise, since for every
(r + 1)-list assignment L of G′, the total number of colors in all vertex lists is at most
(r + 1)c1, we can check in constant time (for fixed r) whether G′ has a list assignment
with a blocking set of size at most r + 1. If it does, then by Proposition 42, G is not
equitably (r + 1)-choosable. Moreover, as explained in Proposition 42, in this case there
are infinitely many graphs G containing G′ that are not equitably (r + 1)-choosable. If
G′ has no such list assignment, and |G| ≥ c2, then G is equitably (r + 1)-choosable by
Proposition 43. This leaves open the case that |G| < c2 (and ω(G) = r + 1), but again
this can be checked in constant time. So to resolve the conjecture it suffices to:

1. Check all graphs G′ with |G′| ≤ c1 and ω(G) ≤ r to see if any has an (r + 1)-list
assignment with a nonempty blocking set of size at most r + 1. If there is such a
graph the conjecture is false for infinitely many graphs. Otherwise continue.

2. Check all graphs G with |G| ≤ c2 to see if any is not equitably (r + 1)-choosable.
In this case the conjecture is false only for finitely many graphs. Otherwise it is
true.

This proves Theorem 6. �
The next result is based on the proofs of Theorem 4(d) and Theorem 6.

Theorem 44. Let r be a fixed parameter. Then there exists a polynomial time (in terms
of n) algorithm that for any (r + 1)-list assignment L of any n-vertex graph G with
�(G) ≤ r, either finds an equitable L-coloring of G or produces a certificate that shows
that G has no such coloring.
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A. Algorithm

The input is an n-vertex graph G = (V, E ) with maximum degree at most r, and an
(r + 1)-list assignment L for G. The output is either an equitable L-coloring or a certificate
that demonstrates that G does not have such a coloring. Recall that G′ is the core graph
of G and that c1 = 3r8. Set c3 := c1 + (r + 1)2c2

1.

Case 1: n ≤ c3 = c1 + (r + 1)2c2
1. Try all (r + 1)n ≤ (r + 1)c3 L-colorings of G,

and if at least one of them is proper and equitable, then return it; otherwise, all
these colorings together witness that G is not equitably L-colorable.
Case 2: n > c3 and |G′| ≤ c1. Let C ′ := ⋃

v∈V ′ L(v). Then |C ′| ≤ c1(r + 1). For
each color γ ∈ C ′, letK(γ ) be the set of (r + 1)-cliques Q such that γ /∈ ⋃

v∈Q L(v)

or | ⋃v∈Q L(v)| > r + 1. Observe that if Q is an (r + 1)-clique, then Q ∈ K(γ )

if and only if Q can be L-colored so that no vertex is colored with γ . Choose a
maximum subset K0(γ ) ⊆ K(γ ) subject to |K0(γ )| ≤ c1. Let C− = {γ ∈ C ′ :
|K0(γ )| < c1}, V ∗ := V ′ ∪ ⋃{Q : Q ∈ K0(γ ), γ ∈ C ′} and G∗ := G[V ∗]. Then
|G∗| ≤ c1 + c1(r + 1)|C ′| = c3. It suffices to show that G has an equitable L-
coloring if and only if G∗ does: Then we can test by exhaustive search in constant
time whether G∗ has an equitable L-coloring. If we find one, we can greedily
extend it to an L-coloring of G in linear time, and by Proposition 41 this extension
is equitable; otherwise the record of the exhaustive search demonstrates that G has
no equitable L-coloring.

Since G′ ⊆ G∗ ⊆ G and every vertex of G − G∗ is strongly dense in G − G∗, Propo-
sition 41 implies that if G∗ has an equitable L-coloring, so does G. So suppose G has an
equitable L-coloring f . It suffices to extend f ′ := f |V ′ to an L-coloring f ∗ of G∗ so that

|Vγ ( f ∗)| ≤ s∗ := |V ∗|/(r + 1) for all classes Vγ ( f ∗) with γ ∈ C ′. (23)

Recall that s′ = |G′|/(r + 1). Let O := {γ ∈ C ′ : |Vγ ( f ′)| > s′} be the set of oversized
classes of f ′, and for γ ∈ O, set sγ := |V γ ( f ′)| − s′. Then sγ > 0.

For γ ∈ C ′, consider three cases depending on whether γ ∈ C ′ \ O, γ ∈ O ∩ C− or
γ ∈ O \ C−. If γ ∈ C ′\O then |Vγ ( f ∗)| ≤ s∗ for any extension of f ′ to V ∗. So suppose
γ ∈ O.

Now consider all γ ∈ O ∩ C−. For such γ , K0(γ ) = K(γ ). Since f is equitable,
there is a sγ -subset K1(γ ) ⊆ K(γ ) = K0(γ ) with f (v) �= γ for each v ∈ ⋃

K1(γ ).
Let W := ⋃

γ∈O∩C− K1(γ ). Then W := ⋃
W ⊆ V ∗, and so |Vγ ( f ∗)| ≤ s∗ for every L-

coloring f ∗ extending f |(V ′ ∪ W ).
Finally, consider all γ ∈ O \ C−. For such γ , |K0(γ )| = c1. Choose disjoint sγ -sets

K2(γ ) ⊆ K0(γ ) \ W . This is possible since |W| ≤ ∑
γ∈O∩C− sγ and

∑
γ∈O sγ ≤ c1 =

|K0(γ )|. Then any L-coloring f ∗ of G∗ that extends f |(V ′ ∪ W ) so that f ∗(v) �= γ for
all v ∈ ⋃

K2(γ ) satisfies (23).

Case 3: n > c3 and |G′| > c1. Then we know that G has an equitable L-coloring and
in fact G′ has an equitable L-coloring. We will construct an equitable L-coloring of
G′ which together with any L-coloring of G − G′ will yield the required equitable
L-coloring of G. To do this, we repeat for G′ the general outline in Section 7.
Moreover, we then repeat for G′ subsection Main Procedure of Section 7, but now
our Main Subroutine requires more checks.
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This subroutine receives a nearly equitable proper L-coloring f of G′
i and returns a

proper L-coloring f ∗ such that either

(i) f ∗ is an equitable L-coloring of G′
i (and then the Main Procedure ends), or

(ii) f ∗ is nearly equitable and |A0( f ∗)| > |A0( f )|, or
(iii) f ∗ is nearly equitable, |A0( f ∗)| = |A0( f )| and |A( f ∗)| > |A( f )|, or
(iv) f ∗ is nearly equitable, |A0( f ∗)| = |A0( f )|, |A( f ∗)| = |A( f )|, and b′( f ∗) > b′( f ),

or
(v) f ∗ is nearly equitable, |A0( f ∗)| = |A0( f )|, |A( f ∗)| = |A( f )|, and b′( f ∗) = b′( f )

and B′( f ∗) has more sparse vertices than B′( f ).

B. Main Subroutine

First, we do for G′
i Check 2 as in Section 7, and if it fails at least once, then we return

f ∗ with |A0( f ∗)| > |A0( f )|. By Theorem 5, for a fixed r Check 2 takes Cn2 elementary
operations. Then we do Check 3 as in Section 7, and if it fails at least once, then we
return f ∗ with |A0( f ∗)| = |A0( f )| and |A( f ∗)| > |A( f )|. Since we have a constant
number (depending on r) of color classes of size at least s′, Check 3 for a given pair of
edges incident to a vertex z ∈ A takes at most Cn2

1 elementary operations, and we need
to check at most r2n1 of such pairs.

Now we find the set R of vertices in B′ that are rich or sparse and the set Ag of the
vertices in A that are nonneighbors of R and have at least b′ neighbors in B′. It will
take at most Cn3

1 elementary operations. Then we perform Check 4: We check whether
any z ∈ Ag is nonmovable. Again, if the check fails at least once (i.e., if some z ∈ Ag is
movable), then we stop and return f ∗ with |A0( f ∗)| = |A0( f )|, |A( f ∗)| = |A( f )| and
b′( f ∗) > b′( f ). Check 4 needs at most Cn2

1 elementary operations, and we do it at most
|Ag| times.

Next we do Check 5: We check whether at most r6 vertices y ∈ (B − B′) ∩ (N(B′) −
N(R)) are movable. If the check fails, then we return f ∗ with |A0( f ∗)| = |A0( f )|
and |A( f ∗)| = |A( f )| that has either b′( f ∗) > b′( f ) or b′( f ∗) = b′( f ) and more sparse
vertices in B′( f ∗) than in B′( f ). Since r is a constant, Check 5 (including the construction
of f ∗ if needed) takes at most Cn2

1 elementary operations.
In the next Check 6, we check whether for every nondefective vertex z whose neighbors

in B are not movable, the set NB(z) is a clique. Again, if the check fails, then we return
a nearly equitable coloring f ∗ of G′

i with |A0( f ∗)| = |A0( f )| and |A( f ∗)| > |A( f )|.
Finally, we do Check 7: We check whether for every y ∈ B′ whose neighbors in A are
all poor, nondefective, and not adjacent to movable vertices of B, zz′ ∈ E for all distinct
z, z′ ∈ NA(y). If the check fails for some such y, then we return a nearly equitable coloring
f ∗ of G′

i with |A0( f ∗)| = |A0( f )| and |A( f ∗)| > |A( f )|. Again, since r is a constant,
Checks 6 and 7 (including the construction of f ∗ if needed) take at most Cn2

1 elementary
operations.

The proof of Theorem 4(d) yields that if all Checks 1–7 are successful, then G′

contains a Kr+1, a contradiction to its choice. So, at least one of the checks fails and Main
Subroutine returns a proper L-coloring f ∗ such that one of (i)–(v) holds. By the above
estimates, one such run of Main Subroutine (including the construction of f ∗ if needed)
takes at most C′n3

1 elementary operations. The subroutine can improve criterion (v)
without changing (ii)–(iv) at most n1 times, can improve (iv) without changing (ii) and (iii)
at most r times, can improve (iii) without changing (ii) at most n1 times, and can improve
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(ii) without achieving (i) at most n1 times. Thus (since r is a constant) Main Procedure
needs at most C′′n6

1 elementary operations. We have n1 graphs G′
i, and so run Main

Procedure at most n1 times. Therefore, for the whole G, the complexity is at most C′′n7.
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