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Abstract: For a loopless multigraph G, the fractional arboricity Arb(G) is
the maximum of |E (H )|

|V (H )|−1 over all subgraphs H with at least two vertices.
Generalizing the Nash-Williams Arboricity Theorem, the Nine Dragon Tree
Conjecture asserts that if Arb(G) ≤ k + d

k+d+1 , then G decomposes into
k + 1 forests with one having maximum degree at most d . The conjecture
was previously proved for (k, d ) ∈ {(1, 1), (1, 2)}; we prove it for d = k + 1
and when k = 1 and d ≤ 6. For (k, d ) = (1, 2), we can further restrict one
forest to have at most two edges in each component.

For general (k, d ), we prove weaker conclusions. If d > k, then Arb(G) ≤
k + d

k+d+1 implies that G decomposes into k forests plus a multigraph
(not necessarily a forest) with maximum degree at most d . If d ≤ k, then
Arb(G) ≤ k + d

2k+2 implies that G decomposes into k + 1 forests, one hav-
ing maximum degree at most d . Our results generalize earlier results about
decomposition of sparse planar graphs. C© 2013 Wiley Periodicals, Inc. J. Graph Theory 74:

369–391, 2013

Keywords: graph decomposition; forest; fractional arboricity; maximum average degree; discharging

1. INTRODUCTION

Throughout this article, we use the model of “graph” in which multiedges but no loops
are allowed. A decomposition of a graph G consists of edge-disjoint subgraphs with
union G. The arboricity of G, written ϒ(G), is the minimum number of forests needed to
decompose it. The famous Nash-Williams Arboricity Theorem [13] states that a necessary
and sufficient condition for ϒ(G) ≤ k is that no subgraph H has more than k(|V (H)| − 1)

edges.
Payan [14] defined Arb(G) = maxH⊆G

|E(H)|
|V (H)|−1 as the fractional arboricity of G. The

Nash-Williams Theorem says ϒ(G) = �Arb(G)�. If G has fractional arboricity k + ε

(with k ∈ N and 0 < ε ≤ 1), then k + 1 forests are needed to decompose it. When ε is
small, one may hope to place some restrictions on the last forest, since k forests are
“almost” enough to decompose G. The Nine Dragon Tree (NDT) Conjecture1 asserts
that one can bound the maximum degree of the last forest in terms of ε. Call a graph
d-bounded if its maximum degree is at most d.

Conjecture 1.1 (NDT Conjecture [11]). If Arb(G) ≤ k + d
k+d+1 , then G decomposes

into k + 1 forests, one of which is d-bounded.

Montassier, Ossona de Mendez, Raspaud, and Zhu [11] posed the conjecture,
showed that the condition cannot be relaxed, and proved the conjecture for (k, d) ∈
{(1, 1), (1, 2)}. In this article, we prove it in the following cases:

� d = k + 1;
� k = 1 and d ≤ 6.

1The Nine Dragon Tree is a banyan tree atop a mountain in Kaohsiung, Taiwan; it
is far from acyclic.
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For (k, d) = (1, 2), we prove the stronger result that if Arb(G) ≤ 1 + 1
2 , then G

decomposes into two forests, one of which has at most two edges in each component.
For general (k, d), we prove weaker versions of the conjecture.

� If d > k and Arb(G) ≤ k + d
k+d+1 , then G decomposes into k forests and a d-

bounded graph (instead of a d-bounded forest). In fact, we prove that a weaker
condition implied by Arb(G) ≤ k + d

k+d+1 also suffices, and that result is sharp.
� If d ≤ k and Arb(G) ≤ k + d

2k+2 , then G decomposes into k forests and a d-
bounded forest.

Our results generalize earlier results about decomposition of planar graphs. For con-
venience, let a (k, d)-decomposition of a graph G be a decomposition of G into k forests
and one d-bounded graph, and let a (k, d)∗-decomposition be a decomposition of G
into k forests and one d-bounded forest. Graphs having such decompositions are (k, d)-
decomposable or (k, d)∗-decomposable, respectively.

Motivated by an application to “game coloring number,” He et al. [8] initiated the
study of (1, d)-decomposition of planar graphs with large girth, proving that those with
girth at least 5 are (1, 4)-decomposable. For d = 2, planar graphs were shown to be
(1, 2)-decomposable when they have girth at least 7 (in [8]) and at least 6 (in [10]), with
non-(1, 2)-decomposable examples of girth 5 in [10, 11]. Planar graphs were shown to
be (1, 1)-decomposable when they have girth at least 11 (in [8]), 10 (in [2]), 9 (in [6]),
or 8 (in [11, 15]). Planar graphs with girth 7 that are not (1, 1)-decomposable appear in
[10, 11].

Gonçalves [7] proved that every planar graph is (2, 4)∗-decomposable, as conjec-
tured by Balogh et al. [1]. He also proved that those with girth at least 6 are (1, 4)∗-
decomposable and those with girth at least 7 are (1, 2)∗-decomposable. With fractional
arboricity of planar graphs arbitrarily close to 3, the NDT Conjecture cannot guar-
antee them being (2, d)∗-decomposable for any constant d. However, girth at least 6
or 7 yields Arb(G) < 6/4 or Arb(G) < 7/5, respectively, in which case it guarantees
(1, 4)∗- or (1, 2)∗-decompositions. Hence our proof of the NDT Conjecture for (k, d)

with k = 1 and d ≤ 6 implies Gonçalves’ results for (1, d)∗-decomposition but not for
(2, 4)∗-decomposition.

The maximum average degree of a graph G, denoted Mad(G), is maxH⊆G
2|E(H)|
|V (H)| ; it is

the maximum over subgraphs H of the average vertex degree in H. Many conclusions on
planar graphs with large girth need only the corresponding bound on Mad(G). A planar
graph on n vertices with finite girth g has at most g

g−2 (n − 2) edges, by Euler’s Formula;

thus it satisfies Mad(G) <
2g

g−2 . Subgraphs of graphs with girth g have girth at least g. In
particular, forests can be viewed as having infinite girth, and their average degree is less
than 2. Thus Mad(G) <

2g
g−2 when G is planar with girth at least g.

As stated above, the sharp requirements on girth of a planar graph G for being (1, d)-
decomposable are 8, 6, and 5 when d is 1, 2, or 4, respectively. Such a graph has Mad(G)

less than 8/3, 3, or 10/3, respectively. By our results, these bounds imply that G is
(1, d)-decomposable. Thus our results for bounded Mad(G) generalize the earlier sharp
results on decomposition of planar graphs with large girth.

In [12], Montassier et al. posed the question of finding the loosest upper bound on
Mad(G) that guarantees decomposition into a forest and a d-bounded graph. They proved
that Mad(G) < 4 − 8d+12

d2+6d+6 is sufficient and that Mad(G) = 4 − 4
d+2 is not sufficient

(as seen by subdividing every edge of a (2d + 2)-regular graph). The case k = 1 of
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our Theorem 1.2 completely solves this problem, implying that Mad(G) < 4 − 4
d+2 is

sufficient.
Upper bounds on Arb(G) or Mad(G) are “sparseness” conditions. These parameters

are similar but not identical: Mad(G) < 2Arb(G) always holds, but Mad(G) < 2ρ is a
bit weaker than Arb(G) ≤ ρ. Our main result uses another sparseness condition between
them.

To compute Arb(G) or Mad(G), it suffices to perform the maximization only over
induced subgraphs. Letting G[A] denote the subgraph of G induced by a vertex set A, we
write ‖A‖ for the number of edges in G[A] (and |A| for the number of vertices). We restate
the conditions Mad(G) < 2k + 2d

k+d+1 and Arb(G) ≤ k + d
k+d+1 as integer inequalities

and in the same format define an intermediate condition of being (k, d)-sparse (the
restatement of the conditions uses the equality k(k + d + 1) + d = (k + 1)(k + d)):

Condition Equivalent constraint (when imposed for all A ⊆ V (G))

Arb(G) ≤ k + d
k+d+1 (k + 1)(k + d)|A| − (k + d + 1)‖A‖ − (k + 1)(k + d) ≥ 0

(k, d)−sparse (k + 1)(k + d)|A| − (k + d + 1)‖A‖ − k2 ≥ 0

Mad(G) < 2k + 2d
k+d+1 (k + 1)(k + d)|A| − (k + d + 1)‖A‖ − 1 ≥ 0

With this definition, we can state our general result for d > k.

Theorem 1.2. For d > k, every (k, d)-sparse graph is (k, d)-decomposable. Further-
more, the condition is sharp.

Since (k + 1)(k + d) > k2 ≥ 1, the condition on Arb(G) implies (k, d)-sparseness,
which in turn implies the condition on Mad(G). By showing that (k, d)-sparseness
suffices, Theorem 1.2 thus implies that Arb(G) ≤ k + d

k+d+1 suffices for G to be (k, d)-
decomposable, but Mad(G) < 2k + 2d

k+d+1 might not. However, since k2 = 1 when k = 1,
the condition of (1, d)-sparseness is equivalent to Mad(G) < 2 + 2d

d+2 = 4 − 4
d+2 .

In Section 2, we prove Theorem 1.2 by giving an inductive proof of a more general
statement in which varying degree bounds are imposed on the vertices in the d-bounded
graph. Further motivation for the additive constant in the definition of (k, d)-sparseness
comes from the sharpness example in Section 2.

Theorem 1.2 omits the case d ≤ k. In Section 3, we prove a result implying that a
stronger condition on Arb(G) than that in the NDT Conjecture guarantees a (k, d)∗-
decomposition when d ≤ k + 1. The condition is Arb(G) ≤ k + d

2k+2 . When d = k + 1,
this bound equals k + d

k+d+1 , so this theorem implies the case d = k + 1 of the NDT
Conjecture.

Around the same time that we obtained our result, Király and Lau [9] also considered
(k, d)-decomposability. In our terminology, they showed that G is (k, d)-decomposable
when Arb(G) ≤ k + d−1

k+d . Our result is stronger when d ≥ k, but for d < k neither implies
the other; their arboricity bound is looser than ours, applying to more graphs, but our
conclusion is stronger, guaranteeing that the last graph is a d-bounded forest rather than
just a d-bounded graph. Their methods are different, applying linear programming and a
result on matroids.

In Sections 4–6, we prove the NDT Conjecture for (k, d) = (1, d) with d ≤ 6, in a form
that requires only (k, d)-sparseness as long as small graphs violating Arb(G) ≤ k + 1
are forbidden. Meanwhile, the Strong NDT Conjecture asserts that Arb(G) ≤ k + d

k+d+1
guarantees a (k, d)∗-decomposition in which every component of the d-bounded forest
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has at most d edges. We prove this for (k, d) = (1, 2) in Section 7 (the result of [11]
implies it for (k, d) = (1, 1)). The results of Sections 4–7 use reducible configurations
and discharging.

2. (k, d )-DECOMPOSITION FOR d > k

We begin with a general example showing that Theorem 1.2 is sharp. This example
also motivates the additive constant in the condition for (k, d)-sharpness. We restate the
definition of (k, d)-sparseness to introduce convenient notation for the proofs.

Definition 2.1. A graph G is (k, d)-sparse if β(A) ≥ 0 for every nonempty vertex subset
A, where

β(A) = (k + 1)(k + d)|A| − (k + 1 + d)‖A‖ − k2. (1)

For each choice of k, d ∈ N, we construct a sequence of bipartite graphs that are
not (k, d)-decomposable and yet just barely fail to be (k, d)-sparse. Figure 1 illustrates
the construction for (k, d) = (2, 1). Vertices in X have degree 3, so the graph has 42
edges. With 19 vertices, only 36 edges can be absorbed by two forests. A 1-bounded
subgraph (a matching) has at most five edges, so at most 41 edges can be absorbed by a
(2, 1)-decomposition.

Proposition 2.2. Fix k, d, t ∈ N with t > k. Let X = {x1, . . . , xs} and Y = {y1, . . . , yt},
where s = t(k + d) − k + 1. For 1 ≤ i ≤ s, make xi adjacent to yi, . . . , yi+k, with indices
in Y taken modulo t. The resulting bipartite graph G is not (k, d)-decomposable, even
though β(A) ≥ 0 for every nonempty proper vertex subset A, but β(V (G)) = −1.

Proof. Every vertex in X has degree k + 1, so |E(G)| = (k + 1)(k + d)t − k2 + 1.
Since |Y | = t, a d-bounded subgraph of G has at most dt edges. Deleting a d-bounded
subgraph thus leaves at least k(k + d)t + kt − k2 + 1 edges. Since |V (G)| = t(k + d +
1) − k + 1, any k forests in G cover at most k[t(k + d + 1) − k] edges. Hence G is not
(k, d)-decomposable.

Now consider β(A) for A ⊆ V (G). Choose A to minimize β among nonempty subsets
of V (G), and suppose β(A) < 0. If |A| = 1, then β(A) = kd + k + d > 0, so |A| > 1. If
some vertex v ∈ A has at most k neighbors in A, then β(A − v) ≤ β(A) − d, contradicting
the choice of A. Therefore, all k + 1 neighbors of each vertex in A ∩ X are also in A. Let
s′ = |A ∩ X | and t ′ = |A ∩ Y |. Now

β(A) = (k + 1)(k + d)(s′ + t ′) − (k + d + 1)(k + 1)s′ − k2

= (k + 1)(k + d)t ′ − s′(k + 1) − k2 = (k + 1)[(k + d)t ′ − s′ − k + 1] − 1.

For such A, the condition β(A) < 0 becomes s′ > (k + d)t ′ − k. If Y ⊆ A, then t ′ = t,
and we have β(A) < 0 if and only if s′ = s and A = V (G).

FIGURE 1. A graph with no (k, d )-decomposition.
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If t ′ < t, then each vertex of Y − A forbids all its neighbors from A. For fixed t ′, the
largest s′ and hence smallest β(A) occurs when Y ∩ A = {y1, . . . , yt ′ } (this makes the
subsets forbidden from X overlap as much as possible, allowing X to be larger). Writing
i = qt + r with q ≥ 0 and 1 ≤ r ≤ t, we then have xi ∈ A only when 1 ≤ r ≤ t ′ − k. With
s = t(k + d) − k + 1, this yields s′ ≤ (k + d)(t ′ − k) < (k + d)t ′ − k. We conclude that
β(A) ≥ 0 except when A = V (G). �

Using k2 as the additive term in the definition of β has enabled us to construct a
non-(k, d)-decomposable graph with the smallest possible failure of (k, d)-sparseness.

Theorem 1.2 allows degree d at each vertex in the special subgraph. We prove the
theorem in a seemingly more general form to facilitate the inductive proof and avoid the
discharging method, considering varying “capacities” at vertices. Lemma 4.7 will show
that the more general form is equivalent to Theorem 1.2.

Definition 2.3. Fix positive integers d and k. A capacity function on a graph G is
a function f : V (G) → {0, . . . , d}. A (k, f )-decomposition of G decomposes it into k
forests and a graph D such that each vertex v has degree at most f (v) in D. For each
vertex set A in G, let

β f (A) = (k + 1)
∑

v∈A

(k + f (v)) − (k + 1 + d)‖A‖ − k2. (2)

A capacity function f on G is feasible if β f (A) ≥ 0 for all nonempty A ⊆ V (G).

When f (v) = d for all v ∈ V (G), the value of β f (A) in (2) reduces to the value of β(A)

in (1), and the condition for feasibility of f becomes the condition for (k, d)-sparseness
of G.

Capacity functions can reserve an edge uv for use in D: we delete uv and reduce the
capacity of its endpoints. In order to reduce the problem to a case where we can show
feasibility of the reduced function f ′ on G − uv, we will apply the induction hypothesis
to various subgraphs of G obtained by contraction or deletion of subgraphs.

Definition 2.4. For B ⊆ V (G), let GB denote the graph obtained by contracting B into
a new vertex z. Let f |B denote the restriction of f to B.

Note that the degree of z in GB is the number of edges joining B to V (G) − B in G.
Edges of G with both endpoints in B disappear.

Lemma 2.5. If f is a feasible capacity function on G, and B is a proper subset of V (G)

such that |B| ≥ 2 and β f (B) ≤ k, then f ∗ is a feasible capacity function on GB, where
f ∗(z) = 0 and f ∗ agrees with f on V (G) − B.

Proof. Consider A ⊆ V (GB). If z /∈ A, then β f ∗ (A) = β f (A) ≥ 0. When z ∈ A, we
compare β f ∗ (A) with β f (A′), where A′ = (A − {z}) ∪ B (see Figure 2). Every edge in
G[A′] appears in GB[A] or G[B]; hence the edges contribute the same amount to both
sides of the equation below. Comparing the terms for constants and the terms for vertices

FIGURE 2. Feasibility of contractions.
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(using f ∗(z) = 0) yields

β f (A
′) = β f ∗ (A) − (k + 1)k + β f (B) + k2.

If β f (B) ≤ k, then β f ∗ (A) ≥ β f (A′) ≥ 0. �

Definition 2.6. When writing (F, D) for a decomposition of a graph, the subgraph F
will denote a union of k forests.

Lemma 2.7. Let f be a capacity function on a graph G, and let B be a proper subset
of V (G). If G[B] is (k, f |B)-decomposable and GB is (k, f ∗)-decomposable, where f ∗ is
defined from f as in Lemma 2.5, then G is (k, f )-decomposable.

Proof. Let (F, D) be a (k, f |B)-decomposition of G[B], and let (F ′, D′) be a (k, f ∗)-
decomposition of GB. Each edge of G is in G[B] or GB, becoming incident to z in GB if
it joins B to V (G) − B in G. View (F ∪ F ′, D ∪ D′) as a decomposition of G by viewing
edges incident to z in F ′ as corresponding edges in G.

The resulting decomposition is a (k, f )-decomposition of G. Since f ∗(z) = 0, vertex
z has degree 0 in D′, and all edges joining B to V (G) − B lie in F ′. Hence the restrictions
from f are satisfied by D ∪ D′. For each forest Fi among the k forests in F , its union with
the corresponding forest F ′

i in F ′ is still a forest, since otherwise contracting the portion
in Fi of a resulting cycle would yield a cycle through z in F ′

i when viewed as a forest in
G′. �

When β f is small on some nontrivial subset, we will use Lemmas 2.5 and 2.7 to
produce the (k, f )-decomposition. Otherwise, when u and v are adjacent and have positive
capacity, we will apply the induction hypothesis to G − uv with their capacity reduced.
That leaves the case where the vertices with positive capacity are independent; in this case
a (k, f )-decomposition consists of k forests, and Nash-Williams’ Arboricity Theorem
applies.

Theorem 2.8. If d > k and G is a graph with a feasible capacity function f , then G is
(k, f )-decomposable.

Proof. We use induction on the number of vertices plus the number of edges; the
statement is trivial when there are at most k edges. Hence we may assume |E(G)| > k.

If β f (B) ≤ k for some proper subset B of V (G) with |B| ≥ 2, then the capacity function
f ∗ on GB that agrees with f except for f ∗(z) = 0 is feasible, by Lemma 2.5. Since G[B]
is an induced subgraph of G, the restriction of f to B is feasible on G[B]. Since GB and
G[B] are smaller than G, by the induction hypothesis GB is (k, f |B)-decomposable and
GB is (k, f ∗)-decomposable. By Lemma 2.7, G is (k, f )-decomposable.

Hence we may assume that β f (B) ≥ k + 1 when B ⊂ V (G) and |B| ≥ 2. Let S = {v ∈
V (G) : f (v) > 0}. If S has adjacent vertices u and v, then let f ′ be the capacity function
on G − uv that agrees with f except for f ′(u) = f (u) − 1 and f ′(v) = f (v) − 1. If f ′ is
feasible, then since G − uv is smaller than G, it has a (k, f ′)-decomposition, and we add
uv to the degree-bounded subgraph to obtain a (k, f )-decomposition of G.

To show that f ′ is feasible, consider A ⊆ V (G′) = V (G). If u, v /∈ A, then β f ′ (A) =
β f (A). If u, v ∈ A, then the reduction in f and loss of one edge yield β f ′ (A) = β f (A) −
2(k + 1) + (k + d + 1) ≥ β f (A), where the last inequality uses d > k. If exactly one of
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{u, v} is in A, then A is a proper subset of V (G). If |A| ≥ 2, then β f ′ (A) = β f (A) − (k +
1) ≥ 0. If |A| = 1, then β f ′ (A) ≥ k, since G′ has no loops.

Hence we may assume that S is independent. In this case, we decompose G into k
forests, yielding a (k, f )-decomposition of G in which the f -bounded subgraph has no
edges. If no such decomposition exists, then by Nash-Williams’ Theorem V (G) has a
minimal subset A such that ‖A‖ ≥ k(|A| − 1) + 1 (note that |A| ≥ 2). By the minimality
of A, every vertex of A has at least k + 1 neighbors in A. Let A′ = S ∩ A. Since S is
independent, ‖A‖ ≥ (k + 1)|A′|. Taking k + 1 times the first lower bound on ‖A‖ plus d
times the second yields

(k + 1 + d)‖A‖ ≥ (k + 1)k(|A| − 1) + (k + 1) + d(k + 1)|A′|.
Now we compute

β f (A) = (k + 1)k|A| + (k + 1)
∑

v∈A′
f (v) − (k + d + 1)‖A‖ − k2

≤ (k + 1)k|A| + (k + 1)d|A′| − (k + 1)k(|A| − 1) − (k + 1) − d(k + 1)|A′| − k2

= (k + 1)k − (k + 1) − k2 = −1.

This contradicts the feasibility of f , and hence the desired decomposition of G
exists. �

3. (k, d )∗-DECOMPOSITION FOR d ≤ k + 1

The capacity function f in Section 2 controls vertex degrees to facilitate inductive
construction of a (k, d)-decomposition, but it cannot prevent creation of cycles when we
return a deleted edge. We introduce another property to do this.

Definition 3.1. A strong (k, f )∗-decomposition is a (k, f )∗-decomposition in which
each component of the degree-bounded forest contains at most one vertex v such that
f (v) < d.

We will now apply the induction hypothesis to G − uv with reduced capacity function
f ′ only when at least one endpoint of uv has capacity d. In G − uv, these endpoints will
be the only vertices with capacity less than d in their components in D. We will thus
be able to add uv to D without introducing cycles. Since u or v has capacity d in f , the
resulting decomposition of G is also strong. This approach will reduce the problem to
the case where no edge joins a vertex with capacity d to a vertex with positive capacity;
in this case, we will decompose G into k forests as in the final step of Theorem 2.8.

We must also strengthen the sparseness condition. If G consists of two vertices and an
edge of multiplicity k + 2, and f (u) = f (v) = d, then β(A) ≥ 0 for all A, but G does not
decompose into k + 1 forests. Another auxiliary function will exclude such examples.

Definition 3.2. Given a capacity function f on V (G) using capacities at most d, let
S = {v∈V (G) : f (v) = d}. For A⊆V (G), let f (A) = ∑

v∈A f (v) and f̂ (A) = min{ f (x) :
x ∈ A}. Define α f and β∗

f on subsets of G as follows:

α f (A) = k|A| − k − ‖A‖ + |A ∩ S|,
β∗

f (A) = (2k + 2 − d)k|A| + (k + 1)( f (A) − 2‖A‖) − (k − 1)(2k + 2 − d).
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Say that f is strongly feasible when β∗
f (A) > 0 and α f (A) ≥ 0 for all nonempty A ⊆

V (G), with strict inequality α f (A) > 0 whenever A ⊆ S.

The condition on α f is necessary for a strong (k, f )∗-decomposition. Requiring
α f (A) ≥ 0 allows A to induce k forests plus |A ∩ S| edges in the last forest. However, the
last forest cannot have |A| edges within A, so when A ⊆ S we must require α f (A) > 0.

With these definitions, we can state the main result of this section.

Theorem 3.3. If d ≤ k + 1 and f is a strongly feasible capacity function on a graph G,
then G has a strong (k, f )∗-decomposition.

To compare with fractional arboricity, the condition Arb(G) ≤ k + d
2k+2 is equivalent

to

(2k + 2 − d)k|A| + (k + 1)(d|A| − 2‖A‖) − k(2k + 2) − d ≥ 0 for A ⊆ V (G).

When f (v) = d for all v, this condition becomes β∗
f (A) ≥ 2k + kd + 2 for A ⊆ V (G),

which is more restrictive than strong feasibility.

Corollary 3.4. Arb(G) ≤ k + d
2k+2 guarantees that G is (k, d)∗-decomposable. In par-

ticular, the NDT Conjecture holds when d = k + 1.

Proof. We have observed that Arb(G) ≤ k + d
2k+2 implies β∗

f (A) > 0 for all A when
f (v) = d for all v. With this capacity function, |A ∩ S| = |A| for all A ⊆ V (G), and the
condition α f (A) ≥ 1 (since A ⊆ S) becomes ‖A‖ ≤ (k + 1)(|A| − 1), which is true for
all A when Arb(G) < k + 1. Hence Theorem 3.3 applies.

When d = k + 1, we have d + k + 1 = 2k + 2, so Arb(G) ≤ k + d
k+d+1 is

sufficient. �
We next prove a useful bound on β∗

f in terms of α f for the case d ≤ k + 1.

Lemma 3.5. Given d ≤ k + 1, a capacity function f on a graph G, and a set A ⊆ V (G)

with |A| ≥ 2,

β∗
f (A) ≤ (k + 1)[2α f (A) + f̂ (A) − |A ∩ S| + 1].

In particular, if α f (A) ≤ 0 and β∗
f (A) > 0 with A �⊆ S, then f (x) ≥ |A ∩ S| for all x ∈ A.

Proof. Substituting ‖A‖ = k|A| − k − α f (A) + |A ∩ S| into the formula for β∗
f (A)

yields

β∗
f (A) = −dk|A| + (k + 1)[2α f (A) + f (A) − 2|A ∩ S|] + (2k + 2) + d(k − 1).

Summing capacities over x ∈ A yields f (A) ≤ (d − 1)|A| + |A ∩ S| + f̂ (A) − (d − 1)

(the inequality is strict when A ⊆ S). Substituting this into the formula above yields

β∗
f (A) ≤ −dk|A| + (k + 1)(d − 1)|A| + (k + 1)[2α f (A) + f̂ (A) − |A ∩ S|]

+ 3k + 3 − 2d

= (k + 1)[2α f (A) + f̂ (A) − |A ∩ S|] + (d − k − 1)|A| + 3k + 3 − 2d

≤ (k + 1)[2α f (A) + f̂ (A) − |A ∩ S|] + k + 1,

where the last inequality uses |A| ≥ 2 and d ≤ k + 1. �
We need analogues of Lemmas 2.5 and 2.7, with GB as defined in Section 2.
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Lemma 3.6. For d ≤ k + 1, let f be a strongly feasible capacity function on G, and let
B be a proper subset of V (G) with |B| ≥ 2. Define f ∗ and f̄ on GB by f ∗(z) = f̂ (B) −
|B ∩ S| and f̄ (z) = 0, letting both functions agree with f on V (G) − B. If α f (B) = 0,
then f ∗ is strongly feasible. If β∗

f (B) ≤ k + 1, then f̄ is strongly feasible.

Proof. First, consider the case α f (B) = 0. As observed in Lemma 3.5, f̂ (B) ≥ |B ∩ S|
when α f (B) = 0. Hence f ∗(z) ≥ 0, so f ∗ is a capacity function. Since f is strongly
feasible and α f (B) = 0, we have β∗

f (B) > 0 and B �⊆ S. Since f̂ (B) = d only if B ⊆ S,
we must have f ∗(z) < d, so the set S is the same for f ∗ and f .

If z /∈ A ⊆ V (GB), then β∗
f ∗ (A) = β∗

f (A) and α f ∗ (A) = α f (A). When z ∈ A, we com-
pute α f ∗ (A) and β∗

f ∗ (A) from α f (A′) and β∗
f (A

′), where A′ = (A − {z}) ∪ B. As in
Lemma 2.5, |A′| = |A| − 1 + |B| and ‖A′‖ = ‖A‖ + ‖B‖, where ‖A‖ counts edges in
GB. Hence

α f (A
′) = α f ∗ (A) + α f (B);

β∗
f (A

′) = β∗
f ∗ (A) + β∗

f (B) − (k + 1) f ∗(z) − (2k + 2 − d).

Since α f (B) = 0, we obtain α f ∗ (A) = α f (A′) ≥ 0, as desired since f ∗(z) < d. By
Lemma 3.5, α f (B) = 0 implies β∗

f (B) ≤ (k + 1)[ f̂ (B) − |B ∩ S| + 1] = (k + 1) f ∗(z)
+ (k + 1). Now β∗

f ∗ (A) ≥ β∗
f (A

′) + k + 1 − d ≥ β∗
f (A

′) > 0.

For f̄ , again it suffices to check A with z ∈ A ⊆ V (GB) and let A′ = (A − {z}) ∪ B.
Now

β∗
f (A

′) = β∗
f̄
(A) + β∗

f (B) − (2k + 2 − d) ≤ β∗
f̄
(A),

where we have used β∗
f (B) ≤ k + 1, f̄ (z) = 0, and k + 1 − d ≥ 0. We also need α f̄ (A) ≥

0. With β∗
f̄
(A) ≥ β∗

f (A
′) > 0 and f̄ (z) = 0, this follows from Lemma 3.5. �

Lemma 3.7. Let f be a capacity function on G, and let B be a proper subset of V (G)

with |B| ≥ 2. If G[B] is strongly (k, f |B)∗-decomposable and GB is strongly (k, f ∗)∗-
decomposable, with f ∗ defined from f as in Lemma 3.6, then G is strongly (k, f )∗-
decomposable.

Proof. Let (F, D) be a strong (k, f |B)∗-decomposition of G[B], and let (F ′, D′) be a
strong (k, f ∗)∗-decomposition of GB. Each edge of G is in G[B] or GB, becoming incident
to z in GB if it joins B to V (G) − B in G. Viewing F ′ and D′ as subgraphs of G, we show
that (F ∪ F ′, D ∪ D′) is a strong (k, f )∗-decomposition of G.

As in Lemma 2.7, the union of any forest Fi in F with the corresponding forest F ′
i in

F ′ is still a forest, since otherwise contracting the portion in Fi of a resulting cycle would
yield a cycle through z in F ′

i when viewed as a forest in G′. This argument applies also
to D ∪ D′.

Recall that S = {v ∈ V (G) : f (v) = d}. If f̂ (B) = d, then B ⊆ S; we conclude that
f ∗(z) < d. Since (F ′, D′) is a strong (k, f ∗)∗-decomposition, f ∗(z) < d implies that
vertices other than z in its component in D′ lie in S. Therefore, each component of D ∪ D′

in G has at most one vertex outside S.
Since D ⊆ G[B] and each component of D has at most one vertex outside S, each

vertex v of B has at most |B ∩ S| neighbors in D. By the definition of f ∗(z), vertex v
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gains at most f̂ (B) − |B ∩ S| neighbors in D′; together it has at most f (v) neighbors in
D ∪ D′. �

Proof of Theorem 3.3. If d ≤ k + 1 and f is a strongly feasible capacity function on
a graph G, then G has a strong (k, f )∗-decomposition.

Proof. We use induction on |V (G)| + |E(G)|; statement is trivial when |E(G)| ≤ k.
Hence we may assume |E(G)| > k. Recall that S = {v ∈ V (G) : f (v) = d}. Let R =
{v ∈ V (G) : f (v) = 0}, and let T = V (G) − S − R. We prove:

If G has no strong(k, f )∗−decomposition,

then G has no edge uv with u ∈ S and v ∈ S ∪ T. (∗)

Suppose that G has such an edge uv. We choose uv with v ∈ T if possible; otherwise,
v ∈ S. Let G′ = G − uv, and let f ′ be the capacity function on G′ that agrees with f
except for f ′(u) = f (u) − 1 and f ′(v) = f (v) − 1. Note that u /∈ {x : f ′(x) = d}. If we
can show that f ′ is strongly feasible, then since G − uv is smaller than G, it has a strong
(k, f ′)∗-decomposition (F, D). Since f ′(u) < d and f (u) = d, adding the edge uv to D
yields a strong (k, f )∗-decomposition of G.

To prove (∗), it thus suffices to show that f ′ is strongly feasible. We consider α f ′ (A)

and β∗
f ′ (A). If |A| = 1, then α f ′ (A) = |A ∩ S| (positive if A ⊆ S). Also, β∗

f ′ (A) = (2k +
2 − d) + (k + 1) f (A) ≥ 2k + 2 − d > 0, since d ≤ k + 1.

Next consider A = V (G). Since u, v ∈ A, we have β∗
f ′ (A) = β∗

f (A) > 0. Also,
α f ′ (A) < α f (A) requires u, v ∈ S. Not all vertices satisfy f ′(x) = d, since f ′(u) < d.
Therefore, having α f (A) ≥ 1 and α f ′ (A) ≥ 0 suffices, so we may assume α f (A) = 0.
With A = V (G) and u, v ∈ S, the choice of uv in defining f ′ implies that no edges join S
and T . Since α f (A) = 0 implies A �⊆ S, we have R ∪ T �= ∅. If R �= ∅, then f̂ (A) = 0,
contradicting Lemma 3.5. Hence R = ∅. Since no edges join S and T , now G is discon-
nected, and we can combine strong decompositions of the components obtained from the
induction hypothesis.

Finally, suppose 2 ≤ |A| < |V (G)|. If α f (A) = 0, then the capacity function f ∗ on GA

that agrees with f except for f ∗(z) = f̂ (A) − |A ∩ S| is strongly feasible, by Lemma 3.6.
Also, the restriction of f to A is strongly feasible on G[A]. Since GA and G[A] are smaller
than G, by the induction hypothesis G[A] is strongly (k, f |A)∗-decomposable and GA is
strongly (k, f ∗)∗-decomposable. By Lemma 3.7, G is strongly (k, f )∗-decomposable.

Hence we may assume that α f (A) > 0. If α f ′ (A) < α f (A), then u or v is in A ∩ S, and
the difference is at most 1. Hence α f ′ (A) ≥ 0, which is good enough since f ′(u), f ′(v) <

d. If β∗
f ′ (A) > 0, then A causes no problem.

Otherwise, β∗
f (A) ≤ k + 1, since reduction of β∗ requires |A ∩ {u, v}| = 1, and the

reduction is then by k + 1. Now Lemma 3.6 implies that f̄ is strongly feasible on GA,
where f̄ (z) = 0 and otherwise f̄ agrees with f . By the induction hypothesis, GA has
a strong (k, f̄ )∗-decomposition (F, D), and G[A] has a strong (k, f |A)∗-decomposition
(F ′, D′). As in Lemma 3.7, (F ∪ F ′, D ∪ D′) is a strong (k, f )∗-decomposition of G;
since z is isolated in D, the components of D′ do not extend.

Hence we may assume that S is independent and that no edge joins S and T . As in
Theorem 2.8, we claim that G decomposes into k forests, completing the desired decom-
position. Otherwise, we find a set A such that β∗

f (A) ≤ 0, contradicting strong feasibility.
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Note that β∗
f (A) = (2k + 2 − d)g(A) + h(A), where g(A) = k(|A| − 1) − ‖A‖ + 1 and

h(A) = (k + 1) f (A) − d‖A‖. It suffices to find A such that g(A) ≤ 0 and h(A) ≤ 0.
If ϒ(G) > k, then V (G) has a minimal subset A such that ‖A‖ ≥ k(|A| − 1) + 1; that

is, g(A) ≤ 0. Minimality implies that every vertex of A has at least k + 1 neighbors in A.
If A ∩ T = ∅, then ‖A‖ ≥ (k + 1)|A ∩ S| = (k + 1) f (A)/d, which simplifies to

h(A) ≤ 0. If A ⊆ T , then |A ∩ S| = 0, so α f (A) = g(A) − 1 < 0, contradicting strong
feasibility of f .

Hence we may assume that A ∩ T is a nonempty proper subset of A. The minimality
of A implies that ‖A − T‖ ≤ k(|A − T | − 1), and hence more than k|A ∩ T | edges of
G[A] are incident to T . From the independence of S and the absence of edges joining
S and T , we now have ‖A‖ > (k + 1)|A ∩ S| + k|A ∩ T |. Since f (v) = d for v ∈ S and
f (v) ≤ d − 1 for v ∈ T , this yields ‖A‖ ≥ (k + 1)

f (A∩S)

d + k f (A∩T )

d−1 . Multiplying by d,
we obtain

d‖A‖ ≥ (k + 1) f (A ∩ S) + k f (A ∩ T )
d

d − 1
≥ (k + 1) f (A),

using d/(d − 1) ≥ (k + 1)/k and f (R) = 0. Thus h(A) ≤ 0, which as we noted suffices
to complete the proof. �

4. APPROACH TO (k, d )∗-DECOMPOSITION

When d > k + 1, an inequality in the proof of Lemma 3.6 fails, and we need a different
approach to (k, d)∗-decomposition. For k = 1, the needed sparseness condition reduces to
a condition on Mad(G). We will obtain reducible configurations (forbidden from minimal
counterexamples) and then use the discharging method (reallocating vertex degrees) to
show that the average degree in a graph avoiding those configurations is higher than
assumed.

In this discussion, we modify β by removing the constant term, and we drop the
notation for the capacity function because each vertex will have capacity d.

Definition 4.1. For a set A of vertices in a graph G, the sparseness βG(A) is defined by

βG(A) = (k + 1)(k + d)|A| − (k + d + 1)‖A‖.
In addition, let mk,d = 2k + 2d

k+d+1 .

Note that G is (k, d)-sparse if and only if βG(A) ≥ k2 for all A. We have noted that
(Arb(G) ≤ mk,d/2) ⇒ ((k, d)-sparse) ⇒ (Mad(G) < mk,d ); here we present an example
that separates these conditions. Recall that we allow multiedges in graphs.

Example 4.2. Form H from the star K1,q by replacing each edge with k + 1 parallel
edges (see Figure 3). Note that H decomposes into k + 1 forests, but only with each forest
being K1,q and having maximum degree q. Since Arb(H) = k + 1, the NDT Conjecture
does not apply (and Arb(H) ≤ mk,q/2 is not necessary for (k, q)∗-decomposition).

FIGURE 3. The graph H when q = 4 and k = 2.
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Since βH (V (H)) = (k + 1)(k + d)|V (H)| − (k + d + 1)‖V (H)‖ = (k + 1)(k + d − q),
the graph H is (k, d)-sparse if and only if q ≤ d, which is precisely when it has a
(k, d)∗-decomposition.

However, Mad(H) = 2(k + 1)
q

q+1 , so Mad(H) < mk,d when q < k + d. For d < q <

k + d, this shows that Mad(H) < mk,d does not imply (k, d)∗-decomposition. Note that
d < q < k + 2 requires k ≥ 2; “(1, d)-sparse” and “Mad(G) < m1,d” are equivalent.

Remark 4.3. It is possible for a (k, d)-sparse graph to have no decomposition into
k + 1 forests. Violating ϒ(G) ≤ k + 1 requires for some r a subgraph having r vertices
and more than (k + 1)(r − 1) edges. If G is also (k, d)-sparse, then

(k + 1)(k + d)r − (k + d + 1)[(k + 1)(r − 1) + 1] ≥ k2,

which simplifies to r ≤ k(d+1)

k+1 . Thus a (k, d)-sparse graph with ϒ(G) > k + 1 must have
a small dense subgraph.

Remark 4.3 suggests a strengthening of the NDT Conjecture using sparseness. First,
we introduce a term for “dense subgraph.”

Definition 4.4. For k ∈ N and a graph G, a set A ⊆ V (G) is overfull if ‖A‖ > (k +
1)(|A| − 1).

Graphs with overfull sets are not (k, d)∗-decomposable. We have noted that Arb(G) ≤
mk,d/2 both implies (k, d)-sparseness and prohibits overfull sets. By Remark 4.3, (k, d)-
sparseness prohibits overfull sets with more than k(d+1)

k+1 vertices. Hence the conjecture
below strengthens the NDT Conjecture.

Conjecture 4.5. Fix k, d ∈ N. If G is (k, d)-sparse and has no overfull set with at most
k(d+1)

k+1 vertices, then G is (k, d)∗-decomposable.

We will prove Conjecture 4.5 when k = 1 and d ≤ 6. When k = 1 also k2 = 1, so
(k, d)-sparseness becomes “βG(A) > 0 for all A” and is equivalent to Mad(G) < 2 +

2d
d+2 = m1,d . We can then use the discharging method; we will also use properties of
submodular functions.

The basic framework of the proof holds for general k, so we maintain the general
language in this section before specializing to k = 1. We do this to suggest generalization
to larger k and because the proofs of these lemmas are as short for general k as they are
for k = 1.

Instead of capacity functions, we use a different device to control vertex degrees. We
will show that it is essentially equivalent to reducing capacity on vertices.

Definition 4.6. With k and d fixed, a ghost is a vertex of degree k + 1 having only one
neighbor (via k + 1 edges). Adding a ghost neighbor at a vertex v means adding to the
graph a vertex of degree k + 1 whose only neighbor is v.

Note that H in Example 4.2 is constructed by adding q ghost neighbors to a single
vertex.

Lemma 4.7. With k and d fixed, let v be a vertex in a graph G with a capacity function
f . Form G′ and f ′ from G and f by adding d − f (v) ghost neighbors at v and letting f ′

agree with f except for equaling d at v and the new vertices. The following statements
hold:
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(a) G is (k, f )-decomposable if and only if G′ is (k, f ′)-decomposable.
(b) G is (k, f )∗-decomposable if and only if G′ is (k, f ′)∗-decomposable.
(c) If f is feasible on G, then f ′ is feasible on G′ (recall Definition 2.3).

Proof. (a,b) In such a decomposition (F, D) of G′, each ghost vertex has at most k
incident edges in F (and can have k), requiring an incident edge in D. Hence D can have
only f (v) edges of G at v. Thus the decompositions of G and G′ correspond, whether D
is required to be a forest or not.

(c) Consider β f and β f ′ . Given a set A′ ⊆ V (G′), let A = A′ ∩ V (G) and a = |A′ −
V (G)|. If v /∈ A, then β f ′ (A′) = β f (A) + (k + 1)(k + d)a. If v ∈ A, then adding a ghost
neighbor of v adds 1 to the size of the set and k + 1 to the number of edges induced. Thus

β f ′ (A′) = β f (A) + (k + 1)[d − f (v) + a(k + d)] − (k + 1 + d)(k + 1)a

= β f (A) + (k + 1)(d − f (v) − a).

Since 0 ≤ a ≤ d − f (v), we conclude that β f (A) ≥ 0 implies β f ′ (A′) ≥ 0. �
Although the generality of the capacity function facilitates the inductive proof of

Theorem 2.8, and the desired statement about (k, d)-decomposition in Theorem 1.2 is
the special case of Theorem 2.8 when all capacities equal d, Lemma 4.7 shows that
in fact the special case with capacity d for all v implies the general statement, making
Theorem 1.2 and Theorem 2.8 equivalent.

Corollary 4.8. Theorem 1.2 implies Theorem 2.8.

Proof. Assume that (k, d)-sparseness implies (k, d)-decomposability. Let G be a
graph with a feasible capacity function f . Form G′ by giving d − f (v) ghost neighbors
to each vertex v. By repeated application of Lemma 4.7, the capacity function with
capacity d at each vertex of G′ is feasible. That is, G′ is (k, d)-sparse. By Theorem 1.2,
G′ has a (k, d)-decomposition. Deleting the ghost vertices yields a (k, f )-decomposition
of G. �

In essence, we have shown that ghosts have the same effect as reduced capacity on
the existence of decompositions. Lemma 4.7 allows us to translate the key lemmas of
Section 2 into the language of adding ghosts instead of reducing capacity.

Definition 4.9. For B ⊆ V (G), let ĜB denote the graph obtained by contracting B into
a new vertex z and adding d ghost neighbors at z. That is, form the graph GB as in
Definition 2.4 and then add the ghost neighbors (see Figure 4).

Lemma 4.10. If G is (k, d)-sparse and βG(B) ≤ k(k + 1), then ĜB is (k, d)-sparse.

Proof. Let f be the capacity function on G that assigns capacity d to each vertex.
The statement that G is (k, d)-sparse is the statement that β f (A) ≥ 0 for A ⊆ G. The

FIGURE 4. (k, d )-Sparseness of contractions with added ghosts.

Journal of Graph Theory DOI 10.1002/jgt



DECOMPOSITION OF SPARSE GRAPHS 383

hypothesis βG(B) ≤ k(k + 1) is the statement β f (B) ≤ k. Now Lemma 2.5 followed by
Lemma 4.7 implies that ĜB is (k, d)-sparse. �

Lemma 4.11. For B ⊆ V (G), if G[B] and ĜB are (k, d)∗-decomposable, then G is
(k, d)∗-decomposable.

Proof. Let f and f̂ be capacity functions on G and ĜB assigning capacity d every-
where. The hypothesis states that G[B] and ĜB are (k, f |B)∗-decomposable and (k, f̂ )∗-
decomposable, respectively. By Lemma 4.7, GB is (k, f ∗)∗-decomposable, where f ∗ as-
signs capacity 0 to z and capacity d elsewhere. By Lemma 2.7, G is (k, f )∗-decomposable
(the combining argument there is also valid when the d-bounded subgraphs are forests).
That is, G is (k, d)∗-decomposable. �

The hypotheses of Conjecture 4.5 remain satisfied under discarding of edges or vertices.
Next, we study the behavior of ghosts in minimal counterexamples.

Definition 4.12. Among the non-(k, d)∗-decomposable graphs satisfying the hypotheses
of Conjecture 4.5, a minimal counterexample is one that has the fewest non-ghost vertices
and among such counterexamples has the fewest ghosts.

Lemma 4.13. A minimal counterexample G is (k + 1)-edge-connected (and hence has
minimum degree at least k + 1).

Proof. If G has an edge cut Q with size at most k, then (k, d)∗-decompositions of the
components of G − Q combine to form an (k, d)∗-decomposition of G by allowing each
forest to acquire at most one edge of the cut. �

Corollary 4.14. In a minimal counterexample G, a vertex with degree at most 2k + 1
cannot be a neighbor of a ghost.

Proof. If such a vertex v is also a ghost, then G has two vertices and is (k, d)∗-
decomposable. Otherwise, the edges incident to v but not to the neighboring ghost form
an edge cut of size at most k, contradicting Lemma 4.13. �

Definition 4.15. A set A ⊆ G is nontrivial if A contains at least two non-ghosts but not
all non-ghosts in G.

When referring to vertex degrees, we avoid confusion with the overall parameter d by
always using the relevant graph as a subscript in the expression dG(v).

Lemma 4.16. Let A be a vertex set in a minimal counterexample G. If A is nontrivial,
then βG(A) > k(k + 1). If A is trivial with exactly one non-ghost vertex v and βG(A) ≤
k(k + 1), then dG(v) ≥ (k + 1)(d + 1).

Proof. Suppose that βG(A) ≤ k(k + 1). By Lemma 4.10, ĜB is (k, d)-sparse. If A
is nontrivial, then ĜA has fewer non-ghosts than G. The minimality of G then implies
that both ĜA and G[A] are (k, d)∗-decomposable. By Lemma 4.11, also G would be
(k, d)∗-decomposable.

Hence we may assume that A is trivial with non-ghost vertex v, so A consists
of v and h ghost neighbors of v, for some h. Now βG(A) = (k + 1)(k + d − h), so
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FIGURE 5. Transformation for Lemma 4.17 when k = 3.

βG(A) ≤ k(k + 1) requires h ≥ d. If h > d, then already dG(v) ≥ (k + 1)(d + 1). If
h = d and A = V (G), then G is explicitly (k, d)∗-decomposable. In the remaining
case, G has vertices outside A, and the only vertex of A with outside neighbors is v.
Since G is (k + 1)-edge-connected (by Lemma 4.13), we again have dG(v) ≥ (k + 1)

(d + 1). �

Lemma 4.17. If v is a vertex in a minimal counterexample G and dG(v) < (k + 1)(k +
d), then v has no non-ghost neighbor with degree (k + 1).

Proof. Let u be a non-ghost neighbor of v having degree k + 1, and let W be the set
of k neighbors of u other than v. Since dG(u) = k + 1, no vertex in W ∪ {v} is a ghost.
Form G′ from G by deleting the edges incident to u and then adding k + 1 edges joining
u to v; this makes u a ghost neighbor of v in G′ (see Figure 5). Note that G′ and G have the
same numbers of edges and vertices, but G′ has fewer non-ghost vertices than G, since u
and its neighbors are non-ghosts in G and at least u becomes a ghost in G′.

If G′ is (k, d)-sparse, then the minimality of G implies that G has a (k, d)∗-
decomposition (F, D). Since u is a ghost, we may assume that each forest in F has
one edge incident to u, as does D. Modify (F, D) as follows: keep copies of uv including
the copy in D to make the multiplicity of uv as it is in G, but replace the other copies
of uv in G′ with edges to W , assigned to the same forests. Still each forest has one edge
incident to u, so we obtain a (k, d)∗-decomposition of G.

It thus suffices to show that G′ is (k, d)-sparse. We need only consider A such that
u, v ∈ A and W �⊆ A; otherwise, βG′ (A) ≥ βG(A) ≥ k2, since G is (k, d)-sparse. With
u ∈ A, we have βG′ (A) = βG(A − u) − (k + 1), since adding a ghost neighbor costs
k + 1. We worry only if βG(A − u) ≤ k(k + 1). Since W �⊆ A, the set A does not contain
all non-ghosts in G. If v is the only non-ghost in A − u, then dG(v) ≥ (k + 1)(k + d), by
Lemma 4.16. Since our hypothesis is dG(v) < (k + 1)(k + d), we conclude that A − u
is nontrivial, and now Lemma 4.16 yields βG(A − u) > k(k + 1). �

Lemma 4.18. If a minimal counterexample G has a vertex v with q ghost neighbors,
where q ≥ 1, then dG(v) > kq + k + d.

Proof. Form G′ from G by deleting the ghost neighbors of v. Since G′ is an induced
subgraph of G, it is (k, d)-sparse. Forming G′ does not increase the number of non-
ghost vertices, but it decreases the numbers of vertices and edges, so G′ has an (k, d)∗-
decomposition (F ′, D′).

By Lemma 4.13, dG′ (v) ≥ k + 1. We may assume that dD′ (v) ≤ dG′ (v) − k, since edges
of D′ at v can be moved arbitarily to F ′ until F ′ has at least k edges at v. Now restore each
ghost vertex by adding one incident edge to each forest in F ′ and the remaining incident
edge to D′, yielding (F, D).
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FIGURE 6. Transformation for Lemma 4.19 when k = 3.

Since F is a union of k forests and D is a forest, but G has no (k, d)∗-decomposition, we
must have dD(v) > d. Since dD(v) = dD′ (v) + q ≤ dG′ (v) − k + q = dG(v) − kq − k,
we conclude dG(v) > kq + k + d. �

If v has q ghost neighbors, then dG(v) ≥ (k + 1)q. Hence the lower bound in Lemma
4.18 strengthens the trivial lower bound when q ≤ k + d.

Lemma 4.19. If G is a minimal counterexample, then two vertices in G are joined by
k + 1 edges only when one of them is a ghost.

Proof. Since G has no overfull set, edge-multiplicity is at most k + 1. If two ghosts
are adjacent, then G has two vertices and is (k, d)∗-decomposable.

Suppose that non-ghosts u and v are joined by k + 1 edges. Obtain G′ from G by
contracting them into a single vertex z and adding a ghost neighbor w of z (see Figure 6).

We claim that G′ is (k, d)-sparse and has no overfull set. If A ⊆ V (G′) − {z},
then βG′ (A) ≥ βG(A − {w}) ≥ k2. If z ∈ A ⊆ V (G′), then βG′ (A) ≥ βG′ (A ∪ {w}) =
βG(A′) ≥ k2, where A′ = (A − {z, w}) ∪ {u, v}. Hence G′ is (k, d)-sparse.

Since G has no overfull set, an overfull set in G′ must contain z, and a smallest such
set A does not contain w. Let A′ = (A − {z}) ∪ {u, v}. Now A′ has one more vertex than
A and induces k + 1 more edges in G than A induces in G′. Hence A′ is overfull if and
only if A is overfull. We conclude that G′ has no overfull set.

Since G′ has the same numbers of vertices and edges as G, but G′ has fewer non-ghosts
than G, minimality of G now implies that G′ has a (k, d)∗-decomposition (F, D). At w
there is one edge in each forest in F and one edge in D. Replacing these with the edges
joining u and v (one in each forest) yields a (k, d)∗-decomposition of G, since the new
degree of u or v in D is at most dD(z), and an edge joining u and v completes a cycle
in its forest only if contracting that edge yields a cycle in the corresponding forest in
(F, D). �

5. DISCHARGING ARGUMENT AND SUBMODULARITY

In this section, we outline a discharging argument aimed at showing that a graph having
the properties known for a minimal non-(k, d)∗-decomposable graph also has average
degree at least mk,d . Section 6 will complete the argument for the case k = 1 and d ≤ 6.
Perhaps the approach can be extended to work at least for k = 1 and all d.

For convenience, we say that a j-vertex is a vertex of degree j, and a j-neighbor of a
vertex is a neighbor that is a j-vertex. Give each vertex initial charge equal to its degree in
G (by Lemma 4.13, each vertex has degree at least k + 1). We aim to redistribute charge
so that the final charge μ(v) for each vertex v is at least mk,d . This motivates our first
discharging rule.
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Rule 1: A vertex of degree k + 1 takes charge mk,d

k+1 − 1 along each incident edge from
the other endpoint of that edge. This amount equals k+d−1

k+d+1 .

In particular, a ghost takes total charge mk,d − (k + 1) from its neighbor. Rule 1
increases the charge of each (k + 1)-vertex to mk,d , since Lemma 4.17 implies that
(k + 1)-vertices are not adjacent unless |V (G)| = 2.

If all neighbors of v have degree k + 1, then μ(v) = dG(v) 2
k+d+1 , since each edge takes

k+d−1
k+d+1 . In this case, μ(v) ≥ mk,d if and only if dG(v) ≥ (k + 1)(k + d).

It remains to consider v such that k + 1 < dG(v) < (k + 1)(k + d). Vertices with
degree at most 2k + 1 need additional charge, and vertices with degree less than
(k + 1)(k + d) must not lose too much. Fortunately, low-degree vertices must have
high-degree neighbors.

For example, if dG(v) < (k + 1)(k + d), then v cannot have only (k + 1)-neighbors.
By Lemma 4.17, v has no non-ghost (k + 1)-neighbor. If v has only ghost neighbors, then
G consists of one vertex plus ghost neighbors, but such a graph is (k, d)∗-decomposable
or is the non-(k, d)-sparse graph H of Example 4.2. Hence v has neighbor(s) with higher
degrees.

When (k, d) = (1, 1), only 2-vertices need charge. By Lemma 4.17, their neighbors
have high enough degree that Rule 1 completes the discharging argument. Since a forest
with maximum degree 1 is a matching, this proves the result of [11] that the Strong NDT
Conjecture holds when (k, d) = (1, 1).

When k = 1 and d > 1, only 2-vertices and 3-vertices need charge. This leads to a
sufficient condition for completing the discharging argument.

Theorem 5.1. For d > k = 1, let G be a minimal counterexample in the sense of Section
4. If each 3-vertex in G has a neighbor with degree at least d + 2, then Mad(G) ≥ m1,d =
2 + d

d + 2 .

Proof. We specialize Rule 1 for k = 1 and add a rule to satisfy 3-vertices.

Rule 1: Each 2-vertex receives d
d+2 along each incident edge.

Rule 2: If dG(v) = 3, and v has neighbor u with dG(u) ≥ d + 2, then v receives d−2
d+2

from u.

We show that the final charge of each vertex is at least m1,d . Rules 1 and 2 ensure
that μ(v) ≥ m1,d when dG(v) ∈ {2, 3} (since 3 + d−2

d+2 = 2 + 2d
d+2 ). Since d−2

d+2 < d
d+2 , the

general argument for vertices with degree at least 2d + 2 also remains valid.
If 4 ≤ dG(v) ≤ 2d + 1, then v has no non-ghost 2-neighbor, by Lemma 4.17. If v

has q ghost 2-neighbors, with q ≥ 1, then dG(v) ≥ q + d + 2, by Lemma 4.18. Hence
μ(v) = dG(v) > m1,d if 4 ≤ dG(v) ≤ d + 1, since Rule 2 takes no charge from v.

If d + 2 ≤ dG(v) ≤ 2d + 1, then v may give charge to q ghost neighbors (along the
two edges to each) and to dG(v) − 2q neighbors of degree 3. Using Lemma 4.18,

μ(v) ≥ dG(v) − d

d + 2
2q − [dG(v) − 2q]

d − 2

d + 2
= 4(dG(v) − q)

d + 2

≥ 4(d + 2)

d + 2
= 4 > m1,d .

Thus μ(v) ≥ m1,d for all v, and there is no (k, d)-sparse minimal counterexample. �
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This reduces Conjecture 4.5 for the case k = 1 to proving that in a minimal counterex-
ample G, each 3-vertex has a neighbor with degree at least d + 2. Our proofs of this fact
depend on d. In each case, we will use submodularity properties of the function βG.

Definition 5.2. A function β on the subsets of a set is submodular if β(X ∩Y )+ β(X ∪Y )

≤ β(X ) + β(Y ) for all subsets X and Y .

Lemma 5.3. For a graph G, the sparseness function βG on subsets of V (G) is submod-
ular.

Proof. To compare βG(X ∩ Y ) + βG(X ∪ Y ) with βG(X ) + βG(Y ), note first that
|X ∪ Y | + |X ∩ Y | = |X | + |Y |. Hence it suffices to show that ‖X ∪ Y‖ + ‖X ∩ Y‖ ≥
‖X‖ + ‖Y‖. All edges contribute equally to both sides except edges joining X − Y and
Y − X , which contribute 1 to the left side but 0 to the right. �

6. NEIGHBORS OF 3-VERTICES WHEN k = 1

Now restrict to k = 1, where (k, d)-sparseness reduces to the statement that βG(A) =
(2d + 2)|A| − (d + 2)‖A‖ ≥ 1 for A ⊆ V (G). For a minimal counterexample G in this
setting, Lemma 4.16 yields βG(A) ≥ 3 when A is nontrivial (meaning that A contains
at least two non-ghosts but not all non-ghosts). Also, if d is even, then always βG(A)

is even, which yields βG(A) ≥ 4 when A is nontrivial. By Theorem 5.1, to prove the
NDT Conjecture when k = 1 it suffices to prove that every 3-vertex in a minimal coun-
terexample has a neighbor with degree at least d + 2. The two lemmas of this section
accomplish this for d ≤ 6. The first concerns an auxiliary function on vertex subsets of
induced subgraphs.

Definition 6.1. When G′ is an induced subgraph of G, define the potential function ρG′

by ρG′ (X ) = min{βG(W ) : X ⊆ W ⊆ V (G′)}, where X ⊆ V (G′).

Lemma 6.2. Fix d with 2 ≤ d ≤ 6, and let G be a minimal counterexample. If v is a
3-vertex in G and has no neighbor with degree at least d + 2, then v has two neighbors
u and u′ such that ρG′ ({u, u′}) ≥ d + 3, where G′ = G − v.

Proof. Together, Corollary 4.14 and Lemma 4.19 imply that every 3-vertex has
three distinct neighbors. Let U be the neighborhood of v, with U = {u1, u2, u3}. Let
Zi = U − {ui}. Suppose that ρG′ (Ui) ≤ d + 2 for all i.

For k ∈ {1, 2, 3}, let Xk be a subset of V (G′) such that ρG′ (Zk) = βG(Xk). Letting i and
j be distinct elements of {1, 2, 3},

2d + 4 ≥ βG(Xi) + βG(Xj) ≥ βG(Xi ∪ Xj) + βG(Xi ∩ Xj).

For X ′ ⊆ V (G′), let X = X ′ ∪ {v}. IfU ⊆ X ′ ⊆ V (G′), then βG(X ′) = βG(X ) + d + 4.
If X ′ �= V (G′), then X �= V (G), and X is nontrivial if it has at least two non-ghosts. By
Lemma 4.16, this would yield βG(X ′) ≥ d + 7 + ε, where ε = 1 if d is even and ε = 0
if d is odd. However, if X ′ = V (G′), then we only have βG(X ′) ≥ d + 5 + ε.

Since each edge vui has multiplicity 1, no vertex in U is a ghost, and neither is v. Since
the vertex of Xi ∩ Xj has degree less than d + 2 in G, Lemma 4.16 implies βG(Xi ∩ Xj) ≥
3 + ε. Since U ⊆ Xi ∪ Xj, we also conclude βG(Xi) + βG(Xj) ≥ d + 8 + 2ε for all d,
and the lower bound increases by 2 if Xi ∪ Xj �= V (G′).
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Thus ρG′ (Xi) + ρG′ (Xj) ≥ d + 8 + 2ε. If d ≤ 4, then d + 8 + 2ε > 2d + 4, and the
desired conclusion follows. Hence we may assume d ∈ {5, 6}; furthermore, Xi ∪ Xj =
V (G′) for all i, j, since otherwise the lower bound on βG(Xi) + βG(Xj) again exceeds
2d + 4.

In more detail, the computation of Lemma 5.3 is

βG(Xi) + βG(Xj) = βG(Xi ∪ Xj) + βG(Xi ∩ Xj) + (k + d + 1)m,

where m is the number of edges joining Xi − Xj and Xj − Xi. If m ≥ 1, then we obtain
βG(Xi) + βG(Xj) ≥ 2d + 10 > 2d + 4, which yields the desired conclusion. Hence m =
0 in each case. That is, each Xi ∩ Xj is a separating set in G′. (If G′ is disconnected, then
some edge incident to v is a cut-edge, which contradicts Lemma 4.13.) Furthermore,

βG(Xi ∩ Xj) = βG(Xi) + βG(Xj) − βG(Xi ∪ Xj) ≤ 2d + 4 − (d + 5 + ε) = d − 1 − ε.

Now let Z = X1 ∩ X2 ∩ X3. Since Xi ∪ Xj = V (G′), any vertex of V (G′) − Z misses
exactly one of the three sets, so {Z, X1, X2, X3} is a partition of V (G′). Since βG(Xi) ≤
d + 2 and βG(V (G′)) ≥ d + 5, each Xi is nonempty, so Z �= V (G′). If Z contains only
one non-ghost, then (k, d)-sparseness requires it to have at most d ghost neighbors,
and βG(Z) ≥ 2. Otherwise, since v /∈ Z, we conclude that Z is nontrivial, and hence
βG(Z) ≥ 3.

Now, since Xi ⊆ Xj ∩ Xk, submodularity yields

2d + 1 − ε ≥ βG(Xi) + βG(Xj ∩ Xk) ≥ βG(V (G′)) + βG(Z) ≥ d + 7.

We conclude that d ≥ 6 + ε, so the desired conclusion holds when d ≤ 6. �

Lemma 6.3. If 3 ≤ d ≤ 6 and G is a minimal counterexample, then every 3-vertex has
a neighbor with degree at least d + 2.

Proof. Let u1, u2, u3 be the neighbors of a 3-vertex v, and let U = {u1, u2, u3}.
Suppose that dG(u) ≤ d + 1 for u ∈ U . Since each edge vui has multiplicity 1, no vertex
in U is a ghost vertex, and any edge induced by U has multiplicity 1 (Lemma 4.19).

Let G′ = G − v. By Lemma 6.2, we may assume by symmetry that ρG′ ({u1, u2}) ≥
d + 3. Form H from G′ by adding an extra edge joining u1 and u2 (see Figure 7). For
A ⊆ V (H) = V (G′), we have βH (A) = βG(A) unless u1, u2 ∈ A, but in the remaining
case ρG′ ({u1, u2}) ≥ d + 3 yields βH (A) ≥ 1.

Hence H is (k, d)-sparse, and it has fewer non-ghosts than G. We can obtain a (1, d)∗-
decomposition of H if H has no overfull sets of size at most (d + 1)/2, which is at most
3. There are no triple-edges in H, since G has no double-edges within U . An overfull
triple in H must include u1 and u2, since G has no overfull triple. The third vertex w must

FIGURE 7. Transformation for Lemma 6.3.
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be adjacent to u1 or u2 by two edges in G. Since those vertices are also adjacent to v,
we have contradicted dG(u1) = dG(u2) = 3. Hence H has no such overfull set, and we
conclude by the minimality of G that H has an (1, d)∗-decomposition.

Let (F, D) be an (1, d)∗-decomposition of H. Obtain a decomposition of G by (1)
replacing the added edge u1u2 with vu1 and vu2 in whichever of F and D contains it, and
(2) placing vu3 in the other subgraph. Let (F ′, D′) be the resulting decomposition. Note
that dD′ (ui) = dD(ui) for i ∈ {1, 2}, and cycles through v would correspond to cycles
in the decomposition of H. The only worry is dD′ (u3), since this exceeds dD(u3) if the
added edge in H belonged to F . If dD′ (u3) = d + 1, then we have obtained a neighbor of
v with degree at least d + 2 unless dG(u3) = d + 1, but now we can move any one edge
incident to u3 from D′ to F ′ to complete a (1, d)∗-decomposition of G. �

7. THE STRONG NDT CONJECTURE FOR (k, d ) = (1, 2)

Here, we prove our strongest conclusion for our most restrictive hypothesis. Many of the
steps are quite similar to our previous arguments, so we combine them in a single proof.

Theorem 7.1. The Strong NDT Conjecture holds when (k, d) = (1, 2). That is, if G is
(1, 2)-sparse, then G has a strict decomposition (F, D), meaning a (1, 2)∗-decomposition
in which every component of D has at most two edges.

Proof. Since m1,2 = 3, (1, 2)-sparseness is equivalent to Mad(G) < 3. Let G be
a counterexample with the fewest non-ghosts. By the argument of Lemma 4.13, G is
2-edge-connected.

If G has adjacent 2-vertices u and v, then at least one is not a ghost. Letting G′ =
G − {u, v}, the minimality of G yields a strict decomposition (F, D) of G′. Adding the
edge uv to D and the other edges incident to u and v to F yields a strict decomposition of
G.

If G has a vertex with three ghost neighbors, then G is not (1, 2)-sparse, so every
vertex has at most two ghost neighbors. If G has only one non-ghost, then G explicitly
has a strict decomposition. Hence we may assume that G has at least two non-ghosts.

Since d is even, always βG is even, so (1, 2)-sparseness can be stated as βG(A) ≥ 2 for
A ⊆ V (G) (here βG(A) = 6|A| − 4‖A‖). A set A is tight if βG(A) = 2. A set consisting
of a vertex with two ghost neighbors is a trivial tight set.

By Lemma 4.10, if A is a tight set, then GA is (1, 2)-sparse. The same argument as
in Lemma 4.11 shows that if G is a minimal counterexample, A ⊆ V (G), and GA has a
strict decomposition, then G has a strict decomposition. Hence we may assume, as in the
earlier proofs, that βG(A) ≥ 4 for every nontrivial set A.

Suppose that G has a non-ghost 2-vertex v. Each neighbor of v has degree at least 3.
If a neighbor u of v has at most one ghost neighbor, then form G′ from G − v by giving
u one additional ghost neighbor w (see Figure 8). Now G and G′ have the same numbers
of vertices and edges, but G′ has fewer non-ghost vertices.

FIGURE 8. Transformation for Theorem 7.1.
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We claim also that G′ is (1, 2)-sparse. If u /∈ A ⊆ V (G′), then βG′ (A) is minimized
when w /∈ A, and then βG′ (A) = βG(A) ≥ 2. If u ∈ A ⊆ V (G′), then βG′ (A) is mini-
mized when w ∈ A, and then βG′ (A) ≥ βG(A − {w} ∪ {v}) − 2 ≥ 2, since A − {w} ∪ {v}
is nontrivial.

We conclude that G′ has a strict decomposition (F, D), by the minimality of G. Each
of F and D must have one edge incident to w. We obtain a strict decomposition of G by
deleting w, adding vu to D, and adding the other edge at v to F .

We may therefore assume that every neighbor of a non-ghost 2-vertex has at least two
ghost neighbors. Since G is 2-edge-connected, a q-vertex cannot have (q − 1)/2 ghost
neighbors. In particular, a vertex with at least two ghost neighbors must have degree at
least 6, so every neighbor of a non-ghost 2-vertex has degree at least 6.

Once again we have derived many properties of a minimal counterexample. We
complete the proof by using discharging to show that if G has these properties, then
Mad(G) ≥ 3. This contradicts (1, 2)-sparseness, which is equivalent to Mad(G) < 3;
hence there is no minimal counterexample.

The initial charge of each vertex is its degree; we manipulate charge so that the final
charge μ(v) of each vertex v is at least 3. The only discharging rule is that a 2-vertex
takes charge 1/2 along each incident edge from the other endpoint of that edge. Hence
the final charge of a 2-vertex is 3.

Since each neighbor of a non-ghost 2-vertex has degree at least 6, vertices of degree 3, 4,
or 5 give charge only to ghosts. If dG(v) = 3, then v has no ghost neighbors, and μ(v) = 3.
If dG(v) ∈ {4, 5}, then v has at most one ghost neighbor, and μ(v) ≥ dG(v) − 1 ≥ 3.
If dG(v) ≥ 6, then v gives at most 1/2 along each edge, so μ(v) ≥ dG(v) − dG(v)/2
≥ 3. �
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