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1. Introduction

A graph is k-chromatic if its chromatic number is exactly k. A minor of a graph G is a
graph H that can be obtained from G by a sequence of vertex and edge deletions and
edge contractions. If H is a minor of G, we will also say that G has an H minor. In search
of ways to attack Hadwiger’s Conjecture, Woodall [12] and independently Seymour [10]
suggested to prove the following weaker statement.

Conjecture 1. Every (s + t)-chromatic graph has a Ks,t minor.

For convenience, we will always assume that s ≤ t. The conjecture is evident for s = 1.
The validity of the conjecture for s = 2 and all t (and even of the list-coloring version
of it) was proved by Woodall [12]. It also follows from an observation of Seymour (see
Lemma 17 below) and the following result by Chudnovsky, Reed, and Seymour [1].

Theorem 1. Let G be a graph with n ≥ 3 vertices such that e(G) > 1
2 (t + 1)(n − 1).

Then G has a K2,t minor.

Note that this result for t > 1029 was earlier proved by Myers [9]. In [6], it was proved
that for t ≥ 6500, every (3 + t)-chromatic graph has a K∗

3,t minor, where K∗
s,t denotes the

graph obtained from Ks,t by adding all edges between the vertices of the partite set of
size s. In other words, K∗

s,t = Ks+t − E(Kt ).
The author [4] showed that for every fixed s and huge (in comparison with s) t,

Conjecture 1 holds in a slightly stronger form:

Theorem 2. Let s and t be positive integers such that

t > t0(s) := max
{
415s2+s, (240s log2 s)8s log2 s+1}. (1)

Then every (s + t)-chromatic graph has a K∗
s,t minor.

In this paper, we show that the Woodall–Seymour Conjecture holds already when t is
polynomial in s. Our main result is:

Theorem 3. Let s and t be positive integers such that

t > t1(s) := 5(200s log2(200s))3. (2)

Then every (s + t)-chromatic graph has a K∗
s,t minor.

The proof is based on ideas from [4, 5, 7]. It repeats a lot of the proof in [4] with the
following main changes:

(1) In order to handle dense graphs, instead of the result in [5], which implied the
lower bound (240s log2 s)8s log2 s+1 on t in (1), we use Theorem 6 below from a
recent paper [7].

(2) Instead of using Ramsey Theorem to estimate the connectivity of a minimum
counterexample, which implied the lower bound 415s2+s on t in (1), we use a
theorem of Wollan [11] on rooted minors (see Theorem 8) and an old bound in [3]
(see Theorem 9 below).

(3) The main lemma (Lemma 13) uses some new ideas.

In the next two sections, we introduce notation and cite or prove auxiliary statements.
In Section 4, we prove the key lemma on minors in dense subgraphs of moderate order.
We deliver the main proof in Section 5.
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2. Preliminaries

For a graph G, V (G) is the set of its vertices, E(G) is the set of its edges, and e(G) =
|E(G)|. By G[X] we denote the subgraph of G induced by the vertex set X . For v ∈ V (G),
we let NG(v) denote the set of neighbors of v in G, dG(v) = |NG(v)|, and NG[v] =
NG(v) ∪ {v}.

For a graph G, a set T ⊆ V (G) is totally dominating, if every vertex of G has a neighbor
in G. The following simple fact is a variation of Lemma 12 in [6].

Lemma 4. Let G be an n-vertex graph with minimum degree k ≥ 1. Then:

(a) G contains a totally dominating set T with |T | ≤ 	logn/(n−k) n
 + 1; and
(b) G contains a totally dominating set T ′ with |T ′| ≤ 2 logn/(n−k) n such that for each

component H of G, the subgraph G[T ′ ∩ V (H)] is connected. In particular, if G
is connected, then G[T ′] is connected.

Proof. Let A ⊆ V (G). The total number of neighbors of vertices in A counted with
multiplicities is at least k|A|. Hence

there exists vA ∈ V (G) that is adjacent to at least k|A|/n vertices in A. (3)

Consider the sequence A0, A1, . . . , where A0 = V (G) and for i ≥ 1, Ai = Ai−1 −
N(vAi−1 ). By (3), for every i ≥ 1, |Ai| ≤ n−k

n |Ai−1|. It follows that for i0 =
	logn/(n−k) n
 + 1,

|Ai0 | ≤ n

(
n − k

n

)i0

< n

(
n − k

n

)logn/(n−k) n

= 1,

and so Ai0 = ∅. Hence T = {vA0, vA1, . . . , vAi0−1} is totally dominating. This proves (a).
Let C1, . . . ,Cm be the vertex sets of the components of G[T ]. Since T is totally

dominating, each Cj has at least two vertices. It follows that m ≤ i0/2. We will add
at most 2(m − 1) vertices to T to obtain a set satisfying (b). Let H1, . . . , Hr be the
components of G. Choose in each Hh a vertex set Ch of a component of G[T ] contained in
V (Hh). Let T ′ = T and C0 = ⋃r

h=1 Ch. We do the following iterations: If C0 dominates
V (G), then Stop. Otherwise, choose any vertex w at distance exactly two from C0. Let w′

be the intermediate vertex on a shortest path from C0 to w. By the choice of T , w has a
neighbor z ∈ T − C0. By definition, z belongs to some Cj. Add to T ′ vertices w and w′,
and let the new C0 be obtained by adding to the old one vertices w and w′ and all Cj that
contain these vertices or are adjacent to them. This increases |T ′| by two and decreases
the number of components in G[T ′] by at least one.

After at most m − r iterations, we obtain a totally dominating set T ′. By construction,
|T ′| ≤ |T | + 2(m − r) ≤ i0 + 2(i0/2 − 1) = 2i0 − 2 ≤ 2 logn/(n−k) n. �

Applying Lemma 4 s times, we obtain the following corollary.

Lemma 5. Let s, k, and u be positive integers. Suppose u > k > 2. Let H be a graph of
order u with δ(H) ≥ k + 2(s − 1) logu/(u−k) u. Then V (H) contains s pairwise-disjoint
subsets A1, . . . , As such that, for every i = 1, . . . , s,

(i) Ai dominates H − ⋃i−1
j=1 Aj,

(ii) |Ai| ≤ 2 logu/(u−k) u,
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(iii) for every component H� of H − ⋃i−1
j=1 Aj, the set Ai,� = Ai ∩ V (H�) is contained

in one connected component of H[Ai].

An important tool will be the following result from [7].

Theorem 6 ([7]). Let s and t be positive integers with

t > 103s log2 t.

Let G be a graph such that e(G) ≥ t+8s log2 s
2 (n(G) − s + 1). Then G has a K∗

s,t minor.

As it was mentioned in the introduction, it is known that Conjecture 1 holds for s ≤ 2
and all t. For s = 1, graph K∗

s,t equals Ks,t . To extend the base of induction a bit more, we
use the following result for s = 2, 3 also mentioned above.

Theorem 7 ([6]). Let t ≥ 6500. Then every (3 + t)-chromatic graph has a K∗
3,t minor

and every (2 + t)-chromatic graph has a K∗
2,t minor.

3. Rooted minors

It follows from the definition of minors that a graph G contains a graph H as a minor
if and only if there exist pairwise disjoint sets {Sv ⊆ V (G) : v ∈ V (H)} such that for
every v ∈ V (H), G[Sv] is a connected subgraph of G and for every edge uv in H, there
exists an edge in G with one end in Su and the other end in Sv. The sets Sv will be called
the branch sets of a given H minor in G.

Let G and H be graphs and X ⊆ V (G) with |X | = |V (H)|. Let φ : V (H) → X be a
bijection. Then we say that the pair (G, X ) contains a φ-rooted H minor if there exist the
branch sets {Sv ⊆ V (G) : v ∈ V (H)} of an H minor in G such that φ(v) ∈ Sv for every
v ∈ V (H).

Wollan [11] proved the following theorem.

Theorem 8 ([11]). Let H be a fixed graph and c ∈ R, c = c(H) ≥ 1 be a constant such
that every graph on n vertices with at least cn edges contains H as a minor. If G is any
graph such that G is |V (H)|-connected and has at least (9c + 26, 833|V (H)|)|V (G)|
edges, then for all sets X ⊆ V (G) with |X | = |V (H)| and for all bijective maps φ :
V (H) → X, (G, X ) contains a φ-rooted H minor.

The following result gives a bound on c(Kr) for r ≥ 4.

Theorem 9 ([3]). For every integer n ≥ k ≥ 2, each n-vertex graph with at least kn
edges has a Kr minor, where r ≥ 0.064k/

√
ln k + 1.

Indeed, if k ≥ 60 and r ≥ 0.064k/
√

ln k, then
√

ln k ≥ 2 and

ln r ≥ ln k + ln 0.064 − 1

2
ln ln k ≥ (

√
ln k − 2.5)2.

It follows that c(Kr) ≤ r(
√

ln r+2.5)

0.064 . This and Theorem 8 yield:

Corollary 10. Let r ≥ 16. If G is any r-connected graph with average degree at least
300(

√
ln r + 190)r, then for all sets X ⊆ V (G) with |X | = r, G has a Kr minor such that

all vertices in X are in distinct branch sets.
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4. Dense subgraphs of moderate order

Let U = {U1,U2, . . . ,Uq} be a family of pairwise-disjoint sets of vertices in a graph G.
Then a path P is a strict U-path if the ends of P are in distinct members of U and all
internal vertices of P are disjoint from

⋃q
i=1 Ui. Furthermore, a family (P1, . . . , Pq−1) of

paths is U-connecting if all paths in the family are strict U-paths and the graph whose
vertices are U1,U2, . . . ,Uq and two vertices are adjacent if they are connected by a Pj is
connected.

The following statement is Lemma 8 in [4]:

Lemma 11 ([4]). Let s and q be positive integers. Let G be an s(q − 1)-connected graph
and let U = {U1,U2, . . . ,Uq} be a family of pairwise-disjoint sets of vertices in G such
that |Ui| ≥ s(q − 1) for i = 1, . . . , q. Then G contains s vertex-disjoint U-connecting
families of paths.

Observation 12. If t ≥ t1(s), then

t > (200s)3 log2
2 s ln t (4)

and

t > 2003s2 log2 s ln3/2 t. (5)

Proof. If

t ≤ (200s)3 log2
2 s ln t, (6)

then

ln t ≤ 3 ln(200s) + ln(log2
2 s) + ln ln t. (7)

Since t ≥ t1 > 108, ln t > 6 ln ln t. For s ≥ 4, 200s ≥ log2
2 s. Thus, (7) yields 5

6 ln t ≤
4 ln(200s), and so ln t < 5 ln(200s). But then (6) contradicts (2).

Similarly, if

t ≤ 2003s2 log2 s ln3/2 t, (8)

then ln t ≤ 3 ln(200s) − ln s + ln log2 s + 3
2 ln ln t. Again since ln t > 6 ln ln t, we con-

clude that 2
3 ln t ≤ 3 ln(200s). Plugging ln t ≤ 4.5 ln(200s) < 3.2 log2(200s) into (8),

we get

t ≤ 2003s2 log2 s(3.2 log2(200s))3/2

< (200s)3 1

s
log5/2

2 (200s)3.23/2 < (200s log2(200s))3 · 2,

a contradiction to (2). �

Lemma 13. Let s and t be positive integers satisfying (4). Let G be a 150s2 log s ln t-
connected graph. Suppose that G contains a vertex subset U with

t + 200s2 log s ln t ≤ |U | ≤ 2.5t

such that δ(G[U]) ≥ t/(1 + 16s log2 s). Then G has a K∗
s,t minor.

Journal of Graph Theory DOI 10.1002/jgt



382 JOURNAL OF GRAPH THEORY

Proof. Let H = G[U]. We will check that H satisfies the conditions of Lemma 5 for
k = � t

20s log2 s� and u = |U |. Indeed, by (4) for s ≥ 4 and the above k,

t

1 + 16s log2 s
− k ≥ t(4s log2 s − 1)

20s log2 s(1 + 16s log2 s)
−1>

t

100s log2 s
≥ 80000s2 log2 s ln t.

(9)

On the other hand,

u

u − k
≥ 2.5t

2.5t − t/20s log2 s
= 1 + 1/20s log2 s

2.5 − 1/20s log2 s
= 1 + 1

50s log2 s − 1
,

and hence

2s log u
u−k

u ≤ 2s ln u

ln
(

1 + 1
50s log2 s

) ≤ 2s ln 5t
2

1
50s log2 s

< 100s2 log2 s(1 + ln t). (10)

Thus by Lemma 5, G[U] contains s pairwise-disjoint subsets A1, . . . , As such that for
every i = 1, . . . , s,

(i) Ai dominates H − ⋃i−1
j=1 Aj,

(ii) |Ai| ≤ 2 logu/(u−k) u,
(iii) for every component Hj of H0 = H − ⋃s

i=1 Ai, the set Ai, j = Ai ∩ V (Hj) is con-
tained in one connected component of H[Ai].

Let H1, . . . , H� be the components of H0 and let A0 = ⋃s
i=1 Ai. By (ii) and (10),

|A0| ≤ 2s log u
u−k

u ≤ 100s2 log2 s(1 + ln t). (11)

Thus by (9),

δ(H0) ≥ t

1 + 16s log2 s
− 100s2 log2 s(1 + ln t) > k.

So, if Uj = V (Hj) for j = 1, . . . , �, then |Uj| ≥ 1 + k for all j and hence � ≤ u
k+1 <

50s log2 s. Note that if G[U] is 100s2 log2 s(1 + ln t)-connected (for example, if U =
V (G)), then � = 1.

Let U = {U1,U2, . . . ,U�}. Let G0 = G − A0. Since G is 150s2 log s ln t-connected,
by (11), the connectivity of G0 is at least

150s2 log s ln t − 100s2 log2 s(1 + ln t)

= 50s2 log s ln t − 100s2 log2 s ≥ 50s2 log2 s ≥ s�.

Then by Lemma 11, G contains s vertex-disjoint U-connecting families of paths
P1, . . . ,Ps. For i = 1, . . . , s, let Wi = ⋃

P∈Pi
V (P), and let W = ⋃s

i=1 Wi.
For i = 1, . . . , s, let Bi = Ai ∪ Wi. For every i, since Wi has a vertex in each Uj and is

U-connecting, and Ai dominates V (H0) and satisfies (iii),

G[Bi] is connected and Bi dominates V (G0). (12)

Also by (i), for all 1 ≤ i < i′ ≤ s, Bi has a neighbor in Bi′ . It follows that we have found
a K∗

s,z minor in G, where

z = |U | − |U ∩ W | − |A0|.
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By the definition of a U-connecting family, |U ∩ W | = 2s(� − 1) ≤ 100s2 log2 s. So,
since |U | ≥ t + 200s2 log s ln t, by (11),

z ≥ t + 200s2 log2 s ln t − 100s2 log2 s − 100s2 log2 s(1 + ln t) > t.

This proves the lemma. �

5. The main argument

For the proof, we will use two classical results. The first is the following.

Lemma 14 (Mader [8]). Every graph with average degree d contains a �d/4�-connected
subgraph.

The second uses the notion of color-critical graphs. Recall that a graph G is k-critical,
if its chromatic number is at least k, but after deleting any edge or vertex from G the
resulting graph is (k − 1)-colorable.

Theorem 15 (Gallai [2]). Let k ≥ 3 and G be a k-critical graph. If |V (G)| ≤ 2k − 2,
then G has a spanning complete bipartite subgraph.

Suppose now that Theorem 3 is proved for all s′ < s and t > t1(s′). By Theorem 7,
it is enough to consider s ≥ 4. Let G0 be a counterexample for s and some t > t1(s),
which is minimal with respect to |V (G)| + |E(G)|. Then G0 is color-critical, namely
(s + t)-critical. Let n0 = |V (G0)|.

The next three lemmas repeat the corresponding lemmas in [4] but we present their
simple proofs for the convenience of the reader.

Lemma 16. n0 ≥ 2(s + t) − 1.

Proof. Suppose not. Then by Theorem 15, V (G0) can be partitioned into nonempty
V1 and V2 so that each vertex in V1 is adjacent to each vertex in V2. Suppose that
χ(G0[V1]) = k1 and χ(G0[V2]) = k2. By definition, k1 + k2 = s + t. We may assume
that k1 ≤ k2. Since the theorem holds for s = 1 and any t, G0[V1] has a K1,k1−1 minor.
Since t ≥ t1(s) and t1(s) > 3t1(s − 1), k2 − s + 1 > t1(s − 1). Thus, by the minimality
of s, G0[V2] has a K∗

s−1,k2−s+1 minor. But then using the edges of the complete bipartite
subgraph we construct a K∗

s,k1+k2−s minor of G0 from these two minors. �
By α(G) we denote the independence number of the graph G.

Lemma 17 (Seymour). Let k be a non-negative integer. If v ∈ V (G0) and d(v) =
s + t − 1 + k, then α(G0[N(v)]) ≤ k + 1.

Proof. Suppose that v ∈ V (G0), d(v) = s + t − 1 + k, and G[N(v)] has an inde-
pendent set I with |I| = k + 2. Let G′ be obtained from G0 by contracting all edges
connecting v with vertices in I and let v∗ be the new vertex, which is the result of these
contractions. Since G′ is a minor of G0, it does not have a K∗

s,t minor. Therefore, by the
minimality of G0, G′ is (t + s − 1)-colorable. Let f ′ be a proper (t + s − 1)-coloring
of G′. Let f ′(v∗) = α. Coloring f ′ naturally yields a proper (t + s − 1)-coloring f of
G0 − v in which the color of each w ∈ I is α. But then at most d(v) − |I| + 1 = s + t − 2

Journal of Graph Theory DOI 10.1002/jgt



384 JOURNAL OF GRAPH THEORY

colors are present on N(v), and we have an admissible color for v, a contradiction to the
definition of G0. �

Lemma 18. Let k be a non-negative integer. If v ∈ V (G0) and d(v) = s + t − 1 + k,
then there exists a subset Y (v) ⊆ N(v) such that δ(G0[Y (v) ∪ {v}]) ≥ t

k+1

Proof. Suppose that the lemma is not true for some v ∈ V (G0), and let F0 = G0[N(v)].
Then F0 is d-degenerate for some d < t

k+1 − 1. Therefore, F0 is (d + 1)-colorable and
hence

α(F0) ≥ s + t − 1 + k

d + 1
>

t + 3

t/(k + 1)
> k + 1,

a contradiction to Lemma 17. �

Lemma 19. The connectivity of G0 is at least �150s2 log2 s ln t�.

Proof. Suppose that the connectivity of G is x ≤ 	150s2 log2 s ln t
. First we show
that

t ≥ 1200x(
√

ln x + 200). (13)

By (4),

1200x · 200 ≤ 1200 · 150s2 log2 s ln t · 200 ≤ 4.5
t

s log2 s
≤ 9t

16
.

Thus to show (13), it is enough to prove that

t ≥ 16

7
1200x

√
ln x. (14)

Since t ≥ x (for example by (4)), instead of (14) it is enough to prove that

t ≥ 16

7
1200 ln t

√
ln t,

which follows from (5).
Now let X be a separating set in G0 of size x. Let V1 be the vertex set of a component of

G0 − X and V2 = V (G0) − X − V1. Let i ∈ {1, 2}, and Gi = G0[Vi]. Since G0 is (s + t)-
critical, δ(Gi) ≥ δ(G0) − x ≥ s + t − 1 − x. By Lemma 14, Gi contains an s+t−1−x

4 -
connected subgraph G̃i. Let Wi := V (G̃i). Since G0 is x-connected, there are x vertex-
disjoint paths P1,i, . . . , Px,i connecting X to Wi (if Wi ∩ X �= ∅, then some paths will have
length 0). For j = 1, . . . , x, let p j,i be the vertex in Wi that belongs to Pj,i. Since

√
ln x > 2

by (13),

s + t − 1 − x

4
≥ t − x

4
≥ 300x(

√
ln x + 200) − x

4
≥ 300(

√
ln x + 190)x.

So by Corollary 10, G̃i has a Kx minor such that all vertices p1,i, . . . , px,i are in distinct
branch sets. Contracting each such branch set into a vertex and then contracting each of
the paths P1,i, . . . , Px,i into a vertex, we construct the minor G′

3−i of G0 which is obtained
from G0 − Vi by adding all edges between the vertices in X .

Since G0 has no K∗
s,t minor, neither of G′

1 and G′
2 has a K∗

s,t minor. The mini-
mality of G0 implies then that for i = 1, 2, G′

i has an (s + t − 1)-coloring fi. Since

Journal of Graph Theory DOI 10.1002/jgt



Ks,t MINORS IN (s + t )-CHROMATIC GRAPHS 385

G′
1[X] = G′

2[X] = Kx, in both of these colorings, the colors of all vertices in X are
distinct, and we can change the names of the colors in f2 so that f1 ∪ f2 is an (s + t − 1)-
coloring of G0, a contradiction. �

Now we are ready to prove Theorem 2. By Theorem 6,∑
v∈V (G0)

d(v) < (t + 8s log2 s)(n0 − s + 1). (15)

Since G0 is color-critical, δ(G0) ≥ t + s − 1. Say that a vertex v ∈ V (G0) is low if
d(v) < t + 16s log2 s, and let L be the set of low vertices in G0. By (15),

|L|(t + s − 1) + (n0 − |L|)(t + 16s log2 s) < (t + 8s log2 s)(n0 − s + 1).

It follows that |L|(16s log2 s − s + 1) > 8s log2 s n0 and hence

|L| > 0.5n0. (16)

By Lemma 19, G0 is �150s2 log2 s ln t�-connected. Recall that by Lemma 16, n0 ≥
2t + 2s − 1. If n0 ≤ 2.5t, then G0 with U = V (G0) satisfies the conditions of Lemma 13
and hence has a K∗

s,t minor, a contradiction. So,

n0 > 2.5t. (17)

Thus for s ≥ 4 by (16), |L| > 0.5(2.5t) = 1.25t.
By Lemma 18, for every v ∈ L, there exists a subset Y (v) ⊆ N(v) such that

δ(G0[Y (v) ∪ {v}]) ≥ t
16s log2 s . Let v1, . . . , v|L| be the vertices of L, and for j = 1, . . . , |L|,

let Zj = ⋃ j
i=1(Y (vi) ∪ {vi}). By construction, for every j ≥ 2, δ(G0[Zj]) ≥ t

16s log2 s and
j ≤ |Zj| ≤ |Zj−1| + t + 16s log2 s + 1. It follows that there exists j0 such that

1.25t < |Zj0 | ≤ 2.25t + 16s log2 s + 1 ≤ 2.5t. (18)

Since by (4), 1.25t ≥ t + 200s2 log s ln t, the graph G0 with U = Zj0 satisfies the condi-
tions of Lemma 13 and hence has a K∗

s,t minor, a contradiction.
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