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Decomposition of cartesian products of regular
graphs into isomorphic trees∗
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Dedicated to the memory of Hunter Snevily

We extend the ideas of Snevily and Avgustinovitch to enlarge the
families of 2m-regular graphs and m-regular bipartite graphs that
are known to decompose into isomorphic copies of a tree T with
m edges. For example, consider r1, . . . , rk with

∑k
i=1 ri = m. If T

has a k-edge-coloring with ri edges of color i such that every path
in T uses some color once or twice, then every cartesian product
of graphs G1, . . . , Gk such that Gi is 2ri-regular for 1 ≤ i ≤ k
decomposes into copies of T .
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1. Introduction

Ringel [8] conjectured that for every tree T with m edges, the complete
graph K2m+1 decomposes into copies of T , meaning that the edges of K2m+1

can be partitioned into classes forming copies of T . Such a partition is a
T -decomposition. Häggkvist [3] conjectured more generally that every 2m-
regular graph has a T -decomposition. Graham and Häggkvist [3] conjectured
that every m-regular bipartite graph has a T -decomposition. The restriction
to bipartite graphs for T -decomposition of m-regular graphs is due to the
elementary observation that an m-regular graph decomposes into copies of
K1,m if and only if it is bipartite.

In this paper we broaden the classes of instances where the conjectures
of [3] are known to hold. We begin by reviewing earlier results.

Theorem 1.1 (Snevily [5]). Let T be a tree with m edges. If G is 2m-regular
and has girth greater than the diameter of T , then G has a T -decomposition.
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Häggkvist [3] stated without proof the stronger result that girth at least

diamT suffices.

Theorem 1.2 (Snevily [5]). If T is a tree with m edges, and G is the

cartesian product of m cycles, then G has a T -decomposition.

Theorem 1.3 (Snevily [5]). If T is a tree with m edges, and G is the

cartesian product of a 2l-cycle and m − 2 copies of K2, then G has a T -
decomposition.

The special case of Theorem 1.3 with l = 2 and m ≥ 2 is the m-
dimensional hypercube; this case was solved earlier by Fink [2]. Fink also

showed that the trees in the decomposition could be required to be induced
subgraphs. Our main result is Theorem 2.1, giving more general sufficient

conditions for T -decompositions. It yields the various corollaries listed be-
low, which strengthen the results above.

Corollary 1.4. Let T be an edge-colored tree such that every path P in T

uses some color that appears on at most q edges of P . If the color classes have
sizes r1, . . . , rk, and G is the cartesian product of regular graphs of degrees

2r1, . . . , 2rk, each having girth greater than q, then G has a T -decomposition.

For r1 = · · · = rk = 1, Corollary 1.4 yields Theorem 1.2. For k = 1 and

general r1 = m, it becomes Theorem 1.1. In this case (k = 1 and no cartesian
products), there has been some work on decompositions into special trees.

Theorem 1.5 (Kouider and Lonc [6]). For m ≤ 2g − 3, every 2m-regular
graph with girth at least g decomposes into paths of length m.

Theorem 1.5 strengthens Theorem 1.1 for the special case of paths. We
will use the case m = 3 of their technically stronger version of Theorem 1.5

in giving an application of our theorem. Meanwhile, for 2m-regular graphs
our Theorem 2.1 says the following, which essentially is implicit in Snevily’s

proof of Theorem 1.1. (Neither of Corollary 1.6 and Theorem 1.5 implies the
other.)

Corollary 1.6. Let T be a tree with m edges, and let G be a 2m-regular

graph. If G has a 2-factorization such that every cycle consisting of edges
from distinct 2-factors has length greater than the diameter of T , then G
has a T -decomposition.

Finally, for cartesian products of bipartite graphs our theorem yields the

following, which becomes Theorem 1.3 when r1 = 2 and r2 = · · · = rk = 1
and the factors are connected.
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Corollary 1.7. Let T be an edge-colored tree such that every path P in
T uses some color that appears on at most three edges of P . If the color
classes have sizes r1, . . . , rk, and G is the cartesian product of regular bipar-
tite graphs of degrees r1, . . . , rk, then G has a T -decomposition.

Snevily [5] proved his results by seeking more structure in the decom-
positions. He labeled V (T ) and required each vertex of G to appear with
distinct labels in the copies of T incident to it. Avgustinovich [1] obtained
results on decompositions of bipartite graphs into induced copies of T by
considering labels on the edges of T . We combine and extend these ideas
to give a general sufficient condition in Theorem 2.1 for the existence of a
T -decomposition of G when G is a 2m-regular cartesian product of regular
graphs with even degree. (The theorem also includes an analogous result for
m-regular cartesian products of regular bipartite graphs.)

We employ Avgustinovich’s edge-labeling idea in the sense of coloring
the edges of T . When G is the cartesian product of G1, . . . , Gk and Gi is 2ri-
regular, with

∑
ri = m, we give color i to ri edges in T . The existence of a

suitable edge-coloring guarantees the decomposition. As in Snevily’s results,
we guarantee a decomposition having a stronger property to facilitate the
inductive proof. Each vertex appears in m+1 copies of T , once representing
each of the m+ 1 vertices in a numbering of V (T ).

As suggested in Corollary 1.6, our general sufficient condition in The-
orem 2.1 permits more delicate interaction between the edge-coloring of T
and chosen 2-factorizations of G1, . . . , Gk, rather than just imposing girth
requirements on G1, . . . , Gk. Girth requirements are one way to ensure that
the hypotheses of Theorem 2.1 hold. In Sections 3–5, we study conditions
on r to guarantee that T has an edge-coloring of the type needed to guar-
antee (via Theorem 2.1) that a T -decomposition will exist regardless of the
girth or choice of 2-factorizations in G1, . . . , Gk. To make this precise, we
introduce some terminology.

Definition 1.8. Throughout this paper, let r = (r1, . . . , rk). Given a k-
tuple r with sum m, an edge-coloring of a tree with m edges is r-exact if it
has ri edges of color i, for 1 ≤ i ≤ k. We always index the multiplicities so
that r1 ≤ · · · ≤ rk. An edge-coloring of a tree T is q-good if every path in T
has some color appearing on it that appears at most q times on it (such a
path is q-bounded).

Corollary 1.4 states that if T has a 2-good r-exact edge-coloring, then
every product of simple regular graphs with degrees 2r1, . . . , 2rk has a T -
decomposition. (Similarly, when each Gi is bipartite and ri-regular, one seeks
a 3-good r-exact edge-coloring, since the product has girth at least 4.)
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When r1 ≥ 3 (and hence m/k ≥ 3), the path Pm has no 2-good r-
exact edge-coloring. Nevertheless, we will study circumstances withm/k < 4
under which a coloring that guarantees T -decompositions exists.

A tree T is special if it has a vertex x such that every component of
T − x has at most two edges. Large special trees are very far from paths. In
Section 3, we discuss when special trees have 2-good r-exact edge-colorings.

In Section 4 we introduce a weaker restriction on edge-colorings. An
edge-coloring of T is weakly 2-good if every path in T is either 2-bounded or
has a color appearing only on a 3-edge subpath whose two internal vertices
have degree 2 in T . Using a result of Kouider and Lonc [6] on decompo-
sition of regular graphs, we apply our general condition in Theorem 2.1
to prove that if T has a weakly 2-good r-exact edge-coloring, then again
every cartesian product of regular graphs with degrees 2r1, . . . , 2rk has a
T -decomposition.

By using the results on 2-good edge-colorings of special trees, we show
that m/k < 4 and rk ≤

⌈
m+1
2

⌉
together guarantee weakly 2-good r-exact

edge-colorings of all trees with m edges. Certain cases in our inductive proof
of this result require splitting the list r into two lists with sum r to which
the induction hypothesis can be applied. In particular, one needs each list
in the split to have sufficiently many nonzero terms. The splittability results
are of interest on their own. They are the most difficult technical results of
the paper, so we postpone their proofs to Section 5.

2. The general decomposition theorem

Let G be the cartesian product of regular graphs G1, . . . , Gk. The product
decomposes naturally into copies of G1, . . . , Gk, which yields a natural k-
coloring of E(G) by giving color i to the edges whose endpoints differ in the
ith coordinate (this coordinate coloring forms copies of Gi). To produce a T -
decomposition of G, we similarly color E(T ) with k colors, and the inductive
proof will produce a decomposition in which, for each i, the edges of color
i in each copy of T belong to copies of Gi in the coordinate coloring of G.
Thus the sizes r1, . . . , rk of the color classes in T must be proportional to
the sizes of G1, . . . , Gk.

We require further structure for the coloring and the decomposition. Our
approach works in two settings: either each Gi is a 2ri-regular graph, or each
Gi is an ri-regular bipartite graph. In each case, we use a factorization Fi

of each Gi. In the nonbipartite case, Fi is a 2-factorization, guaranteed to
exist by Petersen’s Theorem [7]. In the bipartite case, Fi is a 1-factorization,
guaranteed to exist by the Marriage Theorem of Frobenius and König [4].
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In both cases, Fi consists of ri factors. Given a one-to-one correspondence

between Fi and the set of edges with color i in T , our T -decomposition

of G embeds each edge of T with color i along an edge arising from the

corresponding factor in Fi.

Theorem 2.1. Let T be a tree with m edges. Let r be a nondecreasing k-

tuple with sum m. Color E(T ) so that ri edges have color i. Let G be the

cartesian product of multigraphs G1, . . . , Gk, where

Case 1: each Gi is an ri-regular bipartite multigraph, or

Case 2: each Gi is a 2ri-regular multigraph.

Consider Case j, where j ∈ {1, 2}. For 1 ≤ i ≤ k, let Fi be a j-factorization

of Gi, and establish a one-to-one correspondence that pairs each edge of color

i in T with one factor in Fi. If every path P in T has an edge of some color h

such that Gh has no cycle with edges in distinct Fh-classes all corresponding

to edges of P , then G has a T -decomposition.

Proof. The proofs for both Cases are very similar, so we combine most of

the discussion by considering Case j. As described above, the coordinate

coloring gives color i to each edge of G whose endpoints differ in coordinate

i in the cartesian product. Furthermore, the j-factorizations F1, . . . ,Fk yield

a canonical j-factorization of G by decomposing each copy of Gi according

to Fi and combining these decompositions. Thus each edge of T corresponds

to a j-factor of G.

We prove a stronger result by induction onm. We produce a T -decompo-

sition such that in each copy of T , each edge e is embedded as an edge of the

j-factor in G corresponding to e. Furthermore, each vertex of G represents

distinct vertices of T in the copies of T using it in the decomposition. More

precisely, in Case 2 each vertex of G appears in m+ 1 copies of T , once as

each vertex of T . In Case 1, with T having partite sets X ′ and Y ′, and G

having partite sets X and Y , each vertex of X appears in |X ′| copies of T ,
once as each vertex of X ′, and similarly for Y and Y ′.

For m = 1, the claim is immediate. In Case 1, G consists of isolated

edges that can be labeled as desired. In Case 2, follow the cycles in the

single 2-factor, labeling each edge in order with the two leaves of T .

For m > 1, let u be a leaf of T , with neighbor v, and let T ′ = T − u. By

symmetry, we may assume that uv has color k in the coloring of E(T ). Let

H be the j-factor of Gk in Fk that corresponds to uv.

Let G′ be the graph obtained by deleting E(H) from all copies of Gk

in the product. Thus G′ is the cartesian product of Gk − E(H) with all

of G1, . . . , Gk−1 (when k = 1, this degenerates to G = Gk and G′ = G −
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E(H)). Since the paths in T ′ are contained in T , deleting E(H) leaves j-
factorizations that satisfy the hypotheses for G′. Consider the T ′-decompo-
sition of G′ provided by applying the induction hypothesis to G′.

In Case 1, we may assume by symmetry that v ∈ X ′, and for each w ∈ X
we let wy be the edge incident to w in H. In Case 2, for each w ∈ V (G)
we let y be the vertex following w on the cycle through w in H (along a
consistent orientation of the cycle).

We extend the copy T̂ of T ′ having v at w by adding the edge wy. To
see that y is not already in T̂ , suppose that it is, and let P be the path from
w to y in T̂ . The edges of a single color i along P correspond to distinct
j-factors in Fi. The edge wy in color k corresponds to a different j-factor in
Fk from the others in color k along P . Together, P and wy complete a cycle
C in G. If color i appears on C, then C collapses to a nontrivial closed trail
in Gi using edges from different j-factors in Fi. This closed trail contains a
cycle in Gi through distinct j-factors. This statement holds for every color
that appears on P , which contradicts the hypothesis about paths in T .

Hence y /∈ V (T̂ ), and the extensions are copies of T . Furthermore, the
required stronger statements about the placement of edges and vertices in
the decomposition are preserved.

There is no obvious common generalization of Cases 1 and 2.

Example 2.2. If G is the cartesian product of a 2r-regular graph C and an
s-regular bipartite graph B, one would seek a T -decomposition of G, where
T has r + s edges. When C = K3 and B = K3,3, we have r = 1 and s = 3,
but the product has 45 edges, and 45 is not divisible by 4.

In the rest of this section, we study paths. We begin with a simple way
to guarantee q-good edge-colorings.

Definition 2.3. A k-tuple r is greedily q-good if ri ≤ q(1+
∑

j<i rj) for all i.

Corollary 2.4. Let T be a path with m edges, and let r be a k-tuple of
positive integers with sum m. Let G be the cartesian product of graphs
G1, . . . , Gk. If each Gi is 2ri-regular and r is greedily 2-good, then G has
a T -decomposition. If each Gi is bipartite and r is greedily 3-good, then G
has a T -decomposition.

Proof. Since a vacuous sum is 0, we have r1 ≤ 2 in the first case and r1 ≤ 3
in the second.

Consider the first statement. By Corollary 1.4, it suffices to partition
E(T ) into color classes of sizes r1, . . . , rk such that each subpath uses a
color that appears at most twice on it, since each Gi has girth at least 3.
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Starting with r1 copies of 1, we inductively produce a list of colors in
order for the edges. To add copies of i, insert at most two copies of i in each
space between entries of the previous list. Since ri ≤ 2(1 +

∑i−1
j=1 rj), there

is enough room to do this.

To complete the proof, observe that on every subpath, the smallest label
appears at most twice. This holds because a path with three copies of i on
it must have an smaller label on some internal edge.

Since bipartite graphs have girth at least 4, the analogous argument
works for the second statement, using Corollary 1.7.

Lemma 2.5. If m/k < q + 1, then r is greedily q-good, and hence Pm has
a q-good r-exact edge-coloring.

Proof. If
∑

j≤i rj ≥ i(q + 1) for some i, then rj ≥ q + 1 for j ≥ i, since r is

nondecreasing. Hence m ≥
∑k

j=1 rj ≥ k(q + 1), contradicting m < k(q + 1).
Therefore, we have

∑
j≤i rj < i(q + 1) for each i. Also, i− 1 ≤

∑
j<i rj , so

ri +
∑
j<i

rj < i(q + 1) ≤ q + 1 + (q + 1)
∑
j<i

rj ,

which simplifies to ri ≤ q(1 +
∑

j<i rj).

Being greedily 2-good is not a necessary condition for Pm to have a 2-
good r-exact edge-coloring. For example, when r = (2, 26, 26, 26), still there
is a 2-good r-exact edge-coloring of P81. On the other hand, Lemma 2.5 is
sharp: some lists satisfying m/k < q + 1 are not greedily (q − 1)-good, and
the ratio m/k needed to guarantee q-good r-exact colorings for general trees
must be much smaller.

Example 2.6. Define r by ri = 1 for 1 ≤ i ≤ k − 1 and rk = qk. Since∑
ri = (q + 1)k − 1, the ratio condition holds, but rk = qk > (q − 1)k =

(q − 1)(1 +
∑

i<k ri). Hence r is not greedily (q − 1)-good.

Similarly, if r1 = q and ri = q+1 for 2 ≤ i ≤ k, then
∑

ri = (q+1)k−1,
but r1 > q − 1. Again r is not greedily (q − 1)-good.

Now consider a tree T having one central vertex of degree k + 1 that
is a common endpoint of k + 1 paths of length �(q + 1)/2�. Thus m =
(k+1) �(q + 1)/2�, so m/k is just over half of q+1. Let ri = 1 for i < k and
rk = m− k+1. Every r-exact edge-coloring leaves two branches completely
in color k, forming a monochromatic path of length at least q + 1.

Example 2.6 suggests that general trees are much more difficult to handle
than paths.
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Figure 1: The set Ek for Proposition 3.1.

3. 2-good edge-colorings of special trees

We now restrict our attention to Case 2: G is the cartesian product of
G1, . . . , Gk, where each Gi is 2ri-regular. Let r = (r1, . . . , rk), indexed in
nondecreasing order, and let m =

∑
ri. If the factors are simple graphs, then

every cycle contains at least three edges. In this case, if T has a 2-good r-
exact edge-coloring, then Theorem 2.1 implies thatG has a T -decomposition.
Thus it is natural to ask (1) when does a tree have such an edge-coloring,
and (2) are there weaker conditions than 2-good edge-coloring for T that
guarantee a T -decomposition of G?

For simplicity, we always assume that T has m edges and r is a nonde-
creasing list of k positive integers with sum m. Let �(v) be the number of
leaf neighbors of a vertex v in T .

Proposition 3.1. If T has a 2-good r-exact edge-coloring, then rk ≤ m −
d(v)+max{�(v), 1} for all v ∈ V (T ). In addition, rk > m− d(v)+ �(v) only
when �(v) = 0 and the components of T − v are all stars.

Proof. Given a 2-good r-exact edge-coloring of T , let Ek be the set of edges
having color k. Fix v ∈ V (T ). Let F be the set of edges incident to v
and F ′ be the subset of F consisting of edges incident to leaves of T . If
|Ek ∩ F | ≤ 1, then rk ≤ m − d(v) + 1, since otherwise there is a path of
length 3 in color k. If |Ek∩F | ≥ 2, then the edges in Ek−F are not incident
to any edge in Ek ∩ F . Each edge of Ek ∩ (F − F ′) is incident to at least
one edge that is not incident to v and does not lie in Ek (see Fig. 1). Thus
|Ek − F ′| = |Ek − F |+ |Ek ∩ (F − F ′)| ≤ m− d(v). Since |Ek ∩ F ′| ≤ �(v),
we have |Ek| = |Ek − F ′|+ |Ek ∩ F ′| ≤ m− d(v) + �(v).

If rk > m − d(v) + �(v), then �(v) = 0 and rk = m − d(v) + 1, which
requires that |Ek ∩ F | = 1 and all edges not incident to v have color k.
Therefore, every component of T − v has no 3-edge path and is a star.

Proposition 3.1 suggests the question of when this condition is sufficient.
Unfortunately, it is not sufficient even for trees with diameter 4.
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Example 3.2. Given a ≥ 3 and b ≥ 2, let Ta,b be the tree having a vertex
x with d(x) = a such that every component of T − x is a star with b edges
whose center is adjacent to x. Consider r = (r1, r2) with a + b ≤ r1 ≤ m/2
and r1 + r2 = m. Note that �(x) = 0 and m = a+ ab. Note also that always
r2 ≤ m− d(x)− b, so the necessary condition holds.

We show that Ta,b has 2-good r-exact edge-colorings only when r1 − a
is a multiple of b − 1. Suppose Ta,b has a 2-good r-exact edge-coloring. Let
F be the set of edges incident to x, and let i be the number of edges in F
having color 1.

Since r2 ≥ m/2 ≥ a + b, we have r2 > a, and therefore i ≥ 1. If i = 1,
then at least two edges in F have color 2, since a ≥ 3. The pendant edges
incident to an edge in F of color 2 now must have color 1; otherwise we get
a monochromatic path of length 3. Hence r1 ≥ 1+(a−1)b. Since r1 ≤ m/2,
we have 1 + (a− 1)b ≤ (a+ ab)/2, which simplifies to (a− 2)(b− 1) ≤ 0, a
contradiction. If i ≥ 2, then the pendant edges incident to an edge of color
1 have color 2. If i ≥ a−1, then r1 ≤ a−1+ b, which contradicts r1 ≥ a+ b.
Therefore, at least two edges in F have color 2.

In the remaining case, 2 ≤ i ≤ a−2. Now the color of every pendant edge
differs from the color of the edge in F incident to it. Hence r1 = a− i+ ib.
Consequently, if a + b ≤ r1 ≤ m/2 and r1 − a is not a multiple of b − 1,
then Ta,b with a ≥ 3 and b ≥ 2 has no 2-good r-exact edge-coloring. For
the degenerate case b = 1, a 2-good r-exact edge-coloring exists only when
r1 ∈ {a− 1, a}.

Nevertheless, the condition is sufficient for a special family of trees with
diameter 4.

Definition 3.3. Given the nondecreasing list r of length k, define a function
cr : [m] → [k] by letting cr(t) be the least index h such that t ≤

∑
i≤h ri.

Lemma 3.4. Let T be a tree consisting of paths of length at most 2 having
a common endpoint x. If rk ≤ m − d(v) + max{�(v), 1} for all v ∈ V (T ),
then T has a 2-good r-exact edge-coloring.

Proof. Note that m − d(v) + max{�(v), 1} is minimized when v = x. Note
also that m = 2d(x) − �(x). Index the edges as e1, . . . , em so that the first
d(x) − �(x) edges are the non-pendant edges incident to x, the next �(x)
edges are the pendant edges incident to x, and the last m− d(x) edges are
the edges not incident to x, with et incident to et−d(x) for d(x) < t ≤ m.
Let the color assigned to edge et be cr(t). By construction, this coloring is
r-exact; we claim that it also is 2-good.

Suppose that P is a monochromatic 3-edge path in this coloring. Let et
be the edge in P with least index. Note that 1 ≤ t ≤ d(x) −max{�(x), 1}.
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It follows that et′ gets color cr(t) for all t
′ with t ≤ t′ ≤ t+ d(v), and hence

rcr(t) ≥ d(x) + 1. If also cr(t) < k, then rcr(t) + rk > 2d(x) ≥ m. Thus
cr(t) = k, so et′ gets color k for t ≤ t′ ≤ m. Therefore, rk ≥ m − t + 1 ≥
m− d(x) + max{�(x), 1}+ 1, a contradiction.

Example 3.2 shows that when a ≥ 3 and b ≥ 2, the condition rk ≤
m − d(v) + max{�(v), 1} for all v is not sufficient for Ta,b to have a 2-good
r-exact edge-coloring. Lemma 3.4 includes the degenerate case of Ta,b when
b = 1. We next consider a generalization of Ta,2. A special tree is a tree T
having a special vertex x such that every component of T − x has at most
two edges. Although the condition on rk in Lemmas 3.4 is not sufficient to
guarantee 2-good r-exact edge-colorings for special trees (as in Example 3.2
with b = 2), we will prove in Lemma 3.7 that it does suffice for special trees
when also m/k < 4 and m ≥ 8. We first prove a lemma about a special
subclass of special trees.

Lemma 3.5. Let T be a tree consisting of d1 paths of length 1, d2 paths
of length 2, and d3 paths of length 3 having a common endpoint x. Let
j = cr(d2+d3). If rj ≤ d(x)+

∑
i<j ri when cr(d3) = j, or rj ≤ m−d(x)+�(x)

when cr(d3) < j, then T has a 2-good r-exact edge-coloring such that on
each path with endpoint x the edge incident to x gets a color distinct from
the colors assigned to the other edges of that path.

Proof. Consider the multiset U consisting of ri copies of color i for 1 ≤ i ≤ k;
note that U has size d1+2d2+3d3. Let S be a multiset consisting of d2+d3
smallest elements of U (since j = cr(d2+d3), they are all at most j), and let
R = U − S. We will partition U into multisets assigned to the components
of T − x (we just call them “sets”). A component of T − x having p vertices
gets a set of size p to be used on its edges and the edge joining it to x.
We form the sets of size 1, then size 3, then size 2. First let d1 smallest
elements of R be the sets of size 1. Next iteratively associate a smallest
remaining element of S with two smallest remaining elements of R; do this
d3 times. Finally, associate a smallest remaining element of S with a smallest
remaining element of R.

This procedure creates the desired sets if in each set the smallest element
occurs only once, which holds by construction when the smallest element is
less than j. Since the smallest element in sets of size at least 2 comes from S
and is always at most j, it suffices to show that when the smallest element is
j there is no other j in the set. We bound the multiplicity of j in two cases.

Case 1: cr(d3) = j. In this case, at most d1 copies of j form sets of
size 1. In the step forming sets of size 3, at most two copies of j remaining
in R are associated with each element of S that is less than j (there are
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∑
i<j ri of them). We need that at most one copy of j in S (there are

|S| −
∑

i<j ri of them) and no copy of j in R appears in each set of size 2
and in each other set of size 3. Hence it is necessary and sufficient to have
rj ≤ d1 + 2

∑
i<j ri + |S| −

∑
i<j ri. This is equivalent to the hypothesis,

since |S| = d2 + d3 and d(x) = d1 + d2 + d3.
Case 2: cr(d3) < j. In this case, we need that at most two copies of

j in R appear in each set of size 3 formed, and at most one copy of j
appears in each set of size 2. Hence it is necessary and sufficient to have
rj ≤ d1 + 2d3 + d2. Since �(x) = d1 and m = d1 + 2d2 + 3d3, the required
inequality is equivalent to that given in the hypothesis.

Remark 3.6. In Corollary 2.4, the condition ri ≤ 2(1 +
∑

j<i ri) (for all i)
is shown to be sufficient for a path to have a 2-good r-exact edge-coloring.
Lemma 2.5 shows that if m/k < 3, then that condition always holds, and
hence a 2-good r-exact edge-coloring of the path exists. However, when
m/k < 3 is changed to m/k < 4, the full path is not 2-bounded when m ≥ 6
and ri = 3 for all i.

For special trees with m ≥ 8, the condition m/k < 4 suffices as long as
rk is not too big.

Lemma 3.7. Let T be a special tree with m edges, where m ≥ 8. If rk ≤
m−d(v)+max{�(v), 1} for all v ∈ V (T ), and m/k < 4, then T has a 2-good
r-exact edge-coloring.

Proof. Let x be the special vertex of T . Note minv{m−d(v)+max{�(v), 1}} =
m− d(x) +max{�(x), 1}. Form T ′ by replacing each copy of K1,3 in T that
has x as a leaf with a copy of P4 having x as a leaf. Lemma 3.5 will apply to
give an edge coloring of T ′. For the copies of K1,3 replaced with paths, assign
the edge incident to x the same color as in T ′, and assign the other edges
the remaining colors. The resulting edge-coloring is 2-good and r-exact. To
apply Lemma 3.5, it suffices to show that the inequalities in the hypothesis
of Lemma 3.5 are satisfied for T ′.

For T ′, we have rk ≤ m− d(v) +max{�(v), 1} for all v if and only if the
inequality holds for v = x. Note that T ′ also hasm edges, and dT (x) = dT ′(x)
and �T (x) = �T ′(x). Given d1, d2, and d3 defined as in Lemma 3.5 for T ′,
let j = cr(d2 + d3). Note that d1 = �(x). In the case cr(d3) < j, since rk ≤
m−d(x)+max{�(x), 1} is given, it follows that ri ≤ m−d(x)+max{�(x), 1}
for all i. Hence Lemma 3.5 applies unless rj = m−d(x)+1 > m−d(x)+�(x),
which requires �(x) = d1 = 0. If j < k, then 2d2 + 3d3 = m ≥ rj + rk =
2(m−d(x)+2) = 2d2+4d3+2, a contradiction. If j = k, then using color k
on the edges not incident to x and using the other colors on the other edges
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yields a 2-good r-exact edge-coloring of T ′. Hence we need only consider the
case cr(d3) = j.

Let L =
∑

i<j ri. Note that L < d3, since cr(d3) = j; we need rj ≤ d(x)+
L to apply Lemma 3.5. Suppose rj ≥ d(x)+L+1. Since r is nondecreasing,
ri ≥ rj for i ≥ j, and hence

(1) m =
∑
i

ri ≥ L+
∑
i≥j

(
d(x) + L+ 1

)
≥ L+ (k − j + 1)

(
d(x) + L+ 1

)
.

If j ≤ k−2, then m ≥ L+3(d(x)+L+1) > 3d(x), a contradiction since
m = 3d3 + 2d2 + d1 ≤ 3(d3 + d2 + d1) = 3d(x). If j = k, then since L < d3
and rj ≤ m− d(x) + �(x), we have

m = L+ rk < d3 +m− d(x) + �(x) = 3d3 + d2 + d1 ≤ m,

a contradiction. Therefore, j = k − 1.
Substituting k − j = 1 into (1) yields m ≥ 2d(x) + 3L + 2. Using also

m ≤ 3d(x) obtains d(x) ≥ 3L + 2, and hence m ≥ 9L + 6. On the other
hand, since j ≤ L + 1 and m < 4k, we have m < 4k = 4(j + 1) ≤ 4L + 8.
Thus 9L + 6 ≤ m < 4L + 8, which implies L = 0, and so 6 ≤ m < 8, a
contradiction since m ≥ 8.

Applying Corollary 1.4, we have the following corollary of Theorem 4.2.

Corollary 3.8. Let T be a special tree with m edges, where m > 8. Let
G be the cartesian product of G1, . . . , Gk, where each Gi is either an ri-
regular bipartite graph or a 2ri-regular graph. If rk ≤ m− d(v)+ �(v) for all
v ∈ V (T ), and m/k < 4, then G has a T -decomposition.

4. Weakly 2-good edge-coloring of general trees

As mentioned, Corollary 3.8 fails for general trees, since the conditions rk ≤
m − d(v) + �(v) and m/k < 4 are not sufficient for paths of length at least
6 to have a 2-good r-exact edge-coloring. However, existence of a 2-good
r-exact edge-coloring in T is not a necessary condition for G to have a T -
decomposition, so there should be a condition weaker than this that still
suffices for G to have a T -decomposition.

Definition 4.1. A 3-bounded edge-colored path in T is weakly 2-bounded if
either it is 2-bounded or it has a color appearing only on a 3-edge subpath
whose two internal vertices have degree 2 in T . An edge-coloring of T is
weakly 2-good if every path is weakly 2-bounded.
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Theorem 4.2. Let T be a special tree with m edges. If rk ≤ m − d(v) +
max{�(v), 1} for all v ∈ V (T ), and m/k < 4, then T has a weakly 2-good
r-exact edge-coloring.

Proof. Note that T has a 2-good r-exact edge-coloring by Lemma 3.7 when
m ≥ 8. When m ≤ 7, assign colors 1, . . . , k in order to the edges in the
increasing order of the distance from the special vertex. This yields a weakly
2-good edge-coloring of T .

We use a result of Kouider and Lonc [6] to show in Theorem 4.4 that
the existence of a weakly 2-good r-exact edge-coloring of T guarantees a
T -decomposition in G. We will show later that such an edge-coloring exists
in any tree with m edges, including a path, if rk ≤

⌈
m+1
2

⌉
and m/k < 4.

Theorem 4.3 (Kouider and Lonc [6]). Each 2m-regular graph G with girth
at least (m + 3)/2 has a Pm+1-decomposition with the property that each
vertex of G occurs as an endpoint in exactly two of the copies of Pm+1.

Theorem 4.4. Let r be a list of positive integers with sum m. Let T be a tree
with m edges, and let G be the cartesian product of graphs G1, . . . , Gk, where
Gi is 2ri-regular, for all i. If T has a weakly 2-good r-exact edge-coloring,
then G has a T -decomposition.

Proof. For each i, let Fi be a 2-factorization of Gi. Consider a bijection that
pairs each edge of color i in T with a 2-factor in Fi. In a weakly 2-good edge-
coloring f of T , the internal vertices of each monochromatic 3-edge path in
T have degree 2 in T . Let T ′ be the tree obtained from T by shrinking
each monochromatic 3-edge path to an edge having the same endpoints and
the same color. Let E′(T ′) be the set of edges in T ′ that arise by shrinking
monochromatic 3-edge paths. Let f ′ be the edge-coloring of T ′ that arises
from f by shrinking these paths. We claim that f ′ is 2-good.

Each path P in T ′ corresponds to a pathQ in T . Since f is weakly 2-good,
Q is either 2-bounded or has a color appearing only on a 3-edge subpath
whose internal vertices have degree 2 in T . Since every monochromatic 3-
edge path in T is shrunk to an edge in T ′, the corresponding path P in T ′

is 2-bounded. Hence f ′ is 2-good.
The edges of a monochromatic 3-edge path in T of color i correspond

to three 2-factors in Fi that together form a 6-regular subgraph H in Gi.
Consider the P4-decomposition guaranteed by Theorem 4.3 (note that H
always has girth at least (m+3)/2 when m = 3). For each copy of P4 in the
decomposition of H, delete the edges and add an edge joining the endpoints
of the copy. By the property that each vertex of H occurs as an endpoint
exactly twice in the decomposition, the resulting object H ′ is a 2-regular
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loopless multigraph. Obtain G′
i from Gi by replacing H with the resulting

H ′ for each 3-edge path with color i in f . After doing this for all i, let G′

be the cartesian product of G′
1, . . . , G

′
k.

Since T ′ has a 2-good edge-coloring, G′ has a T ′-decomposition, by
Theorem 2.1. We extend each copy of T ′ to a copy of T , yielding a T -
decomposition of G. For each e ∈ E′(T ′), replace the edge in each copy of
T ′ that represents e with a 3-edge path having the same endpoints, yielding
a copy of T , since this is the reverse of how T ′ was obtained from T .

Each edge e in E′(T ′) corresponds to a 2-factor forming a copy of H ′ in
G′ whose edges appear as e in distinct copies of T ′. This copy of H ′ arose
from a copy of H in G with each edge in the copy of H ′ corresponding to
a 3-edge path in the copy of H. Thus the 3-edge paths in all copies of T
that represent the 3-edge path corresponding to e decompose the copies of
H, and the copies of T form a T -decomposition of G.

By Lemma 2.5 and Example 2.6, the conditionm/k < 4 suffices for paths
to have r-exact edge-colorings that are 3-good, but not 2-good. However, the
condition m/k < 4 does suffice for a weakly 2-good r-exact edge-coloring.

Lemma 4.5. If m/k < 4, then Pm+1 has a weakly 2-good r-exact edge-
coloring.

Proof. We use induction on k. If k = 1, then m ≤ 3, and giving all edges
the same color is weakly 2-good. Consider k > 1. Always r1 ≤ 3. If m <
r1 + 4(k − 1), then split P into a subpath P ′ with m − r1 edges and a
subpath P ′′ with r1 edges. Assign color 1 to the r1 edges of P ′′. Since k − 1
colors remain for P ′, which has fewer than 4(k − 1) edges, by the induction
hypothesis P ′ has a weakly 2-good r′-exact edge-coloring. Since P ′ and P ′′

use disjoint sets of colors, the full edge-coloring is weakly 2-good.
If m ≥ r1 + 4(k− 1), then rk ≥ m−r1

k−1 ≥ 4. Split Pm+1 into a subpath P ′

with m−4 edges and a subpath P ′′ of length 4. Let r′ be the list r2, . . . , rk−
(4− r1). Since (m−4)/(k−1) < 4, the induction hypothesis implies that P ′

has a weakly 2-good r′-exact edge-coloring. For the remaining four edges,
assign r1 edges color 1 and 4 − r1 edges color k, with color k not being
assigned to the edge incident to P ′. The full edge-coloring is weakly 2-good,
since r1 ≤ 3.

In the proof of Lemma 4.5, we split Pm+1 into two paths colored using
an appropriate “split” of r into two lists. The next lemma discusses such
numerical splits in more generality and helps in showing that rk ≤

⌈
m+1
2

⌉
and m/k < 4 together are sufficient for any tree to have a weakly 2-good r-
exact edge-coloring. The essential mean of a list is the average of its nonzero
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terms. A list with sum m is half-bounded if every term is at most
⌈
m+1
2

⌉
,

and it is nearly half-bounded if every term is at most
⌊
m+3
2

⌋
. A split of a

nonnegative k-tuple r consists of two nonnegative k-tuples r′ and r′′ such
that r′i + r′′i = ri for 1 ≤ i ≤ k. The two lemmas below will be used to prove
our main theorem. The proof of Lemma 4.6 is somewhat technical, so we
postpone it to Section 5.

Lemma 4.6. Let r be a nearly half-bounded list with sum m.
a) If 0 < m′ < m, then r splits into half-bounded lists r′ and r′′ having

essential means at most m/k and sums m′ and m−m′, respectively.
b) Let b = m − k

⌊
m
k

⌋
. If 3k ≤ m <

⌊
m
k

⌋
(k + 1), then for m′ with

b < m′ < m− b the essential means can be required to be less than 
m/k�.
Let a nontrivial star be a star with at least one edge, and let a penulti-

mate edge in a tree be an edge whose deletion leaves a component that is a
nontrivial star.

Lemma 4.7. Let T be a tree with m edges.
a) If T is not a special tree, then T has an edge e whose deletion leaves

components T ′ and T ′′ such that T ′ is a special tree with at least three edges
whose vertex incident to e can designated as the special vertex.

b) If T is neither a path nor a star, then T has an edge e whose deletion
leaves components T ′ and T ′′ such that T ′ is a nontrivial star and T ′′ + e is
not a path.

Proof. For a longest path in T , let (1, b, c) be the degrees of the first three
vertices. Choose P to be a longest path that lexicographically maximizes
(1, b, c). Let z, y, x, w be the first four vertices of P in order (T is not a star).

(a) If dT (y) ≥ 4, then since the component of T − xy containing z is a
star (and hence a special tree) with at least three edges, the edge xy suffices.
If dT (y) = 3, then by the choice of P , all neighbors of x other than w have
degree at most 3 in T . The component of T − wx containing z is a special
tree, and hence wx suffices. Since dT (y) ≥ 2, we may henceforth assume
dT (y) = 2.

If dT (x) ≥ 3, then by the choice of P every neighbor of x other than y
has degree at most 2, since dT (y) = 2. The component of T −wx containing
z is a special tree with at least three edges, and again wx suffices. The
remaining case is dT (y) = dT (x) = 2. By the choice of P , every component
of T − w except one is isomorphic to a path of length 2. Since T is not a
special tree, w has a neighbor v on P other than x. Thus the component of
T − vw containing z is a special tree with at least three edges, and hence
vw suffices.
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(b) The edge xy suffices unless the component of T −xy not containing
z is a path P ′ starting with x. Since T is not a star, P ′ has length at least
1. Let e be the edge of T incident to the last edge of P ′. The component
of T − e not containing z is P2, a nontrivial star. Since T is not a path,
the component of T − xy containing z is a star with at least two edges, and
adding e completes a subgraph that is not a path.

Our main result in this section gives numerical conditions on r to imply
that every cartesian product of regular graphs with degrees 2r1, . . . , 2rk has
a T -decomposition when T is any tree with

∑
ri edges.

Theorem 4.8. Let T be a tree with m edges. If rk ≤
⌈
m+1
2

⌉
and m/k < 4,

then T has a weakly 2-good r-exact edge-coloring.

Proof. We use induction on m. If m ≤ 7, then T is either a special tree or
a path. Consider m ≥ 8, and thus k ≥ 3. If T is a special tree or a path,
then T has a weakly 2-good edge-coloring, by Lemma 4.5 and Theorem 4.2.
Thus we may assume that T is neither a special tree nor a path. Since at
most one term in r equals

⌈
m+1
2

⌉
, if there are two largest terms, then they

are less than
⌈
m+1
2

⌉
. Since m/k < 4, we have r1 ∈ {1, 2, 3}.

Case 1: r1 = 1. Since the list (r2, . . . , rk) has sum m − 1, and rk ≤⌈
m+1
2

⌉
=

⌊
(m−1)+3

2

⌋
, the list is nearly half-bounded. Since T is not a special

tree and m ≥ 8, Lemma 4.7a yields an edge e whose deletion leaves compo-
nents T ′ and T ′′ such that both components have at least three edges. (If
T ′′ does not have three edges, then it and e can be added to T ′, making T
a special tree).

If 4k−3 ≤ m ≤ 4k−1, then 4(k−1) ≤ m−1 ≤ 4(k−1)+2. It follows that

(m−1)−(k−1)
⌊
m−1
k−1

⌋
≤ 2, and hence Lemma 4.6b applies, since |E(T ′)| > 2

and |E(T ′′)| > 2. Hence the list r2, . . . , rk splits into half-bounded lists r′ and
r′′ with sums |E(T ′)| and |E(T ′′)|, respectively, and both of their essential
means are less than 4. If m ≤ 4k−4, then m−1 ≤ 4(k−1)−1, and hence by
Lemma 4.6a the list r2, . . . , rk splits into half-bounded lists r′ and r′′ with
sums |E(T ′)| and |E(T ′′)|, respectively, and both of their essential means
are less than 4.

Therefore, in either case, the list r2, . . . , rk splits into half-bounded lists
r′ and r′′ with sums |E(T ′)| and |E(T ′′)| such that both essential means are
less than 4. Assign color 1 to the edge e, and apply the induction hypothesis
to both T ′ and T ′′ to obtain weakly 2-good edge-colorings. The full edge-
coloring is weakly 2-good.

Case 2: r1 = 2. Here the list (r1 − 1, r2, . . . , rk) is nearly half-bounded
and has sum m−1, which is at most 4k−2. Since m ≥ 8, there is an edge e of
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T whose deletion leaves nontrivial components T ′ and T ′′. By Lemma 4.6a,
the list r1 − 1, r2, . . . , rk splits into half-bounded lists r′ and r′′ with sums
|E(T ′)| and |E(T ′′)| whose essential means are less than 4. Assign color 1 to
e, and apply the induction hypothesis to both T ′ and T ′′ to obtain weakly
2-good edge-colorings. The full edge-coloring is weakly 2-good.

Case 3: r1 = 3. Consider the list (r2, . . . , rk). Since m− 3k ≤ k− 1, we
have m− 3k ≤ m−3k

2 + k−1
2 = m+1

2 − k− 1. Also, since ri ≥ r1 = 3, we have

rk = m−
∑k−1

i=1 ri ≤ m− 3(k− 1). Hence rk ≤ m− 3k+ 3 ≤ m+1
2 − k+ 2 ≤⌊

(m−3)+3
2

⌋
, since k ≥ 3. Therefore, (r2, . . . , rk) is nearly half-bounded.

Since T is not a path or star, by Lemma 4.7b it has an edge e whose
deletion leaves components T ′ and T ′′ such that T ′′ + e is not a path. Let
e1 and e2 be pendant edges of T ′′+ e other than e. Since r2, . . . , rk is nearly
half-bounded and has sum m− 3, which is at most 4(k− 1), by Lemma 4.6a
it splits into half-bounded lists r′ and r′′ with sums |E(T ′)| − 2 and |E(T ′′)|
whose essential means are less than 4. Assign color 1 to all of {e, e1, e2}, and
apply the induction hypothesis to the two remaining trees to obtain weakly
2-good edge-colorings. The full edge-coloring is weakly 2-good.

5. List splittability

In this section, we prove Lemma 4.6 (as Lemma 5.3). Recall that a split of the
k-tuple r consists of two nonnegative k-tuples r′ and r′′ such that r′i+r′′i = ri
for 1 ≤ i ≤ k. Given m′ with 0 < m′ < m =

∑
ri, let m

′′ = m−m′. We will
first give sufficient conditions for a split of r into half-bounded lists r′ and
r′′ with sums m′ and m′′, respectively, such that both r′ and r′′ have at least
certain numbers of nonzero terms. We apply this in Lemma 5.3 to show that
if r is nearly half-bounded (meaning rk ≤

⌊
m+3
2

⌋
), then r splits into half-

bounded lists r′ and r′′ having essential means at most the essential mean
m/k of r. Under additional hypotheses, for most values of m′ the essential
means of r′ and r′′ can also be required to be less than 
m/k�. We state
the first lemma using x rather than m′ because we will also apply it in the
complementary situation where x = m′′.

Lemma 5.1. Let r be a nearly half-bounded list with sum m. Fix integers
x and y with 0 < x < m and 0 ≤ y < k. Let ti = min{ri,

⌈
m−x+1

2

⌉
} for

1 ≤ i ≤ k. Let j = max{i : ri ≤
⌈
m−x+1

2

⌉
}. Let S be a subset of {1, . . . , j}

with size max{0, (y+1)−(k−j)}. Let si = ri−ti+1 for i ∈ S and si = ri−ti
for i �∈ S. If (1) y + 1 ≤ x and (2) either 2y + 1 ≤ x or 2(k − y) ≥ m− x,
then

∑
si ≤ x. Furthermore, s has at least y + 1 nonzero terms.
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Proof. Note that ri − ti = max{0, ri −
⌈
m−x+1

2

⌉
}; in particular ri − ti = 0

and si = 1 for i ∈ S. By the choice of j,

k∑
i=1

si = |S|+
∑
i>j

(
ri −

⌈
m− x+ 1

2

⌉)
.

If j = k, then
∑k

i=1 si = |S| = y+1 ≤ x. If j ≤ k−2, then
∑

i>j

⌈
m−x+1

2

⌉
≥

2
⌈
m−x+1

2

⌉
. Since |S| ≤ j and

∑
i>j ri ≤ m− j,

k∑
i=1

si ≤ j +m− j − (m− x+ 1) < x.

If j = k − 1, then
∑k

i=1 si = y + rk −
⌈
m−x+1

2

⌉
. Since rk ≤

⌊
m+3
2

⌋
, in the

case 2y + 1 ≤ x we have

k∑
i=1

si ≤
⌊
x− 1

2

⌋
+

⌊
m+ 3

2

⌋
−
⌈
m− x+ 1

2

⌉
≤ x.

Since also rk ≤ m− k + 1, in the case 2(k − y) ≥ m− x we have

k∑
i=1

si ≤ y +m− k + 1−
⌈
m− x+ 1

2

⌉

= y − k + 1 +

⌊
m− x− 1

2

⌋
+ x

≤ y − k + 1 + k − y − 1 + x = x.

To count the nonzero terms in s, note that if i > j, then si > 0. If i ≤ j,
then si > 0 for i ∈ S. Hence s has at least |S|+ k − j nonzero terms, which
is at least y + 1.

When comparing lists of the same length, an expression like r′ ≤ t′

means r′i ≤ t′i for all i. Our plan is as follows.

Remark 5.2. We will first define t′ and t′′ as instances of the list t in
Lemma 5.1 with x = m−m′ and x = m′, respectively. By the definition of
t, any list r′ with r′ ≤ t′ and

∑
r′i = m′ is half-bounded; similarly for r′′.

We will next obtain lists s′ and s′′ as instances of the list s in Lemma 5.1
such that s′ ≤ r − s′′ and

∑
s′i ≤ m′ ≤

∑
(ri − s′′i ). Given such lists, we

produce r′ by starting with s′ and augmenting elements of the list, while
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keeping the ith element at most ri − s′′i , until we reach sum m′. Since r′ ≥
s′, the list r′ has at least as many nonzero terms as s′. Similarly, since
r− r′′ = r′ ≤ r− s′′ implies r′′ ≥ s′′, the list r′′ has at least as many nonzero
terms as s′′. Furthermore, s′ and s′′ will be defined so that r − s′′ ≤ t′ and
r−s′ ≤ t′′. It then follows that r′ ≤ r−s′′ ≤ t′ and r′′ = r− r′ ≤ r−s′ ≤ t′′,
and hence r′ and r′′ are half-bounded.

It remains to obtain such lists s′ and s′′ having sufficiently many nonzero
terms (to make the essential means small). We will do this using special sets
S′ and S′′ in the manner in which s is defined from t in Lemma 5.1. We will
need to ensure that the specifications of S′ and S′′ do not prevent s′ ≤ r−s′′.

Lemma 5.3. Let r be a nearly half-bounded list with sum m.
a) If 0 < m′ < m, then r splits into half-bounded lists r′ and r′′ with

sums m′ and m′′ having essential means at most m/k.
b) Let b = m − k

⌊
m
k

⌋
. If 3k ≤ m ≤

⌊
m
k

⌋
(k + 1) and b < m′ < m − b,

then the essential means of r′ and r′′ can be required to be less than 
m/k�.
Proof. We will define parameters k′ and k′′ and construct lists s′ and s′′

with k′ +1 nonzero terms and k′′ +1 nonzero terms, respectively, such that
s′ ≤ r − s′′ and

∑
s′i ≤ m′ ≤

∑
(ri − s′′i ). The lists s′ and s′′ will be

instances of s obtained from r as in Lemma 5.1, using parameters x and y
and an appropriate set S. For s′, we use x = m′ and y = k′. For s′′, we use
x = m−m′ and y = k′′. We let S′ and S′′ denote the sets to be used as S in
determining s′ and s′′, respectively. Similarly, let j′ and j′′ denote the index
j computed in the two instances. Let k′ =

⌊
m′

a

⌋
and k′′ = k − k′ − δ, where

a and δ will be defined differently for part (a) and part (b). In both cases,
k′ ≤ m′

a < k′ + 1.
(a) Since the conclusion is obvious if ri = 1 for all i, we assume rk ≥ 2.

We set a = m/k and δ = 1, so k′′ = k−k′−1. To see that having lists s′ and
s′′ as described above suffices, note that any list r′ with r′ ≥ s′ and sum m′

has at least k′+1 nonzero terms, and hence has essential mean at most m′

k′+1 ,
which is less than a by the choice of k′. Similarly, any list r′′ with r′′ ≥ s′′

and sum m−m′ has essential mean at most m−m′

k−k′ , which is at most a since
mk′ ≤ m′k. As noted in Remark 5.2, s′ ≤ r−s′′ and

∑
s′i ≤ m′ ≤

∑
(ri−s′′i )

allows us to obtain such r′ and r′′ by iteratively augmenting terms.
To apply Lemma 5.1, we need to define S′ and S′′ appropriately. Each

choice of y (k′ or k′′, respectively) must be less than k. We have k′ =⌊
m′k
m

⌋
< k and k′′ = k − k′ − 1 < k. Since we want S′ to be a set of size

max{0, (k′ + 1) − (k − j′)}, let S′ = {k − k′, . . . , j′}; this set is empty if
k′ + 1 ≤ k− j′. Similarly, since (k′′ + 1)− (k− j′′) = j′′ − k′ when y = k′′ =
k − k′ − 1, we need |S′′| = max{0, j′′ − k′}. We set S′′ = {1, . . . , j′′ − k′},
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except S′′ = {1, . . . , j′′ − k′ − 1} ∪ {j′′} when j′′ = k. As in Lemma 5.1,
s′i = 1 for i ∈ S′ and s′i = max{0, ri −

⌈
m−m′+1

2

⌉
} for i �∈ S′. Similarly,

ri − s′′i = ri − 1 for i ∈ S′′ and ri − s′′i = min{ri,
⌈
m′+1

2

⌉
} ≥ 1 for i �∈ S′′.

We need to show s′ ≤ r − s′′. Since ri ≤ rk ≤
⌊
m+3
2

⌋
≤

⌈
m−m′+1

2

⌉
+⌈

m′+1
2

⌉
, we have s′i ≤ ri − s′′i when i �∈ S′ and i �∈ S′′. The cases when i is in

just one of S′ and S′′ are immediate. When i ∈ S′ ∩ S′′, we need ri ≥ 2. We
have i ∈ S′ ∩ S′′ only when j′′ = k and i = k; now rk ≥ 2 suffices.

To show
∑

s′i ≤ m′ ≤
∑

(ri − s′′i ), we apply Lemma 5.1 twice. First
consider

∑
s′i ≤ m′. Recall that a = m/k. Note that a > 1, since rk ≥ 2. Now

y = k′ ≤ m′/a < m′ = x. When a > 2, we have 2y = 2k′ ≤ 2m′/a < m′ = x.
When a ≤ 2, since m−m′

k−k′ ≤ a ≤ 2, we have 2(k− y) = 2(k− k′) ≥ m−m′ =
m−x. Hence the hypotheses of Lemma 5.1 hold, and we conclude

∑
s′i ≤ m′.

To prove m′ ≤
∑

(ri − s′′i ), we show
∑

s′′i ≤ m−m′. In this application
of Lemma 5.1, y = k′′ and x = m−m′. Since k′ ≥ m′/a and k ≤ m, we have
y + 1 = k − k′ ≤ k(1 − m′

m ) = k
m(m − m′) ≤ x. When m′/k′ ≥ 2, we have

2y + 1 < 2(k − k′) ≤ m′

k′ (k − k′) ≤ m −m′ = x. When m′/k′ < 2, we have
2(k − y) > 2k′ > m′ = m − x. Hence again the hypotheses of Lemma 5.1
hold, and we conclude

∑
s′′i ≤ m−m′.

(b) We set a =
⌊
m
k

⌋
. As in part (a), any list r′ with r′ ≥ s′ and sum m′

has essential mean less than a. Ifm−m′ < a(k−k′), then k−k′ nonzero terms
are enough for r′′ to have essential mean less than a. Otherwise m −m′ <
a(k−k′+1) (since m′ ≥ ak′), and then k−k′+1 nonzero terms are enough.
Hence we set k′′ = k− k′− δ, where δ = 1 if m−m′ < a(k− k′) and δ = 0 if
m−m′ ≥ a(k− k′). Again we need y (k′ or k′′, respectively) to be less than
k. We have k′ =

⌊
m
a

⌋
<

⌊
m−b
a

⌋
< k and k′′ = k − k′ − δ < k.

We define S′ and S′′ as follows. As in part (a), let S′ = {k − k′, . . . , j′}.
For S′′, we set S′′ = {1, . . . , j′′ − k′ +1}, except S′′ = {1, . . . , j′′ − k′}∪ {j′′}
when j′′ = k − 1 and S′′ = {1, . . . , j′′ − k′ − 1} ∪ {j′′ − 1, j′′} when j′′ = k.
Again, we need ri ≥ 2. We have i ∈ S′ ∩ S′′ only when j′′ ≥ k − 1, in which
case S′ ∩ S′′ ⊆ {k − 1, k}. If k = 1, then rk = m ≥ 3k = 3. If k ≥ 2, then
since rk ≤

⌊
m+3
2

⌋
and m ≥ 3k we have

rk−1 ≥ m− rk − (k − 2) ≥
⌈
m− 3

2

⌉
− (k − 2) ≥ 2.

Now we show
∑

s′i ≤ m′ and
∑

s′′i ≤ m − m′ by applying Lemma 5.1
twice. To confirm the hypotheses of Lemma 5.1, it suffices to show 2y+1 ≤ x
when (y, x) = (k′,m′) and when (y, x) = (k′′,m−m′). Since a ≥ 3, we have
2k′ + 1 = 2

⌊
m′

a

⌋
+ 1 ≤ m′. Hence we conclude

∑
s′i ≤ m′. Now consider∑

s′′i ≤ m−m′. When δ = 0, we have 2k′′+1 = 2(k− k′)+ 1 and m−m′ ≥
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a(k−k′). Since a ≥ 3 and k′ < k, we have 2(k−k′)+1 ≤ a(k−k′) ≤ m−m′.
When δ = 1, we have 2k′′ + 1 = 2(k − k′)− 1 and m−m′ > a(k − k′ − 1).

Note that 2(k − k′)− 1 ≤ a(k − k′ − 1) is equivalent to 0 < (a− 2)(k − k′),
which again holds since a ≥ 3 and k′ < k.

Remark 5.4. In the proof of Lemma 5.3(a) the essential mean of r′ is

actually less than the essential mean m/k of r.

In Lemma 5.3(b), the condition m ≥ 3k can be relaxed to m ≥ 2k,

but then rk−1 ≥ 2 needs to be required, since rk−1 = 1 can happen when

a = 2. However, the proof needs more case analysis and we do not need this

strengthening. Since no list has essential mean less than 1, the condition

2k ≤ m cannot be relaxed more. With m ≥ 2k, the condition rk−1 ≥ 2

cannot be relaxed more, as shown by the list (1, . . . , 1, k + 1), where k is

even. When m′ = k, the list has no split consisting of half-bounded lists

with essential means less than 2.
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