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Abstract. Graph coloring has numerous applications and is a well-
known NP-complete problem. The goal of this paper is to survey recent
results of the authors on coloring and improper coloring of sparse graphs
and to point out some polynomial-time algorithms for coloring (not nec-
essarily optimal) of graphs with bounded maximum average degree.
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1 Introduction

A proper k-coloring, or simply k-coloring, of a graph G = (V,E) is a function
f : V → {1, 2, . . . , k} such that for each uv ∈ E, f(u) �= f(v). A graph G is
k-colorable if there exists a k-coloring of G. The chromatic number, χ(G), of
a graph G is the smallest k such that G is k-colorable. The problem of graph
coloring with few colors has long been associated with resource assignment. One
of the often cited related problems is the problem of assigning radio frequencies
to a network of radio towers. The problem is known to be difficult: Determining
if a graph is k-colorable when k ≥ 3 was in Karp’s [11] original list of 21 NP-
complete problems. Furthermore, it is an NP-complete problem to even color a
graph G with 1000χ(G) colors [43]. This situation leads to constructing efficient
algorithms for approximate coloring of graphs in special classes and to studying
extremal problems on colorings.

What is said, relates also to improper colorings. A d-improper k-coloring of a
graph G is a vertex coloring of G using k colors such that the graph induced by
every color class has maximum degree at most d. By definition, a proper coloring
of a graph is exactly a 0-improper coloring. So, a d-improper coloring is a relax-
ation of a proper coloring. Havet and Sereni [9] describe applications of d-improper
k-colorings to frequency assignment problems. But improper colorings are even
more complicated than the ordinary coloring. While it is easy to check whether
a given graph is 2-colorable, Corrěa, Havet, and Sereni [10] proved that even the
problem of existence of a 1-improper 2-coloring in the class of planar graphs is
NP-complete.

It is natural that a graph G with a high average degree, 2 |E(G)|
|V (G)| , is harder to

color with few colors. So, a low average degree of a graph may indicate that it is
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easier to color this graph. However, it could be that although the whole graph
has low average degree, some its part is much denser and cannot be colored.
A graph parameter controlling such anomalies is the maximum average degree,

mad(G) = maxH⊆G 2 |E(H)|
|V (H)| . Kurek and Rucin’ski [36] called graphs with low

maximum average degree globally sparse. In this paper, we describe some recent
results of the authors (some of them are joint with O. Borodin and B. Lidický) on
coloring and improper coloring of sparse graphs. These results imply polynomial-
time algorithms for coloring globally sparse graphs with few colors.

One of the key notions in graph coloring is the one of critical graphs. A graph
G is (d-improperly) k-critical if G is not (d-improperly) (k−1)-colorable, but ev-
ery proper subgraph of G is (d-improperly) (k−1)-colorable. Critical graphs were
first defined and used by Dirac [12–14] in 1951-52. A reason to study k-critical
graphs is that every k-chromatic graph (i.e. graph with chromatic number k)
contains a k-critical subgraph and k-critical graphs have more restricted struc-
ture. For example, k-critical graphs are 2-connected and (k−1)-edge-connected,
which implies that every k-chromatic graph contains a 2-connected and (k− 1)-
edge-connected subgraph. The only 1-critical graph is K1, and the only 2-critical
graph is K2. The only 3-critical graphs are the odd cycles. There are no k-critical
graphs with k + 1 vertices. For every k ≥ 4 and every n ≥ k + 2, there exists a
k-critical n-vertex graph.

One of the basic questions on k-critical graphs is:What is the minimum number
fk(n) of edges in a k-critical graphwith n vertices?This questionwas first asked by
Dirac [16] in 1957 and then was reiterated by Gallai [22] in 1963, Ore [37] in 1967
and others [27, 28, 42]. More generally, we may ask about fk,d(n) — the minimum
number of edges in a d-improperly k-critical graph with n vertices.

In this paper, we discuss results towards this problem and some applications
of these results.

2 Gallai’s Conjecture

Since the minimum degree of any k-critical graph is at least k − 1,

fk(n) ≥ k − 1

2
n (1)

for all n ≥ k, n �= k+1. Equality is achieved for n = k and for k = 3 and n odd.
Brooks’ Theorem [11] implies that for k ≥ 4 and n ≥ k+2, the inequality in (1)
is strict. In 1957, in order to to evaluate chromatic number of graphs embedded
into fixed surfaces, Dirac [16] proved that for k ≥ 4 and n ≥ k + 2,

fk(n) ≥ k − 1

2
n+

k − 3

2
. (2)

The bound is tight for n = 2k − 1 and yields fk(2k − 1) = k2 − k − 1. Later,
Kostochka and Stiebitz [30] improved (2) to

fk(n) ≥ k − 1

2
n+ k − 3 (3)

when n �= 2k − 1, k. This yields fk(2k) = k2 − 3 and fk(3k − 2) = 3k(k−1)
2 − 2.
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Gallai [22] has found the values of fk(n) for n ≤ 2k − 1 and proved the
following general bound for k ≥ 4 and n ≥ k + 2:

fk(n) ≥ k − 1

2
n+

k − 3

2(k2 − 3)
n. (4)

For large n, the bound is much stronger than bounds (2) and (3). Based on his
description of k-critical graphs with only one vertex of degree greater than k−1,
Gallai [21] conjectured the following.

Conjecture 1 (Gallai [21]). If k ≥ 4 and n = 1( mod k − 1), then

fk(n) =
(k2 − k − 2)n− k(k − 3)

2(k − 1)
.

Ore [37] observed that Hajós’ construction implies

fk(n+ k − 1) ≤ fk(n) +
(k − 2)(k + 1)

2
= fk(n) + (k − 1)(k − 2

k − 1
)/2, (5)

which yields that the limit φk := limn→∞
fk(n)

n exists and satisfies

φk ≤ k

2
− 1

k − 1
. (6)

Ore conjectured that his equation (5) is actually an equality:

Conjecture 2 (Ore [37]). If k ≥ 4, and n ≥ k + 2, then

fk(n+ k − 1) = fk(n) + (k − 1)(k − 2

k − 1
)/2.

Note that Conjecture 1 is equivalent to Conjecture 2 for n = 1( mod k − 1).
Some lower bounds on fk(n) were obtained in [16, 35, 21, 30, 31, 20]. Recently,
the authors [32] proved Conjecture 1 in full.

Theorem 3 ([32]). If k ≥ 4 and G is k-critical, then |E(G)| ≥⌈
(k+1)(k−2)|V (G)|−k(k−3)

2(k−1)

⌉
. In other words, if k ≥ 4 and n ≥ k, n �= k + 1,

then

fk(n) ≥ F (k, n) :=

⌈
(k + 1)(k − 2)n− k(k − 3)

2(k − 1)

⌉
.

The result also confirms Conjecture 2 in the following cases: (a) k = 4 and
every n ≥ 6, (b) k = 5 and n ≡ 2( mod 4), and (c) every k ≥ 5 and n ≡ 1(
mod k − 1). By examining known values of fk(n) when n ≤ 2k, it follows that
fk(n)− F (k, n) ≤ k2/8.

It is known that there are infinitely many k-extremal graphs, i.e. the k-critical

graphs G such that |E(G)| = (k+1)(k−2)|V (G)|−k(k−3)
2(k−1) . In particular, every graph

in the family of so called k-Ore graphs is k-extremal. Very recently, the authors
managed to describe all k-extremal graphs.
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Fig. 1. Comparison of the bounds when k = 7

Theorem 4. Let k ≥ 4 and G be a k-critical graph. Then G is k-extremal
if and only if it is a k-Ore graph. Moreover, if G is not a k-Ore graph, then

|E(G)| ≥ (k2−k−2)|V (G)|−yk

2(k−1) , where yk = max{2k − 6, k2 − 5k + 2}.

The message of Theorem 4 is that although for every k ≥ 4 there are infinitely
many k-extremal graphs, they all have a simple structure. In particular, every
k-extremal graph distinct from Kk has a separating set of size 2. The theorem
gives a slightly better approximation for fk(n) and adds new cases where we
now know the exact values of fk(n): They are now known for (a) k ∈ {4, 5} and
every n ≥ k + 2, (b) all k ≥ 6 and n ≡ 1( mod k − 1), (c) k = 6 and n ≡ 0, 2(
mod 5), and (d) k = 7 and n ≡ 2( mod 6) .

This value of yk in Theorem 4 is best possible in the sense that for every k ≥ 4,
there exists an infinite family of 3-connected k-critical graphs with |E(G)| =
(k2−k−2)|V (G)|−yk

2(k−1) . By (5), if we construct an n0-vertex k-critical graph for which

our lower bound on fk(n0) is exact, then the bound on fk(n) is exact for every
n of the form n0 + s(k − 1). So, we only need to construct

– a 4-critical 6-vertex graph with
⌈
9 2
3

⌉
= 10 edges,

– a 4-critical 8-vertex graph with �13	 = 13 edges,
– a 5-critical 10-vertex graph with �22	 = 22 edges,
– a 5-critical 7-vertex graph with

⌈
15 1

4

⌉
= 16 edges,

– a 5-critical 8-vertex graph with
⌈
17 3

4

⌉
= 18 edges,

– a 6-critical 10-vertex graph with
⌈
27 1

5

⌉
= 28 edges,

– a 6-critical 12-vertex graph with
⌈
32 4

5

⌉
= 33 edges, and

– a 7-critical 14-vertex graph with
⌈
45 1

3

⌉
= 46 edges.

These graphs are presented in Figure 2.
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Fig. 2. Minimal k-critical graphs

3 Applications

3.1 Algorithms

Since the proof of Theorem 3 is constructive, it yields the following algorithmic
counterpart.

Theorem 5. If k ≥ 4, then every n-vertex graph G with |E(H)| <
(k+1)(k−2)|V (H)|−k(k−3)

2(k−1) for each H ⊆ G can be (k−1)-colored in O(k3.5n6.5 log(n))
time.

The bound on complexity is not best possible. In particular, the algorithm finds
maximum flows in auxiliary networks many times, so if one uses the Orlin’s
bounds on the running time of max-flow problems, the bounds will be improved.

Since every k-Ore graph distinct from the complete graph Kk contains a
separating set of size 2 and decomposes into two k-Ore graphs of a smaller
order, there is a simple algorithm that in time O(n5) checks whether a given
n-vertex graph is a k-Ore graph. Together with an analog of the algorithm in
Theorem 5 that uses the proof of Theorem 4 instead of Theorem 3, this yields
the following

Theorem 6. Let k ≥ 4 and yk = max{2k − 6, k2 − 5k + 2}. Then there exists
a polynomial-time algorithm that for every n-vertex graph G with |E(H)| <
(k+1)(k−2)|V (H)|−yk

2(k−1) for each H ⊆ G either finds a (k− 1)-coloring of G or finds

a subgraph of G that is a k-Ore graph.

3.2 Local and Global Graph Properties

Krivelevich [35] presented nice applications of his lower bounds on fk(n) and
related graph parameters to finding complex graphs whose small subgraphs are
simple. Two his bounds can be improved using Theorem 3 as follows.
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Let f(
√
n, 3, n) denote the maximum chromatic number over n-vertex graphs

in which every
√
n-vertex subgraph is 3-colorable. Krivelevich proved that for

every fixed ε > 0 and sufficiently large n,

f(
√
n, 3, n) ≥ n6/31−ε. (7)

To show this, he applied his result that every 4-critical t-vertex graph with odd
girth at least 7 has at least 31t/19 edges. If instead of this, we simply use our
bound on f4(n), then repeating almost word by word Krivelevich’s proof of his
Theorem 4 (choosing p = n−0.8−ε′), we get that for every fixed ε and sufficiently
large n,

f(
√
n, 3, n) ≥ n1/5−ε. (8)

Another result of Krivelevich is:

Theorem 7 ([35]). There exists C > 0 such that for every s ≥ 5 there exists a

graph Gs with at least C
(

s
ln s

) 33
14 vertices and independence number less than s

such that the independence number of each 20-vertex subgraph at least 5.

He used the fact that for every m ≤ 20 and every m-vertex 5-critical graph H ,

|E(H)| − 1

m− 2
≥ �17m/8	 − 1

m− 2
≥ 33

14
.

From Theorem 3 we instead get

|E(H)| − 1

m− 2
≥

⌈
9m−5

4

⌉− 1

m− 2
≥ 43

18
.

Then repeating the argument in [35] we can replace 33
14 in the statement of

Theorem 7 with 43
18 .

3.3 Coloring Planar Graphs

Since planar graphs are sparse, Theorem 3 helps proving results on 3-coloring of
planar graphs with restrictions on the structure. The case k = 4 of Theorem 3
is as follows:

Theorem 8. If G is a 4-critical n-vertex graph then |E(G)| ≥ 5n−2
3 .

In [33], the authors gave a 3-page proof of Theorem 8. And this allows to give
a half-page proof of the classical Grötzsch’s Theorem [24] that all triangle-free
planar graphs are 3-colorable. The original proof of Grötzsch’s Theorem is some-
what sophisticated. The subsequent simpler proofs (see, e.g. [39] and references
therein) are still not too simple. The proof below from [33] is the shortest so far:

Proof of Grötzsch’s Theorem: Let G be a plane graph with the smallest
|E(G)| + |V (G)| for which the theorem does not hold. Then G is 4-critical.
Suppose G has n vertices, e edges and f faces.
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CASE 1: G has no 4-faces. Then 5f ≤ 2e and so f ≤ 2e/5. From this and Euler’s
Formula n− e+ f = 2, we obtain n− 3e/5 ≥ 2, i.e., e ≤ 5n−10

3 , a contradiction
to Theorem 8.

CASE 2: G has a 4-face (x, y, z, u). Since G has no triangles, xz, yu /∈ E(G). If
the graph Gxz obtained from G by gluing x with z has no triangles, then by the
minimality of G, Gxz is 3-colorable, and so G also is 3-colorable. Thus G has an
x, z-path (x, v, w, z) of length 3. Since G itself has no triangles, {y, u}∩{v, w} = ∅
and there are no edges between {y, u} and {v, w}. But then G has no y, u-path of
length 3, since such a path must cross the path (x, v, w, z). Thus the graph Gyu

obtained from G by gluing y with u has no triangles, and so, by the minimality
of G, is 3-colorable. Then G also is 3-colorable, a contradiction. ��
Borodin, Lidický and the authors [8] used Theorem 8 to present simple proofs
for some 3-coloring results on planar graphs, in particular, for the Grünbaum-
Axenov Theorem that every planar graph with at most 3 triangles is 3-colorable.
This theorem is sharp in the sense that there are infinitely many plane 4-critical
graphs with exactly four triangles. Moreover, Thomas and Walls [38] constructed
infinitely many such graphs without 4-faces.

Fig. 3. Some 4-critical graphs from the family described by Thomas and Walls [38]

Very recently, Borodin, Lidický and the authors using Theorem 4 described
all plane 4-critical graphs with exactly four triangles and no 4-faces. Using The-
orem 8 they also proved:

Theorem 9. Let G be a triangle-free planar graph and H be a graph such that
G = H − v for some vertex v of degree at most 4. Then H is 3-colorable.

The theorem sharpens the similar result by Jensen and Thomassen [26] where
the degree of v was at most 3 and is sharp in the sense that there are infinitely
many plane triangle-free graphs that are obtained from a 4-critical graph by
deleting a vertex of degree 5.
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4 Improper 2-Colorings

As it was mentioned in the introduction, even the problem whether a given
planar graph is 1-improperly 2-colorable is NP-complete. This motivates the
study of improper 2-colorings for globally sparse graphs. A (j, k)-coloring of a
graph G is a 2-coloring of V (G) such that every vertex of Color 1 has at most j
neighbors of Color 1 and every vertex of Color 2 has at most k neighbors of its
color. By definition, a (d, d)-coloring is simply a d-improper 2-coloring. Esperet,
Montassier, Ochem and Pinlou [19] proved that for every j ≥ 0 and k ≥ 1,
the problem of verifying whether a given planar graph has a (j, k)-coloring is
NP-complete. It is somewhat nonstandard but convenient to call a graph (j, k)-
critical if it is not (j, k)-colorable but after deleting any edge or vertex it becomes
(j, k)-colorable.

Glebov and Zambalaeva [23] proved that every planar graph G with girth,
g(G), at least 16 is (0, 1)-colorable. Then Borodin and Ivanova [1] proved that

every graph G with mad(G) < 7
3 is (0, 1)-colorable. Since mad(G) ≤ 2g(G)

g(G)−2 for

every planar graph G with girth g(G), this implies that every planar graph G
with g(G) ≥ 14 is (0, 1)-colorable. Borodin and the first author [6] proved that
every graph G with mad(G) < 12

5 is (0, 1)-colorable, and this is sharp. This also
implies that every planar graph G with g(G) ≥ 12 is (0, 1)-colorable. Dorbec,
Kaiser, Montassier, and Raspaud [18] have constructed a (0, 1)-critical graph
with girth 9.

Kurek and Ruciński [36] studied improper colorings within the more gen-
eral framework of vertex Ramsey probems. We say that G → (H1, . . . , Hk)
if for every coloring φ : V (G) → [k], there exists an i such that the sub-
graph of G induced by the vertices of Color i contains Hi. By definition, a
graph G is (K1,j,K1,k)-vertex Ramsey exactly when G has no (j, k)-coloring.
Kurek and Ruciński [36] considered the extremal function mcr(H1, . . . , Hk) =
inf{mad(F ) : F → (H1, . . . , Hk)}. In particular, Kurek and Ruciński showed
that 8/3 ≤ mcr(K1,2,K1,2) ≤ 14/5. Ruciński offered 400,000 PLZ cash prize
for the exact value of mcr(K1,2,K1,2). Recently, Borodin and the authors solved
this problem.

Theorem 10 ([9]). If G is a (1, 1)-critical graph, then 5|E(G)| > 7|V (G)|.
The result is sharp in the sense that there are infinitely many (1, 1)-critical
graphs with 5|E(G)| = 7|V (G)|+ 1. One such graph is present in Fig. 4.

The proof of the result is algorithmic and yields a polynomial-time algorithm
that finds a (1, 1)-coloring for every graph G with mad(G) ≤ 14

5 . In a standard
manner, the theorem yields that every planar graph with girth at least 7 is (1, 1)-
colorable. It also refines a result by Borodin and Ivanova [2]: They showed that
every graph G with girth at least 7 and mad(G) < 14

5 can be partitioned into
two subsets such that every connected monochromatic subgraph has at most two
edges. Our result shows that each component contains at most 1 edge.
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Fig. 4. A (1, 1)-critical graph G with 5|E(G)| = 7|V (G)|+ 1

For general j and k, the problem of (j, k)-coloring of planar and globally
sparse graphs was considered in [3–5]. Borodin and the first author [7] proved
that if k ≥ 2j + 2, then every graph with maximum average degree at most

2
(
2− k+2

(j+2)(k+1)

)
is (j, k)-colorable. On the other hand, they constructed graphs

with the maximum average degree arbitrarily close to 2
(
2− k+2

(j+2)(k+1)

)
(from

above) that are not (j, k)-colorable. Note that most likely if j ≤ k < 2j+2, then
the answer differs from that in the case k ≥ 2j+2. In particular, the answer for
(1, 1)-colorings in Theorem 10 differs from it.
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