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Abstract Corrádi and Hajnal (Acta Math Acad Sci Hung 14:423–439, 1963) proved that
for all k ≥ 1 and n ≥ 3k, every (simple) graph G on n vertices with minimum degree
δ(G) ≥ 2k contains k disjoint cycles. The degree bound is sharp. Enomoto andWang proved
the following Ore-type refinement of the Corrádi–Hajnal theorem: For all k ≥ 1 and n ≥ 3k,
every graphG on n vertices contains k disjoint cycles, provided that d(x)+d(y) ≥ 4k−1 for
all distinct nonadjacent vertices x, y. Very recently, it was refined for k ≥ 3 and n ≥ 3k + 1:
If G is a graph on n vertices such that d(x) + d(y) ≥ 4k − 3 for all distinct nonadjacent
vertices x, y, then G has k vertex-disjoint cycles if and only if the independence number
α(G) ≤ n − 2k and G is not one of two small exceptions in the case k = 3. But the most
difficult case, n = 3k, was not handled. In this case, there are more exceptional graphs, the
statement is more sophisticated, and some of the proofs do not work. In this paper we resolve
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300 Sharpening an Ore-type version of the Corrádi–Hajnal theorem

this difficult case and obtain the full picture of extremal graphs for the Ore-type version of the
Corrádi–Hajnal theorem. Since any k disjoint cycles in a 3k-vertex graphG must be 3-cycles,
the existence of such k cycles is equivalent to the existence of an equitable k-coloring of the
complement of G. Our proof uses the language of equitable colorings, and our result can be
also considered as an Ore-type version of a partial case of the Chen–Lih–Wu Conjecture on
equitable colorings.

Keywords Disjoint cycles · Equitable coloring · Minimum degree

Mathematics Subject Classification 05C15 · 05C35 · 05C40

1 Introduction

For a graph G = (V, E), let |G| = |V |, ‖G‖ = |E |, δ(G) and �(G) be the minimum and
the maximum degrees of G, and α(G) be the independence number of G. Let G denote the
complement of G. For disjoint graphs G and H , let G ∪ H be the graph with vertex set
V (G) ∪ V (H) and edge set E(G) ∪ E(H) and let G ∨ H denote G ∪ H together with all
edges from V (G) to V (H).

In 1963, Corrádi and Hajnal proved a conjecture of Erdős by showing the following:

Theorem 1 [5] Let k ∈ Z
+. Every graph G with (i) |G| ≥ 3k and (ii) δ(G) ≥ 2k contains

k disjoint cycles.

Both hypotheses (i) and (ii) in the theorem are sharp. In particular, if a graph G has k
disjoint cycles, then α(G) ≤ |G| − 2k, since for any independent set I , every cycle contains
at least two vertices of G − I . So, the graph H := Kk+1 ∨ K2k−1 (see Fig. 1) satisfies (i) and
δ(H) = 2k − 1, but H does not have k disjoint cycles, because α(H) = k + 1 > |H | − 2k.
One of the results in [12] is the following refinement of Theorem 1.

Theorem 2 [12] Let k ≥ 2 be fixed. Every graph G with (i) |G| ≥ 3k and (ii′) δ(G) ≥ 2k−1
contains k disjoint cycles if and only if

α(G) ≤ |G| − 2k (1.1)

and

if k is odd and |G| = 3k, then G 	= 2Kk ∨ Kk; and if k = 2 then G is not a wheel. (1.2)

Theorem 2 was used in [13] to solve Dirac’s problem of characterizing the (2k-1)-
connected multigraphs with no k disjoint cycles. Enomoto [6] andWang [21] generalized the
Corrádi–Hajnal theorem in terms of the minimum Ore-degree σ2(G) := min{d(x) + d(y) :
xy /∈ E(G)}:

Fig. 1 Kk+1 ∨ K2k−1, k = 3
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(a) U1 (b) U2

Fig. 2 Two extremal examples for Theorem 3

Theorem 3 [6,21] Let k ∈ Z
+. Every graph G with (i) |G| ≥ 3k and

σ2(G) ≥ 4k − 1 (1.3)

contains k disjoint cycles.

It is natural to try to describe the extremal graphs in Theorem 3. Two such examples are
in Fig. 2.

In [12], such graphs with at least 3k + 1 vertices are described:

Theorem 4 [12] Let k ∈ Z
+ with k ≥ 3. Every graph G with |G| ≥ 3k + 1 satisfying (1.1)

and

σ2(G) ≥ 4k − 3 (1.4)

contains k disjoint cycles, unless k = 3 and G ∈ {U1, U2}.
The goal of this paper is to handle the unsolved (and most difficult) case |G| = 3k. Since

any 3k disjoint cycles in a 3k-vertex graph G are triangles, the vertex sets of these triangles
form color classes of an equitable k-coloring of G. Recall that a vertex coloring of G is
equitable if any two color classes differ in size by at most one. Equitable colorings and
their generalizations have applications in Operation Research and Scheduling Theory (see
e.g. [3,20]).

The fundamental result on equitable colorings is due to Hajnal and Szemerédi [7]:

Theorem 5 [7] For every positive integer r, each graph G with �(G) ≤ r has an equitable
(r + 1)-coloring.

This result has interesting applications in extremal combinatorial and probabilistic prob-
lems, see e.g. [1,2,19].

In order to state Ore-type results in the language of equitable colorings, we use the notion
of Ore-degree, θ(xy), of an edge xy. The Ore-degree of an edge is the sum the degrees of
its endpoints; that is, θ(xy) = d(x) + d(y), whenever xy is an edge. By definition, the
Ore-degree of an edge xy is two greater than the degree of the vertex xy in the line graph
of G. We let the Ore-degree of a graph G be θ(G) = maxxy∈E(G) θ(xy). So for a 3k-vertex
graph G, the condition σ2(G) ≥ 4k − a is equivalent to θ(G) ≤ 2k + a − 2. By definition,
θ(G) ≤ 2�(G). So the next Ore-type result refines the Hajnal–Szemerédi theorem.

Theorem 6 [8] Every graph G with θ(G) < 2k has an equitable k-coloring.

Chen et al. [4] conjectured that the Hajnal–Szemerédi Theorem can be refined in another
direction:
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Fig. 3 Graph X, from Example 9

x1 x2 x3

y1 y2 y3

w1

w2

w3

Conjecture 7 [4] Let G be a connected graph with �(G) = k. Then G has no equitable
k-coloring if and only if either (1) G = Kk+1, or (2) k = 2 and G is an odd cycle, or (3) k
is odd and G = Kk,k .

This conjecture is mainly open. Some partial results can be found in [4,10,11,16,22,23].
In particular, we will use the following known result, combining Theorem 37 from [10] and
Theorem 9 from [11].

Theorem 8 [10,11] Let G be a graph with |G| = ks and χ(G),�(G) ≤ k that has no
equitable k-coloring. If either s ≤ 4 or k ≤ 4 then k is odd, Kk,k ⊆ G, and G − Kk,k is
k-equitable. In particular, if s = 3 then G = Kk,k + Kk.

The main result of this paper can be considered an Ore-type version of Theorem 8 for the
case s ≤ 3. Before stating it, we need to consider some extremal examples.

For disjoint sets X and Y , let K (X) denote the complete graph with vertex set X , and
K (X, Y ) denote the complete bipartite graph with parts X and Y . The graph K (X, Y ) is often
denoted as K|X |,|Y |.

Example 9 Let Q := K ({x1, x2, x3}, {y1, y2, y3}), K = K({w1, w2, w3}), and
X = Q − x3y3 + K + x3w1 + x3w2 + y3w3. (1.5)

(See Fig. 3.) Then |X| = 9 = 3 ·3, χ(X) = 3, and θ(X) = 2 ·3+1, but X has no equitable 3-
coloring: Any 3-coloring f gives distinct colors to K and satisfies f (x3) = f (w3) 	= f (y3).
So if f is an equitable 3-coloring ofX then it is also an equitable 3-coloring of Q, contradicting
that f is a proper coloring. Also, we will later make use of this observation:

X � Q − x3y3 − x3y2 + K + x3w1 + x3w2 + y3w3 + y2w3. (1.6)

Example 10 Let k ≥ 2, and Y = Yk = K1,2k + Kk−1. (See Fig. 4a.) Then |Y| = 3k,
χ(Y) ≤ k, and θ(Y) = 2k + 1, but Y has no equitable k-coloring: for any k-coloring the
class of the vertex r with d(r) = 2k contains at most one vertex from Kk−1.

Example 11 For k ≥ 2 and odd c ≤ k, let V = B1∪B2 = C1∪C2∪B2, whereC1,C2, B2 are
disjoint, |C1| = c, |C2| = 2k − c, and |B2| = k. Set Zc,k = Q + K , where Q = K (C1,C2)

and K = K (B2). (See Fig. 4b.) Then |Zc,k| = 3k, χ(Zc,k) = k, and θ(Zc,k) = 2k, but Zc,k
has no equitable k-coloring. Indeed, each class of an equitable coloring of Zc,k must contain
one vertex of K and two vertices from the same part of Q. As c and 2k − c are odd, this is
impossible.

In particular, our results describe extremal examples for Theorem 6 when n ≤ 3k. It is
enough to consider the case of n divisible by k, as when n ≡ r (mod k) for some 1 ≤ r ≤
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K1,2k

Kk−1

(a) Yk, k = 5

Kc,2k−c

Kk

(b) Zc,k, k = 5, c = 3

Fig. 4 Examples 10 and 11

k − 1, we can consider the graph formed by adding a disjoint copy of Kk−r to G. If s = 1
then G has k vertices and trivially has an equitable k-coloring. Our first result, Theorem 12
(which has a simple proof) handles the case s = 2.

Theorem 12 Let G be a graph satisfying |G| = 2k,

(H1) χ(G) ≤ k and
(H2) θ(G) ≤ 2k + 1.

If G has no equitable k-coloring then Kc,2k−c ⊆ G for some odd c ∈ [k].
Our main result is

Theorem 13 Let G be a graph satisfying |G| = 3k,

(H1) χ(G) ≤ k and
(H2) θ(G) ≤ 2k + 1.

If G has no equitable k-coloring then G ∈ {X, Yk} or Zc,k ⊆ G for some odd c.

A relevant question is: Which graphs G satisfying (H2) (i.e., θ(G) ≤ 2k + 1) do not
satisfy (H1) (i.e., have χ(G) ≥ k + 1)? This question was resolved. First, Kierstead and
Kostochka [9] showed that for k ≥ 6 every such graph contains Kk+1, and Rabern [18]
extended the result to k = 5. Then Kostochka, Rabern and Stiebitz [15] proved that for k = 4
every such graph contains K5 or the graph O5 in Fig. 5 (left). Finally, very recently Kierstead
and Rabern [14] and independently Postle [17] described the infinite family of all 4-critical
graphs G with θ(G) ≤ 7. Only one of them distinct from K4 has at most 9 vertices, namely
7 vertices. This graph O4 is on the right of Fig. 5.

Theorems 4 and 13 together describe all graphs G with σ2(G) ≥ 4k−3 that do not have k
disjoint cycles. In the next section we prove Theorem 12, and the rest of the paper is devoted
to the proof of Theorem 13. Namely, in Sect. 3 we set up the proof and prove simple properties
of a minimum counterexample G to the theorem. In particular, in Lemma 15 we prove that
this G has no complete k-vertex subgraphs. In Sect. 4 we prove that G has a nearly equitable
coloring, i.e. a proper k-coloring in which one color class has size 2, one has size 4, and
every other color class has size 3. In the next two sections we study the properties of nearly
equitable colorings of G with additional properties, normal colorings and optimal colorings.
Based on these properties, in Sect. 7 we show that G has a nearly equitable coloring with
even more good properties. In Sect. 8 we derive many properties of so called solo vertices.
And in Sect. 9 we finish the proof by finding a complete k-vertex subgraph inG contradicting
Lemma 15 mentioned above.
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O O
5

x y

4

Fig. 5 Graphs O5 (on the left) and O4 (on the right)

Apart from standard notation, we will use the following. For a graph G = (V, E) and sets
X, Y ⊆ V , let E(X) := EG(X) = E(G[X ]) and let E(X, Y ) := EG(X, Y ) be the set of
edges with one end in X and one end in Y . Define ‖X, Y‖ := |E(X, Y )| + |E(X ∩ Y )|, so
the edges in G[X ∩ Y ] are counted twice, and ‖X‖ := |E(X)|. For a vertex v ∈ V , we write
N (v) for the set of vertices adjacent to v and N [v] for {v} ∪ N (v). We often write ‖v, X‖
for ‖{v}, X‖, X − v for X\{v} and X + x for X ∪ {v}. For an edge e = xy ∈ E , ‖e, X‖
and ‖xy, X‖ are equivalent to ‖{x, y}, X‖. A k-coloring of G is a partition V of V into k
independent sets. We may express this partition as a function f : V → [k].

2 Proof of Theorem 12

AssumeG has no equitable k-coloring. Since |G| = 2k, thismeansG has noperfectmatching.
Since |G| is even this yields that each matching in G does not cover at least two vertices. So,
by Berge–Tutte’s formula, there is a set T ⊆ V (G) such that G − T has at least |T | + 2 odd
components. Let |T | = t .

For a contradiction, it suffices to assume that (H2) holds and prove that (H1) fails or
Kc,k−c ⊆ G for some odd c ≤ k. Let X and Y be the two smallest odd components ofG−T ,
x ∈ X and y ∈ Y . Then

2k + 1 ≥ θ(G) ≥ d(x) + d(y) ≥ (2k − t − |X |) + (2k − t − |Y |),
so

|V (G) − T | ≤ |X | + |Y | + t + 1. (2.1)

This implies that if t = 0, then V (G) = X ∪ Y and Kc,2k−c ⊆ G, where c = |X | is odd. So
assume t > 0. Then, since there are at least t odd components other than X and Y in G − T ,
none of these odd components has order 3 or greater. By the choice of X and Y , this also
yields |X | = |Y | = 1. Hence, with (2.1),

t ≥ �(2k − 1 − |X | − |Y |)/2� = k − 1,

and χ(G) ≥ ω(G) = α(G) ≥ t + 2 ≥ k + 1.

3 Setup and preliminaries for the proof of Theorem 13

Suppose G = (V, E) is a counterexample to Theorem 13 with k minimum, and subject to
this ‖G‖ is minimum. So |G| = 3k, G satisfies (H1–H2), G /∈ {X, Y}, Zc,k � G for any
odd c, and
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G has no equitable k-coloring, but G − e has an equitable k-coloring for all e ∈ E .(3.1)

By the minimality of k,

Theorem 13 holds for all k′ ∈ [1, . . . , k − 1]. (3.2)

Call a vertex v high if d(v) ≥ k + 1, and low otherwise. For a subset W of V (G), let
H(W ) denote the set of high vertices in W and L(W ) = W � H(W ) denote the set of low
vertices. An edge is high if it has a high end vertex. By (H2), H(V ) is independent; so a high
edge also has a low vertex.

Lemma 14 k < �(G) ≤ 2k − 2. In particular, k ≥ 3.

Proof By Theorem 8, if �(G) ≤ k then k is odd and Zk,k ⊆ G, a contradiction. Suppose
d(v) = d := �(G) ≥ 2k − 1 for some v ∈ V . As every neighbor of v has positive degree,
θ(G) ≤ 2k+1 implies d ≤ 2k. Let X = N (v) and Y = V (G)�N [v]. If Y is a clique thenG
contains Yk or Z1,k; else choose distinct nonadjacent vertices y1, y2 ∈ Y with ‖{y1, y2}, X‖
maximum. Let V1 = {v, y1, y2} be one color class.

If d = 2k then X is independent and ‖X, Y‖ = 0. Since G − {v, y1, y2} ⊆ Kk−3 + K 2k ,
it has an equitable (k − 1)-coloring. Thus G has an equitable k-coloring, contradicting (3.1).
So d = 2k − 1. If k = 2 then X is independent by (H1), contradicting (3.1). Thus k ≥ 3.

Since θ(G) ≤ 2k + 1, each x ∈ X has at most one neighbor in V − v. So M := E(X) is a
matching, the vertices of Y are not adjacent to vertices saturated by M , and ‖X, Y‖ ≤ d−2t ,
where t = |M |. Say M = {ei : i ∈ [t]}. Order the vertices in Y − y1 − y2 so that
‖y3, X‖ ≥ · · · ≥ ‖yk, X‖.

Note that ‖y3, X‖ ≤ k, and if equality holds then d(y3) = d: If not then ‖y3, Y‖ ≤ d −
(k+1) = k−2; so there is y ∈ Y−y3 with yy3 /∈ E . Thus ‖{y1, y2}, X‖ ≥ ‖{y3, y}, X‖ ≥ k,
so ‖X, Y‖ ≥ 2k > d , a contradiction. Thus |X � N (y3)| ≥ k − 1 ≥ 2. Then there exist
distinct nonadjacent vertices x1, x2 ∈ X � N (y3): if not, X � N (y3) = K2, ‖y3, X‖ = k,
d(y3) = d , and V � N [y3] = K3 = Kk , so Z1,k ⊆ G.

Using that M is a matching, choose x1 and x2 to be in distinct edges of M if possible; that
is, label X and M so that for each j ≤ min{2, t}, x j ∈ e j .

Let V2 = {x1, x2, y3} be the second color class. Put X3 = X � {x1, x2}. If k = 3 then X3

is independent, and we are done. So assume k ≥ 4.
We recursively construct color classes Vi = {yi+1, x2i−3, x2i−2} for i ∈ {3, . . . , k − 1}.

Suppose we have chosen V1, . . . , Vi−1, and set Xi := N (v)�{x1, . . . , x2i−4}. By our choice
of labels in Y � {y1, y2}, ‖yi+1, X‖ ≤

⌊ ‖Y,X‖
i−1

⌋
≤

⌊
2k−2t−1

i−1

⌋
. Also |Xi | = 2(k − i) + 3, so

|Xi − N (yi+1)| ≥ |Xi | − ‖yi+1, X‖ ≥ 2(k − i) + 3 −
⌊
2k − 2t − 1

i − 1

⌋

=
⌈
3 + 2(k − i)

(
1 − 1

i − 1

)
− 2i − 2t − 1

i − 1

⌉
(∗)

≥
⌈
3 + (k − i) − 2i − 1

i − 1

⌉
≥

⌈
3 + 1 − 5

2

⌉
= 2.

Note that if |Xi − N (yi+1)| = 2, the starred line shows i > t . Now we select distinct,
nonadjacent x2i−3, x2i−2 in Xi � N (yi+1). If we can choose x2i−3 ∈ ei , we do so. More
precisely: using that V (M) ⊆ X � N (yi ), if i ≤ t and ei ∩ Xi 	= ∅, we choose x2i−3 ∈ ei ;
then, since |Xi − N (yi+1)| ≥ 3, we select x2i−2 ∈ Xi � (ei ∪ N (yi+1)). Suppose i > t ,
or ei ∩ Xi = ∅. If |Xi � N (yi+1)| = 2, since i > t and by our choice of V1, . . . , Vi−1,
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306 Sharpening an Ore-type version of the Corrádi–Hajnal theorem

the two vertices of Xi � N (yi+1) are nonadjacent. Otherwise, since M is a matching, we let
x2i−3, x2i−2 be any two distinct, nonadjacent vertices in Xi �N (yi+1). Finally, let Vk := Xk

be the last color class. Since |M | ≤ k − 1, Vk is independent. ��
Lemma 15 ω(G) ≤ k − 1.

Proof Suppose K is a k-clique in G, and set H = G − K . As Zc,k � G for any odd c,
Kc,2k−c � H for any odd c. Since θ(G) ≤ 2k + 1,

‖xy, H‖ ≤ 3 for all x, y ∈ K . (3.3)

By Theorem 12, H has an equitable k-coloring f .
First suppose

K � N (U ) for all classes U of f, (3.4)

and note that, by Lemma 14,

no vertex x ∈ K has neighbors in all classes of f. (3.5)

Extend f to an equitable k-coloring f ′ of G by first greedily adding vertices of K into
distinct classes of f starting with the vertex x with ‖x, H‖ maximum. By (3.5) and (3.3) the
process will not get stuck before the last vertex z ∈ K . If z cannot be greedily added to the
last remaining class W , (3.3) implies W is the only class z is adjacent to. By (3.4) there is
y ∈ K � N (W ). Move y to W and z to the former class of y to finish. As this contradicts
(3.1), (3.4) fails.

Say K ⊆ N (Z) for some class Z = {z, z′} of f . Put H+ = H+zz′. Then dH+(z) ≤ dG(z)
and dH+(z′) ≤ dG(z′). So θ(H+) ≤ 2k+1. Suppose H+ has no equitable k-coloring. Since
χ(G) ≤ k, χ(H+) ≤ k, so, by Theorem 12, Q := Kc,2k−c ⊆ H+ for some odd c ≤ k,
and zz′ ∈ E(Q). Say dQ(z′) = c. Note each vertex of {z, z′} has a neighbor in K because
χ(G) ≤ k, and, by Lemma 14, 3 ≤ c. Then there exist x ∈ K and y ∈ V (H) with
xz, yz′ ∈ E . Since G 	= X, k ≥ 4. Since θ(G) ≤ 2k + 1,

4k + 2 ≥ θ(xz) + θ(yz′) ≥ ‖Z , K‖ + k + (2k − c − 1) + (2k − 1) ≥ 6k − 2 − c.

So 2k − 4 ≤ c ≤ k. As c is odd and k ≥ 4, this is a contradiction. Thus H+ has an equitable
k-coloring f ′.

Since (3.4) fails, there is a class Y of f ′ such that K ⊆ N (Y ). As zz′ ∈ E(H+),
Y 	= Z . As

∥∥K , H+∥∥ ≤ k + 1, and χ(G) ≤ k, there are vertices u ∈ K and z′′ ∈ V (H)

with (say) Y = {z, z′′}, N (z) ∩ K = K − u, uz′, uz′′ ∈ E , and N (K ) = {z, z′, z′′}. If
H∗ := H++zz′′ has an equitable coloring then it satisfies (3.4), and we are done. Otherwise,
Q := Kc,2k−c ⊆ H∗ for some odd c ≤ k, with zz′′ ∈ E(Q). By Lemma 14, 3 ≤ c. If k = 3
then G = X by (1.6). Else, for w ∈ NQ(z) � {z′, z′′},
2k + 1 ≥ θ(zw) ≥ ‖z, K‖ + θH∗(wz) − 2 ≥ k − 1 + 2k − 2 = (2k + 1) + (k − 4),

so k = 4 and z′, z′′ are in one part Q′ of Q. Since d(u) = k + 1, d(z′), d(z′′) ≤ k, so
|Q′| = 5. But now for x ∈ V (K ) − u, d(z) + d(u) ≥ 6 + 4 = 2k + 2, a contradiction. ��
Lemma 16 k ≥ 4.

Proof For a contradiction, suppose k ≤ 3. By Lemma 14, k = 3 and �(G) = 4. Let
d(v) = 4, N = N (v), G ′ = G − N [v], and V (G ′) = N ′. By Lemma 15,

ω(G) ≤ 2. (3.6)
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So N is independent and, since |G ′| = 4, G ′ is bipartite. Also θ(G) ≤ 2k + 1 implies
∥∥x, N ′∥∥ ≤ 2 for all x ∈ N (3.7)

and
∥∥N , N ′∥∥ ≤ 8.
Suppose dG ′(w) = 3 for some w ∈ N ′. Then ‖w, N‖ ≤ 1 because �(G) = 4, and

N (w) ∩ N (w′) = ∅ for all w′ ∈ N ′ − w by (3.6). Because ‖N , N ′‖ ≤ 8,
∥∥w′, N

∥∥ ≤ 2 for
some w′ ∈ N ′ − w. Choose x1, x2 ∈ N � N (w′), including the neighbor of w if it exists.
Then {{w′, x1, x2}, N − x1 − x2 + w, N ′ − w − w′ + v} is an equitable 3-coloring of G.

Otherwise �(G ′) ≤ 2, so N ′ has an equitable 2-coloring.

If Y is a class of an equitable 2-coloring of N ′, then N (x) ∩ Y 	= ∅ for all x ∈ N : (3.8)
else {(N ′

�Y )+ v, Y + x, N − x} is an equitable 3-coloring of G. Let N ′ = {y1, y2, y3, y4}
and x ∈ N . As N ′ has an equitable 2-coloring g, (3.7) and (3.8) imply

∥∥x, N ′∥∥ = 2. Say
N (x) = {y1, y2}. By (3.6) y1y2 /∈ E , so (3.8) implies y3y4 ∈ E , and, by (3.6) again, N (y3)∩
N (y4) = ∅. Assume ‖y3, N‖ ≥ ‖y4, N‖. If ‖y3, N‖ ≤ 2, then there exist disjoint 2-sets
X1, X2 ⊆ N with N (y3)∩N ⊆ X1 and N (y4)∩N ⊆ X2. So {{v, y1, y2}, X1+ y4, X2+ y3}
is an equitable 3-coloring of G. Otherwise, N (y3) ∩ N = N − x , and N (y4) ∩ N = ∅. Say
g(y1) = g(y3). By (3.8), N (y2) = N and, by (3.6), N (y1) ∩ N = {x}. By (3.6), y2y3 /∈ E ,
so if x ′ ∈ N − x , then {{v, y2, y3}, {x, x ′, y4}, N − x − x ′ + y1}} is an equitable 3-coloring
of G. ��

4 Nearly equitably colorings

Recall that a coloring of G is nearly equitable if one color class has size 2, one color class
has size 4, and all other color classes have size 3.

Lemma 17 G admits a nearly-equitable k-coloring.

Proof Suppose not. By Lemma 14, �(G) ≥ k + 1. Let x be a vertex with d(x) ≥ k + 1 and
let y ∈ N (x). By (3.1),G− xy has an equitable k-coloring f with f (x) = f (y). Let C be the
set of color classes of f , and X = {x, y, z} ∈ C. Choose xy and f so that d(z) is minimum.
If x (or y) has no neighbor in some class W ∈ C − X then moving it to W yields a nearly
equitable k-coloring; so assume not. As y is low, d(y) = k, and d(x) = k + 1. Furthermore,

y has exactly one neighbor in every class, (4.1)

and

x has exactly two neighbors in one class, and exactly one neighbor in every other class.

(4.2)

ForW ∈ C − X , let GW := G[W ∪ X ]. If GW is bipartite, then its parts form an equitable or
nearly equitable 2-coloring unless GW = K1,5. However, by (4.1) and (4.2),�(GW ) ≤ 3, so
GW 	= K1,5; thus if GW is bipartite, it has an equitable or nearly equitable 2-coloring. If GW

has an equitable or nearly equitable 2-coloring, then G has an equitable or nearly equitable
k-coloring. Thus GW contains an odd cycle CW that contains xy. Assume CW is picked so
that |CW | is as small as possible. Let C1 = {W ∈ C − X : |CW | = 3} and C2 = C − X � C2.
For W ∈ C1, let CW = xvW yx . If vW is movable to some class U then moving y to W and
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vW to U yields a nearly equitable k-coloring. As vW ∈ N (x), it is low. Thus vW has two
neighbors in X and one neighbor in each class of C − X − W . In particular,

if W ∈ C1, then vW z /∈ E . (4.3)

For W ∈ C2, let CW = xxW zyW yx , where xW , yW ∈ W . Since W ∈ C2, GW − z is triangle
free, and since α(GW − z) ≥ |W | = 3, GW − z contains no C5. Then GW − z contains no
odd cycle, so it is bipartite. Since �(GW − z) ≤ 3, GW − z 	= K1,4, so GW − z can be
partitioned into independent sets of size 2 and 3. If z is movable, we can move z to create a
color class of size 4, and partition GW − z into one color class of size three and one of size
four, providing a nearly equitable coloring of G. So z is not movable. Thus,

if |C2| 	= 0, then |C1| + 2|C2| ≤ d(z) ≤ k + 1. (4.4)

If there are distinct W,W ′ ∈ C1 with vW vW ′ /∈ E , then using (4.2), choose notation so
that ‖x,W‖ = 1. By (4.1) and (4.3), moving x to W , y to W ′, and both vW and vW ′ to X
yields an equitable k-coloring. So Q := {vW : W ∈ C1} ∪ {x, y} is a clique. By Lemma 15,
|Q| ≤ k − 1. So |C1| ≤ k − 3, and |C2| ≥ 2; by (4.4) d(z) = k + 1. Consider distinct
W,W ′ ∈ C2. Using (4.2) choose notation so that ‖x,W‖ = 1. By (4.1), switching x and xW
yields an equitable k-coloring of G − zxW , with color class {z, xW , y}. As d(y) < d(z), this
contradicts the choice of f . ��

5 Normal colorings

Fix a nearly equitable k-coloring f := {V1, . . . , Vk}, where V− = V1 and V+ = Vk . As our
proof progresses we will put more and more stringent conditions on f.

Construct an auxiliary digraphH := H(G, f ) as follows. The vertices ofH are the color
classes V1, . . . , Vk . A directed edge V ′V ′′ belongs to E(H) if some vertex x ∈ V ′ has no
neighbors in V ′′. In this case we say that x is movable to V” and that x witnesses the edge
V ′V ′′. Call a color class Vi of f accessible if V− is reachable from Vi in the digraph H. A
vertex v ∈ Vi ismovable if it is movable to some accessible class; otherwise it is unmovable.
Let M = M( f ) be the set of movable vertices and M = M( f ) be the set of unmovable
vertices. By definition, V− is accessible. Let A := A( f ) denote the family of accessible
classes, B denote the family of inaccessible classes, A := ⋃

A, and B := ⋃
B = V − A. If

Vk ∈ A then switching witnesses along a path from V+ to V− yields an equitable r -coloring;
so V+ ∈ B. Let a := |A| and b := |B| = ks − a. Then |A| = as − 1 and |B| = bs + 1.

An in-tree is a digraph T with a root r ∈ V (T ) such that every v ∈ V (T ) has a unique vr -
walk. So the undirected graph underlying T is acyclic. A vertex v ∈ T is a leaf if d−(v) = 0.
Fix a spanning in-tree F ⊆ H[A] with the most leaves possible. Write WF for the unique
W, V−-path in F, and let wx be the witness for its first edge. LetD ⊆ H[A] be the spanning
graph with UW ∈ E(D) if and only if UW ∈ E(H) and U /∈ WF .

A class Z ∈ A is terminal if there is a UV−-path in H − Z for every U ∈ A − Z . For
example, any leaf ofF is terminal. Class V− is terminal if and only if a = 1. LetA′ = A′( f )
be the set of terminal classes, A′ := ⋃

A′ and a′ := |A′|.
A nearly equitable k-coloring is normal if

(C1) among nearly equitable k-colorings a is maximum, and
(C2) if a ≥ 3, then F has at least two in-leaves.

Lemma 18 There exists a normal coloring.
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Proof Suppose f is a nearly equitable k-coloring with a maximum. If a ≤ 2, (C2) is
vacuously true, so we may suppose a ≥ 3. If F has at least two leaves then we are done; else
F is a dipath with leaf Z and last edge UV− witnessed by w. As a ≥ 3, U 	= Z . Shifting w

to V− yields a normal k-coloring with in-leaves V− + w and Z. ��
Fix a normal coloring f . A vertex y ∈ B is good if G[B− y] has an equitable b-coloring;

else y is bad. A major goal of this section is to show that every vertex in B is good.

Lemma 19 a = a( f ) ≥ 2.

Proof Assume a = 1 for all nearly equitable k-colorings of G, and choose one with

d(v) + d(v′) minimal, (5.1)

whereV− = {v, v′}. Sayd(v) ≤ d(v′). ByLemma14,d(v′) ≤ 2k−2.As N (V−) = V−V−,
d(v) + d(v′) ≥ 3k − 2 + |N (v) ∩ N (v′)|.
Case 1: N (v) ∩ N (v′) = ∅. If ‖v, V+‖ = ‖v′, V+‖ = 2, then coloring v resp. v′ with its
non-neighbors in V+ yields an equitable k-coloring. Therefore we suppose

∥∥u, V+∥∥ ≥ 3
for some u ∈ V−. Pick Y ∈ B with ‖u, Y‖ minimum. If ‖u, Y‖ = 0 then moving u to
Y and x ∈ N (u) ∩ V+ to V− yields a nearly equitable k-coloring with a ≥ 2: any vertex
N (u)∩V+−x is movable to the new small class V−−u+x . Else, since d(u) ≤ 2k−2 = 2b,
‖u, Y‖ = 1 and d(u) ≥ k + 1. Switching u with y ∈ N (u) ∩ Y yields a nearly equitable
coloring, contradicting (5.1) since d(y) ≤ (2k + 1) − d(u) ≤ k.

Case 2: N (v) ∩ N (v′) 	= ∅. Then d(v) ≥ k + 1 and d(v′) ≥ k + 2. Put G ′ = G[B]. Then
χ(G ′) ≤ b. Since θ(G) ≤ 2k + 1, �(G ′) ≤ 2k + 1− d(v) − 1 ≤ b. If S ⊆ V with |S| = 2k
then there is x ∈ N (v′) ∩ S, and dG ′(x) ≤ b − 1. So Kb,b � G ′. Pick w ∈ N (v′) � N (v).
Theorem 8 implies G ′ −w has an equitable b-coloring Y . As

∥∥v′, B − w
∥∥ < 2b, some class

Y ∈ Y satisfies
∥∥v′, Y

∥∥ ≤ 1. Move w to V− − v′ and v′ to Y ; if v′ has a neighbor y ∈ Y
then move y to a class X in which it has no neighbors; X exists as d(y) ≤ k − 1. This yields
an equitable k-coloring, or a nearly equitable k-coloring, contradicting (3.1) or (5.1) since
d(w) < d(v′). ��

An edge xy with x ∈ X ∈ A and y ∈ B is solo if ‖y, X‖ = 1; else it is nonsolo. If xy is
solo then x and y are solo neighbors of each other. For x ∈ A and y ∈ B let Sx denote the
set of solo neighbors of x in B and Sy denote the set of solo neighbors of y in A.

Lemma 20 Let z ∈ Z ∈ A, y ∈ Sz, and g be an equitable b-coloring of G[B − y]. Then
0. if P is a W, V−-path in H − Z and w witnesses WW ′ ∈ E(P) then ‖z,W − w‖ ≥ 1.

If (a) the nonsolo neighbors of y are unmovable (as when ‖y, A‖ = a and y does not have
nonsolo neighbors) or (b) Z ∈ A′ then

1. z is unmovable;
2. If, in addition, (c) ‖z, A‖ ≤ a − 1, then z has no movable neighbor w ∈ W ∈ A.

Proof In all cases, we will contradict (3.1) by constructing an equitable a-coloring h of
A + y, since then g ∪ h is an equitable k-coloring of G.

(0) If not, shift witnesses along P , move z to W , and move y to Z to obtain an equitable
a-coloring h of A + y.

(1) Suppose (a) or (b) holds and z is movable to U ∈ A. Pick U and a U, V−-path P in
H. By (0), Z ∈ P; in particular, there is no Z , V− path in H where z is the witness to the
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first edge. Then (b) fails, so (a) holds; say x witnesses X Z ∈ P . By (0) applied to x , x is
not a solo neighbor of y; by (a) applied to x , x is not a neighbor of y at all. We move z to
U , then shift witnesses along P , noting that the witness from Z is not z; then we move y to
Z − z + x to complete an equitable a-coloring of A + y.

(2) Suppose (a) or (b) holds; further suppose (c) holds and wz ∈ E with w movable to
U ∈ A. Note by (1) and (c), z has precisely one neighbor in every class of A − Z . Pick a
U, V−-path P inH so that Z /∈ P if (b) holds. Subject to this, choosew,W,U,P so that |P|
is minimum. Suppose W ∈ P . By the minimality of |P|, w does not witness the out-edge
of W on P , and, if w′ witnesses the in-edge to W on P , then zw′ /∈ E , because otherwise
w′ is preferable to w by the minimality of |P|. If Z ∈ P , then let z′ witness the in-edge to
Z on P . In this case, yz′ /∈ E , because Z ∈ P implies that (b) fails for Z , so (a) holds, and
(0) implies yz′ is not solo, so (a) implies that yz′ /∈ Z . By (0), we also have that z does not
witness the out-edge of Z on P . Therefore, switching witnesses on P , and moving w to U ,
z to W and y to Z yields an equitable a-coloring of A + y. ��

Lemma 21 Every color class in A contains at most one unmovable vertex.

Proof Suppose Z ∈ A has two unmovable vertices z1 and z2. If Z 	= V− then let Z =
{z1, z2, z3}. Let B0 = B + z1 + z2 and A0 = A − z1 − z2. Since z3 (if it exists) is the
witness for the first edge Z Z ′ of P0 := ZF , shifting witnesses on P0 yields an equitable
(a − 1)-coloring f0 of G[A0]. Thus G ′ := G[B0] has no equitable (b + 1)-coloring, but
g := f |B0 is a nearly equitable (b + 1)-coloring. As each v ∈ B0 is unmovable,

(a) d(v) ≥ a − 1 + dG ′(v) + ‖v, z3‖ , and (b) θ(G ′) ≤ 2b + 3. (5.2)

By Lemma 19, b + 1 < a + b = k. As G ′ has no equitable (b + 1)-coloring, our choice
of k minimum in the setup implies G ′ ∈ {X, Yb+1} or G ′ ⊇ Zb+1,c for some odd c. Now
consider several cases, always assuming all previous cases fail for all choices of Z .

Case 0: G ′ = X. Use the notation of Example 9. In this case, b = 2. For every u ∈ NG ′(x3),
dG ′(u) + dG ′(x3) = 7, so ‖{u, x3}, A0‖ = 2a − 2 and uz3 /∈ E . One of X or Y is contained
in V+ and if X ⊆ V+, then, for some i ∈ [2], yi ∈ B, but yi is movable to Z , a contradiction.
So Y ⊆ V+. Since {w1, w2} ⊇ V+

� Y , we can assume {w1} = V+
� Y . If Z = V−, then

let Z ′ := {w1, y1}, and, otherwise, let Z ′ := {w1, y1, z3}. In either case, let

f ′ := f |(A − Z) ∪ {Z ′, {w2, y2, y3}, {x1, x2, x3, w3}}.
so f ′ is a nearly equitable k-coloring of G and Z ′ ∈ A( f ′). Let u ∈ Z ′

� Z , so u ∈ {w1, y1}
and u ∈ N (x3). With respect to the original coloring f , every vertex in N (u)∩ A0 is solo and
every nonsolo neighbor of u in A is unmovable, so, since u is good, Lemma 20(1) implies
that every vertex in N (u)∩ A0 is unmovable, and u is not adjacent to a witness of an in-edge
of Z ∈ H[A]. This implies A( f ′) ⊇ A( f ) − Z . Therefore, because y2 is movable to Z ′,
a( f ′) > a( f ) which contradicts (C1).

Case 1: G ′ = K1,2b+2 + Kb. Let K = Kb and r ∈ B0 with dG ′(r) = 2b + 2. Then
dG ′(w) = b − 1 for all w ∈ K . As r is not contained in an independent 3-set in G ′,
r ∈ Z − z3. By (5.2)(a), d(r) ≥ a + 2b + 1 and d(v) ≥ a for every v ∈ NG ′(r). Since
θ(G) ≤ 2k + 1, these bounds are sharp. Let y ∈ N (r) ∩ B. Then ‖y, A‖ = a, and so
‖y, B0 − r‖ = 0. Thus ry is solo. Also y is good. Let u ∈ N (r) ∩ A. Lemma 20(2) implies
all neighbors of r are unmovable. So ‖u, B0‖ ≤ 2, and witnesses of edges of P0 are not
adjacent to r . Replace u with r in f0 to obtain a new equitable (a − 1)-coloring of G[A0].
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Finally, as ‖u, B0 − r‖ ≤ 1, �(G ′ − r + u) ≤ b. By Theorem 6, G ′ − r + u has an equitable
(b + 1)-coloring, contradicting (3.1).

Case 2: G ′ ⊇ Kc,2b+2−c + Kb+1 for some odd c ∈ [b+ 1]. Use the notation of Example 11,
but with V = B0 = B1 ∪ B2, and c ∈ [2b + 1]. As

the clique B2 has one vertex in every class of g, (5.3)

assume z2 ∈ B2. Then z1 ∈ B1. Say z1 ∈ C1. Also by (5.3), every class Y of g of size
three has precisely one vertex in B2, so Y has two vertices in B1; since those vertices are
nonadjacent, Y has two vertices in either C1 or C2. Then each of C1 and C2 has an even
number of vertices from the classes in g other than V+ and {z1, z2}. By (5.3), V+ has one
vertex in B2 and three in B1; since c is odd, and the vertices of V+ in B1 are all in the same
part, V+

� B2 ⊆ C2.

Case 2.1: c ≥ 3. Then C1 − z1 	= ∅. Let y1 ∈ C1 − z1 and y2 ∈ V+
� B2 ⊆ C2. Then

d(y1) = ‖y1, A ∪ (B1 − z1) ∪ (B2 − z2)‖ ≥ a + |C2| + ‖y1, B2 − z2‖ ;
d(y2) = ‖y2, (A � Z) ∪ B1 ∪ (B2 + z3)‖ ≥ a − 1 + |C1| + ‖y2, B2 + z3‖ ; and

d(z1) = ‖z1, (A � Z) ∪ B1 ∪ B2‖ ≥ a − 1 + |C2| + ‖z1, B2 ∪ C1‖ .

So θ(y1y2) = 2k+1, ‖y1, B2 − z2‖ = ‖y2, B2 + z3‖ = 0 and ‖y2, A‖ = a. Also θ(z1y2) ≥
2k and ‖z1, B2 ∪ C1‖ ≤ 1. Let Y = {y1, y′

1, w} be the class in B containing y1, with y′
1 ∈ C1

and w ∈ B2; and let y′
2 ∈ C2 ∩ V+ − y2. Note

∥∥y′
1, B2 − z2

∥∥ = ‖y1, B2 − z2‖ = 0 and∥∥y′
2, B2 + z3

∥∥ = ‖y2, B2 + z3‖ = 0 Let w′ ∈ V+ ∩ B2. Move y2 to Z − z1, z1 to Y ,
and if z1w ∈ E then switch w and w′. This yields a new nearly equitable k-coloring f ′
with y′

2 movable to Z − z1 + y2. Since y2 ∈ V+ it is good. As ‖y2, A‖ = a, Lemma 20
implies the neighbors in A of y2 are unmovable. Therefore, all of the in-neighbors of Z
in H(G, f )[A( f )] are in-neighbors of Z − z1 + y2 in H(G, f ′). Furthermore, since z1 is
unmoveable in f and y2 is unmoveable in f ′, the out-neighbors of Z inH(G, f )[A( f )] are
all out-neighbors of Z − z1 + y2 in H(G, f ′). Hence, a( f ) < a( f ′), contradicting (C1).

Case 2.2: c = 1. Then C1 = {z1} and |C2| = 2b + 1. So

d(z1) ≥ a + 2b, (5.4)

d(y) ≤ a + 1 for all y ∈ N (z1). (5.5)

For any y ∈ B2, d(y) ≥ k − 1, so since θ(G) ≤ 2k + 1:

d(y) ≤ k + 2 for all y ∈ B2. (5.6)

Because Case 1 does not hold, ‖z1, B‖ = 2b + 1. We now prove the following:

Claim 21.1 If some y ∈ Y ∈ B is bad then b = 2, d(z1) = a + 2b, Y 	= V+, and the unique
u ∈ B2 ∩Y is high and satisfies ‖u, B‖ ≥ 3. In particular, there are at most two bad vertices.

Proof of Claim 21.1. Suppose Gy := G[B − y] = G ′ − {z1, z2, y} has no equitable b-
coloring. Then y /∈ V+; so Y 	= V+ and b ≥ 2. By (5.5) and (5.6), �(Gy) ≤ �(G[B]) ≤
b + 2, and dGy (y

′) ≤ 1 for all y′ ∈ C2. Recall θ(G[B]) ≤ 2b + 1, so θ(Gy) ≤ 2b + 1. By
the choice of k minimum in the setup, Gy ∈ {X, Yb}, or Zc,b ⊆ Gy for some odd c. Since
dGy (y

′) ≤ 1 for all y′ ∈ C2 − y, this implies �(Gy) ≥ 2b or there are at least b+ 1 vertices
v ∈ B − y with dGy (v) ≥ b − 1. So b = 2, dGy(y′) = 1 for some y′ ∈ C2, and there is
u ∈ B2 − y such that

∥∥u,Gy
∥∥ ≥ 3. As θ(y′z1) ≤ 2k + 1, (5.4) implies d(z1) = a + 2b. As
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|Y − y| = 2, u ∈ Y ∩ B2, so both vertices of Y − u are in C2. Since b = 2, B = {Y, V+}.
Then u is not bad, since �(G[B − u]) ≤ 2. So if any vertex v is bad, then v ∈ Y − u.

Case 2.2.0: Every X ∈ A has a unmovable vertex vX with ‖vX , B‖ ≥ 2b+1. By Lemma 19,
a ≥ 2. For all T ∈ A−V−, let T = {uT , vT , wT }, wherewT witnesses the edge ofF leaving
T . Since d(vT ) ≥ (a − 1) + 2b + 1 = k + b, the set D = {vT : T ∈ A} is independent. Let
v = vV− and V− = {v, v′}. Since vT is unmovable and D is independent, vT v′ ∈ E . Hence
D − v ⊆ N (v′); so v′ is unmovable. Use V− for Z , so v = z1 and v′ = z2. Then

k − 1 ≤ ∥∥v′, A
∥∥ + b ≤ d(v′) ≤ 2k + 1 − d(vX ) ≤ k − b + 1, (5.7)

so b ∈ {1, 2}. It follows that we can choose a leaf X of F so that ‖v′, X‖ = 1: If F has only
one leaf X then by (C2), a = 2, by Lemma 16, b = 2, and

∥∥v′, X
∥∥ = 1 because equality

holds in (5.7). Otherwise, F has two leaves T and X and (say)
∥∥v′, X

∥∥ = 1. Switch v′ and
vX to obtain Z ′ = {v, vX }, X ′ = {v′, uX , wX }, and a new nearly equitable k-coloring f ′.
For all U ∈ A − X − Z , vU witnesses that UZ ′ ∈ H( f ′), and wX witnesses the edge from
X ′ to V− in H( f ′) or the edge from X ′ to the successor of X on XF in H( f ′). So f ′ is
normal. Since both vertices in Z ′ are high, all vertices in B are low, so Claim 21.1 implies
every vertex in B is good.

If a = 2 then by Lemma 16, b = 2. Also
∥∥v′, B

∥∥ = 2 and E(A) = {v′vX , vuX }. Moving
wX to Z ′ in f ′ shows that B ⊆ N (v′)∪N (uX ): otherwise, wemove a vertex y ∈ B to {v′, ux },
and equitably color B − y, since y is good. Then d(ux ) + d(v) ≥ 2(1+ |B � N (v′)|) = 12,
contradicting θ(vuX ) ≤ 9. So a ≥ 3 and by (C2) there is a leaf T 	= X . As vT is movable to
Z ′, ‖B, T ‖ ≥ 3b+1+‖vT , B‖ ≥ 5b+2. If

∥∥v′, T
∥∥ = 1 then by symmetry ‖B, X‖ ≥ 5b+2.

Else, by (5.7), ‖v′, B‖ = d(v′)−‖v′, A‖ ≤ (k−b+1)−a = 1. Let y ∈ B. Since X ′ ∈ A( f ′)
and y is good, y has a neighbor in both X and X ′, so

‖B, X‖ ≥ |B| + ‖vX , B‖ − ∥∥v′, B
∥∥ ≥ (3b + 1) + (2b + 1) − 1 ≥ 4b + 2.

Regardless, ‖B, T ∪ X‖ > 9b+ 3. So there exists y ∈ B with ‖y, A‖ ≥ 4+ a − 2 = a + 2.
As f ′ is a nearly equitable coloring of A, and y is good, yz ∈ E for some z ∈ Z ′, and this
gives the contradiction θ(yz) ≥ k + b + a + 2 = 2k + 2.
Case 2.2.1: ‖y, A‖ = a for all y ∈ C2. First suppose (*) for every X ∈ A and y ∈ C2

the unique x ∈ Sy ∩ X is unmovable. If X ∈ A has a unique unmovable vertex vX then
‖vX , B‖ ≥ 2b+1. Else X has twounmovable vertices.Using X for Z , yields someunmovable
vX with ‖vX , B‖ ≥ 2b + 1. Regardless, Case 2.2.0 holds. So (*) fails.

Pick X ∈ A and y ∈ C2 with x3 ∈ Sy∩X movable, and |XF |maximum.ByLemma20(1),
y is bad. By Claim 21.1, B has the form {U, V+}, where U = {u, y, y′}, w,w′ ∈ V+ ∩ C2,
u ∈ B2,

∥∥u, V+∥∥ ≥ 3, u high, and all vertices in V+ are good. By (5.5), ‖y′, B‖ ≤ 1, and
we can label so w′y′ /∈ E . By Lemma 20(1), each v ∈ C2 ∩ V+ is adjacent to an unmovable
xv ∈ X . If xw 	= xw′ then X is a candidate for Z , and either xw or xw′ is adjacent to y, i.e.
x3 ∈ {xw, xw′ }. But this contradicts the fact that x3 is unmovable. So, since ‖C2 ∩ V+‖ = 3,
d(xw) ≥ (a−1)+3+‖xw, u‖ = k+‖xw, u‖. Since θ(G) ≤ 2k+1, uxw /∈ E . If xw y′ ∈ E ,
switch xw and y′. Since the only neighbor of y in X is x3, and the only neighbor of y′ and w′
in X is xw, this yields a nearly equitable k-coloring f ′ with w′ movable to X − xw + y′. By
maximality of |XF |, y′ is not adjacent to any witness of an edge T X ∈ F . So a( f ′) > a( f ),
contradicting (C1). If xw y′ /∈ E , then move xw to U and w to X − xw. This yields a nearly
equitable k-coloring f ′′ with w′ movable to X − xw + w. Again, by maximality of |XF |, w
is not adjacent to any witness of an edge T X ∈ F , so a( f ′′) > a( f ), contradicting (C1).

Case 2.2.2: ‖w, A‖ = a for some w ∈ C2. If possible, choose w to be good. By θ(z1w) ≤
2k+1 and not Case 2.2.1, there exists a vertex in C2 with degree at least a+1, so ‖z1, A‖ =
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a − 1. If w is bad, then by Claim 21.1, b = 2 and there exists a good y ∈ C2 ∩ V+ with
‖y, B‖ ≥ 1. As θ(z1y) ≤ 2k + 1, ‖y, A‖ ≤ a. But then we would have chosen y instead of
w, so w is good. As z1 ∈ Sw, wz2 /∈ E .

By Lemma 20, the unique wX ∈ N (w) ∩ X is unmovable for every X ∈ A, and the
unique zX ∈ N (z1) ∩ X is unmovable for every X ∈ A − Z . If X ∈ A has two unmovable
vertices, then by Case 2.2, one of them has 2b + 1 neighbors in B. Since Case 2.2.0 fails,
there is X ∈ A with a unique unmovable vertex vX = zX = wX . Since θ(G) ≤ 2k + 1,
d(vX ), d(w) ≤ a+1. If y ∈ N (z2)∩C2 is good, then since (5.5) implies that |N (y)∩X | = 1,
Lemma 20(1) implies that yvX ∈ E .

Consider f0, the equitable k-coloring of G[A0] defined in the beginning of this proof,
obtained by shifting witnesses along ZF starting with z3. As unmovable vertices remained
in their color classes, vX still is the unique neighbor of z1 and w in the new X . Replacing vX
with z1 in f0 yields an equitable (a−1)-coloring f1 ofG[A0+ z1−vX ]. Suppose vX z2 /∈ E .
Since d(vX ) = a + 1 and vX is unmovable, ‖vX , B‖ ≤ 2. Since |V+ ∩ C2| = 3, we can
choose y ∈ (V+ ∩ C2) � N (vX ). Because y is good and yzX /∈ E , yz2 /∈ E , and there
is an equitable b-coloring g of B − y, so f1 ∪ g + {vX , z2, y} is an equitable k-coloring,
contradicting (3.1). Otherwise, vX z2 ∈ E . Then ‖vX , B − w‖ = 0. As w is good there is an
equitable b-coloring g of B − w. Let y ∈ V+

� N [w], and g′ be the result of replacing y
with vX in g. As y is good and vX y /∈ E , yz2 /∈ E . So f1 ∪ g′ + {z2, w, y} contradicts (3.1).
Case 2.2.3: There does not exist y ∈ C2 such that ‖y, A‖ = a. That is, ‖y, A‖ = a + 1 for
all y ∈ C2.

For each y ∈ C2 there is T ∈ A with N (y) ∩ (A − T ) ⊆ Sy . (5.8)

Also

‖z1, A‖ = a − 1, (5.9)

‖z1, B‖ = 2b + 1, (5.10)

‖C2, B‖ = 0, (5.11)

and

every vertex in B is good. (5.12)

Let X ∈ A′ − Z . As z1 is unmovable, (5.9) implies it has a unique neighbor vX ∈ X , and

d(vX ) ≤ a + 1. (5.13)

Suppose x ∈ X and y, y′ ∈ Sx ∩ C2 are distinct, and note yy′ /∈ E . By Lemma 20(1), x
is unmovable. If x is low then ‖x, B‖ ≤ b + 1, and, by symmetry in B, we may assume
that N (x) ∩ V+ = {y, y′} and so switching x with y and y′, and switching witnesses on a
X, V−-path in F contradicts (3.1). So

if x ∈ X is low it has at most one solo neighbor in C2. (5.14)

Suppose A = {V−, X}. By Lemma 16, b ≥ 2. Assume V− = {z1, z2}, as otherwise
moving z3 to V− yields this. By (5.13), ‖vX , B0 − z1‖ ≤ 2 ≤ b. For any y ∈ B1, d(y) ≥
a + b − 1, so, since θ(G) ≤ 2k + 1, z2 is unmovable and N (z2) ⊇ B1, ‖z2,C2‖ ≤ 3. Using
this and (5.11), G[B0− z1+vX ] has an equitable (b+1)-coloring, and by (5.9), X −vX + z1
is independent, contradicting (3.1). So a ≥ 3, and F has two leaves.
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An unmovable vertex x ∈ A is big if ‖x, B‖ ≥ 2b + 1, and small if ‖x, B‖ ≤ 2b. By
Case 2.2,

no class has two small vertices. (5.15)

Suppose z1 and z2 are big. Then |N (z1)∩N (z2)∩C2| ≥ b+1. Let y, y′ ∈ N (z1)∩N (z2)∩C2.
Each x ∈ X ∩ N ({y, y′}) is solo by (5.8). By Lemma 20 each v ∈ NA[x] is unmovable; so
x ∈ N ({z1, z2}). As z1 and z2 are high, x is low. By (5.14) |Sx ∩ C2| ≤ 1 < b + 1. So X
contains at least two distinct low solo vertices x and x ′. Lemma 20(1) implies x and x ′ are
unmovable. So ‖x, B‖ ,

∥∥x ′, B
∥∥ ≤ b + 1. Thus x and x ′ are small, contradicting (5.15). So

no class has two big vertices. (5.16)

For a class U ∈ A, let S(U ) := {v ∈ C2 : ‖v,U‖ = 1}. Over all color classes in A with
two unmovable vertices, pick Z , with S(Z) 	= ∅ if possible; subject to this, choose Z to be
a leaf if possible; and subject to these, choose |S(Z)| maximum. Suppose S(Z) = ∅ or Z
is not a leaf. By (5.8) there is a leaf X with S(X) ≥ 1

2 |C2| ≥ b + 1. By (5.13) and (5.14),
|SvX ∩ C2| ≤ 1. So there is a solo vertex x ∈ X − vX . By Lemma 20(1), the solo vertices in
X are unmovable. Because we did not choose X for Z , both vertices in X − x are movable.
So Sx = S(X). Say vX is movable to W ∈ A.

As X is a leaf, X /∈ P := WF . If Z ∈ P , let u witness UZ ∈ P . Consider any
y ∈ C2. By (5.8), y ∈ Sx ∪ Sz1 . Suppose y ∈ Sz1 . If uy /∈ E or u is undefined, then
moving y to Z − z1, z1 to X − vX , vX to W , and shifting witnesses along P contradicts
(3.1). So uy ∈ E . By Lemma 20(1), uy is not solo. By (5.8), y ∈ Sx . Thus C2 ⊆ Sx .
So x is big. Since θ(G) ≤ 2k + 1, xz1 /∈ E . Now X ∈ A′, y ∈ Sx for some y ∈ C2, and
‖x, A‖ ≤ a−1, soLemma20(2) implies xz2 ∈ E . Since θ(G) ≤ 2k+1,d(z2) ≤ a+1, and so
‖z2,C2‖ ≤ 2−b ≤ 1.LetV+ = {y0, y1, y2, y∗},where y∗ ∈ B2 and N (z2)∩V+ ⊆ {y0, y∗}.
Shifting vertices starting with z3 (if z3 exists) on ZF , and recoloring X, Z − z3, V+ as
X − x + y0, {z2, y1, y2}, {z1, x, y∗} contradicts (3.1). So S(Z) 	= ∅ and Z is a leaf.

Let X = {vX , x2, x3} 	= Z be a leaf, where x3 witnesses an edge of F . Put H =
G[X ∪ Z ∪V+]. Since Sz1 = S(Z) 	= ∅, (5.9) and Lemma 20(2) imply that vX is unmovable.
By (3.1),

if some v ∈ V (H) is movable to A − X − Z then H − v has no equitable 3-coloring.

(5.17)

By (5.16), z2 is small, so |C2 � N (z2)| ≥ b + 1 ≥ 2. Using (5.11), choose V+ =
{y1, y2, y3, y∗} so that y∗ ∈ B2 and y1, y2 ∈ C2 � N (z2). Since vX is unmovable, (5.13)
implies that ‖vX , B ∪ {z2, z3}‖ ≤ d(vX ) − (a − 1) ≤ 2. As z3 witnesses an edge of
F , (5.17) implies {{x2, x3, z1}, {z2, y1, y2}, {y3, y∗, vX }} is not a coloring of H − z3. So
‖vX , {y3, y∗}‖ ≥ 1 and vX yi /∈ E for some i ∈ [2]. Also {{x2, x3, z1}, {z2, vX , yi }, V+ − yi }
is not a coloring. So vX z2 ∈ E , vX z3 /∈ E and ‖vX , B‖ = 1. In particular, vX y1, vX y2 /∈ E .

Suppose x2 is unmovable. By Case 2.2, Z1,b+1 ⊆ G[X ∪ B − x3]. Since ‖vX , B‖ ≤ 1,
B = V+ and x2 is big. So ‖x2, A‖ = a − 1 and ‖x2, B‖ = 3. If x2 is not solo, then for
every y ∈ N (x2) ∩ B, N (y) ∩ X = {x2, x3} and ‖y, Z‖ = 1, so since z3 is movable, by
Lemma 20(1), yz3 /∈ E . Let ỹ ∈ B�N (x2), so NH (z3) ⊆ {x2, x3, ỹ}. Let H ′ := H −x3 and
e ∈ E(H ′). If e = wz3, then w ∈ {x2, ỹ}, and dH ′(w) ≤ 4, so θ(H ′) ≤ 7. If e is not incident
to z3, then both ends have at least a−2 neighbors in V (G−H ′), so θ(H ′) ≤ 7. Since for every
w ∈ Y − ỹ + z3, dH ′(w) ≤ 2, �(H ′) ≤ 4, χ(H ′) ≤ 3, the maximality of k and Lemma 16
imply that there exists an equitable 3-coloring of H ′, contradicting (5.17). Now assume x2
is solo. Since ‖x2, A‖ = a − 1, Lemma 20(2) implies that x2 has an unmovable neighbor in
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Z . Since θ(G) ≤ 2k + 1, x2z1 /∈ E and so x2z2 ∈ E . For each color class T /∈ {V+, Z},
‖y∗z2, T ‖ ≥ 2 and each y ∈ V+ satisfies ‖yz1, T ‖ ≥ 2. Let Q = z1vX z2x2. Note Q induces
P4. By inspection, dH (z1) = 4 = dH (x2), dH (z2) = 3 = dH (vX ), and

∥∥V+, {x3, z3}
∥∥ ≤ 5.

Say dH (z3) ≤ dH (x3). Let H ′ = H − x3. Then �(H ′) ≤ 4, θ(H ′) ≤ 7, χ(H ′) ≤ 3, and
dH ′(z3) ≤ 2. Since H ′ contains an induced P4, and dH ′(z3) ≤ 2, by (3.2), H ′ has a nearly
equitable 3-coloring. An analogous argument works if dH ′(x3) ≤ dH ′(z3). So x2 is movable.
By Lemma 20(1), for j ∈ {1, 2}, ∥∥y j , X

∥∥ = 2, so {x2, x3} ⊆ N (y j ). Also y j z3 /∈ E by (5.8)
Let i ∈ {2, 3}. By (5.17), {{vX , z3, y1}, {z1, z2, xi }, V+ − y1} is not a coloring of H − x5−i .
So xi z2 ∈ E .

Now suppose vX y∗ ∈ E . Then by (5.13), vX y3 /∈ E . Because vX is the only unmovable
vertex in X , then y3x2, y3x3 ∈ E by Lemma 20(1). By (5.8), {z2, z3, y3} is an independent
set. For i ∈ {2, 3}, consider coloring {{z2, z3, y3}, {xi , z1, y∗}, {vX , y1, y2}}. Since x5−i is
movable, (5.17) implies this is not a proper coloring, so by (5.9) and (5.10), y∗xi ∈ E . But
now

d(y∗) + d(z2) ≥ (a + 2 + b − 1) + (a + 1 + b) = 2k + 2,

contradicting θ(G) ≤ 2k+1. Therefore vX y∗ /∈ E , and so vX y3 ∈ E . Now by Lemma 20(1),
y∗x2, y∗x3 ∈ E . Then d(y∗)+ d(z2) ≥ (a + 1+ b− 1)+ (a + 1+ b) = 2k + 1; so equality
holds, and in particular z2y3 /∈ E . Now {{z2, y2, y3}, {vX , y1, y∗}, {z1, x2, x3}} is a proper
equitable coloring of H − z3, contradicting (5.17). ��

If T ∈ A and T ∩ M 	= ∅, let T = {uT ,mT , wT }, where uT ∈ M .

Lemma 22 Every y ∈ B is good.

Proof Suppose not. Say G0 := G[B − y0] has no equitable b-coloring. Then b ≥ 2. Also
|B − y0| = 3b, χ(G[B]) ≤ b, and, as every y ∈ B is unmovable, θ(G[B]) ≤ 2b + 1.
So (3.2) implies G0 ∈ {X, Yb} or Zc,b ⊆ G0 for some odd c. For any y, y′ ∈ E(G0), if∥∥yy′, B

∥∥ = 2b + 1 then define yy′, y and y′ to be B-heavy. If ‖y, B‖ > b then y is B-high.
If y is B-heavy then ‖y, A‖ = a, and so y has a solo neighbor v in every class X ∈ A. If y is
good then Lemmas 20(1) and 21 imply v is the unique unmovable vertex uX ∈ X . Suppose
there exists Y ′ ⊆ V (G0) such that |Y | = b + 2 and every vertex in Y ′ is both B-heavy and
good, and furthermore there exists y ∈ Y ′ that is B-high. Given some X ∈ A′, every vertex
in Y ′ is adjacent to an unmovable uX , so d(uX ) ≥ (a − 1) + (b + 2) = k + 1. Since y is
B-high, d(y) ≥ a + b + 1 = k + 1. Then θ(uX y) ≥ 2k + 2, contradicting θ(G) ≤ 2k + 1.
So:

if b + 2 vertices are good and B-heavy, then none of them is B-high, (5.18)

Consider several cases, always assuming previous cases fail for all bad y0 ∈ B.

Case 1: G0 = X. Then �(G[B]) = 4. Using the notation of Example 9, x3 is B-high
and all five vertices in NG0 [x3] are B-heavy. By (5.18), there is a bad v ∈ NG0 [x3]. By
	(G) ≤ 2k + 1, no vertex in NG0 [x3] is adjacent to y0, and, since the neighbors in B
of y0 are high, ‖y0, B‖ ≤ 3. so �(G[B − v]) ≤ 3, and G[B − v] does not contain Y3
or Z1,3, so δ(G[B − v]) ≥ 3. Furthermore, since y0 is high, N (y0) is independent; thus
N (y0) ∩ B = {x1, x2, w3}. So, the B-high vertices x1, x2, x3, w3 are good and B-heavy; by
inspection, w1 is B-heavy and good. This contradicts (5.18).

Case 2: G0 = Yb. Let y be the vertex with degree 2b in G0. Then the class of f containing
y is {y, y0, w}, where w ∈ Kb−1. So V+ ⊆ N (y). Since ‖N [y], B − y‖ = 0, the vertices of
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N (y) are all good; by inspection, also y is good. But the vertices of N [y] are B-heavy and
y is B-high, contradicting (5.18).

Case 3: G0 ⊇ Zc,b, for some odd c ≤ b. Recall M = {v ∈ A : v is movable} and
M = A � M , and use the notation of Example 11 with V = B − y0.

Case 3.1: a = 2. Then x ∈ A is movable if and only if it has no neighbors in A. Thus an
unmovable vertex has an unmovable neighbor. By Lemma 21, |M | ≥ 3. So ‖A‖ ≤ 1, and
{S, A � S} is an equitable coloring for any 2-set S ⊆ A with |S ∩ M |, |(A − S) ∩ M | ≤ 1.
Thus (C1) implies every w ∈ B satisfies ‖w, M‖ ≥ 3 or

∥∥w, M
∥∥ ≥ 2. Let e ∈ E(Q).

Then θ(e) ≥ 2b + ‖e, A‖. Since θ(G) ≤ 2k + 1, e has an end w0 with ‖w0, A‖ = 2; say
N (w0) ∩ A = {u1, u2}. So u1u2 ∈ E and u1, u2 ∈ M . Set R = {w ∈ B : ‖w, M‖ ≥ 3}
and P = {w ∈ B : ∥∥w, M

∥∥ ≥ 2}. As θ(u1u2) ≤ 2k + 1, |P| ≤ b + 1. Let v ∈ M . Then
2b ≤ |R| ≤ d(v). Thus there is y2 ∈ R ∩ B1. Then d(y2) ≥ 3 + c. Since 2b + 3 + c ≤
θ(vy2) ≤ 2k + 1 and c is odd, c = 1, and y2 ∈ C2. Let C1 = {y1}. Then y1 ∈ P , and
d(y1) ≥ 2b + 1. By Lemma 15, there is w∗ ∈ R ∩ B2. As d(w∗) ≥ b + 2, θ(G) ≤ 2k + 1
implies |R| ≤ d(v) ≤ b + 3. So |P| ≥ 2b − 2 and d(u1) ≥ 2b − 1. Since θ(G) ≤ 2k + 1,
4b ≤ θ(u1y1) ≤ 2k + 1. Thus b = 2, and by Lemma 15, P is independent. So y1 ∈ P
implies C2 ⊆ R and, since θ(G) ≤ 2k + 1, N (C2) = M + y1 and d(v) ≤ 5. If there is
y ∈ P ∩ R then |R| ≥ 5 and d(y) ≥ 5, contradicting θ(vy) ≤ 9. Else w∗ui /∈ E for some
i ∈ [2]. If |P| = 3 then {{ui , w∗, y2},C2− y2+u3−i , M, P} contradicts (3.1). Else |R| = 5,
and the coloring {{ui , w∗, y2}, M − v + u3−i , P + v, R − w∗ − y2} contradicts (3.1).
Case 3.2: There is a bad y1 ∈ B1. Say G[B − y1] ⊇ Q′ + K ′ := K (C ′

1,C
′
2) + K (B ′

2). Set
B0 = B1 + y0. Then each v ∈ V+ is good, V+

� B2 ⊆ Ci and V+
� B ′

2 ⊆ C ′
i ′ for some

i, i ′ ∈ [2]. By (C2) and a ≥ 3, there are distinct Z1, Z2 ∈ A′. For distinct v1, v2 ∈ B2,

2k + 1 ≥ θ(v1v2) ≥ 2(a − 2) + ‖v1v2, Z1 ∪ Z2‖ + 2(b − 1) ≥ 2k − 6 + ‖v1v2, Z1 ∪ Z2‖ .

So there exists Z∗ = {z, z∗, z′} ∈ {Z1, Z2} and v∗ ∈ {v1, v2} such that z∗, z′ ∈ M and
z∗v∗ /∈ E . Shifting witnesses on Z∗F , starting with z′, yields an equitable (a − 1)-coloring
A∗ of A − z − z∗.

Case 3.2.1: b = 2. Say B = {Y, V+}. Then Q = K1,3, C2 = V+
� B2, and C1 = {y1}.

So Y = {y0, y1, y2}, where y2 ∈ B2. Since Case 2 fails, �(G[B]) ≤ 3. As y1 is bad,∥∥{y0, y2}, V+∥∥ ≥ 4, and
∥∥y∗, V+∥∥ = 3 for some y∗, where Y = {y1, y∗, y′}. So y1

and y∗ are high. Thus each v ∈ V+ satisfies ‖v, B‖ ≤ 2 and ‖y′, B‖ ≤ 2. So V+ has
the form {v1, v2, v3, v′}, where 1 ≤ ∥∥v′, B

∥∥ ≤ 2, and ‖vi , B‖ = 2 for i ∈ [3]. Thus
‖vi , A‖ = a. As vi is good, Lemma 20(1) and Lemma 21 imply that z ∈ N (vi ) ∩ A = M .
So d(z) ≥ a + 2 + ‖z, {y1, y∗}‖, and {z, y1, y∗} is independent. If v′y′ /∈ E , then we can
label so that y′v1 /∈ E and let B∗ := {{y′, v′, v1}, {v2, v3, z∗}}, otherwise we can reselect Z∗
and z∗ if necessary so that ‖z∗, {v′, y′}‖ ≤ 1, which implies that there exists an equitable
2-coloring B∗ of V+ + y′ + z∗. In either case, A∗ ∪ B∗ + {z, y1, y2} contradicts (3.1).
Case 3.2.2: B2 = B ′

2 and b ≥ 3. Then V (Q ∩ Q′) = B0 − y0 − y1. As Q and Q′ are
connected, so is Q ∪ Q′. If O ⊆ Q ∪ Q′ is an odd cycle then y0 ∈ V (O), and V (O)− y0 :=
v1 . . . y2r ⊆ V (Q). So v1v2r ∈ E and θ(v1v2r ) = 2a+2b+2, contradicting θ(G) ≤ 2k+1.
Thus Q ∪ Q′ is bipartite. Since it has bad vertices, it is complete. So θQ∪Q′(e) = 2b + 1 for
every e ∈ E(B0), and every w ∈ B0 satisfies ‖w, A‖ = a and ‖w, B2‖ = 0. Let {D1, D2}
be the unique 2-coloring of Q ∪ Q′, where |D1| is odd. Consider any w1 ∈ D1. Then w1

is good, so y0, y1 ∈ D2. By Lemmas 20 and 21, N (w1) ∩ A = M . Let z ∈ Z∗ ∩ M . Then
D1 ⊆ N (z), and θ(zw1) ≥ 2a − 1 + 2b + 1 + ‖z, D2‖. Thus ‖z, D2‖ ≤ 1. If ‖z, D2‖ = 0
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w v

y0 w′ w′′ v′ v′′ y1

B2 B1

(a) B − y0 = B1 ∪ B2

w v

y0 w′ w′′ v′ v′′ y1

B′
1 B′

2

(b) B − y1 = B′
1 ∪ B′

2

Fig. 6 G[B] in Case 3.2.3, maybe missing the edge y0y1

then (*) |D2 � N (z)| ≥ 2. Else there is w2 ∈ N (z)∩ D2. Then θ(zw2) ≥ 2a−1+2|D1|. So
|D1| ≤ b + 1, |D2| ≥ b ≥ 3, and again (*) holds. So there are distinct y′, y′′ ∈ D2 � N (z).
Let B∗ = B0 + z∗ − y′ − y′′. Then D1 + z∗ and D2 − y′ − y′′ are even independent sets, and
N (B∗) ∩ B2 = N (z∗) ∩ B2 	= B2. So B∗ has an equitable b-coloring B∗. Thus the coloring
A∗ ∪ B∗ + {z, y′, y′′} contradicts (3.1).
Case 3.2.3: B2 	= B ′

2 and b ≥ 3. Let w ∈ B2 ∩ B ′
1. As |B2| ≥ 3 and

∥∥w, B ′
2

∥∥ ≤ 1, there
is w′ ∈ B2 ∩ B ′

1 − w. As
∥∥ww′, B ′

2

∥∥ ≤ 1, B2 ⊆ B ′
1. Thus b = 3. Now there are i ∈ [2]

and distinct w′, w′′ ∈ C ′
i ∩ B2. Then θ(w′w′′) ≥ 2(a + 1 + |C ′

3−i |), and |C ′
3−i | = 1. Say

C ′
1 = {w}. Similarly, C1 = {v}, where B ′

2 = {v, v′, v′′} ⊆ B1. (See Fig. 6.) So all vertices
of B − {y0, y1} are B-heavy and good, and w is B-high, contradicting (5.18).

Case 3.3: Every y ∈ B1 is good. There is i ∈ [2] with ‖w, A‖ = a for all w ∈ Ci and
‖w, A‖ ≤ a+1 for allw ∈ C3−i .We set |Ci | = c, for someodd c ∈ [2b−1]. ByLemma20(1)
and Lemma 21, Ci ⊆ N (x) for all x ∈ M and |Sz ∩C3−i | ≥ |C3−i |/2 for some z ∈ M with
z ∈ Z ∈ {Z1, Z2} ⊆ A′. Suppose |Ci | ≥ |C3−i |. Let z′ ∈ M − z with z′ ∈ Z ′ ∈ A′ and
w ∈ Ci . If c = 2b−1, then, for any y′ ∈ N (z)∩C3−i , θ(zy′) ≥ a−1+2b+a+c > 2k+1,
so 2b−c ≥ 3. IfC3−i ⊆ N (z′) then θ(z′w) ≥ a−1+2b+a+2b−c ≥ 2k+2, contradicting
θ(G) ≤ 2k + 1. So there is y′ ∈ C3−i � N (z′). By Lemma 20(1),

∥∥y′, Z ′∥∥ = 2 and y′z ∈ E .
Now

2k + 1 ≥ θ(zy′) ≥ a − 1 + |Ci | + |C3−i |/2 + a + 1 + |Ci | ≥ 2k + |Ci | − |C3−i |/2,
another contradiction. So |Ci | < |C3−i |. Say i = 1. For y ∈ C1,

2k + 1 ≥ θ(zy) ≥ a − 1 + |C1| + |C2|/2 + a + |C2| ≥ 2k − 1 + |C2|/2.
So |C2| = 3, |C1| = 1, and b = 2. Let B = {W, V+} and C1 = {w}. Then C2 = V+

� B2

and d(w) ≥ a + 3. Also d(z) ≥ a − 1 + |C1| + |C2|/2. As wz ∈ E , d(z) = a + 2 and
d(w) = a+ 3. So z has exactly two neighbors v1, v2 ∈ V+, and v1, v2 ∈ Sz by the choice of
z. Switching witnesses on ZF , and switching z with v1 and v2 yields an equitable k-coloring.

��
For w ∈ W ∈ A and i ∈ [3], let Bi (w) := {y ∈ N (w) ∩ B : ‖y,W‖ = i} and let

B0(w) := B\N (w). Let bi (w) := |Bi (w)| for i ∈ {0, 1, 2, 3}.
Corollary 23 For every X = {x, x ′, x ′′} ∈ A′ with b1(x) > 0, B0(x) ∪ B3(x) ⊆ N (x ′) ∩
N (x ′′).
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Proof By definition, B3(x) ⊆ N (x ′) ∩ N (x ′′). Since b1(x) > 0, by Lemmas 22 and 20(b),
x is unmovable, and by Lemma 21, x ′ and x ′′ are both movable. By Lemmas 22 and 20(b)
again, every vertex of B0(x) is adjacent to both x ′ and x ′′. ��
Lemma 24 Every solo x ∈ X ∈ A′ satisfies ‖x, B‖ ≤ 2b.

Proof Suppose ‖x, B‖ ≥ 2b + 1, and let y ∈ Sx . Since θ(xy) ≤ 2k + 1, Lemmas 20 and
22 imply a + 2b ≤ d(x) ≤ a + 2b + 1. First suppose d(x) = a + 2b + 1. Consider any
w ∈ N (x)∩ B. Then θ(xw) ≤ 2k + 1 implies ‖w, A‖ = a. Thus Sw = N (w)∩ A = M . So
for unmovable uZ ∈ Z ∈ A, d(uZ ) ≥ a−1+‖x, B‖ ≥ k +1. Thus the set {uZ : U ∈ A} is
independent. By Lemma 21, the unique vertex v ∈ V− − uV− is movable; say v is movable
to U ∈ A. Since uU is not movable to V−, it is adjacent to uV− , a contradiction.

So d(x) = a + 2b, ‖x, A‖ = a − 1 and ‖w, A‖ ≤ a + 1 for every w ∈ N (x) ∩ B. As
X ∈ A′, Lemmas 20 and 22 imply N [x] ∩ A = M . Some W ∈ B satisfies ‖x,W‖ ≥ 3;
set W ′ = N (x) ∩ W . Each w ∈ W ′ has at most one neighbor in {x1, x2} := X − x . Thus∥∥xi ,W ′ − w′∥∥ = 0, for some i ∈ [2] and w′ ∈ W ′. Say xi is movable to U ∈ A, and
xU ∈ N (x) ∩U . Then

‖xU , B ∪ {x1, x2}‖ ≤ 2k + 1 − d(x) − ‖xU , A − X + x‖ ≤ a + 1 − a − 1 = 2. (5.19)

If xU x3−i /∈ E then switch x and xU . As N [x] ∩ A = M , this yields a new normal
k-coloring f ′ with X ′ := X − x + xU ∈ A′( f ′). By (5.19), some w ∈ W ′ is not adjacent to
xU . By Lemmas 20 and 22,

∥∥w, X ′∥∥ ≥ 2, a contradiction.
Else xU x3−i ∈ E . By (5.19), ‖xU ,W‖ ≤ 1. So there is w ∈ W with {w, xU , xi } inde-

pendent. Shift witnesses, starting with x3−i , on an X, V−-path in H. This does not affect
neighbors of x since they are unmovable. Now switch x with xU , movew to X−x−x3−i+xU ,
and equitably b-color B − w. This yields an equitable k-coloring of G. ��
Lemma 25 If x ∈ X ∈ A′, y ∈ Sx , y′ ∈ N (x) ∩ B − y and

∥∥y′, X
∥∥ ≤ 2, then yy′ ∈ E.

Proof If not, there exist y ∈ Sx and y′ ∈ N (x)∩ B− N [y]with ∥∥y′, X
∥∥ ≤ 2. Choose such a

pair with ‖y, B‖maximum. By Lemmas 20 and 22, x is unmovable; so ‖x, A − X‖ ≥ a−1.
Put A∗ = A−x+y, X∗ = X−x+y and B∗ = B−y. By Lemma 22,G[B∗] has an equitable
b-coloring B∗; say y′ ∈ Y ∈ B∗. Then A∗ := A− X + X∗ is an equitable a-coloring of A∗.
By Lemma 24, ‖x, B‖ ≤ 2b. So ‖x,W‖ ≤ 1 for some W ∈ B∗; consider any such W .

Since x is unmovable and X ∈ A′, if B+ is an equitable b-coloring of B∗ + x , then
f + := A∗ ∪ B+ is a normal k-coloring with X∗ ∈ A( f +). As y is unmovable in f
and yy′ /∈ E,

∥∥y′, X∗∥∥ ≥ 2, a contradiction. So B∗ + x has no equitable b-coloring.
Thus x has a neighbor in every class of B∗ − W . In particular, N (x) ∩ W = {w}. Then
‖w, A − X + x‖ ≥ a, and w (like x) has a neighbor in every class of B∗ − W .

For x0 ∈ X − x , G[A − X + x0] has an equitable (a − 1)-coloring obtained by shifting
witnesses, starting with x0, on an X, V−-path in H. If G[B∗ + x − u] has an equitable
b-coloring, where u ∈ B∗, then (3.1) implies X∗ + u − x0 is not independent. Thus w is
not movable to X∗, and

∥∥w, Y − y′∥∥ ,
∥∥x, Y − y′∥∥ ≥ 1 where y′ ∈ Y ∈ B∗. So d(w) ≥

‖w, A − X + x‖ + ‖w, B∗‖ + ‖w, X∗‖ ≥ k and d(x) ≥ k + 1. Since θ(G) ≤ 2k + 1,
d(x) = k + 1, d(w) = k, ‖x, B‖ = b + 2, ‖x, A‖ = a − 1, and ‖w, X∗‖ = 1. So wy ∈ E ,
w ∈ Sx , ‖w, A‖ = a, ‖w, B‖ = b, and ‖w, Y‖ = 1. Thus wy′ /∈ E .

As θ(xy) ≤ 2k + 1, ‖y, B‖ ≤ b. So any w′ ∈ S := N (x) ∩ B � Y can play the role of y.
By the maximality of ‖y, B‖, ∥∥w′, B

∥∥ = b and
∥∥w′, A

∥∥ = a for allw′ ∈ S. By Lemmas 20,
21 and 22, N (w′) ∩ A = M for each w′ ∈ S, and N (x) ∩ A = M − x . Let uZ ∈ Z ∩ M
for Z ∈ A. By Lemma 15, ω(G) < k. Since S is a clique, there are distinct Z , Z ′ ∈ A − X
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with uZuZ ′ /∈ E . First, we note ‖uZ , Z‖ ≥ 2 by Lemmas 20(0), 21, and 22. Since uZ x ∈ E ,
and θ(G) ≤ 2k + 1, d(uZ ) ≤ k, so ‖uZ , A‖ = a and ‖uZ , B‖ = b = |S|. In particular,
uZ y′ /∈ E . Then switching x and uZ yields a normal k-coloring in which y′ has a movable,
solo neighbor in a terminal class, a contradiction. ��

6 Optimal colorings

A normal k-coloring f of G is optimal if

(C3) among normal k-colorings, |H(B)| is minimum, and
(C4) subject to (C3), a′ is maximum.

Let f be optimal.

Lemma 26 If y ∈ H(B) then Sy ∩ A′ = ∅.
Proof Suppose y ∈ H(B), X ∈ A′ and x ∈ Sy ∩ X . We will obtain a contradiction by
showing that either G has a normal coloring with |H(B)| smaller or ω(G) = k.

By Lemmas 20 and 22, x is unmovable and G[B − y] has an equitable b-coloring B∗.
Thus if G[B + x − y] has an equitable b-coloring then putting y in X − x yields a normal
k-coloring with fewer high vertices in B, contradicting (C3). Thus ‖x, Y‖ ≥ 1 for all Y ∈ B∗.
Because xy ∈ E and y is high, k ≤ d(x); but by the above, d(x) ≥ (a − 1) + b + 1, so
indeed x has precisely one neighbor in every class of B∗. By Lemma 20, N [x] ∩ A = M
and d(y) = k + 1. Suppose there exists y′ ∈ N (x) ∩ B − y in class Y ′ ∈ B∗ that is movable
to class Y ′′ ∈ B∗. Then moving y′ to Y ′′ and x to Y ′ − y′ yields an equitable b-coloring of
G[B + x − y]. Thus each y′ ∈ N (x) ∩ B − y satisfies

∥∥y′, B − y
∥∥ ≥ b − 1.

Let W = B ∩ N (x) ∩ N (y) and W ′ = B ∩ N (x) � N [y]. Let w ∈ W ; then w is low. So
‖w, A‖ = a and ‖w, B‖ = b. ThusW + y ⊆ Sx , and by Lemma 20, Sw = N [w] ∩ A = M .
By Lemma 25, Sx is a clique. AsG[B] is b-colorable, |W | ≤ b−1, so |W ′| ≥ 1. Consider any
w′ ∈ W ′. As w′y /∈ E , Lemma 25 implies X ⊆ N (w′). So d(w′) ≥ (b− 1)+ 3+ (a− 1) =
k + 1. Let X = {x, x ′, x ′′}. Every u ∈ B � N (x) + w′ is adjacent to x ′ by Lemmas 20(1)
and 21. Thus 2k + 1 ≥ θ(x ′w′) ≥ 2b + 1 + k + 1. So a > b; as k ≥ 4, a ≥ 3. Thus there
is Z ∈ A′ − X . Then uZ ∈ Sw′

. So W ∪ W ′ ⊆ SuZ is a b-clique. As w′ is high, |W ′| = 1.
Also Z , uZ , w′ can play the role of X, x, y. Thus there is a high w′′ with

∥∥w′′,W
∥∥ = b − 1

and
∥∥w′′, Z

∥∥ = 3. Indeed, we can choose w′′ = y. So

N [x] = N [uZ ] = N [w] = M ∪ W + y + w′ for all w ∈ W. (6.1)

Choose T ∈ A � {X, Z}. By (6.1), W ⊆ N (uT ) and uT x ∈ E . Thus

k + 1 ≥ d(uT ) ≥ a − 3 + |W | + ‖uT , X + y‖ + ∥∥uT , Z + w′∥∥ .

So ‖uT , X + y‖ + ∥∥uT , Z + w′∥∥ ≤ 5. Say ‖uT , X + y‖ ≤ 2. Then there is x ′ ∈ X − x
with

∥∥uT , X − x − x ′∥∥ = 0. Suppose uT y /∈ E . Let x ′ be movable toU ∈ A′ − X ; move x ′
to U , and switch witnesses along a UV− path in A − X ; moving uT and y to X − x − x ′,
and moving x to T − uT contradicts (3.1). So uT y ∈ E and ‖uT , X + y‖ ≥ 2. As y is high,
d(uT ) ≤ k, so

∥∥uT , Z + w′∥∥ ≤ 2. By an analogous argument, uTw′ ∈ E . Thus

N (uT ) ⊇ W ∪ {y, w′, x, uZ } for every U ∈ A − X − Z . (6.2)

Finally, switching uZ with x yields a nearly equitable k-coloring f ′ ofG. As the neighbors
of x in A are unmovable and X is terminal, A = A( f ′), X−x+uT , Z ∈ A′( f ′), and uT ∈ Sy .
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Thus f ′ is normal. By (6.2) and Lemma 20, N [uT ] = M ∪ W + y + w′. Combining this
with (6.1), shows M ∪ W + y is a k-clique, contradicting Lemma 25. ��

7 Almost all color classes in A are terminal

For X ∈ A, let T (X) be the set of U ∈ A − X such that every U, V−-path in H contains
X . Then T (X) = ∅ if and only if X ∈ A′, and if X ′ ∈ T (X) then T (X ′) � T (X). So
T (X) contains a terminal class if X is nonterminal. Choose X0 ∈ A � A′ so that T (X0) is
a minimum nonempty set. Then T (X0) ⊆ A′. Set A′′ = T (X0). As usual, set A′′ := ⋃

A′′,
and a′′ := |A′′|. Then 1 ≤ a′′ ≤ a′, and if a′ = a − 1, then X0 = V− and A′′ = A′. Also,
‖w, A‖ ≥ a − a′′ − 1 for every w ∈ A′′.
Proposition 27 If a′′ = a′, then a = a′ + 1.

Proof Argue by contraposition. If a′ ≤ a − 2 then the set X0 defined above the proposition
differs from V−, and A′′ = T (X0) ⊆ A′. Let P be a minimum X0, V−-path in H, and let
its last edge be UV−. If there exists W 	= U such that WV− ∈ E(H), then W /∈ V (P) by
the minimality of P . So T (W )∩T (X0) = ∅ and T (W )+W contains a terminal class. Thus
a′′ < a′. ElseA′ ⊆ T (U ) = A−V−−U . Shifting awitnessw ofUV− toV− yields a normal
k-coloring f ′ with small class U − w, A( f ) = A( f ′) and A′( f ′) = A′( f ) + (V− + w),
preserving (C3) and contradicting (C4). ��
Lemma 28 If b ≤ a′ − 1 then |L(B)| ≤ b + 1. Moreover, if |L(B)| = b + 1 then d(y) = k
for all y ∈ L(B), G[L(B)] is the disjoint union of cliques, and a′ = b + 1. If in addition
a′ = a − 1, then b ≤ 2.

Proof Suppose L = L(B), b ≤ a′ − 1 and |L| ≥ b + 1. Let I be an inclusion maximal
independent subset of L of size at least 2; it exists since G[B] is b-colorable.

All y ∈ L satisfy a + b ≥ d(y) ≥ a + a′ − |Sy ∩ A′| + ‖y, B‖ . (7.1)

By Lemmas 21 and 20, each solo vertex in A′ is the unique unmovable vertex in its class. By
Theorem 25, |Sx ∩ I | ≤ 1 for all x ∈ A′. By maximality, ‖L � I, I‖ ≥ |L � I |. Thus
a′ ≥

∑
x∈A′

|Sx ∩ I | =
∑
y∈I

|Sy ∩ A′| ≥
∑
y∈I

(a′ − b + ||y, B||) ≥ |I |(a′ − b) + ‖L � I, I‖

≥ |I |(a′ − b − 1) + |L| = (|I | − 1)(a′ − b − 1) + (a′ − b − 1 + |L|) ≥ a′.

So all four inequalities in the chain are sharp. This yields (in order) E(X, I ) has a solo edge
for all X ∈ A′; y has a solo neighbor in A′ and d(y) = k for all y ∈ I ; ‖w, B‖ = ‖w, I‖ = 1
for all w ∈ L � I ; and a′ = b+ 1 and |L| = b+ 1. As I can contain any pair of nonadjacent
vertices in L , no w ∈ L has two nonadjacent neighbors in L; so G[L] is the disjoint union
of cliques.

Finally, suppose a′ = a − 1 and b ≥ 3. Let C1 and C2 be components of G[L] with
|C1| ≤ |C2|. For i = 1, 2, let yi ∈ V (Ci ), and xi yi ∈ E(C, A′) be a solo edge, where
Xi = {xi , x ′

i , x
′′
i } ∈ A′. By Lemma 25, each y′ ∈ B −Ci is adjacent to x ′

3−i and x ′′
3−i . So x ′

i
and x ′′

i are low, and

2b + 2 = a + b ≥ d(x ′
i ), d(x ′′

i ) ≥ ∥∥x ′
i , B

∥∥ ,
∥∥x ′

i , B
∥∥ ≥ 3b + 1 − |Ci |.

Thus b − 1 ≤ |C1| ≤ (b + 1)/2, b = 3, |C1| = 2 = |C2|, 8 = k ≥ d(x ′
i ), d(x ′′

i ) ≥ 8, and∥∥x ′
i , A

∥∥ = 0 = ∥∥x ′′
i , A

∥∥. Then switching x1 with x2 yields a nearly equitable coloring with
a larger a, since y1x2 /∈ E . So

∥∥y1, {x2, x ′
1, x

′′
1 }∥∥ = 0. ��
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When b ≥ a′, we use the following analog of low vertices. A vertex y ∈ B is petite if
d(y) ≤ a + a′ − 1 or both d(y) = a + a′ and the following strengthening of inequality
(7.1) holds: ‖y, A‖ ≥ a + a′ + 1− |Sy ∩ A′|. This inequality implies y has 3 neighbors in a
terminal class or at least two neighbors in a nonterminal class of A. If y is petite, modifying
(7.1), yields

|Sy ∩ A′| ≥ ‖y, B‖ + 1; (7.2)

so y is solo. For a subset C of B, let L ′(C) denote the set of the petite vertices in C and
H ′(C) = C − L ′(C). By (7.2) and Lemma 26,

L ′(B) ⊆ L(B). (7.3)

Lemma 29 |L ′(B)| ≤ a′.

Proof Suppose |L ′(B)| ≥ a′ + 1 and let I be an inclusion maximal independent subset of
L ′(B). By (7.2), the total number of solo neighbors in A′ of vertices in I is at least

∑
y∈I

(1 + ‖y, B‖) ≥ |L ′(B)| ≥ a′ + 1.

But A′ has at most a′ unmovable vertices, contradicting Lemma 20. ��
If T (X) 	= ∅ (i.e., X is not terminal), let T ′(X) be aminimumnonempty subsetS ⊆ T (X)

with no out-neighbors inA� (S+ X). Choose X ′
0 ∈ A�A′ such that |T ′(X ′

0)| is minimum,
and set A′′′ = T ′(X ′

0). As usual, set A
′′′ = ⋃

A′′′, and a′′′ = |A′′′|. By definition, for all
z ∈ A′′′

‖z, A‖ ≥ a − a′′′ − 1. (7.4)

Lemma 30 Every z ∈ A′′′ satisfies ‖z, B‖ ≤ max{b, 2b + 2 + a′′′ − a′ − β}, where β = 1
if every vertex in N (z) ∩ B is petite or ‖z, A‖ ≥ a − a′′′; else β = 0.

Proof Let z ∈ Z ∈ A′′′ and B1 = N (z)∩B. Suppose the lemma fails for z. Then |B1| ≥ b+1
and |B1| ≥ 2b + 2 + a′′′ − a′ − β + 1. So B1 	= ∅. Also, every y ∈ B1 is petite: if not

d(z) = ‖z, A ∪ B‖ ≥ (a − a′′′ − 1) + (2b + 2 + a′′′ − a′) + 1 = 2k + 2 − a − a′;
so every y ∈ B1 is petite since d(y) ≤ θ(zy) − d(z) ≤ a + a′ − 1. By (7.2)

|Sy ∩ A′| ≥ 1 + ‖y, B‖ . (7.5)

So by Lemma 26, B1 ⊆ L(B) and |L(B)| ≥ b + 1. By Lemma 28, a′ ≤ b + 1. Let I be a
largest independent subset of B1. Counting the solo edges in E(A′, I ) as in Lemma 28 and
using (7.5) yields the contradiction:

a′ ≥
∑
z∈A′

|Sz ∩ I | =
∑
y∈I

|Sy ∩ A′| ≥ |I | + ‖I, B‖ ≥ |B1| ≥ 2b + 2 + a′′′ − a′ ≥ a′ + a′′′.

��
Lemma 31 a′ ≤ a′′′ + 1.

Proof Suppose a′ ≥ a′′′ + 2 and let Z ∈ A′′′. Then Lemma 30 implies
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‖v, B‖ ≤ max{b, 2b + 2 + a′′′ − a′} ≤ 2b for all v ∈ Z . (7.6)

Consider the discharging from B to Z , where each y ∈ B sends ch(y) = ||y, Z ||−1 to each
of its neighbors in Z . If v ∈ Z has no solo neighbors in B, then ch(v) ≤ ‖v, B‖ /2 ≤ b. As
Z gets charge 3b + 1, there is a solo edge zy ∈ E(Z , B) with z ∈ Z and ch(z) ≥ b + 1. For
i ∈ [3], let ci = |{y ∈ N (z) ∩ B : ‖y, Z‖ = i}. Then ‖Z − z, B‖ ≥ 2(3b + 1 − c1) − c2.
So 3b + 1 − c1 − c2/2 ≤ d(z′) ≤ 2b for some z′ ∈ Z − z. Thus c1 + c2 ≥ b + 1 + c2/2.
If c2 = 0 then |Sz | ≥ b + 1, contradicting Lemma 25. Else c2 ≥ 1 and c1 + c2 ≥ b + 2. By
Lemma 25, ‖y, B‖ ≥ c1 + c2 − 1. Then d(y) ≥ a + b + 1, contradicting Lemma 26. ��
Lemma 32 If a′ = a′′′ + 1 ≤ a − 2 then a′ = 2 and a′′ = 1.

Proof Suppose a′ = a′′′ + 1 ≤ a − 2. Then by Proposition 27, 1 ≤ a′′ < a′; so a′ ≥ 2. By
Lemma 31, a′ ≤ a′′′ +1. So it suffices to show a′′′ = 1. As a and a′ are invariants of optimal
colorings, it suffices to show a′′′( f ′) = 1 for some optimal coloring f ′.

LetA′′ = T (X) ⊆ A′. Since 1 ≤ a′ − 1 = a′′′ ≤ a′′ = |T (X)| ≤ a′ − 1, there is exactly
one Z ∈ A′ − T (X). Let H′ = H[A] − (A′ + X). We first prove that

for every W ∈ V (H′), V− is reachable from W in H′. (7.7)

Suppose V− is unreachable from W ∈ V (H′) inH′. As W /∈ A′ = T (X) + Z , there is a
W, V−-path P inH′ avoiding X . So P ∩T (X) = ∅. Thus Z ∈ P and Z /∈ T (W ). Similarly,
there is a W, V−-path Q avoiding Z . Thus Q ∩ (T (X) + X) 	= ∅, and so X ∈ Q. Thus
T (W ) ∩ T (X) = ∅. So A′ ∩ T (W ) = ∅, contradicting W /∈ A′. This proves (7.7).

Pick a spanning in-tree F ′ of H′ that is rooted at V−, and whose leaf set L is maximum.
Since L ∩ A′ = ∅, every leaf L ∈ L satisfies T (L) ∩ {X, Z} 	= ∅. Also by definition,
T (L) ∩ T (L ′) = ∅ for distinct L , L ′ ∈ L. So |L| ≤ 2. If |L| = 2, then we may assume
L = {X ′, Z ′}, where X ∈ T (X ′) and Z ∈ T (Z ′). In this case, a′′′ ≤ ∥∥T (Z ′)

∥∥ = 1 and
lemma holds. So suppose L = {W }. Then F ′ is a W, V−-path.

First, suppose W = V−. Then A = {V−, Z , X} ∪ T (X). If V− is the only out-neighbor
of Z , then T ′(V−) = {Z} and so a′′′ = 1. If Z has an out-neighbor Z ′ ∈ A − V−, then
move a witness x of XV− ∈ E(H) to V− to get a new coloring f ′. In f ′, the class V− + x
is terminal, because of Z ′. If Z ′ /∈ T (X) in f or is terminal in f ′, then a′( f ′) > a′( f ), a
contradiction. Else Z ′ ∈ T (X) and is nonterminal in f ′. Then T (Z ′) = {Z}, f ′ is optimal,
and a′′′( f ′) = 1.

Now suppose W 	= V−. Let W ′ be the penultimate vertex on the path WF ′V−, and
f ′ be the coloring obtained by moving a witness x of W ′V− to V−. If each of X and Z
has an out-neighbor in A � T (X) − V−, then A′( f ′) = A′ + (V− + x), a contradiction. If
X /∈ T (W ) then T (W ) = {Z} and a′′′ = 1. Otherwise X ∈ T (W ) and Z has an out-neighbor
in T (X) + V−. If N+(Z) = {V−} then we can take A′′′ = {Z} ⊆ T (V−), and so a′′′ = 1.
Else there is U ∈ N+(Z) ∩ T (X). Then A′( f ′) = A′ + (V− + x) − U and in f ′ we can
take A′′′ = T ′(U ); so a′′′( f ′) = 1. ��
Lemma 33 Suppose a′′ = 1, a′ = 2, A′′ = {W } and A′ = {W, Z}. Then H[A] has
a W, V−-path P = WX0 . . . XsV− and a Z , V−-path P ′ = ZU0 . . .UtV− such that
V (P) ∪ V (P ′) = A and V (P) ∩ V (P ′) = {V−}. Moreover, each of W and Z has exactly
one out-neighbor in H[A].
Proof Let A′′ = T (X0). Since Z /∈ T (X0), X0 	= V−. Then X0 is the only out-neighbor
of W in A. Since Z ∈ A′, H has a shortest W, V−-path P = W, X0, . . . , Xs = V−
avoiding Z . Since Z /∈ T (X0), H has a shortest Z , V−-path P ′ = Z ,U0, . . . ,Ut = V−
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avoiding X0. Choose such a shortest path with the most common edges with P . If C =
A − (V (P) ∪ V (P ′)) 	= ∅, then H[A] has a spanning in-tree with root V− and a leaf in C.
But any such leaf is in A′, a contradiction. Thus V (P) ∪ V (P ′) = A.

Suppose Xi = Uj 	= V− for some i and j . Then Xi+1PV− = Uj+1P ′V− by the choice
of P ′. Then moving a witness from Xs−1 to Xs = V−, we obtain a coloring with more
terminal classes, a contradiction. Thus V (P) ∩ V (P ′) = {V−}.

Moreover, observe that if U0 	= V− and Z has an out-neighbor Z ′ ∈ A − U0, then
U0 ∈ A′, a contradiction. ��
Lemma 34 a′ = a − 1.

Proof ByLemmas 31, and 32, if a′ < a−1, then a′′ = 1 and a′ = 2. By Lemma 33, there are
X0 ∈ A−A′ −V−,U0 ∈ A−A′ − X0 and a labeling {W, Z} = A′ such that T (X0) = {W }
andU0 is the only outneighbor of Z inH[A]. In particular, ifU0 	= V−, then T (U0) = {Z}.
Also, there are chordless paths P = WX0 . . . XsV− and a P ′ = ZU0 . . .UtV− such that
V (P) ∪ V (P ′) = A and V (P) ∩ V (P ′) = {V−}. Both A′′′ = {W } and A′′′ = {Z} work;
so Lemma 30 applies to both W and Z . Let Z = {z, z′, z′′}, U0 ⊆ {u, u′, u′′} and X0 =
{x, x ′, x ′′} with w′′, x ′′, z′′ being a witness ofWX0, X0X1, ZU0 ∈ E(F), respectively. Also
if U0 = V−, then u′′ does not exist; otherwise, let u′′ be a witness of U0U1 ∈ E(F).

Our first claim is that

neither of X0 ∪ W − x ′′ and U0 ∪ Z − u′′ is independent. (7.8)

Indeed, if X0 ∪ W − x ′′ is independent, then
∥∥y, X0 ∪ W − x ′′∥∥ ≥ 4 for all y ∈ B, since

otherwise we can color equitably X0 ∪W − x ′′ + y with two colors, B− y with b colors, and
A − X0 − W + x ′′ with a − 2 colors. So ‖B, X0 ∪ W − x ′′‖ ≥ 4(3b + 1) > 5(2b + 1), and
there is s ∈ W ∪ X0 − x ′′ with ‖s, B‖ ≥ 2b + 2. Assume s ∈ W as else s can be swapped
with w′′. This contradicts Lemma 30.

Similarly, if U0 	= V−, then U0 ∪ Z − u′′ is not independent. Finally suppose U0 =
V−, and V− ∪ Z is independent. Then as above,

∥∥y, V− ∪ Z
∥∥ ≤ 4 for each y ∈ B and

‖B, V− ∪ Z‖ ≥ 4(3b + 1). Since ‖V−, B‖ ≤ |V−| · |B| = 6b + 2, ‖B, Z‖ ≥ 6b + 2. So
there exists z ∈ Z with ‖z, B‖ ≥ 2b + 1 = 2b + 2 + a′′′ − a′. Then by Lemma 30, there
exists some non-petite neighbor of z in B. Since every vertex in B has two neighbors in V−
or three in Z , the non-petite neighbor y of z in B has d(y) > a + a′ = a + 2. But now
d(z) + d(y) > 2b + 1+ a − 2+ a + 2 = 2k + 1, contradicting the degree conditions of G.
This yields (7.8).

Each vertexw∗ ∈ W with a neighbor in X0 is unmovable; by Lemma 21 suchw∗ is unique
andw∗ 	= w′′. Sayw = w∗. Similarly, let z be unmovable. Thenw′ and z′ are movable to X0

and U0. Using (7.8), assume wx, zu ∈ E(G). As ‖w, A‖ = a − a′′′ = ‖z, A‖, Lemma 30
implies

each of w and z has at most 2b neighbors in B. (7.9)

Next we claim

‖W, Z‖ ≥ 4. (7.10)

Indeed, asWZ , ZW /∈ E(H), if ‖W, Z‖ ≤ 3, then ‖W, Z‖ = 3 and these three edges form a
matching. In this case, by symmetry,wemay assume N (z′)∩W = {w′} and N (w′)∩Z = {z′}.
Then switch w′ with z′. Since Z and W are leaves in F , V− is reachable from every class in
A−W − Z in the new coloring f ∗. Also, X0 andU0 are out-neighbors ofW ∗ = W −w′ + z′
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and so X0 is a new terminal class in f ∗, a contradiction to the maximality of A′. This
proves (7.10).

Case 1: Vertexw is not solo. By (7.9), ‖w, B‖ ≤ 2b and by Lemma 30, ‖w′, B‖, ‖w′′, B‖ ≤
2b + 1. As ‖W, B‖ ≥ 6b + 2, equality holds throughout and β = 0 in Lemma 30. Thus
‖w′, B‖, ‖w′′, B‖ ≤ a−2 = a−a′′′ −1, so ‖{w′, w′′}, Z‖ = 2 and ‖w, Z‖ = 2, by (7.10).
So d(w) ≥ 2b + a. Therefore, since θ(G) ≤ 2k + 1, ‖y, Z‖ = 1 and ‖y, B‖ = 0 for all of
the 2b vertices y ∈ N (w) ∩ B, a contradiction to Lemma 25.

The proof of the case when z is not solo is analogous. So the remaining case is:

Case 2: Both w and z are solo. Then B1(w) 	= ∅ and B1(z) 	= ∅. Since each y′ ∈ B0(w) ∪
B3(w) is adjacent to both w′ and w′′ by Corollary 23, Lemma 30 yields b0(w) + b3(w) ≤
‖B, w′‖ ≤ 2b + 1. So, b1(w) + b2(w) ≥ |B| − (2b + 1) = b. Similarly, b1(z) + b2(z) ≥ b.

Case 2.1:b1(w)+b2(w) ≥ b+1.ByLemma25, B1(w)∪B2(w) ⊆ N [y] for each y ∈ B1(w).
Fix y ∈ B1(w). By Lemma 26, y ∈ L(B). So k ≤ a + (b1(w) + b2(w) − 1) ≤ d(y) ≤ k.
Thus b0(w) + b3(w) = ‖w∗, B0(w) + B3(w)‖ ≥ 2b for both w∗ ∈ W − w. Since G[B] is
b-colorable, there are y1, y2 ∈ B1(w) ∪ B2(w) with y1y2 /∈ E(G). Then y1, y2 ∈ B2(w).
Applying Lemma 25 to Z , yields i ∈ [2]with ‖yi , Z‖ ≥ 2, and there isw∗ ∈ N (yi )∩W −w.
So d(yi ) ≥ (a+2)+1, d(w∗) ≥ (a−2)+ (2b+1), and θ(w∗yi ) ≥ 2k+2, a contradiction.

Theproof of the caseb1(z)+b2(z) ≥ b+1 is exactly the same. So, sinceb1(w)+b2(w) ≥ b
and b1(z) + b2(z) ≥ b, the last subcase is:

Case 2.2:b1(w)+b2(w) = b = b1(z)+b2(z). Thenb0(w)+b3(w) = 2b+1 = b0(z)+b3(z).
Let y ∈ (B0(w) ∪ B3(w)) � (B1(z) ∪ B2(z)). For both w∗ ∈ W − w

2k + 1 ≥ θ(w∗y) ≥ ∥∥w∗, A
∥∥ + ‖y, A‖ + 2b + 1 ≥ (a − 2) + (a + 2) + 2b + 1 = 2k + 1.

So all three inequalities in the chain are sharp. In particular, ‖w∗, Z‖ = 1 and ‖y,W ∪ Z‖ =
4. Thus y ∈ B0(w) ∩ B0(z). Similarly, ‖z∗,W‖ = 1 for both z∗ ∈ Z − z. If z∗w∗ ∈ E(G),
then as in the proof of (7.10), switching w∗ with z∗ yields a coloring with more terminal
classes, a contradiction. Thus, {wz′, wz′′, zw′, zw′′} ⊂ E(G). As w and z are solo, they
are unmovable. So ‖w, V − z‖ ≥ k and ‖z, V − w‖ ≥ k. Thus wz /∈ E(G). Finally,
obtain an equitable k-coloring by combining an equitable b-coloring of B− y with {y, z, w},
{w′, z′, z′′}, and shifting witnesses along P (starting from w′′). ��

8 Properties of the set of solo vertices

Let f be an optimal coloring. Let S f ⊆ E be the set of solo edges xy with x ∈ A′ and
y ∈ B. For any W ⊆ V , let S f (W ) be the set of the solo vertices in W , i.e., vertices in W
incident to a solo edge, and let T f (W ) = W � S(W ). We will normally drop the subscript
when the coloring is clear from the context. For every x ∈ X ∈ A and i ∈ {0, 1, 2, 3} let
Bi (x) = {y ∈ B : ‖y, X‖ = i} and bi (x) = |Bi (x)|. Call a vertex x free if ‖x, A‖ = 0. For
easier reference, we restate several important lemmas using this new notation.

(A.1) a = a′ + 1 (Lemma 34);
(A.2) for every y ∈ B, G[B − y] has an equitable b-coloring (Lemma 22);
(A.3) every x ∈ S(A′) is unmovable (Lemmas 20 and 22);
(A.4) for every X = {x, x ′, x ′′} ∈ A′ with b1(x) > 0, B0(x) ∪ B3(x) ⊆ N (x ′) ∩ N (x ′′)

(Corollary 23);
(A.5) for every x ∈ S(A′), B1(x) is a clique (Theorem 25);
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(A.6) for every x ∈ S(A′), y ∈ B1(x) and y′ ∈ B2(x), yy′ ∈ E (Theorem 25);
(A.7) every color class of A′ contains at most one unmovable vertex (Lemma 21); and
(A.8) for every y ∈ S(B), d(y) ≤ k (Lemma 26).

Proposition 35 There are at most b + 1 vertices y in B such that d(y) < 2a − 1.

Proof If b ≥ a′, then using (A.1), 2a−1 = a+a′ ≤ k. By Lemma 28, |L ′(B)| ≤ a′ ≤ b. By
the definition of L ′(B), there are at most b vertices y in B with d(y) ≤ a + a′ − 1 = 2a − 2.

If b ≤ a′ − 1, then by Lemma 29, |L(B)| ≤ b + 1. Also, 2a − 1 ≥ k + 1, so there exist
at most b + 1 vertices y in B with d(y) < 2a − 1. ��
Proposition 36 (a) If x ∈ A′ and ‖x, B‖ ≥ 2b + 1, then d(x) ≤ 2b + 2.
(b) If x ∈ S(A′), then b − 1 ≤ b1(x) + b2(x) ≤ b + 1.

Proof If ‖x, B‖ ≥ 2b + 1 > b + 1 then, by Proposition 35, there exists y ∈ N (x) ∩ B such
that d(y) ≥ 2a − 1. Together with θ(xy) ≤ 2k + 1, this yields d(x) ≤ 2b + 2, proving (a).

Suppose x ∈ S(A′), where x ∈ X ∈ A′, and y ∈ B1(x). By (a) and (A.4), b0(x)+b3(x) ≤
2b + 2, so b1(x) + b2(x) ≥ b − 1. Finally, (A.5), (A.6) and (A.8), yield

b1(x) + b2(x) − 1 ≤ ‖y, B‖ = d(y) − ‖y, A‖ ≤ k − a = b.

��
Proposition 37 Let x ∈ X ∈ A′, z ∈ A − X, xz /∈ E, and A∗ = A − x − z. Then either

1. N (z) ∪ N (x) ⊇ B, or
2. there is no equitable (a − 1)-coloring of G[A∗].
In particular, if ‖X − x, A∗‖ ≤ 1 and z /∈ V−, then (1) holds.

Proof If xz /∈ E and there exists y ∈ B�(N (z)∪N (x)), then the class {x, z, y} together with
an equitable (a−1)-coloring ofG[A∗] and an equitable b-coloring ofG[B− y] (which exists
by (A.2)) give an equitable coloring of G. For the second part, note that if ‖X − x, A∗‖ ≤ 1
and z /∈ V−, then G[A∗] has an equitable (a − 1)-coloring. ��
Lemma 38 Let X = {x, x ′, x ′′} ∈ A′ with x ∈ S(X). Then B2(x) ⊆ S(B), and
N (x ′), N (x ′′) ⊇ T (B).

Proof The second part of the lemma follows from the first part and (A.4). For the first part,
let xy ∈ S; then y ∈ B1(x). By (A.6), B2(x) ⊆ N (y). By (A.3), (A.8), and (A.5)

d(x) ≥ a − 1 + b1(x) + b2(x) and k ≥ d(y) ≥ a + b1(x) + b2(x) − 1. (8.1)

Assume the lemma fails, and pick y′ ∈ T (B) ∩ B2(x). As
∥∥y′,U

∥∥ ≥ 2, (A.7) implies
there is u′ ∈ N (y′) ∩ U ∩ M for each class U ∈ A′. Let U = {u, u′, u′′}, where u ∈ M ;
set M ′ = {u′ : U ∈ A′}, M ′′ = {u′′ : U ∈ A′} and V− = {v, v′}, where v ∈ M . By (A.4),
B0(x) ∪ B3(x) + y′ ⊆ N (x ′). By (A.6), B1(x) ⊆ N (y′). Using Proposition 36,

d(x ′) ≥ 3b + 1 − b1(x) − b2(x) + 1 ≥ 2b + 1 and d(y′) ≥ 2a − 1 + b1(x) ≥ 2a.

Thus θ(x ′y′) = 2k + 1, b1(x) = 1, b2(x) = b, b0(x) + b3(x) = 2b and N (y′) ∩ B = {y}.
By (8.1), ‖y, A‖ = a and ‖y, B‖ = b. By (A.3), uy ∈ S for allU ∈ A′. By (A.5) and (A.6),

N [y] = M ∪ B1 ∪ B2(x). (8.2)
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We will obtain a contradiction to Lemma 15 by proving M ∪ B2(x)− y′ + y is a k-clique.
Consider any U ∈ A′. Since uy ∈ S and u′y′ ∈ E , we have B1(u) ∪ B2(u) ⊆ N [y] ∩ B =
B1(x) ∪ B2(x), B0(u) ∪ B3(u) ⊇ B0(x) ∪ B3(x),

∥∥u′, B
∥∥ ≥ 2b + 1, θ(u′y′) = 2k + 1,

N (u′) ∩ B2(x) − y′ = ∅ and u′ is free. Using (A.4)

B2(x) − y′ + y ⊆ B1(u) ∪ B2(u) ⊆ N (u) for all U ∈ A′. (8.3)

Consider any y′′ ∈ B2(x) − y′. As y′y′′ /∈ E , y′ /∈ B2(u) or y′′ /∈ B1(u). Anyway,
N (u′′) ∩ {y′, y′′} 	= ∅. So ∥∥u′′, B

∥∥ ≥ b0(x) + b3(x) + 1 ≥ 2b + 1, and
∥∥u′′, A

∥∥ ≤ 1.
Consider w ∈ M � {u, v}. By Proposition 37 and

∥∥{u′, u′′}, A}∥∥ ≤ 1, uw ∈ E . Thus

M − v is a clique. (8.4)

If vy′′ /∈ E then moving v′ to some class W ∈ A′, moving w′ and y′′ to the class of v,
and equitably b-coloring B − y′′ yields an equitable k-coloring. Thus vy′′ ∈ E . Suppose
uv /∈ E . If vu′′ ∈ E then switch v with u′′; else switch v with u′. Moving y to the class of
v′ and equitably b-coloring G[B] − y yields an equitable k-coloring. So uv ∈ E and

M ∪ B2(x) � {v, y′} ⊆ N (v). (8.5)

If there is y′′ ∈ B2(x)∩T (B)−y′ then y′′ plays the same role as y′. Thus B2(x) = {y′, y′′}
and B2(x) − y′ is a 1-clique. Otherwise for every y′′ ∈ B2(x) ∩ T (B) − y′ there is U ∈ A′
with y′′ ∈ B1(u). By (8.3), any other y∗ ∈ B2(x)− y′ satisfies y∗ ∈ B1(u)∪ B2(u), so y′′y∗.
Thus B2(x) − y′ is a k-clique. Combining this with (8.2), (8.3), (8.4), and (8.5) yields that
M ∪ B2(x) − y′ + y is a k-clique. ��

Lemma 39 S(B) is a clique.

Proof Suppose y, y′ ∈ S(B) and yy′ /∈ E . Then there are X = {x, x ′, x ′′} ∈ A′ and
Z = {z, z′, z′′} ∈ A′ with yx, y′z ∈ S. As yy′ /∈ E , (A.5), (A.6), and (A.4) imply X 	= Z ,
a′ ≥ 2, y′ ∈ B0(x) ∪ B3(x), y ∈ B0(z) ∪ B3(z), N (y) ⊇ {z′, z′′} and N (y′) ⊇ {x ′, x ′′}.
Using Proposition 36(b), assume b1(z)+ b2(z) ≥ b1(x)+ b2(x) ≥ b− 1. Let V− = {v, v′}.
Case 1: b1(x) + b2(x) = b − 1. Since b1(x) ≥ 1, b ≥ 2. By Proposition 36(a), N (x ′) =
N (x ′′) = B0(x)∪ B3(x), so d(x ′), d(x ′′) = b0(x)+ b3(x) = 2b+ 2, and x ′ and x ′′ are free.
Subcase 1.a: b1(z)+b2(z) = b−1. Then d(z′), d(z′′) = b0(z)+b3(z) = 2b+2 and both z′
and z′′ are free. As xz′, y′z′ /∈ E, Proposition 37 implies xy′ ∈ E . Similarly, zy ∈ E . Since
d(y), d(y′) ≤ k by (A.8), and since ‖y, A‖, ‖y′, A‖ ≥ a + 2 and ‖y, B‖, ‖y′, B‖ ≥ b − 2,
both y and y′ have solo neighbors in every class inA′−X−Z . As yy′ /∈ E , (A.5) impliesA′ =
{X, Z} and a = 3. Since z′y ∈ E and θ(z′y) ≥ 2b+2+a+b = a+3b+2, b ≤ a−1 = 2. So
b = 2, S(B) = {y, y′} and T (B) = {y1, . . . , y5}. By Lemma 38, N (yi ) ⊇ {x ′, x ′′, z′, z′′, vi }
for some vi ∈ V− for all i ∈ [5]. By (H2), B is independent and both x and z have
no neighbors in T (B). Now {{v, x ′, x ′′}, {v′, z′, z′′}, {x, y1, y2}, {z, y3, y4}, {y, y′, y5}} is an
equitable 5-coloring.
Subcase 1.b: b1(z) + b2(z) ≥ b. Then

∥∥z′, B∥∥ ≥ 2b + 1. By (A.8), (A.5) and (A.6),

k ≥ d(y′) = ∥∥y′, B ∪ (A � X) ∪ {x ′, x ′′} + x
∥∥ ≥ b − 1 + a − 1 + 2 + 0 ≥ k,

∥∥y′, A � X
∥∥ = a − 1,

∥∥y′,U
∥∥ = 1 for all U ∈ A − X , and xy′ /∈ E . Say vy′ ∈ E .

Consider any class U = {u, u′, u′′} ∈ A′ − X with uy′ ∈ S. As x ′ and x ′′ are free and
v′y′, u′y′, u′′y′ /∈ E , Proposition 37 implies v′x, u′x, u′′x ∈ E . Also v∗x ∈ E for both
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v∗ ∈ {u, v}: else moving y′ to the class of v∗, v∗ to X , and x ′ to V−, and equitably b-
coloring B − y′ contradicts (3.1). As k ≥ 5, this gives the contradiction

θ(xz′) = ‖x, A ∪ B‖ + d(z′) ≥ 3(a − 2) + 2 + b − 1 + 2b + 2 ≥ 3k − 3 ≥ 2k + 2.

Case 2: b1(x) + b2(x) ≥ b. By (A.8), (A.5) and (A.6), ‖y, B‖ = b − 1 = ‖y′, B‖ and
‖y, A‖ = a + 1 = ‖y′, A‖. Thus ‖y,U‖ = 1 for all U ∈ A − X and

∥∥y′,U
∥∥ = 1 for all

U ∈ A − Z . As yy′ /∈ E , (A.1) and (A.5) imply A′ = {V−, X, Z}. Also b1(x) + b2(x) =
b1(z) + b2(z) = b and b0(x) + b3(x) = b0(z) + b3(z) = 2b + 1. By Proposition 36(a),
‖u, A‖ ≤ 1 for all u ∈ {x ′, x ′′, z′, z′′}. Also y ∈ B0(z) and y′ ∈ B0(x).

Suppose x ′z′ ∈ E . Then
∥∥Z − z, X − x ′∥∥ ≤ 1 and y /∈ N (x ′)∪ N (z). By Proposition 37,

x ′z ∈ E . Thus
∥∥x ′, A

∥∥ ≥ 2, a contradiction. By similar arguments, ‖X − x, Z − z‖ = 0.
Suppose ‖x, Z − z‖ ≤ 1. Then ‖X, Z − z‖ ≤ 1. Again Proposition 37 implies zx ′ ∈ E .

Similarly, zx ′′ ∈ E . Thus ‖{x, Z − z‖ = 2 or ‖z, X − x‖ = 2. Say ‖z, X − x‖ = 2. Then
‖z, A‖ ≥ a. By (A.3), x and z are unmovable. Say vz ∈ E .

Suppose xz /∈ E . Then x has amovable neighbor (say) z′ in Z . By Lemma 20, ‖x, A‖ ≥ a.
By Proposition 37, B ⊆ N (x)∪N (z). By Proposition 35, there isw ∈ B with d(w) ≥ 2a−1.
Let u′ ∈ {x ′, z′}, where u′ = z′ if and only if zw ∈ E . Then

4k + 2 ≥ d(x) + d(z) + d(w) + d(u′) ≥ 2a + 3b + 1 + 2a − 1 + 2b + 2 ≥ 4k + b + 2,

a contradiction. Thus xz ∈ E and ‖z, X‖ = 3; as d(y′) = k and ‖z, B‖ ≥ b, we have
d(z) = k + 1,

∥∥z, V−∥∥ = 1, v′z /∈ E , d(x) ≤ k and ‖x, Z − z‖ ≤ 1. By (C2), v′z∗ /∈ E
for some z∗ ∈ Z − z; say z∗ = z′. Then {v′, z, z′} and {v, x ′, x ′′} are independent and
xy′, z′′y′ /∈ E , so xz′′ ∈ E by Proposition 37. Now v′z′′ /∈ E . Switching z′ and z′′, yields
xz′ ∈ E and d(x) = k + 1, contradicting (3.1) ��
Lemma 40 Every x ∈ S(A′) satisfies b1(x) + b2(x) = b.

Proof Suppose the lemma fails for some x ∈ {x, x ′, x ′′} = X ∈ A′ with x ∈ S(A′). By
Lemma 38, S(B) ⊇ B1(x) ∪ B2(x), S(B) is a clique, and by Lemma 39, b1(x) + b2(x) ≤
χ(G[B]) ≤ b. Using Proposition 36, this implies 1 ≤ b1(x) + b2(x) = b − 1, N (x ′) =
N (x ′′) = B0(x) ∪ B3(x), x ′ and x ′′ are free, and b2(x) = 0.

Suppose there exists y ∈ B3(x). If y ∈ T (B), then ‖y, A‖ ≥ 2a, but the fact that yx ′ ∈ E
and d(x ′) ≥ 2b+2 contradicts θ(G) ≤ 2k+1. Otherwise, y ∈ S(B), |S(B)| ≥ b−1+1 = b,
and since S(B) is a clique, ‖y, B‖ ≥ b − 1. Since ‖y, A‖ ≥ a + 2, d(y) ≥ a + b + 1,
contradicting (A.8). So b3(x) = 0 and b0(x) = 2b + 2. As T (B) ⊆ N (x ′), ‖w, V−‖ = 1,
‖w,U‖ = 2 and ‖w, B‖ = 0 for every w ∈ T (B) and U ∈ A′.

Suppose |S(B)| = b − 1. Then |T (B)| = 2b + 2 and G[B] = Kb−1 + K2b+2. There
exist distinct y1, y2, y3, y4 ∈ T (B) and v, v′ ∈ V− with vy1, vy2 ∈ E . Then {v′, y1, y2},
{v, x ′, x ′′} and {x, y3, y4} are independent sets. Then B�{y1, y2, y3, y4} admits an equitable
(b − 1)-coloring, a contradiction. So |S(B)| = b.

Now there exist y′ ∈ S(B) � B1(x) and Z = {z, z′, z′′} ∈ A′ − X with zy′ ∈ S. Recall
that S(B) is a clique, N (y′) ⊇ {x ′, x ′′} and d(y′) ≤ k, so N (y′) ∩ B = S(B) − y′ and
‖y′, A‖ = a + 1. Let {y1, y2, y3} ⊆ T (B) be a 3-set. Then ‖yi , Z‖ = 2 for every i ∈ [3].
Since B2(z) ⊆ S(B), zyi /∈ E . So {x, y′, y1}, {z, y2, y3}, V− + x ′ and {z′, z′′, x ′′} are
independent. As G[B]−{y′, y1, y2, y3} admits an equitable (b−1)-coloring, this completes
the contradiction. ��
Corollary 41 Suppose X = {x, x ′, x ′′} ∈ A′. If x is solo, then G[S(B)] = Kb, N (x) ⊇
S(B), N (x ′), N (x ′′) ⊇ T (B) and ‖x ′, A‖, ‖x ′′, A‖ ≤ 1.
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9 Finding a clique on k vertices

Lemma 42 If W ⊆ A is a 5-set and there is an equitable (a − 2)-coloring of G[A � W ],
then G[W ] contains an edge. In particular, ‖X, V−‖ ≥ 1 for every X ∈ A′.

Proof SupposeW ⊆ A is an independent 5-set and that there is an equitable (a−2)-coloring
ofG[A�W ]. For every y ∈ B,G[W+y] has no equitable 2-coloring by (A.2), which implies
‖y,W‖ ≥ 4. So there exist distinct w,w′ ∈ W such that

‖{w,w′}, B‖ ≥ �8|B|/5� = 4b + 1 + �(4b + 3)/5� ≥ 4b + 3.

Therefore using Proposition 36(a), we can assume that ‖w, B‖ = 2b+ 2, ‖w′, B‖ ≥ 2b+ 1
and b ≤ 2. Proposition 36(a) further implies that d(w), d(w′) ≤ 2b+2, and ‖{w,w′}, A‖ ≤
1, and there is an optimal coloring f ′ such that V−( f ′) = {w,w′} and X = W − {w,w′} ∈
A′( f ′). Furthermore, since |S f ′(B)| ≤ b by Lemma 39, there exists y ∈ T f ′(B) such that
wy ∈ E , so d(y) = 2a − 1. Since y ∈ T f ′(B), ‖y, Z‖ ≥ 2 for every Z ∈ A′( f ′) − X , so
4 + 2(a − 2) ≤ d(y) = 2a − 1, a contradiction. ��
Lemma 43 a ≥ 3.

Proof Suppose a = 2. Since k ≥ 4, b ≥ 2. Let {v, v′} = V− and {x, x ′, x ′′} = X ∈ A′. By
Lemma 42, we can assume that xv ∈ E . Since X has at most one unmovable vertex, every
edge in E(G[A]) is incident to x . We know that xv′ /∈ E , for otherwise, {x, x ′}, {v, v′, x ′′}
are both independent sets and both v and v′ are unmovable in the new coloring. Therefore,
E(G[A]) = {xv}. Let X ′ = {v′, x ′, x ′′}. For any y ∈ B, there is no equitable 2-coloring of
G[A + y] by (A.2). Hence, either N (y) ⊇ {x, v} or N (y) ⊇ X ′.

Suppose there exists w ∈ X ′ with d(w) ≥ 2b + 2. By the degree-sum condition, every
vertex in N (w) has degree precisely three, with neighborhood X ′ or {w, x, v} and d(w) =
2b + 2. Note that |B − N (w)| = b − 1. Since one of {x, v} is low, and both are adjacent to
every vertex in B − N (w), there are at most two vertices in N (w) whose neighborhood is
{w, x, v}, so there are at least (2b+ 2) − 2 ≥ 4 vertices in N (w) whose neighborhood is X ′.
Let {y1, . . . , y4} be four such vertices. Now {x, y1, y2}, {v, y3, y4} and X ′ are independent
sets and we can equitably (b−1)-color, B−{y1, . . . , y4} by pairing each of the b−1 vertices
of B − N (w) with two vertices in N (w) − {y1, . . . , y4}. Then every vertex in X ′ has degree
at most 2b + 1.

Suppose there exists y ∈ S(B). Since x is not movable, xy ∈ S and, by Corollary 41,
G[S(B)] = Kb. Since y is not adjacent to x ′, y must be adjacent to v. So S(B) ∪ {x, v} is a
clique, which contradicts the fact that ω(G) ≤ k − 1. Therefore, for every y ∈ B, y ∈ T (B)

and |N (y) ∩ {x ′, x ′′}| ≥ 1. Let Y ′ = {y ∈ B : N (y) ⊇ {x, v}}. Since d(x) + d(v) ≤ 2b+ 5,
|Y ′| ≤ b + 1. For every vertex y′ ∈ B − Y ′, N (y′) ⊇ X ′. Therefore, we have the following
contradiction

4b + 3 ≤ 5b + 1 ≤ 2|B| − |Y ′| ≤ ‖{x ′, x ′′}, B‖ ≤ 4b + 2.

��
Let T ′(B) := {y ∈ T (B) : d(y) ≥ 2a}.

Lemma 44 If there exists an edge xy ∈ G[T ′(B)], then a ≤ b.

Proof Since x, y ∈ T ′(B), 4a ≤ d(x) + d(y) ≤ 2a + 2b + 1 and the conclusion follows. ��
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Lemma 45 Suppose that {x, x ′, x ′′} = X ∈ A′ has no solo vertex. The following statements
are true:
(a) ‖X, A‖ ≥ 2 and if every vertex in X is movable, then ‖X, A‖ ≥ 3.
(b) For every y ∈ B, |N (y) ∩ X | = 2, so {B0(x), B0(x ′), B0(x ′′)} is a partition of B.
(c) There are no edges with one endpoint in S(B) and one endpoint in T (B).
(d) There exists x∗ ∈ X with N (x∗) ∩ T ′(B) = ∅.
(e) For every y ∈ T (B), d(y) ≤ 2a.
(f) If G[T (B)] contains an edge, then 3 = a ≤ b, and X contains an unmovable vertex.

Proof Wewill first show that ‖X, A‖ ≥ 2. If X has an unmovable vertex x , then this is clear,
because in this case ‖x, A‖ ≥ a − 1 ≥ 2. Now suppose that every vertex in X is movable.
Move the witness wX along a path inH to V−. The new coloring is optimal, since otherwise
there is a class Z 	= V− + wX in which all 3 vertices are adjacent to X − wX , as claimed.
Thus by Lemma 42 for the new coloring, each of the classes has a neighbor in X − wX . So
‖X, A‖ ≥ ‖X −wX , A‖ ≥ a−1 ≥ 2 with equality only if a = 3 andwX is free. In this case,
we can assume each class V− + wX and Z ∈ A′ − X has exactly one neighbor in X − wX .
Since each vertex in X is movable in the original coloring, these two neighbors are distinct.
Then taking the neighbor of Z in X as wX yields (a).

Assume that ‖x ′, B‖ ≤ ‖x ′′, B‖. Let y ∈ B. If y ∈ S(B), then since ‖y, X‖ ≥ 2,
d(y) ≤ a + b, S(B) is a clique and |S(B)| ≥ b, N (y) ∩ B = S(B) − y, ‖y, T (B)‖ = 0,
‖y, A‖ = a + 1 and ‖y, X‖ = 2. If y ∈ T (B), then ‖y, X‖ = 3 implies d(y) ≥ 2a and
d(x), d(x ′), d(x ′′) ≤ 2b + 1, so ‖X, A‖ ≤ d(x) + d(x ′) + d(x ′′) − (2|B| + 1) = 0, a
contradiction to (a). This proves (b) and (c).

We will now prove (d) and (e). Let y ∈ T ′(B). By (b), we can label so that x, x ′ ∈ N (y)
and x ′′ /∈ N (y). If d(y) = 2a, suppose, for a contradiction to (d), that there exists y′ ∈
T ′(B)∩N (x ′′). If d(y) ≥ 2a+1, then ‖x, B‖, ‖x ′, B‖ ≤ 2b, so ‖x ′′, B‖ ≥ 2b+2, sowe can
let y′ ∈ N (x ′′)∩T (B). In either case, 2d(y)+d(y′) ≥ 6a, so d(x)+d(x ′)+d(x ′′) ≤ 6b+3,
since ‖y, X‖ = 2. This implies that ‖X, A‖ ≤ 1, which is a contradiction to (a).

Suppose there exists yy′ ∈ E(G[T (B)]), so y, y′ ∈ T ′(B). By (d), there exists x ′′ ∈ X
such that N (x ′′)∩T ′(B) = ∅, so d(x), d(x ′) ≤ 2b+1 and ‖x ′′, B‖ ≥ 2b. Since |S(B)| ≤ b,
x ′′ is adjacent to a vertex in T (B), so d(x ′′) ≤ 2b + 2, hence

‖X, A‖ ≤ d(x) + d(x ′) + d(x ′′) − (6b + 2) ≤ 2.

So ‖X, A‖ = 2 and there exists an unmovable vertex x ∈ X . Since a′ ≤ ‖x, A‖ ≤ ‖X, A‖ =
2 and a ≥ 3, it must be that a = 3. By Lemma 44, b ≥ a which proves (f). ��
Lemma 46 If there exists y ∈ T (B) such that N (y) ⊇ V−, then a ≤ b + 1. In particular,
if b = 1, then for every y ∈ T (B), ‖y, V−‖ = 1.

Proof Suppose V− = {v, v′} and some y ∈ T (B) is adjacent to both v and v′ and that
a ≥ b+2. Since ‖V−, B‖ ≥ 3b+2, Lemma 42 implies that d(v)+d(v′) ≥ (3b+2)+ (a−
1) ≥ 4b+3. So wemay assume d(v) ≥ 2b+2. But d(y) ≥ 2a and so d(y)+d(v) ≥ 2k+2.

��
Lemma 47 |S(B)| = b.

Proof By Corollary 41, we are done when S(B) 	= ∅. So assume S(B) = ∅, which means
that no class in A′ contains a solo vertex. Let X = {x, x ′, x ′′} ∈ A′. Let x ∈ X be the
unmovable vertex in X , if it exists and, in this case, assume ‖x ′, B‖ ≤ ‖x ′′, B‖. Otherwise,
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every vertex in X is movable and we label them so that ‖x, B‖ ≤ ‖x ′, B‖ ≤ ‖x ′′, B‖. In
either case ‖x, B‖ ≤ 2b, so |B0(x)| ≥ b + 1.

Suppose there exists an edge yy′ ∈ E(G[B]). Since B = T (B), Lemma 45(f) implies that
a = 3 ≤ b and x is unmovable.ByLemma45(d), there exists x∗ such that N (x∗)∩T ′(B) = ∅.
If x = x∗, then {x ′, x ′′} ⊆ N (y), and ‖x, B‖ = 2b, ‖x ′, B‖ = ‖x ′′, B‖ = 2b + 1 and both
x ′ and x ′′ are free. If x∗ 	= x , then ‖x, B‖ ≤ 2b + 1 − (a − 1) = 2b − 1, so it must be that
‖x ′, B‖ = 2b + 1, ‖x ′′, B‖ = 2b + 2, both x ′ and x ′′ are free and x∗ = x ′′. In either case,
|B0(x)|, |B0(x ′)| ≥ 3, so there exist y1, y2 ∈ B0(x) and y3, y4 ∈ B0(x ′) such that {x, y1, y2}
and {x ′, y3, y4} are independent 3-sets. Graph G[B − y1 − y2 − y3 − y4] has an equitable
(b − 1)-coloring, since �(G[B]) ≤ 1 and b ≥ 3. The independent set V− + x ′′ completes
an equitable coloring of G. So assume that B is an independent set.

We can assume b0(x ′) ≤ 1, for otherwise, as in the previous case, we can form two
independent 3-sets that contain x and x ′ and 4 vertices from B; an equitable (a−1)-coloring
of A − X + x ′′ (move x ′′ and switch witnesses); and an equitable (b − 1)-coloring of
the remaining vertices in B. By the same reasoning, we can assume b0(x ′′) ≤ 1. Then
‖x ′′, B‖ ≥ 3b, so 3b ≤ 2b + 2, hence b ≤ 2.

Suppose b = 2. Then ‖x ′, B‖, ‖x ′′, B‖ ≤ 2b + 2 = 6, so b0(x ′) = b0(x ′′) = 1. Say
B0(x ′) = {y′} and B0(x ′′) = {y′′}. Then ‖x ′, B‖ = ‖x ′′, B‖ = 2b + 2, so x ′ and x ′′ are
free, and ‖x, B‖ = 2. Since d(x ′) = 2b + 2, d(y′) = d(y′′) = 2a − 1 and y′ and y′′ each
have precisely one neighbor vy′ resp. vy′′ in V−. If vy′ = vy′′ , we color {vy′ , x ′, x ′′} and
V − vy′ + {y′, y′′}. If vy′ 	= vy′′ , we color {vy′ , x ′′, y′′} and {vy′′ , x ′, y′}. In either case, we
then color x with two non-neighbors in B, and the remaining uncolored vertices in B are an
independent triple. Then we can assume b = 1.

Suppose b = 1 and b0(x ′) = b0(x ′′) = 0. Then ‖x ′, B‖ = ‖x ′′, B‖ = 4 = 2b + 2, so
by Proposition 36(a), x ′ and x ′′ are free. Also, ‖x, B‖ = 0. By Lemma 46, every vertex in
B has precisely one neighbor in V−, so we can choose y′, y′′ ∈ B that are both nonadjacent
to some v ∈ V−. Since b0(x) ≥ b + 1 = 2, we color B − y′ − y′′ + x , {v, y′, y′′}, and
V− −v + X − x . Together with the remaining color classesA−V− − X , this is an equitable
k-coloring of G.

Now we can assume b = 1 and b0(x ′) = 1, so ‖x ′, B‖ = 3. Since every vertex of
B has degree at least 2a − 1, d(x), d(x ′′) ≤ 2b + 2 = 4. Since ‖X, B‖ = 2|B| = 8,
‖{x, x ′′}, B‖ = 5, so ‖{x, x ′′}, A‖ ≤ 3. Since x ′ is movable, there exists an equitable
coloring of A−{x, x ′′}; combine this with {x, x ′′} and B to form a nearly-equitable coloring
f ′ of G. In f ′, {x, x ′′} is the small class, and ‖{x, x ′′}, B‖ = 5, so some vertex of B has two
neighbors in the small class of f ′. By Lemma 46, f ′ is not optimal. If {x, x ′′} have only two
neighbors to every class of f ′ − B − {x, x ′′}, then f ′ is optimal, so there exists a class Z
of f ′ − B − {x, x ′′} with ‖{x, x ′′}, Z‖ = 3. Since ‖{x, x ′′}, A‖ ≤ 3 and a ≥ 3, there exists
a class W in f ′, distinct from Z , {x, x ′′}, and B, such that ‖{x, x ′′},W‖ = 0. This violates
Lemma 42. ��
Lemma 48 Every color class in A′ has an unmovable vertex.

Proof Suppose that {x, x ′, x ′′} = X ∈ A′ has no unmovable vertex (and so also no solo
vertex). By Lemma 47, there exists y ∈ S(B), so there exists {z, z′, z′′} = Z ∈ A′ such that
yz ∈ S. Assume that ‖x, B‖ ≤ ‖x ′, B‖ ≤ ‖x ′′, B‖. This implies that ‖{x ′, x ′′}, B‖ ≥ 4b+2.
Since‖x ′′, B‖ ≤ 2b+2,‖x ′, B‖ ≥ 2b > b, so both x ′ and x ′′ are adjacent to some y′ ∈ T (B).
Hence d(x ′), d(x ′′) ≤ 2b + 2 and ‖{x ′, x ′′}, A‖ ≤ 2. Since there is an equitable (a − 1)-
coloring of A − X + x and a ≥ 3, Lemma 42 implies that ‖{x ′, x ′′}, A‖ = 2 = a − 1, so
d(x ′) = d(x ′′) = 2b + 2, ‖{x ′, x ′′}, B‖ = 4b + 2 and ‖x, B‖ = 2b. So A′ = {X, Z}, and
therefore, since X is terminal, there exists z′ ∈ Z − z that is movable to V−. Note that, since
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every vertex in X is movable, for every vertex in X there is at least one class in {V−, Z} to
which it is movable. Therefore, if we assume N (z)∩ X = {w}, then V− +w, Z − z + y and
X −w+ z is an equitable a-coloring of G[A+ y]. Therefore, because z is unmovable, z must
have at least two neighbors {w,w′} ⊆ X . Let w′′ = X − {w,w′} and note that Lemma 42
implies ‖X, V−‖ ≥ 1, so since ‖{w,w′}, V−‖ = 0, w′′ has a neighbor in V− and therefore
does not have a neighbor in Z , so Z − z′ +w′′ is an independent set. Since ‖w′′, A‖ ≥ 1 and
d(w′′) ≤ 2b + 2, ‖w′′, B‖ ≤ 2b + 1 < |B|, so there exists y′ ∈ B0(w

′′). Note that V− + z′,
Z − z′ +w′′, X −w′′ and B form an optimal coloring of G, because ‖V− + z′, X −w′′‖ = 0
and ‖w′′, X −w′′‖ = 0. Therefore, because N (y′) ⊇ X −w′′, Lemma 46 implies that b ≥ 2.
If either w or w′, say w, is adjacent to z′, then d(z′) = |T (B)| + 1 = 2b + 2 and, since
‖w, A‖ ≥ 2, d(w) ≥ 2b+2, so 4b+4 ≤ 2a+2b+1, which implies that 2b+3 ≤ 2a = 6,
and b < 2 a contradiction. Therefore, V− + z′ + w + w′ is an independent set, and this
contradicts Lemma 42, because {z, z′′, w′′} is also an independent set. ��
Lemma 49 There exists an optimal coloring f ′ such that F( f ′) is a star.

Proof If F is not star, there exists X ∈ A′ such that XV− is not an edge in F . Because
a′ = a − 1, there exists Z ∈ A′ such that ZV− is an edge in F . Because Z is in A′,
there exists an X, V−-path X, . . . ,W, V− inF that avoids Z . Therefore, there exists another
classes and W ∈ A′ − X − Z such that ZV− and WV− are both edges in F . Hence,

a ≥ 4. (9.1)

We let X = {x, x ′, x ′′} with x unmovable. Since XV− /∈ E(F),

every vertex in X has a neighbor in V−. (9.2)

We make the following claims.

Claim 1 For any U ∈ A′, if u ∈ U is unmovable and ‖U − u, A‖ ≥ 2, then u is solo.

Proof If ‖U − u, A‖ ≥ 2, then ‖U − u, B‖ ≤ 4b + 2 by Proposition 36. If u is not
solo, ‖u, B‖ ≥ 2b. So u is adjacent to some y ∈ T (B), but this implies d(u) + d(y) ≥
2b + a − 1 + 2a − 1, which contradicts (9.1). ��

Claim 1 and (9.2) imply

x is solo. (9.3)

By Corollary 41,

‖x ′, A‖ = ‖x ′′, A‖ = ‖x ′, V−‖ = ‖x ′′, V−‖ = 1 (9.4)

Claim 2 For every Z ∈ A′, ‖x, Z‖ ≤ 2.

Proof Suppose ‖x, Z‖ = 3 for some Z ∈ A′. By Claim 1 and Lemma 48, we can assume that
there exists z ∈ Z such that z is solo, and by Corollary 41, ‖z, B‖ ≥ b and for any u ∈ Z − z,
N (u) ∩ A = {x}. Since ‖x, B‖ ≥ b by (9.3) and Corollary 41, and since ‖x, A‖ ≥ a + 1
and x is adjacent to z, we have d(z) ≤ a + b. Since ‖z, B‖ ≥ b, we have that ‖z, A‖ ≤ a.
This implies that ‖z,U‖ ≤ 2 for everyU ∈ A′. If we let {z′, z′′} = Z − z, then we can move
z′′ to V−. Now {z, z′} is the small class of a nearly equitable coloring. In this new coloring,
using (9.4), the classes V− + z′′ and {x, x ′, x ′′} are movable to {z, z′}. Furthermore, any class
U ∈ A′ − Z − X is still a class of the new coloring, and it is movable to {z, z′} since the only
neighbor of z′ in A is x and z has at most two neighbors in U . This implies that, in the new
coloring, every class of A − V− is movable to V−. ��
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Claim 3 For every u ∈ A′ − X, if x is not adjacent to u, then u is not movable to V−.

Proof Suppose there exists a vertex z′ ∈ A′ − X such that z′ ∈ Z ∈ A′ is not adjacent to
x and z′ is movable to V−. Form a new nearly equitable coloring by moving z′ to V− and
x ′′ to Z − z′, which forms an independent set by (9.4). Note that {x, x ′} is the small class in
this coloring and that z′, and hence V− + z′, is movable to {x, x ′}. Clearly Z − z′ + x ′′ is
movable to {x, x ′}. Every U ∈ A′ − Z − X is a color class of the new coloring and, since
‖x ′,U‖ = 0 and ‖x,U‖ ≤ 2 by Claim 2, U is movable to {x, x ′}. This implies that, in the
new coloring, every class of A − V− is movable to V−. ��

ByClaim3, every vertex in Z∪W has a neighbor in A: either x or a vertex inV−. Therefore,
by Claim 1, there exist solo vertices z ∈ Z and w ∈ W . Furthermore, by Corollary 41, each
vertex in Z ∪ W − z − w has exactly one neighbor in V− + x and no neighbors in A′ − x .

Note that since both z and w are solo, and hence unmovable, they both have neighbors
in X . By (9.4), x is adjacent to both w and z. Furthermore, there exists w′ ∈ W − w and
z′ ∈ Z − z that witness the edges WV− and ZV−, respectively. Claim 3 then implies x
is adjacent to both w′ and z′. This, with the fact that x is solo and unmovable, implies that
‖x, A‖ ≥ a + 1. Since ‖x, B‖, ‖w, B‖, ‖z, B‖ ≥ b by Corollary 41, ‖w, A‖, ‖z, A‖ ≤
2a + 2b + 1 − (a + 1) − b − b = a. Therefore, each of w and z has at most 2 neighbors in
any class of A. Let {z′′} = Z − z − z′. The only neighbor of z′′ in A is either x or a vertex
in V− by Corollary 41 and Claim 3. Moving z′ to V− then creates a coloring f ′ with small
class {z, z′′}. We have that z′, x ′ and x ′′ are movable to {z, z′′}. This implies that the classes
V− + z′ and X are both movable to {z, z′′}. We also have that for any classU ∈ A′ − X − Z ,
z′′ has no neighbors in A′ − X ⊇ U and z has at most 2 neighbors in U . This implies that
every class of A( f ′) is movable to {z, z′′} and F( f ′) is a star. ��

By Lemma 49, we will assume below that F is a star.

Lemma 50 For every movable vertex x ′ ∈ A′, ‖x ′, A‖ ≤ 1. Furthermore, for any distinct
X, Z ∈ A, with unmovable x ∈ X and z ∈ Z , there is an equitable 2-coloring of G ′ :=
G[V− ∪ (X − x) ∪ (Z − z)].
Proof Let {x, x ′, x ′′} = X ∈ A′ with x unmovable and ‖x ′, B‖ ≤ ‖x ′′, B‖. If x is solo,
then by Lemmas 38 and 40, and by Proposition 36(a), the conclusion holds for x ′ and
x ′′, so assume that x is not solo and ‖x ′, A‖ ≥ 2. By Proposition 36(a) and Lemma 43,
‖x, B‖ ≤ 2b and ‖x ′, B‖ ≤ 2b. Since ‖X, B‖ ≥ 2(3b + 1) = 2(2b) + (2b + 2), this leaves
‖x ′′, B‖ ≥ 2b + 2. By Proposition 36(a), ‖x ′′, B‖ = 2b + 2 and ‖x, B‖ = ‖x ′, B‖ = 2b.
Since d(x ′) = d(x ′′) = 2b+2, for every y′ ∈ T (B), ‖y′, B‖ = 0. Since |B0(x)|, |B0(x ′)| =
b+1 > |S(B)| and |B0(x ′′)| = b−1 < |S(B)|, both B0(x) and B0(x ′) intersect T (B) and at
least one of B0(x) and B0(x ′) intersects S(B). Therefore, using Lemma 45(c) we can select a
4-set {y1, y2, y3, y4} ⊆ B0(x)∪ B0(x ′) such that {x, y1, y2} and {x ′, y3, y4} are independent
sets and there exists i ∈ [4] such that yi ∈ S(B). Therefore, there is a (b − 1)-coloring of
B − y1 − y2 − y3 − y4. Since x ′′ is movable, we can obtain an equitable k-coloring of G.

Recall F is a star, so for v ∈ V−, ‖v, V (G ′)‖ ≤ 2. As we just showed, every vertex in
(X − x) ∪ (Z − z) has at most one neighbor in A. Then for every uu′ ∈ E(G ′), dG ′(u) +
dG ′(u′) ≤ 3 < 2(2) + 1. Now the final sentence of the statement follows from Theorem 12.

��
Lemma 51 If x ∈ A′ is unmovable, then N (x) ⊇ S(B).

Proof The conclusion is true by Corollary 41 if x is solo, so assume that x is not solo and
there exists y ∈ S(B) ∩ B0(x). Let z ∈ {z, z′, z′′} = Z ∈ A′ − X be such that zy ∈ S. Since
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y ∈ B0(x) and |S(B)| = b, either ‖x, B‖ ≤ b − 1, or there exists y′ ∈ N (x) ∩ T (B). Since
‖x ′, B‖, ‖x ′′, B‖ ≤ 2b + 2, we have ‖x, B‖ ≥ 2b − 2. So we have such a y′ unless b = 1,
‖x, B‖ = 0, and N (x ′), N (x ′′) ⊇ B. Note that in this case, since ‖x ′, B‖ = ‖x ′′, B‖ =
2b+2, for every y′ ∈ T (B), d(y′) = 2a−1, so ‖y′, Z‖ = 2; by Corollary 41, z′, z′′ ∈ N (y′),
so y′z /∈ E . Therefore,we can label B as {y, y1, y2, y3} to have the independent sets {x, y, y1},
{z, y2, y3}. Since, by Lemma 50, there is an equitable 2-coloring of G[V− ∪ X − x ∪ Z − z]
we are done. So assume there exists y′ ∈ N (x) ∩ T (B) which implies d(x) ≤ 2b + 2. Then
since ‖x, A‖ ≥ a − 1 ≥ 2, ‖x, B‖ ≤ 2b < |T (B)|, so there exists y′′ ∈ T (B) ∩ B0(x).

First assume that ‖x ′, A‖ ≤ 1 and ‖x ′′, A‖ = 0. By Proposition 37, and the fact that xy,
z′y and z′′y are all not edges, xz′ and xz′′ must both be edges. Since d(z′), d(z′′) = 2b + 2,
d(y′′) = 2a − 1, so ‖y′′, Z‖ = 2 and y′′z is not an edge. Again by Proposition 37, xy′′ /∈ E
implies that xz ∈ E , so ‖x, A‖ ≥ a + 1. Now ‖x, A‖ + ‖x, B‖ ≤ 2b+ 2, ‖x, B‖ ≥ 2b− 2,
and a ≥ 3 imply that ‖x, B‖ = 2b − 2 and a = 3. Since y′ ∈ N (x), 2b − 2 = ‖x, B‖ ≥ 1.
So, b ≥ 2. But, d(x)+d(z′) = 4b+4 implies that 6 ≤ 2b+2 ≤ 2a−1 = 5, a contradiction.

So ‖{x ′, x ′′}, A‖ ≥ 2, which by Proposition 36(a) implies ‖x, B‖ = 2b and d(x ′) =
d(x ′′) = 2b + 2. Since d(x) ≤ 2b + 2, we have that a = 3. Also, since both x ′ and x ′′ are
adjacent to y,a+b+2b+2 ≤ 2a+2b+1, sob ≤ a−1 = 2. Sinced(x ′) = d(x ′′) = 2b+2 and
N (x ′)∪N (x ′′) ⊇ T (B), all vertices of T (B) are isolated in B and N (z)∩T (B) = ∅ by (A.6).
Therefore, there exist y1, y2 ∈ T (B) − y′′, and {x, y, y′′} and {z, y1, y2} are independent
sets. Since y ∈ S(B), there is an equitable (b − 1)-coloring of B − y − y′′ − y1 − y2. By
Lemma 50, there is also an equitable 2-coloring of G[V− ∪ (X − x) ∪ (Z − z)], which
completes the proof. ��
Lemma 52 The set of unmovable vertices in A′ forms a clique.

Proof By Lemma 43, a ≥ 3. Suppose there exist distinct, unmovable x, z ∈ A′ such that
xz /∈ E . Let y ∈ S(B). We know |S(B)| = b, S(B) is clique and d(y) ≤ a + b, so
‖y, A‖ ≤ a + 1. Then y has a solo neighbor in all but at most one class of A, so either
yx or yz is in S. Assume yx ∈ S. Since x and z are not movable, there exist vertices
z′ ∈ N (x) ∩ Z and x ′ ∈ N (z) ∩ X . With Lemma 50, this implies that N (z′) ∩ A = {x}
and N (x ′) ∩ A = {z}. Let {x, x ′, x ′′} = X ∈ A′ and {z, z′, z′′} = Z ∈ A′ be the color
classes of x and z, respectively, and let {v, v′} = V−. If xz′′ /∈ E , then {z′, v, v′}, {y, x ′, x ′′},
{x, z, z′′} are independent sets. These sets, together with an equitable k-coloring with the
classes of A − V− − X − Z and an equitable b-coloring of B − y, provides an equitable
k-coloring of G. So we can assume that xz′′ is an edge. Since d(x ′) ≥ 2b + 2, every vertex
in T (B) has degree exactly 2a − 1, with precisely two neighbors in every class ofA′ and no
neighbors in B. Therefore, no vertex in T (B) is adjacent to x . Since ‖z′, A‖ = ‖z′′, A‖ = 1
by Lemma 50, if z is not solo, then ‖z, B‖ = 2b, ‖z′, B‖ = ‖z′′, B‖ = 2b+ 1 and a = 3 by
Proposition 36(a). Therefore, if z is solo or not solo, there exists y′′ ∈ B0(z) ∩ T (B). Since
{v, v′, z′}, {x ′, x ′′, z′′} and {x, z, y′′} are independent sets, we are done with an equitable
b-coloring of B − y′′. ��
Lemma 53 There exists v ∈ V− such that every unmovable vertex in A′ is adjacent to v.

Proof Let {v, v′} = V−. Suppose the contrary, i.e., there exist unmovable vertices x ∈ X ∈
A′ and z ∈ Z ∈ A′ such that xv /∈ E and zv′ /∈ E . Since x and z are unmovable, x 	= z. Let
y ∈ S(B). Since ‖y, A‖ ≤ a + 1,

y is adjacent to at most one vertex in W := (X − x) ∪ (Z − z). (9.5)

Note there is no equitable 3-coloring of V ∪ X ∪ Z ∪ {y}, since such a coloring could
be extended to an equitable coloring of G. Call distinct w1, w2 ∈ W a good pair if there is
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an equitable 2-coloring of V− ∪ {x, z, w1, w2}. Suppose that {w1, w2} is a good pair and let
{w3, w4} = W − {w1, w2}. Then {w3, w4, y} is not an independent set, since otherwise we
could combine it with an equitable 2-coloring of V− ∪{x, z, w1, w2} to create an equitable 3-
coloring of V ∪X∪ Z ∪{y}. Ifw3w4 ∈ E(G), by Lemma 50, both {w1, w3} and {w2, w4} are
good pairs. Then neither {w2, w4, y} nor {w1, w3, y} is an independent set, lest we equitaly
3-color V ∪ X ∪ Z ∪ {y}. This contradicts (9.5). So w3w4 /∈ E(G). Therefore,

if {w1, w2} is a good pair, then ‖y,W − w1 − w2‖ ≥ 1. (9.6)

Since F is a star, there exist vertices x ′ ∈ X and z′ ∈ Z that are movable to V−. Let
X = {x, x ′, x ′′} and Z = {z, z′, z′′}. Since {x ′, z′} is a good pair, we can assume, by the
symmetry of x ′′ and z′′, (9.5) and (9.6), that x ′′ is the unique neighbor of y in W . So (9.6)
implies that {z′, x ′′} is not a good pair. With Lemma 50, this implies that x and v are the
unique neighbors in A of z′ and x ′′, respectively. So {x ′, x ′′} is a good pair and {y, z′, z′′} is
an independent set, a contradiction. ��

Lemma 54 ω(G) ≥ k.

Proof Let {v, v′} = V−. By Lemma 53, we can assume that every unmovable vertex in A′
is adjacent to v. Recall that for every y ∈ S(B), ‖y, A‖ ≤ a + 1 and for every y′ ∈ T (B),
‖y′, A‖ ≥ 2a − 1. Therefore, since a ≥ 3, if f ′ is an optimal coloring such that B( f ′) =
B( f ), then T f ′(B) = T f (B) and S f ′(B) = S f (B).

By Corollary 41, Lemmas 48, 51 and 52, and (A.5), we only need to show that N (v) ⊇
S(B). We will achieve this by showing that there exists an optimal coloring f ′ in which
F( f ′) is a star and v is not movable and not in V−( f ′). The conclusion then follows from
Lemma 51. By Lemma 43, Lemma 48, and Lemma 52, there exists a class {x, x ′, x ′′} ∈
X ∈ A′ such that x is low and unmovable. Since F( f ′) is a star, one of x ′ or x ′′, say x ′, is
movable to V−. By the selection of v, v is not movable, and we are done unless there exists
{z, z′, z′′} = Z ∈ A′ − X − V− such that no vertex in Z is movable to {x, x ′′}. So assume
that this is the case. Since N (x) ⊇ S(B), ‖x, B‖ ≥ b, so ‖x, A‖ ≤ a. So since ‖x ′′, A‖ ≤ 1
by Lemma 50, we can assume that x is adjacent to z and z′, and x ′′ is adjacent to z′′ and there
are no other edges in G[Z + x + x ′′]. Since ‖z′′, A‖ ≤ 1, x ′ is not adjacent to z′′. Therefore
we get the desired coloring by moving x ′′ instead of x ′ to V−. ��

The contradiction between this lemma and Lemma 15 completes the proof of Theorem 13.
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