Sharpening an Ore-type version of the Corrádi-Hajnal theorem

H. A. Kierstead ${ }^{1}$ • A. V. Kostochka ${ }^{2,3}$.
T. Molla ${ }^{2}$ - E. C. Yeager ${ }^{2}$

Received: 2 June 2015 / Published online: 22 December 2016
© The Author(s) 2016

Abstract

Corrádi and Hajnal (Acta Math Acad Sci Hung 14:423-439, 1963) proved that for all $k \geq 1$ and $n \geq 3 k$, every (simple) graph G on n vertices with minimum degree $\delta(G) \geq 2 k$ contains k disjoint cycles. The degree bound is sharp. Enomoto and Wang proved the following Ore-type refinement of the Corrádi-Hajnal theorem: For all $k \geq 1$ and $n \geq 3 k$, every graph G on n vertices contains k disjoint cycles, provided that $d(x)+d(y) \geq 4 k-1$ for all distinct nonadjacent vertices x, y. Very recently, it was refined for $k \geq 3$ and $n \geq 3 k+1$: If G is a graph on n vertices such that $d(x)+d(y) \geq 4 k-3$ for all distinct nonadjacent vertices x, y, then G has k vertex-disjoint cycles if and only if the independence number $\alpha(G) \leq n-2 k$ and G is not one of two small exceptions in the case $k=3$. But the most difficult case, $n=3 k$, was not handled. In this case, there are more exceptional graphs, the statement is more sophisticated, and some of the proofs do not work. In this paper we resolve

Dedicated to the memory of Rudolf Halin.
Research of H. A. Kierstead is supported in part by NSA Grant H98230-12-1-0212. Research of A. V. Kostochka is supported in part by NSF Grants DMS-1266016 and DMS-1600592 and by Grant NSh.1939.2014.1 of the President of Russia for Leading Scientific Schools. Research of T. Molla is supported in part by NSF Grant DMS-1500121. Research of E. C. Yeager is supported in part by NSF Grants DMS 08-38434 and DMS-1266016.

[^0]this difficult case and obtain the full picture of extremal graphs for the Ore-type version of the Corrádi-Hajnal theorem. Since any k disjoint cycles in a $3 k$-vertex graph G must be 3 -cycles, the existence of such k cycles is equivalent to the existence of an equitable k-coloring of the complement of G. Our proof uses the language of equitable colorings, and our result can be also considered as an Ore-type version of a partial case of the Chen-Lih-Wu Conjecture on equitable colorings.

Keywords Disjoint cycles • Equitable coloring • Minimum degree
Mathematics Subject Classification 05C15 - 05C35 - 05C40

1 Introduction

For a graph $G=(V, E)$, let $|G|=|V|,\|G\|=|E|, \delta(G)$ and $\Delta(G)$ be the minimum and the maximum degrees of G, and $\alpha(G)$ be the independence number of G. Let \bar{G} denote the complement of G. For disjoint graphs G and H, let $G \cup H$ be the graph with vertex set $V(G) \cup V(H)$ and edge set $E(G) \cup E(H)$ and let $G \vee H$ denote $G \cup H$ together with all edges from $V(G)$ to $V(H)$.

In 1963, Corrádi and Hajnal proved a conjecture of Erdős by showing the following:
Theorem 1 [5] Let $k \in \mathbb{Z}^{+}$. Every graph G with (i) $|G| \geq 3 k$ and (ii) $\delta(G) \geq 2 k$ contains k disjoint cycles.

Both hypotheses (i) and (ii) in the theorem are sharp. In particular, if a graph G has k disjoint cycles, then $\alpha(G) \leq|G|-2 k$, since for any independent set I, every cycle contains at least two vertices of $G-I$. So, the graph $H:=\overline{K_{k+1}} \vee K_{2 k-1}$ (see Fig. 1) satisfies (i) and $\delta(H)=2 k-1$, but H does not have k disjoint cycles, because $\alpha(H)=k+1>|H|-2 k$. One of the results in [12] is the following refinement of Theorem 1.

Theorem 2 [12] Let $k \geq 2$ be fixed. Every graph G with (i) $|G| \geq 3 k$ and (ii') $\delta(G) \geq 2 k-1$ contains k disjoint cycles if and only if

$$
\begin{equation*}
\alpha(G) \leq|G|-2 k \tag{1.1}
\end{equation*}
$$

and
if k is odd and $|G|=3 k$, then $G \neq 2 K_{k} \vee \overline{K_{k}}$; and if $k=2$ then G is not a wheel. (1.2)
Theorem 2 was used in [13] to solve Dirac's problem of characterizing the ($2 \mathrm{k}-1$)connected multigraphs with no k disjoint cycles. Enomoto [6] and Wang [21] generalized the Corrádi-Hajnal theorem in terms of the minimum Ore-degree $\sigma_{2}(G):=\min \{d(x)+d(y)$: $x y \notin E(G)\}$:

Fig. $1 \overline{K_{k+1}} \vee K_{2 k-1}, k=3$

Fig. 2 Two extremal examples for Theorem 3

Theorem 3 [6,21] Let $k \in \mathbb{Z}^{+}$. Every graph G with (i) $|G| \geq 3 k$ and

$$
\begin{equation*}
\sigma_{2}(G) \geq 4 k-1 \tag{1.3}
\end{equation*}
$$

contains k disjoint cycles.
It is natural to try to describe the extremal graphs in Theorem 3. Two such examples are in Fig. 2.

In [12], such graphs with at least $3 k+1$ vertices are described:
Theorem 4 [12] Let $k \in \mathbb{Z}^{+}$with $k \geq 3$. Every graph G with $|G| \geq 3 k+1$ satisfying (1.1) and

$$
\begin{equation*}
\sigma_{2}(G) \geq 4 k-3 \tag{1.4}
\end{equation*}
$$

contains k disjoint cycles, unless $k=3$ and $G \in\left\{\mathbf{U}_{1}, \mathbf{U}_{2}\right\}$.
The goal of this paper is to handle the unsolved (and most difficult) case $|G|=3 k$. Since any $3 k$ disjoint cycles in a $3 k$-vertex graph G are triangles, the vertex sets of these triangles form color classes of an equitable k-coloring of \bar{G}. Recall that a vertex coloring of G is equitable if any two color classes differ in size by at most one. Equitable colorings and their generalizations have applications in Operation Research and Scheduling Theory (see e.g. $[3,20]$).

The fundamental result on equitable colorings is due to Hajnal and Szemerédi [7]:
Theorem 5 [7] For every positive integer r, each graph G with $\Delta(G) \leq r$ has an equitable ($r+1$)-coloring.

This result has interesting applications in extremal combinatorial and probabilistic problems, see e.g. $[1,2,19]$.

In order to state Ore-type results in the language of equitable colorings, we use the notion of Ore-degree, $\theta(x y)$, of an edge $x y$. The Ore-degree of an edge is the sum the degrees of its endpoints; that is, $\theta(x y)=d(x)+d(y)$, whenever $x y$ is an edge. By definition, the Ore-degree of an edge $x y$ is two greater than the degree of the vertex $x y$ in the line graph of G. We let the Ore-degree of a graph G be $\theta(G)=\max _{x y \in E(G)} \theta(x y)$. So for a $3 k$-vertex graph G, the condition $\sigma_{2}(\bar{G}) \geq 4 k-a$ is equivalent to $\theta(G) \leq 2 k+a-2$. By definition, $\theta(G) \leq 2 \Delta(G)$. So the next Ore-type result refines the Hajnal-Szemerédi theorem.

Theorem 6 [8] Every graph G with $\theta(G)<2 k$ has an equitable k-coloring.
Chen et al. [4] conjectured that the Hajnal-Szemerédi Theorem can be refined in another direction:

Fig. 3 Graph \mathbf{X}, from Example 9

Conjecture 7 [4] Let G be a connected graph with $\Delta(G)=k$. Then G has no equitable k-coloring if and only if either (1) $G=K_{k+1}$, or (2) $k=2$ and G is an odd cycle, or (3) k is odd and $G=K_{k, k}$.

This conjecture is mainly open. Some partial results can be found in [4, 10, 11, 16, 22,23]. In particular, we will use the following known result, combining Theorem 37 from [10] and Theorem 9 from [11].

Theorem $8[10,11]$ Let G be a graph with $|G|=k s$ and $\chi(G), \Delta(G) \leq k$ that has no equitable k-coloring. If either $s \leq 4$ or $k \leq 4$ then k is odd, $K_{k, k} \subseteq G$, and $G-K_{k, k}$ is k-equitable. In particular, if $s=3$ then $G=K_{k, k}+K_{k}$.

The main result of this paper can be considered an Ore-type version of Theorem 8 for the case $s \leq 3$. Before stating it, we need to consider some extremal examples.

For disjoint sets X and Y, let $K(X)$ denote the complete graph with vertex set X, and $K(X, Y)$ denote the complete bipartite graph with parts X and Y. The graph $K(X, Y)$ is often denoted as $K_{|X|,|Y|}$.

Example 9 Let $Q:=K\left(\left\{x_{1}, x_{2}, x_{3}\right\},\left\{y_{1}, y_{2}, y_{3}\right\}\right), K=K\left(\left\{w_{1}, w_{2}, w_{3}\right\}\right)$, and

$$
\begin{equation*}
\mathbf{X}=Q-x_{3} y_{3}+K+x_{3} w_{1}+x_{3} w_{2}+y_{3} w_{3} . \tag{1.5}
\end{equation*}
$$

(See Fig. 3.) Then $|\mathbf{X}|=9=3 \cdot 3, \chi(\mathbf{X})=3$, and $\theta(\mathbf{X})=2 \cdot 3+1$, but \mathbf{X} has no equitable 3coloring: Any 3-coloring f gives distinct colors to K and satisfies $f\left(x_{3}\right)=f\left(w_{3}\right) \neq f\left(y_{3}\right)$. So if f is an equitable 3-coloring of \mathbf{X} then it is also an equitable 3-coloring of Q, contradicting that f is a proper coloring. Also, we will later make use of this observation:

$$
\begin{equation*}
\mathbf{X} \simeq Q-x_{3} y_{3}-x_{3} y_{2}+K+x_{3} w_{1}+x_{3} w_{2}+y_{3} w_{3}+y_{2} w_{3} . \tag{1.6}
\end{equation*}
$$

Example 10 Let $k \geq 2$, and $\mathbf{Y}=\mathbf{Y}_{\mathbf{k}}=K_{1,2 k}+K_{k-1}$. (See Fig. 4a.) Then $|\mathbf{Y}|=3 k$, $\chi(\mathbf{Y}) \leq k$, and $\theta(\mathbf{Y})=2 k+1$, but \mathbf{Y} has no equitable k-coloring: for any k-coloring the class of the vertex r with $d(r)=2 k$ contains at most one vertex from K_{k-1}.

Example 11 For $k \geq 2$ and odd $c \leq k$, let $V=B_{1} \cup B_{2}=C_{1} \cup C_{2} \cup B_{2}$, where C_{1}, C_{2}, B_{2} are disjoint, $\left|C_{1}\right|=c,\left|C_{2}\right|=2 k-c$, and $\left|B_{2}\right|=k$. Set $\mathbf{Z}_{\mathbf{c}, \mathbf{k}}=Q+K$, where $Q=K\left(C_{1}, C_{2}\right)$ and $K=K\left(B_{2}\right)$. (See Fig. 4b.) Then $\left|\mathbf{Z}_{\mathbf{c}, \mathbf{k}}\right|=3 k, \chi\left(\mathbf{Z}_{\mathbf{c}, \mathbf{k}}\right)=k$, and $\theta\left(\mathbf{Z}_{\mathbf{c}, \mathbf{k}}\right)=2 k$, but $\mathbf{Z}_{\mathbf{c}, \mathbf{k}}$ has no equitable k-coloring. Indeed, each class of an equitable coloring of $\mathbf{Z}_{\mathbf{c}, \mathbf{k}}$ must contain one vertex of K and two vertices from the same part of Q. As c and $2 k-c$ are odd, this is impossible.

In particular, our results describe extremal examples for Theorem 6 when $n \leq 3 k$. It is enough to consider the case of n divisible by k, as when $n \equiv r(\bmod k)$ for some $1 \leq r \leq$

Fig. 4 Examples 10 and 11
$k-1$, we can consider the graph formed by adding a disjoint copy of K_{k-r} to G. If $s=1$ then G has k vertices and trivially has an equitable k-coloring. Our first result, Theorem 12 (which has a simple proof) handles the case $s=2$.

Theorem 12 Let G be a graph satisfying $|G|=2 k$,
(H1) $\chi(G) \leq k$ and
(H2) $\theta(G) \leq 2 k+1$.
If G has no equitable k-coloring then $K_{c, 2 k-c} \subseteq G$ for some odd $c \in[k]$.
Our main result is
Theorem 13 Let G be a graph satisfying $|G|=3 k$,
(H1) $\chi(G) \leq k$ and
(H2) $\theta(G) \leq 2 k+1$.
If G has no equitable k-coloring then $G \in\left\{\mathbf{X}, \mathbf{Y}_{\mathbf{k}}\right\}$ or $\mathbf{Z}_{\mathbf{c}, \mathbf{k}} \subseteq G$ for some odd c.
A relevant question is: Which graphs G satisfying (H2) (i.e., $\theta(G) \leq 2 k+1$) do not satisfy (H1) (i.e., have $\chi(G) \geq k+1$)? This question was resolved. First, Kierstead and Kostochka [9] showed that for $k \geq 6$ every such graph contains K_{k+1}, and Rabern [18] extended the result to $k=5$. Then Kostochka, Rabern and Stiebitz [15] proved that for $k=4$ every such graph contains K_{5} or the graph O_{5} in Fig. 5 (left). Finally, very recently Kierstead and Rabern [14] and independently Postle [17] described the infinite family of all 4-critical graphs G with $\theta(G) \leq 7$. Only one of them distinct from K_{4} has at most 9 vertices, namely 7 vertices. This graph O_{4} is on the right of Fig. 5 .

Theorems 4 and 13 together describe all graphs G with $\sigma_{2}(G) \geq 4 k-3$ that do not have k disjoint cycles. In the next section we prove Theorem 12, and the rest of the paper is devoted to the proof of Theorem 13. Namely, in Sect. 3 we set up the proof and prove simple properties of a minimum counterexample G to the theorem. In particular, in Lemma 15 we prove that this G has no complete k-vertex subgraphs. In Sect. 4 we prove that G has a nearly equitable coloring, i.e. a proper k-coloring in which one color class has size 2 , one has size 4 , and every other color class has size 3 . In the next two sections we study the properties of nearly equitable colorings of G with additional properties, normal colorings and optimal colorings. Based on these properties, in Sect. 7 we show that G has a nearly equitable coloring with even more good properties. In Sect. 8 we derive many properties of so called solo vertices. And in Sect. 9 we finish the proof by finding a complete k-vertex subgraph in G contradicting Lemma 15 mentioned above.

Fig. 5 Graphs O_{5} (on the left) and O_{4} (on the right)
Apart from standard notation, we will use the following. For a graph $G=(V, E)$ and sets $X, Y \subseteq V$, let $E(X):=E_{G}(X)=E(G[X])$ and let $E(X, Y):=E_{G}(X, Y)$ be the set of edges with one end in X and one end in Y. Define $\|X, Y\|:=|E(X, Y)|+|E(X \cap Y)|$, so the edges in $G[X \cap Y]$ are counted twice, and $\|X\|:=|E(X)|$. For a vertex $v \in V$, we write $N(v)$ for the set of vertices adjacent to v and $N[v]$ for $\{v\} \cup N(v)$. We often write $\|v, X\|$ for $\|\{v\}, X\|, X-v$ for $X \backslash\{v\}$ and $X+x$ for $X \cup\{v\}$. For an edge $e=x y \in E,\|e, X\|$ and $\|x y, X\|$ are equivalent to $\|\{x, y\}, X\|$. A k-coloring of G is a partition \mathcal{V} of V into k independent sets. We may express this partition as a function $f: V \rightarrow[k]$.

2 Proof of Theorem 12

Assume G has no equitable k-coloring. Since $|G|=2 k$, this means \bar{G} has no perfect matching. Since $|G|$ is even this yields that each matching in \bar{G} does not cover at least two vertices. So, by Berge-Tutte's formula, there is a set $T \subseteq V(G)$ such that $\bar{G}-T$ has at least $|T|+2$ odd components. Let $|T|=t$.

For a contradiction, it suffices to assume that (H2) holds and prove that (H1) fails or $K_{c, k-c} \subseteq G$ for some odd $c \leq k$. Let X and Y be the two smallest odd components of $\bar{G}-T$, $x \in X$ and $y \in Y$. Then

$$
2 k+1 \geq \theta(G) \geq d(x)+d(y) \geq(2 k-t-|X|)+(2 k-t-|Y|),
$$

so

$$
\begin{equation*}
|V(G)-T| \leq|X|+|Y|+t+1 . \tag{2.1}
\end{equation*}
$$

This implies that if $t=0$, then $V(G)=X \cup Y$ and $K_{c, 2 k-c} \subseteq G$, where $c=|X|$ is odd. So assume $t>0$. Then, since there are at least t odd components other than X and Y in $\bar{G}-T$, none of these odd components has order 3 or greater. By the choice of X and Y, this also yields $|X|=|Y|=1$. Hence, with (2.1),

$$
t \geq\lceil(2 k-1-|X|-|Y|) / 2\rceil=k-1,
$$

and $\chi(G) \geq \omega(G)=\alpha(\bar{G}) \geq t+2 \geq k+1$.

3 Setup and preliminaries for the proof of Theorem 13

Suppose $G=(V, E)$ is a counterexample to Theorem 13 with k minimum, and subject to this $\|G\|$ is minimum. So $|G|=3 k, G$ satisfies (H1-H2), $G \notin\{\mathbf{X}, \mathbf{Y}\}, \mathbf{Z}_{\mathbf{c}, \mathbf{k}} \nsubseteq G$ for any odd c, and
G has no equitable k-coloring, but $G-e$ has an equitable k-coloring for all $e \in E$.(3.1)
By the minimality of k,

$$
\begin{equation*}
\text { Theorem } 13 \text { holds for all } k^{\prime} \in[1, \ldots, k-1] \text {. } \tag{3.2}
\end{equation*}
$$

Call a vertex v high if $d(v) \geq k+1$, and low otherwise. For a subset W of $V(G)$, let $H(W)$ denote the set of high vertices in W and $L(W)=W \backslash H(W)$ denote the set of low vertices. An edge is high if it has a high end vertex. By (H2), $H(V)$ is independent; so a high edge also has a low vertex.

Lemma $14 k<\Delta(G) \leq 2 k-2$. In particular, $k \geq 3$.
Proof By Theorem 8, if $\Delta(G) \leq k$ then k is odd and $\mathbf{Z}_{\mathbf{k}, \mathbf{k}} \subseteq G$, a contradiction. Suppose $d(v)=d:=\Delta(G) \geq 2 k-1$ for some $v \in V$. As every neighbor of v has positive degree, $\theta(G) \leq 2 k+1$ implies $d \leq 2 k$. Let $X=N(v)$ and $Y=V(G) \backslash N[v]$. If Y is a clique then G contains $\mathbf{Y}_{\mathbf{k}}$ or $\mathbf{Z}_{1, \mathbf{k}}$; else choose distinct nonadjacent vertices $y_{1}, y_{2} \in Y$ with $\left\|\left\{y_{1}, y_{2}\right\}, X\right\|$ maximum. Let $V_{1}=\left\{v, y_{1}, y_{2}\right\}$ be one color class.

If $d=2 k$ then X is independent and $\|X, Y\|=0$. Since $G-\left\{v, y_{1}, y_{2}\right\} \subseteq K_{k-3}+\bar{K}_{2 k}$, it has an equitable ($k-1$)-coloring. Thus G has an equitable k-coloring, contradicting (3.1). So $d=2 k-1$. If $k=2$ then X is independent by (H1), contradicting (3.1). Thus $k \geq 3$.

Since $\theta(G) \leq 2 k+1$, each $x \in X$ has at most one neighbor in $V-v$. So $M:=E(X)$ is a matching, the vertices of Y are not adjacent to vertices saturated by M, and $\|X, Y\| \leq d-2 t$, where $t=|M|$. Say $M=\left\{e_{i}: i \in[t]\right\}$. Order the vertices in $Y-y_{1}-y_{2}$ so that $\left\|y_{3}, X\right\| \geq \cdots \geq\left\|y_{k}, X\right\|$.

Note that $\left\|y_{3}, X\right\| \leq k$, and if equality holds then $d\left(y_{3}\right)=d$: If not then $\left\|y_{3}, Y\right\| \leq d-$ $(k+1)=k-2$; so there is $y \in Y-y_{3}$ with $y y_{3} \notin E$. Thus $\left\|\left\{y_{1}, y_{2}\right\}, X\right\| \geq\left\|\left\{y_{3}, y\right\}, X\right\| \geq k$, so $\|X, Y\| \geq 2 k>d$, a contradiction. Thus $\left|X \backslash N\left(y_{3}\right)\right| \geq k-1 \geq 2$. Then there exist distinct nonadjacent vertices $x_{1}, x_{2} \in X \backslash N\left(y_{3}\right)$: if not, $X \backslash N\left(y_{3}\right)=K_{2},\left\|y_{3}, X\right\|=k$, $d\left(y_{3}\right)=d$, and $V \backslash N\left[y_{3}\right]=K_{3}=K_{k}$, so $\mathbf{Z}_{1, \mathbf{k}} \subseteq G$.

Using that M is a matching, choose x_{1} and x_{2} to be in distinct edges of M if possible; that is, label X and M so that for each $j \leq \min \{2, t\}, x_{j} \in e_{j}$.

Let $V_{2}=\left\{x_{1}, x_{2}, y_{3}\right\}$ be the second color class. Put $X_{3}=X \backslash\left\{x_{1}, x_{2}\right\}$. If $k=3$ then X_{3} is independent, and we are done. So assume $k \geq 4$.

We recursively construct color classes $V_{i}=\left\{y_{i+1}, x_{2 i-3}, x_{2 i-2}\right\}$ for $i \in\{3, \ldots, k-1\}$. Suppose we have chosen V_{1}, \ldots, V_{i-1}, and set $X_{i}:=N(v) \backslash\left\{x_{1}, \ldots, x_{2 i-4}\right\}$. By our choice of labels in $Y \backslash\left\{y_{1}, y_{2}\right\},\left\|y_{i+1}, X\right\| \leq\left\lfloor\frac{\|Y, X\|}{i-1}\right\rfloor \leq\left\lfloor\frac{2 k-2 t-1}{i-1}\right\rfloor$. Also $\left|X_{i}\right|=2(k-i)+3$, so

$$
\begin{align*}
\left|X_{i}-N\left(y_{i+1}\right)\right| & \geq\left|X_{i}\right|-\left\|y_{i+1}, X\right\| \geq 2(k-i)+3-\left\lfloor\frac{2 k-2 t-1}{i-1}\right\rfloor \\
& =\left\lceil 3+2(k-i)\left(1-\frac{1}{i-1}\right)-\frac{2 i-2 t-1}{i-1}\right\rceil \tag{*}\\
& \geq\left\lceil 3+(k-i)-\frac{2 i-1}{i-1}\right\rceil \geq\left\lceil 3+1-\frac{5}{2}\right\rceil=2 .
\end{align*}
$$

Note that if $\left|X_{i}-N\left(y_{i+1}\right)\right|=2$, the starred line shows $i>t$. Now we select distinct, nonadjacent $x_{2 i-3}, x_{2 i-2}$ in $X_{i} \backslash N\left(y_{i+1}\right)$. If we can choose $x_{2 i-3} \in e_{i}$, we do so. More precisely: using that $V(M) \subseteq X \backslash N\left(y_{i}\right)$, if $i \leq t$ and $e_{i} \cap X_{i} \neq \emptyset$, we choose $x_{2 i-3} \in e_{i}$; then, since $\left|X_{i}-N\left(y_{i+1}\right)\right| \geq 3$, we select $x_{2 i-2} \in X_{i} \backslash\left(e_{i} \cup N\left(y_{i+1}\right)\right)$. Suppose $i>t$, or $e_{i} \cap X_{i}=\emptyset$. If $\left|X_{i} \backslash N\left(y_{i+1}\right)\right|=2$, since $i>t$ and by our choice of V_{1}, \ldots, V_{i-1},
the two vertices of $X_{i} \backslash N\left(y_{i+1}\right)$ are nonadjacent. Otherwise, since M is a matching, we let $x_{2 i-3}, x_{2 i-2}$ be any two distinct, nonadjacent vertices in $X_{i} \backslash N\left(y_{i+1}\right)$. Finally, let $V_{k}:=X_{k}$ be the last color class. Since $|M| \leq k-1, V_{k}$ is independent.

Lemma $15 \omega(G) \leq k-1$.
Proof Suppose K is a k-clique in G, and set $H=G-K$. As $\mathbf{Z}_{\mathbf{c}, \mathbf{k}} \nsubseteq G$ for any odd c, $K_{c, 2 k-c} \nsubseteq H$ for any odd c. Since $\theta(G) \leq 2 k+1$,

$$
\begin{equation*}
\|x y, H\| \leq 3 \text { for all } x, y \in K \tag{3.3}
\end{equation*}
$$

By Theorem 12, H has an equitable k-coloring f.
First suppose

$$
\begin{equation*}
K \nsubseteq N(U) \text { for all classes } U \text { of } f \tag{3.4}
\end{equation*}
$$

and note that, by Lemma 14,

$$
\begin{equation*}
\text { no vertex } x \in K \text { has neighbors in all classes of } f \tag{3.5}
\end{equation*}
$$

Extend f to an equitable k-coloring f^{\prime} of G by first greedily adding vertices of K into distinct classes of f starting with the vertex x with $\|x, H\|$ maximum. By (3.5) and (3.3) the process will not get stuck before the last vertex $z \in K$. If z cannot be greedily added to the last remaining class W, (3.3) implies W is the only class z is adjacent to. By (3.4) there is $y \in K \backslash N(W)$. Move y to W and z to the former class of y to finish. As this contradicts (3.1), (3.4) fails.

Say $K \subseteq N(Z)$ for some class $Z=\left\{z, z^{\prime}\right\}$ of f. Put $H^{+}=H+z z^{\prime}$. Then $d_{H^{+}}(z) \leq d_{G}(z)$ and $d_{H^{+}}\left(z^{\prime}\right) \leq d_{G}\left(z^{\prime}\right)$. So $\theta\left(H^{+}\right) \leq 2 k+1$. Suppose H^{+}has no equitable k-coloring. Since $\chi(G) \leq k, \chi\left(H^{+}\right) \leq k$, so, by Theorem 12, $Q:=K_{c, 2 k-c} \subseteq H^{+}$for some odd $c \leq k$, and $z z^{\prime} \in E(Q)$. Say $d_{Q}\left(z^{\prime}\right)=c$. Note each vertex of $\left\{z, z^{\prime}\right\}$ has a neighbor in K because $\chi(G) \leq k$, and, by Lemma $14,3 \leq c$. Then there exist $x \in K$ and $y \in V(H)$ with $x z, y z^{\prime} \in E$. Since $G \neq \mathbf{X}, k \geq 4$. Since $\theta(G) \leq 2 k+1$,

$$
4 k+2 \geq \theta(x z)+\theta\left(y z^{\prime}\right) \geq\|Z, K\|+k+(2 k-c-1)+(2 k-1) \geq 6 k-2-c .
$$

So $2 k-4 \leq c \leq k$. As c is odd and $k \geq 4$, this is a contradiction. Thus H^{+}has an equitable k-coloring f^{\prime}.

Since (3.4) fails, there is a class Y of f^{\prime} such that $K \subseteq N(Y)$. As $z z^{\prime} \in E\left(H^{+}\right)$, $Y \neq Z$. As $\left\|K, H^{+}\right\| \leq k+1$, and $\chi(G) \leq k$, there are vertices $u \in K$ and $z^{\prime \prime} \in V(H)$ with (say) $Y=\left\{z, z^{\prime \prime}\right\}, N(z) \cap K=K-u, u z^{\prime}, u z^{\prime \prime} \in E$, and $N(K)=\left\{z, z^{\prime}, z^{\prime \prime}\right\}$. If $H^{*}:=H^{+}+z z^{\prime \prime}$ has an equitable coloring then it satisfies (3.4), and we are done. Otherwise, $Q:=K_{c, 2 k-c} \subseteq H^{*}$ for some odd $c \leq k$, with $z z^{\prime \prime} \in E(Q)$. By Lemma $14,3 \leq c$. If $k=3$ then $G=\mathbf{X}$ by (1.6). Else, for $w \in N_{Q}(z) \backslash\left\{z^{\prime}, z^{\prime \prime}\right\}$,

$$
2 k+1 \geq \theta(z w) \geq\|z, K\|+\theta_{H^{*}}(w z)-2 \geq k-1+2 k-2=(2 k+1)+(k-4)
$$

so $k=4$ and $z^{\prime}, z^{\prime \prime}$ are in one part Q^{\prime} of Q. Since $d(u)=k+1, d\left(z^{\prime}\right), d\left(z^{\prime \prime}\right) \leq k$, so $\left|Q^{\prime}\right|=5$. But now for $x \in V(K)-u, d(z)+d(u) \geq 6+4=2 k+2$, a contradiction.

Lemma $16 k \geq 4$.
Proof For a contradiction, suppose $k \leq 3$. By Lemma $14, k=3$ and $\Delta(G)=4$. Let $d(v)=4, N=N(v), G^{\prime}=G-N[v]$, and $V\left(G^{\prime}\right)=N^{\prime}$. By Lemma 15,

$$
\begin{equation*}
\omega(G) \leq 2 \tag{3.6}
\end{equation*}
$$

So N is independent and, since $\left|G^{\prime}\right|=4, G^{\prime}$ is bipartite. Also $\theta(G) \leq 2 k+1$ implies

$$
\begin{equation*}
\left\|x, N^{\prime}\right\| \leq 2 \text { for all } x \in N \tag{3.7}
\end{equation*}
$$

and $\left\|N, N^{\prime}\right\| \leq 8$.
Suppose $d_{G^{\prime}}(w)=3$ for some $w \in N^{\prime}$. Then $\|w, N\| \leq 1$ because $\Delta(G)=4$, and $N(w) \cap N\left(w^{\prime}\right)=\emptyset$ for all $w^{\prime} \in N^{\prime}-w$ by (3.6). Because $\left\|N, N^{\prime}\right\| \leq 8,\left\|w^{\prime}, N\right\| \leq 2$ for some $w^{\prime} \in N^{\prime}-w$. Choose $x_{1}, x_{2} \in N \backslash N\left(w^{\prime}\right)$, including the neighbor of w if it exists. Then $\left\{\left\{w^{\prime}, x_{1}, x_{2}\right\}, N-x_{1}-x_{2}+w, N^{\prime}-w-w^{\prime}+v\right\}$ is an equitable 3-coloring of G.

Otherwise $\Delta\left(G^{\prime}\right) \leq 2$, so N^{\prime} has an equitable 2-coloring.
If Y is a class of an equitable 2-coloring of N^{\prime}, then $N(x) \cap Y \neq \emptyset$ for all $x \in N$: (3.8)
else $\left\{\left(N^{\prime} \backslash Y\right)+v, Y+x, N-x\right\}$ is an equitable 3-coloring of G. Let $N^{\prime}=\left\{y_{1}, y_{2}, y_{3}, y_{4}\right\}$ and $x \in N$. As N^{\prime} has an equitable 2-coloring g, (3.7) and (3.8) imply $\left\|x, N^{\prime}\right\|=2$. Say $N(x)=\left\{y_{1}, y_{2}\right\}$. By (3.6) $y_{1} y_{2} \notin E$, so (3.8) implies $y_{3} y_{4} \in E$, and, by (3.6) again, $N\left(y_{3}\right) \cap$ $N\left(y_{4}\right)=\emptyset$. Assume $\left\|y_{3}, N\right\| \geq\left\|y_{4}, N\right\|$. If $\left\|y_{3}, N\right\| \leq 2$, then there exist disjoint 2 -sets $X_{1}, X_{2} \subseteq N$ with $N\left(y_{3}\right) \cap N \subseteq X_{1}$ and $N\left(y_{4}\right) \cap N \subseteq X_{2}$. So $\left\{\left\{v, y_{1}, y_{2}\right\}, X_{1}+y_{4}, X_{2}+y_{3}\right\}$ is an equitable 3-coloring of G. Otherwise, $N\left(y_{3}\right) \cap N=N-x$, and $N\left(y_{4}\right) \cap N=\emptyset$. Say $g\left(y_{1}\right)=g\left(y_{3}\right)$. By (3.8), $N\left(y_{2}\right)=N$ and, by (3.6), $N\left(y_{1}\right) \cap N=\{x\}$. By (3.6), $y_{2} y_{3} \notin E$, so if $x^{\prime} \in N-x$, then $\left.\left\{\left\{v, y_{2}, y_{3}\right\},\left\{x, x^{\prime}, y_{4}\right\}, N-x-x^{\prime}+y_{1}\right\}\right\}$ is an equitable 3-coloring of G.

4 Nearly equitably colorings

Recall that a coloring of G is nearly equitable if one color class has size 2, one color class has size 4, and all other color classes have size 3 .

Lemma 17 G admits a nearly-equitable k-coloring.
Proof Suppose not. By Lemma 14, $\Delta(G) \geq k+1$. Let x be a vertex with $d(x) \geq k+1$ and let $y \in N(x)$. By (3.1), $G-x y$ has an equitable k-coloring f with $f(x)=f(y)$. Let \mathcal{C} be the set of color classes of f, and $X=\{x, y, z\} \in \mathcal{C}$. Choose $x y$ and f so that $d(z)$ is minimum. If x (or y) has no neighbor in some class $W \in \mathcal{C}-X$ then moving it to W yields a nearly equitable k-coloring; so assume not. As y is low, $d(y)=k$, and $d(x)=k+1$. Furthermore,

$$
\begin{equation*}
y \text { has exactly one neighbor in every class, } \tag{4.1}
\end{equation*}
$$

and
x has exactly two neighbors in one class, and exactly one neighbor in every other class.

For $W \in \mathcal{C}-X$, let $G_{W}:=G[W \cup X]$. If G_{W} is bipartite, then its parts form an equitable or nearly equitable 2-coloring unless $G_{W}=K_{1,5}$. However, by (4.1) and (4.2), $\Delta\left(G_{W}\right) \leq 3$, so $G_{W} \neq K_{1,5}$; thus if G_{W} is bipartite, it has an equitable or nearly equitable 2 -coloring. If G_{W} has an equitable or nearly equitable 2-coloring, then G has an equitable or nearly equitable k-coloring. Thus G_{W} contains an odd cycle C_{W} that contains $x y$. Assume C_{W} is picked so that $\left|C_{W}\right|$ is as small as possible. Let $\mathcal{C}_{1}=\left\{W \in \mathcal{C}-X:\left|C_{W}\right|=3\right\}$ and $\mathcal{C}_{2}=\mathcal{C}-X \backslash \mathcal{C}_{2}$. For $W \in \mathcal{C}_{1}$, let $C_{W}=x v_{W} y x$. If v_{W} is movable to some class U then moving y to W and
v_{W} to U yields a nearly equitable k-coloring. As $v_{W} \in N(x)$, it is low. Thus v_{W} has two neighbors in X and one neighbor in each class of $\mathcal{C}-X-W$. In particular,

$$
\begin{equation*}
\text { if } W \in \mathcal{C}_{1}, \quad \text { then } v_{W} z \notin E . \tag{4.3}
\end{equation*}
$$

For $W \in \mathcal{C}_{2}$, let $C_{W}=x x_{W} z y_{W} y x$, where $x_{W}, y_{W} \in W$. Since $W \in \mathcal{C}_{2}, G_{W}-z$ is triangle free, and since $\alpha\left(G_{W}-z\right) \geq|W|=3, G_{W}-z$ contains no C_{5}. Then $G_{W}-z$ contains no odd cycle, so it is bipartite. Since $\Delta\left(G_{W}-z\right) \leq 3, G_{W}-z \neq K_{1,4}$, so $G_{W}-z$ can be partitioned into independent sets of size 2 and 3 . If z is movable, we can move z to create a color class of size 4 , and partition $G_{W}-z$ into one color class of size three and one of size four, providing a nearly equitable coloring of G. So z is not movable. Thus,

$$
\begin{equation*}
\text { if }\left|\mathcal{C}_{2}\right| \neq 0, \quad \text { then }\left|\mathcal{C}_{1}\right|+2\left|\mathcal{C}_{2}\right| \leq d(z) \leq k+1 \tag{4.4}
\end{equation*}
$$

If there are distinct $W, W^{\prime} \in \mathcal{C}_{1}$ with $v_{W} v_{W^{\prime}} \notin E$, then using (4.2), choose notation so that $\|x, W\|=1$. By (4.1) and (4.3), moving x to W, y to W^{\prime}, and both v_{W} and $v_{W^{\prime}}$ to X yields an equitable k-coloring. So $Q:=\left\{v_{W}: W \in \mathcal{C}_{1}\right\} \cup\{x, y\}$ is a clique. By Lemma 15, $|Q| \leq k-1$. So $\left|\mathcal{C}_{1}\right| \leq k-3$, and $\left|\mathcal{C}_{2}\right| \geq 2$; by (4.4) $d(z)=k+1$. Consider distinct $W, W^{\prime} \in \mathcal{C}_{2}$. Using (4.2) choose notation so that $\|x, W\|=1$. By (4.1), switching x and x_{W} yields an equitable k-coloring of $G-z x_{W}$, with color class $\left\{z, x_{W}, y\right\}$. As $d(y)<d(z)$, this contradicts the choice of f.

5 Normal colorings

Fix a nearly equitable k-coloring $f:=\left\{V_{1}, \ldots, V_{k}\right\}$, where $V^{-}=V_{1}$ and $V^{+}=V_{k}$. As our proof progresses we will put more and more stringent conditions on f.

Construct an auxiliary digraph $\mathcal{H}:=\mathcal{H}(G, f)$ as follows. The vertices of \mathcal{H} are the color classes V_{1}, \ldots, V_{k}. A directed edge $V^{\prime} V^{\prime \prime}$ belongs to $E(\mathcal{H})$ if some vertex $x \in V^{\prime}$ has no neighbors in $V^{\prime \prime}$. In this case we say that x is movable to V " and that x witnesses the edge $V^{\prime} V^{\prime \prime}$. Call a color class V_{i} of f accessible if V^{-}is reachable from V_{i} in the digraph \mathcal{H}. A vertex $v \in V_{i}$ is movable if it is movable to some accessible class; otherwise it is unmovable. Let $M=M(f)$ be the set of movable vertices and $\bar{M}=\overline{M(f)}$ be the set of unmovable vertices. By definition, V^{-}is accessible. Let $\mathcal{A}:=\mathcal{A}(f)$ denote the family of accessible classes, \mathcal{B} denote the family of inaccessible classes, $A:=\bigcup \mathcal{A}$, and $B:=\bigcup \mathcal{B}=V-A$. If $V_{k} \in \mathcal{A}$ then switching witnesses along a path from V^{+}to V^{-}yields an equitable r-coloring; so $V^{+} \in \mathcal{B}$. Let $a:=|\mathcal{A}|$ and $b:=|\mathcal{B}|=k s-a$. Then $|A|=a s-1$ and $|B|=b s+1$.

An in-tree is a digraph T with a root $r \in V(T)$ such that every $v \in V(T)$ has a unique $v r$ walk. So the undirected graph underlying T is acyclic. A vertex $v \in T$ is a leaf if $d^{-}(v)=0$. Fix a spanning in-tree $\mathcal{F} \subseteq \mathcal{H}[\mathcal{A}]$ with the most leaves possible. Write $W \mathcal{F}$ for the unique W, V^{-}-path in \mathcal{F}, and let w_{x} be the witness for its first edge. Let $\mathcal{D} \subseteq \mathcal{H}[\mathcal{A}]$ be the spanning graph with $U W \in E(\mathcal{D})$ if and only if $U W \in E(\mathcal{H})$ and $U \notin W \mathcal{F}$.

A class $Z \in \mathcal{A}$ is terminal if there is a $U V^{-}$-path in $\mathcal{H}-Z$ for every $U \in \mathcal{A}-Z$. For example, any leaf of \mathcal{F} is terminal. Class V^{-}is terminal if and only if $a=1$. Let $\mathcal{A}^{\prime}=\mathcal{A}^{\prime}(f)$ be the set of terminal classes, $A^{\prime}:=\bigcup \mathcal{A}^{\prime}$ and $a^{\prime}:=\left|\mathcal{A}^{\prime}\right|$.

A nearly equitable k-coloring is normal if
(C1) among nearly equitable k-colorings a is maximum, and
(C2) if $a \geq 3$, then \mathcal{F} has at least two in-leaves.
Lemma 18 There exists a normal coloring.

Proof Suppose f is a nearly equitable k-coloring with a maximum. If $a \leq 2$, (C2) is vacuously true, so we may suppose $a \geq 3$. If \mathcal{F} has at least two leaves then we are done; else \mathcal{F} is a dipath with leaf Z and last edge $U V^{-}$witnessed by w. As $a \geq 3, U \neq Z$. Shifting w to V^{-}yields a normal k-coloring with in-leaves $V^{-}+w$ and Z .

Fix a normal coloring f. A vertex $y \in B$ is good if $G[B-y]$ has an equitable b-coloring; else y is $b a d$. A major goal of this section is to show that every vertex in B is good.

Lemma $19 a=a(f) \geq 2$.
Proof Assume $a=1$ for all nearly equitable k-colorings of G, and choose one with

$$
\begin{equation*}
d(v)+d\left(v^{\prime}\right) \text { minimal } \tag{5.1}
\end{equation*}
$$

where $V^{-}=\left\{v, v^{\prime}\right\}$. Say $d(v) \leq d\left(v^{\prime}\right)$. By Lemma 14, $d\left(v^{\prime}\right) \leq 2 k-2$. As $N\left(V^{-}\right)=V-V^{-}$, $d(v)+d\left(v^{\prime}\right) \geq 3 k-2+\left|N(v) \cap N\left(v^{\prime}\right)\right|$.
Case 1: $N(v) \cap N\left(v^{\prime}\right)=\emptyset$. If $\left\|v, V^{+}\right\|=\left\|v^{\prime}, V^{+}\right\|=2$, then coloring v resp. v^{\prime} with its non-neighbors in V^{+}yields an equitable k-coloring. Therefore we suppose $\left\|u, V^{+}\right\| \geq 3$ for some $u \in V^{-}$. Pick $Y \in \mathcal{B}$ with $\|u, Y\|$ minimum. If $\|u, Y\|=0$ then moving u to Y and $x \in N(u) \cap V^{+}$to V^{-}yields a nearly equitable k-coloring with $a \geq 2$: any vertex $N(u) \cap V^{+}-x$ is movable to the new small class $V^{-}-u+x$. Else, since $d(u) \leq 2 k-2=2 b$, $\|u, Y\|=1$ and $d(u) \geq k+1$. Switching u with $y \in N(u) \cap Y$ yields a nearly equitable coloring, contradicting (5.1) since $d(y) \leq(2 k+1)-d(u) \leq k$.

Case 2: $N(v) \cap N\left(v^{\prime}\right) \neq \emptyset$. Then $d(v) \geq k+1$ and $d\left(v^{\prime}\right) \geq k+2$. Put $G^{\prime}=G[B]$. Then $\chi\left(G^{\prime}\right) \leq b$. Since $\theta(G) \leq 2 k+1, \Delta\left(G^{\prime}\right) \leq 2 k+1-d(v)-1 \leq b$. If $S \subseteq V$ with $|S|=2 k$ then there is $x \in N\left(v^{\prime}\right) \cap S$, and $d_{G^{\prime}}(x) \leq b-1$. So $K_{b, b} \nsubseteq G^{\prime}$. Pick $w \in N\left(v^{\prime}\right) \backslash N(v)$. Theorem 8 implies $G^{\prime}-w$ has an equitable b-coloring \mathcal{Y}. As $\left\|v^{\prime}, B-w\right\|<2 b$, some class $Y \in \mathcal{Y}$ satisfies $\left\|v^{\prime}, Y\right\| \leq 1$. Move w to $V^{-}-v^{\prime}$ and v^{\prime} to Y; if v^{\prime} has a neighbor $y \in Y$ then move y to a class X in which it has no neighbors; X exists as $d(y) \leq k-1$. This yields an equitable k-coloring, or a nearly equitable k-coloring, contradicting (3.1) or (5.1) since $d(w)<d\left(v^{\prime}\right)$.

An edge $x y$ with $x \in X \in \mathcal{A}$ and $y \in B$ is solo if $\|y, X\|=1$; else it is nonsolo. If $x y$ is solo then x and y are solo neighbors of each other. For $x \in A$ and $y \in B$ let S_{x} denote the set of solo neighbors of x in B and S^{y} denote the set of solo neighbors of y in A.

Lemma 20 Let $z \in Z \in \mathcal{A}, y \in S_{z}$, and g be an equitable b-coloring of $G[B-y]$. Then
0. if \mathcal{P} is a W, V^{-}-path in $\mathcal{H}-Z$ and w witnesses $W W^{\prime} \in E(\mathcal{P})$ then $\|z, W-w\| \geq 1$.

If (a) the nonsolo neighbors of y are unmovable (as when $\|y, A\|=a$ and y does not have nonsolo neighbors) or (b) $Z \in \mathcal{A}^{\prime}$ then

1. z is unmovable;
2. If, in addition, (c) $\|z, A\| \leq a-1$, then z has no movable neighbor $w \in W \in \mathcal{A}$.

Proof In all cases, we will contradict (3.1) by constructing an equitable a-coloring h of $A+y$, since then $g \cup h$ is an equitable k-coloring of G.
(0) If not, shift witnesses along \mathcal{P}, move z to W, and move y to Z to obtain an equitable a-coloring h of $A+y$.
(1) Suppose (a) or (b) holds and z is movable to $U \in \mathcal{A}$. Pick U and a U, V^{-}-path \mathcal{P} in \mathcal{H}. By (0), $Z \in \mathcal{P}$; in particular, there is no Z, V^{-}path in \mathcal{H} where z is the witness to the
first edge. Then (b) fails, so (a) holds; say x witnesses $X Z \in \mathcal{P}$. By (0) applied to x, x is not a solo neighbor of y; by (a) applied to x, x is not a neighbor of y at all. We move z to U, then shift witnesses along \mathcal{P}, noting that the witness from Z is not z; then we move y to $Z-z+x$ to complete an equitable a-coloring of $A+y$.
(2) Suppose (a) or (b) holds; further suppose (c) holds and $w z \in E$ with w movable to $U \in A$. Note by (1) and (c), z has precisely one neighbor in every class of $\mathcal{A}-Z$. Pick a U, V^{-}-path \mathcal{P} in \mathcal{H} so that $Z \notin \mathcal{P}$ if (b) holds. Subject to this, choose w, W, U, \mathcal{P} so that $|\mathcal{P}|$ is minimum. Suppose $W \in \mathcal{P}$. By the minimality of $|\mathcal{P}|, w$ does not witness the out-edge of W on \mathcal{P}, and, if w^{\prime} witnesses the in-edge to W on \mathcal{P}, then $z w^{\prime} \notin E$, because otherwise w^{\prime} is preferable to w by the minimality of $|\mathcal{P}|$. If $Z \in \mathcal{P}$, then let z^{\prime} witness the in-edge to Z on \mathcal{P}. In this case, $y z^{\prime} \notin E$, because $Z \in \mathcal{P}$ implies that (b) fails for Z, so (a) holds, and (0) implies $y z^{\prime}$ is not solo, so (a) implies that $y z^{\prime} \notin Z$. By (0), we also have that z does not witness the out-edge of Z on \mathcal{P}. Therefore, switching witnesses on \mathcal{P}, and moving w to U, z to W and y to Z yields an equitable a-coloring of $A+y$.

Lemma 21 Every color class in \mathcal{A} contains at most one unmovable vertex.
Proof Suppose $Z \in \mathcal{A}$ has two unmovable vertices z_{1} and z_{2}. If $Z \neq V^{-}$then let $Z=$ $\left\{z_{1}, z_{2}, z_{3}\right\}$. Let $B_{0}=B+z_{1}+z_{2}$ and $A_{0}=A-z_{1}-z_{2}$. Since z_{3} (if it exists) is the witness for the first edge $Z Z^{\prime}$ of $\mathcal{P}_{0}:=Z \mathcal{F}$, shifting witnesses on \mathcal{P}_{0} yields an equitable ($a-1$)-coloring f_{0} of $G\left[A_{0}\right]$. Thus $G^{\prime}:=G\left[B_{0}\right]$ has no equitable $(b+1)$-coloring, but $g:=f \mid B_{0}$ is a nearly equitable $(b+1)$-coloring. As each $v \in B_{0}$ is unmovable,

$$
\begin{equation*}
\text { (a) } d(v) \geq a-1+d_{G^{\prime}}(v)+\left\|v, z_{3}\right\|, \quad \text { and } \quad \text { (b) } \theta\left(G^{\prime}\right) \leq 2 b+3 \tag{5.2}
\end{equation*}
$$

By Lemma $19, b+1<a+b=k$. As G^{\prime} has no equitable $(b+1)$-coloring, our choice of k minimum in the setup implies $G^{\prime} \in\left\{\mathbf{X}, \mathbf{Y}_{\mathbf{b}+\mathbf{1}}\right\}$ or $G^{\prime} \supseteq \mathbf{Z}_{\mathbf{b}+\mathbf{1}, \mathbf{c}}$ for some odd c. Now consider several cases, always assuming all previous cases fail for all choices of Z.

Case 0: $G^{\prime}=\mathbf{X}$. Use the notation of Example 9. In this case, $b=2$. For every $u \in N_{G^{\prime}}\left(x_{3}\right)$, $d_{G^{\prime}}(u)+d_{G^{\prime}}\left(x_{3}\right)=7$, so $\left\|\left\{u, x_{3}\right\}, A_{0}\right\|=2 a-2$ and $u z_{3} \notin E$. One of X or Y is contained in V^{+}and if $X \subseteq V^{+}$, then, for some $i \in[2], y_{i} \in B$, but y_{i} is movable to Z, a contradiction. So $Y \subseteq V^{+}$. Since $\left\{w_{1}, w_{2}\right\} \supseteq V^{+} \backslash Y$, we can assume $\left\{w_{1}\right\}=V^{+} \backslash Y$. If $Z=V^{-}$, then let $Z^{\prime}:=\left\{w_{1}, y_{1}\right\}$, and, otherwise, let $Z^{\prime}:=\left\{w_{1}, y_{1}, z_{3}\right\}$. In either case, let

$$
f^{\prime}:=f \mid(A-Z) \cup\left\{Z^{\prime},\left\{w_{2}, y_{2}, y_{3}\right\},\left\{x_{1}, x_{2}, x_{3}, w_{3}\right\}\right\} .
$$

so f^{\prime} is a nearly equitable k-coloring of G and $Z^{\prime} \in \mathcal{A}\left(f^{\prime}\right)$. Let $u \in Z^{\prime} \backslash Z$, so $u \in\left\{w_{1}, y_{1}\right\}$ and $u \in N\left(x_{3}\right)$. With respect to the original coloring f, every vertex in $N(u) \cap A_{0}$ is solo and every nonsolo neighbor of u in A is unmovable, so, since u is good, Lemma 20(1) implies that every vertex in $N(u) \cap A_{0}$ is unmovable, and u is not adjacent to a witness of an in-edge of $Z \in \mathcal{H}[\mathcal{A}]$. This implies $\mathcal{A}\left(f^{\prime}\right) \supseteq \mathcal{A}(f)-Z$. Therefore, because y_{2} is movable to Z^{\prime}, $a\left(f^{\prime}\right)>a(f)$ which contradicts (C 1).

Case 1: $G^{\prime}=K_{1,2 b+2}+K_{b}$. Let $K=K_{b}$ and $r \in B_{0}$ with $d_{G^{\prime}}(r)=2 b+2$. Then $d_{G^{\prime}}(w)=b-1$ for all $w \in K$. As r is not contained in an independent 3-set in G^{\prime}, $r \in Z-z_{3}$. By (5.2)(a), $d(r) \geq a+2 b+1$ and $d(v) \geq a$ for every $v \in N_{G^{\prime}}(r)$. Since $\theta(G) \leq 2 k+1$, these bounds are sharp. Let $y \in N(r) \cap B$. Then $\|y, A\|=a$, and so $\left\|y, B_{0}-r\right\|=0$. Thus $r y$ is solo. Also y is good. Let $u \in N(r) \cap A$. Lemma 20(2) implies all neighbors of r are unmovable. So $\left\|u, B_{0}\right\| \leq 2$, and witnesses of edges of \mathcal{P}_{0} are not adjacent to r. Replace u with r in f_{0} to obtain a new equitable $(a-1)$-coloring of $G\left[A_{0}\right]$.

Finally, as $\left\|u, B_{0}-r\right\| \leq 1, \Delta\left(G^{\prime}-r+u\right) \leq b$. By Theorem $6, G^{\prime}-r+u$ has an equitable ($b+1$)-coloring, contradicting (3.1).

Case 2: $G^{\prime} \supseteq K_{c, 2 b+2-c}+K_{b+1}$ for some odd $c \in[b+1]$. Use the notation of Example 11, but with $V=B_{0}=B_{1} \cup B_{2}$, and $c \in[2 b+1]$. As

$$
\begin{equation*}
\text { the clique } B_{2} \text { has one vertex in every class of } g \text {, } \tag{5.3}
\end{equation*}
$$

assume $z_{2} \in B_{2}$. Then $z_{1} \in B_{1}$. Say $z_{1} \in C_{1}$. Also by (5.3), every class Y of g of size three has precisely one vertex in B_{2}, so Y has two vertices in B_{1}; since those vertices are nonadjacent, Y has two vertices in either C_{1} or C_{2}. Then each of C_{1} and C_{2} has an even number of vertices from the classes in g other than V^{+}and $\left\{z_{1}, z_{2}\right\}$. By (5.3), V^{+}has one vertex in B_{2} and three in B_{1}; since c is odd, and the vertices of V^{+}in B_{1} are all in the same part, $V^{+} \backslash B_{2} \subseteq C_{2}$.

Case 2.1: $c \geq 3$. Then $C_{1}-z_{1} \neq \emptyset$. Let $y_{1} \in C_{1}-z_{1}$ and $y_{2} \in V^{+} \backslash B_{2} \subseteq C_{2}$. Then

$$
\begin{aligned}
& d\left(y_{1}\right)=\left\|y_{1}, A \cup\left(B_{1}-z_{1}\right) \cup\left(B_{2}-z_{2}\right)\right\| \geq a+\left|C_{2}\right|+\left\|y_{1}, B_{2}-z_{2}\right\| ; \\
& d\left(y_{2}\right)=\left\|y_{2},(A \backslash Z) \cup B_{1} \cup\left(B_{2}+z_{3}\right)\right\| \geq a-1+\left|C_{1}\right|+\left\|y_{2}, B_{2}+z_{3}\right\| ; \quad \text { and } \\
& d\left(z_{1}\right)=\left\|z_{1},(A \backslash Z) \cup B_{1} \cup B_{2}\right\| \geq a-1+\left|C_{2}\right|+\left\|z_{1}, B_{2} \cup C_{1}\right\| .
\end{aligned}
$$

So $\theta\left(y_{1} y_{2}\right)=2 k+1,\left\|y_{1}, B_{2}-z_{2}\right\|=\left\|y_{2}, B_{2}+z_{3}\right\|=0$ and $\left\|y_{2}, A\right\|=a$. Also $\theta\left(z_{1} y_{2}\right) \geq$ $2 k$ and $\left\|z_{1}, B_{2} \cup C_{1}\right\| \leq 1$. Let $Y=\left\{y_{1}, y_{1}^{\prime}, w\right\}$ be the class in \mathcal{B} containing y_{1}, with $y_{1}^{\prime} \in C_{1}$ and $w \in B_{2}$; and let $y_{2}^{\prime} \in C_{2} \cap V^{+}-y_{2}$. Note $\left\|y_{1}^{\prime}, B_{2}-z_{2}\right\|=\left\|y_{1}, B_{2}-z_{2}\right\|=0$ and $\left\|y_{2}^{\prime}, B_{2}+z_{3}\right\|=\left\|y_{2}, B_{2}+z_{3}\right\|=0$ Let $w^{\prime} \in V^{+} \cap B_{2}$. Move y_{2} to $Z-z_{1}, z_{1}$ to Y, and if $z_{1} w \in E$ then switch w and w^{\prime}. This yields a new nearly equitable k-coloring f^{\prime} with y_{2}^{\prime} movable to $Z-z_{1}+y_{2}$. Since $y_{2} \in V^{+}$it is good. As $\left\|y_{2}, A\right\|=a$, Lemma 20 implies the neighbors in A of y_{2} are unmovable. Therefore, all of the in-neighbors of Z in $\mathcal{H}(G, f)[\mathcal{A}(f)]$ are in-neighbors of $Z-z_{1}+y_{2}$ in $\mathcal{H}\left(G, f^{\prime}\right)$. Furthermore, since z_{1} is unmoveable in f and y_{2} is unmoveable in f^{\prime}, the out-neighbors of Z in $\mathcal{H}(G, f)[\mathcal{A}(f)]$ are all out-neighbors of $Z-z_{1}+y_{2}$ in $\mathcal{H}\left(G, f^{\prime}\right)$. Hence, $a(f)<a\left(f^{\prime}\right)$, contradicting (C1).

Case 2.2: $c=1$. Then $C_{1}=\left\{z_{1}\right\}$ and $\left|C_{2}\right|=2 b+1$. So

$$
\begin{align*}
& d\left(z_{1}\right) \geq a+2 b \tag{5.4}\\
& d(y) \leq a+1 \text { for all } y \in N\left(z_{1}\right) \tag{5.5}
\end{align*}
$$

For any $y \in B_{2}, d(y) \geq k-1$, so since $\theta(G) \leq 2 k+1$:

$$
\begin{equation*}
d(y) \leq k+2 \text { for all } y \in B_{2} . \tag{5.6}
\end{equation*}
$$

Because Case 1 does not hold, $\left\|z_{1}, B\right\|=2 b+1$. We now prove the following:
Claim 21.1 If some $y \in Y \in \mathcal{B}$ is bad then $b=2, d\left(z_{1}\right)=a+2 b, Y \neq V^{+}$, and the unique $u \in B_{2} \cap Y$ is high and satisfies $\|u, B\| \geq 3$. In particular, there are at most two bad vertices.

Proof of Claim 21.1. Suppose $G_{y}:=G[B-y]=G^{\prime}-\left\{z_{1}, z_{2}, y\right\}$ has no equitable b coloring. Then $y \notin V^{+}$; so $Y \neq V^{+}$and $b \geq 2$. By (5.5) and (5.6), $\Delta\left(G_{y}\right) \leq \Delta(G[B]) \leq$ $b+2$, and $d_{G_{y}}\left(y^{\prime}\right) \leq 1$ for all $y^{\prime} \in C_{2}$. Recall $\theta(G[B]) \leq 2 b+1$, so $\theta\left(G_{y}\right) \leq 2 b+1$. By the choice of k minimum in the setup, $G_{y} \in\left\{\mathbf{X}, \mathbf{Y}_{\mathbf{b}}\right\}$, or $\mathbf{Z}_{\mathbf{c}, \mathbf{b}} \subseteq G_{y}$ for some odd c. Since $d_{G_{y}}\left(y^{\prime}\right) \leq 1$ for all $y^{\prime} \in C_{2}-y$, this implies $\Delta\left(G_{y}\right) \geq 2 b$ or there are at least $b+1$ vertices $v \in B-y$ with $d_{G_{y}}(v) \geq b-1$. So $b=2, d_{G y}\left(y^{\prime}\right)=1$ for some $y^{\prime} \in C_{2}$, and there is $u \in B_{2}-y$ such that $\left\|u, G_{y}\right\| \geq 3$. As $\theta\left(y^{\prime} z_{1}\right) \leq 2 k+1$, (5.4) implies $d\left(z_{1}\right)=a+2 b$. As
$|Y-y|=2, u \in Y \cap B_{2}$, so both vertices of $Y-u$ are in C_{2}. Since $b=2, \mathcal{B}=\left\{Y, V^{+}\right\}$. Then u is not bad, since $\Delta(G[B-u]) \leq 2$. So if any vertex v is bad, then $v \in Y-u$.

Case 2.2.0: Every $X \in \mathcal{A}$ has a unmovable vertex v_{X} with $\left\|v_{X}, B\right\| \geq 2 b+1$. By Lemma 19, $a \geq 2$. For all $T \in \mathcal{A}-V^{-}$, let $T=\left\{u_{T}, v_{T}, w_{T}\right\}$, where w_{T} witnesses the edge of \mathcal{F} leaving T. Since $d\left(v_{T}\right) \geq(a-1)+2 b+1=k+b$, the set $D=\left\{v_{T}: T \in \mathcal{A}\right\}$ is independent. Let $v=v_{V^{-}}$and $V^{-}=\left\{v, v^{\prime}\right\}$. Since v_{T} is unmovable and D is independent, $v_{T} v^{\prime} \in E$. Hence $D-v \subseteq N\left(v^{\prime}\right)$; so v^{\prime} is unmovable. Use V^{-}for Z, so $v=z_{1}$ and $v^{\prime}=z_{2}$. Then

$$
\begin{equation*}
k-1 \leq\left\|v^{\prime}, A\right\|+b \leq d\left(v^{\prime}\right) \leq 2 k+1-d\left(v_{X}\right) \leq k-b+1, \tag{5.7}
\end{equation*}
$$

so $b \in\{1,2\}$. It follows that we can choose a leaf X of \mathcal{F} so that $\left\|v^{\prime}, X\right\|=1$: If \mathcal{F} has only one leaf X then by (C2), $a=2$, by Lemma $16, b=2$, and $\left\|v^{\prime}, X\right\|=1$ because equality holds in (5.7). Otherwise, \mathcal{F} has two leaves T and X and (say) $\left\|v^{\prime}, X\right\|=1$. Switch v^{\prime} and v_{X} to obtain $Z^{\prime}=\left\{v, v_{X}\right\}, X^{\prime}=\left\{v^{\prime}, u_{X}, w_{X}\right\}$, and a new nearly equitable k-coloring f^{\prime}. For all $U \in \mathcal{A}-X-Z$, v_{U} witnesses that $U Z^{\prime} \in \mathcal{H}\left(f^{\prime}\right)$, and w_{X} witnesses the edge from X^{\prime} to V^{-}in $\mathcal{H}\left(f^{\prime}\right)$ or the edge from X^{\prime} to the successor of X on $X \mathcal{F}$ in $\mathcal{H}\left(f^{\prime}\right)$. So f^{\prime} is normal. Since both vertices in Z^{\prime} are high, all vertices in B are low, so Claim 21.1 implies every vertex in B is good.

If $a=2$ then by Lemma $16, b=2$. Also $\left\|v^{\prime}, B\right\|=2$ and $E(A)=\left\{v^{\prime} v_{X}, v u_{X}\right\}$. Moving w_{X} to Z^{\prime} in f^{\prime} shows that $B \subseteq N\left(v^{\prime}\right) \cup N\left(u_{X}\right)$: otherwise, we move a vertex $y \in B$ to $\left\{v^{\prime}, u_{x}\right\}$, and equitably color $B-y$, since y is good. Then $d\left(u_{x}\right)+d(v) \geq 2\left(1+\left|B \backslash N\left(v^{\prime}\right)\right|\right)=12$, contradicting $\theta\left(v u_{X}\right) \leq 9$. So $a \geq 3$ and by (C2) there is a leaf $T \neq X$. As v_{T} is movable to $Z^{\prime},\|B, T\| \geq 3 b+1+\left\|v_{T}, B\right\| \geq 5 b+2$. If $\left\|v^{\prime}, T\right\|=1$ then by symmetry $\|B, X\| \geq 5 b+2$. Else, by (5.7), $\left\|v^{\prime}, B\right\|=d\left(v^{\prime}\right)-\left\|v^{\prime}, A\right\| \leq(k-b+1)-a=1$. Let $y \in B$. Since $X^{\prime} \in \mathcal{A}\left(f^{\prime}\right)$ and y is good, y has a neighbor in both X and X^{\prime}, so

$$
\|B, X\| \geq|B|+\left\|v_{X}, B\right\|-\left\|v^{\prime}, B\right\| \geq(3 b+1)+(2 b+1)-1 \geq 4 b+2 .
$$

Regardless, $\|B, T \cup X\|>9 b+3$. So there exists $y \in B$ with $\|y, A\| \geq 4+a-2=a+2$. As f^{\prime} is a nearly equitable coloring of A, and y is good, $y z \in E$ for some $z \in Z^{\prime}$, and this gives the contradiction $\theta(y z) \geq k+b+a+2=2 k+2$.
Case 2.2.1: $\|y, A\|=a$ for all $y \in C_{2}$. First suppose (*) for every $X \in \mathcal{A}$ and $y \in C_{2}$ the unique $x \in S^{y} \cap X$ is unmovable. If $X \in \mathcal{A}$ has a unique unmovable vertex v_{X} then $\left\|v_{X}, B\right\| \geq 2 b+1$. Else X has two unmovable vertices. Using X for Z, yields some unmovable v_{X} with $\left\|v_{X}, B\right\| \geq 2 b+1$. Regardless, Case 2.2 .0 holds. So (*) fails.

Pick $X \in \mathcal{A}$ and $y \in C_{2}$ with $x_{3} \in S^{y} \cap X$ movable, and $|X \mathcal{F}|$ maximum. By Lemma 20(1), y is bad. By Claim 21.1, \mathcal{B} has the form $\left\{U, V^{+}\right\}$, where $U=\left\{u, y, y^{\prime}\right\}, w, w^{\prime} \in V^{+} \cap C_{2}$, $u \in B_{2},\left\|u, V^{+}\right\| \geq 3, u$ high, and all vertices in V^{+}are good. By (5.5), $\left\|y^{\prime}, B\right\| \leq 1$, and we can label so $w^{\prime} y^{\prime} \notin E$. By Lemma 20(1), each $v \in C_{2} \cap V^{+}$is adjacent to an unmovable $x_{v} \in X$. If $x_{w} \neq x_{w^{\prime}}$ then X is a candidate for Z, and either x_{w} or $x_{w^{\prime}}$ is adjacent to y, i.e. $x_{3} \in\left\{x_{w}, x_{w^{\prime}}\right\}$. But this contradicts the fact that x_{3} is unmovable. So, since $\left\|C_{2} \cap V^{+}\right\|=3$, $d\left(x_{w}\right) \geq(a-1)+3+\left\|x_{w}, u\right\|=k+\left\|x_{w}, u\right\|$. Since $\theta(G) \leq 2 k+1, u x_{w} \notin E$. If $x_{w} y^{\prime} \in E$, switch x_{w} and y^{\prime}. Since the only neighbor of y in X is x_{3}, and the only neighbor of y^{\prime} and w^{\prime} in X is x_{w}, this yields a nearly equitable k-coloring f^{\prime} with w^{\prime} movable to $X-x_{w}+y^{\prime}$. By maximality of $|X \mathcal{F}|, y^{\prime}$ is not adjacent to any witness of an edge $T X \in \mathcal{F}$. So $a\left(f^{\prime}\right)>a(f)$, contradicting (C 1). If $x_{w} y^{\prime} \notin E$, then move x_{w} to U and w to $X-x_{w}$. This yields a nearly equitable k-coloring $f^{\prime \prime}$ with w^{\prime} movable to $X-x_{w}+w$. Again, by maximality of $|X \mathcal{F}|, w$ is not adjacent to any witness of an edge $T X \in \mathcal{F}$, so $a\left(f^{\prime \prime}\right)>a(f)$, contradicting (C1).
Case 2.2.2: $\|w, A\|=a$ for some $w \in C_{2}$. If possible, choose w to be good. By $\theta\left(z_{1} w\right) \leq$ $2 k+1$ and not Case 2.2.1, there exists a vertex in C_{2} with degree at least $a+1$, so $\left\|z_{1}, A\right\|=$
$a-1$. If w is bad, then by Claim 21.1, $b=2$ and there exists a good $y \in C_{2} \cap V^{+}$with $\|y, B\| \geq 1$. As $\theta\left(z_{1} y\right) \leq 2 k+1,\|y, A\| \leq a$. But then we would have chosen y instead of w, so w is good. As $z_{1} \in S^{w}, w z_{2} \notin E$.

By Lemma 20, the unique $w_{X} \in N(w) \cap X$ is unmovable for every $X \in \mathcal{A}$, and the unique $z_{X} \in N\left(z_{1}\right) \cap X$ is unmovable for every $X \in \mathcal{A}-Z$. If $X \in \mathcal{A}$ has two unmovable vertices, then by Case 2.2, one of them has $2 b+1$ neighbors in B. Since Case 2.2.0 fails, there is $X \in \mathcal{A}$ with a unique unmovable vertex $v_{X}=z_{X}=w_{X}$. Since $\theta(G) \leq 2 k+1$, $d\left(v_{X}\right), d(w) \leq a+1$. If $y \in N\left(z_{2}\right) \cap C_{2}$ is good, then since (5.5) implies that $|N(y) \cap X|=1$, Lemma 20(1) implies that $y v_{X} \in E$.

Consider f_{0}, the equitable k-coloring of $G\left[A_{0}\right]$ defined in the beginning of this proof, obtained by shifting witnesses along $Z \mathcal{F}$ starting with z_{3}. As unmovable vertices remained in their color classes, v_{X} still is the unique neighbor of z_{1} and w in the new X. Replacing v_{X} with z_{1} in f_{0} yields an equitable $(a-1)$-coloring f_{1} of $G\left[A_{0}+z_{1}-v_{X}\right]$. Suppose $v_{X} z_{2} \notin E$. Since $d\left(v_{X}\right)=a+1$ and v_{X} is unmovable, $\left\|v_{X}, B\right\| \leq 2$. Since $\left|V^{+} \cap C_{2}\right|=3$, we can choose $y \in\left(V^{+} \cap C_{2}\right) \backslash N\left(v_{X}\right)$. Because y is good and $y z_{X} \notin E, y z_{2} \notin E$, and there is an equitable b-coloring g of $B-y$, so $f_{1} \cup g+\left\{v_{X}, z_{2}, y\right\}$ is an equitable k-coloring, contradicting (3.1). Otherwise, $v_{X} z_{2} \in E$. Then $\left\|v_{X}, B-w\right\|=0$. As w is good there is an equitable b-coloring g of $B-w$. Let $y \in V^{+} \backslash N[w]$, and g^{\prime} be the result of replacing y with v_{X} in g. As y is good and $v_{X} y \notin E, y z_{2} \notin E$. So $f_{1} \cup g^{\prime}+\left\{z_{2}, w, y\right\}$ contradicts (3.1).

Case 2.2.3: There does not exist $y \in C_{2}$ such that $\|y, A\|=a$. That is, $\|y, A\|=a+1$ for all $y \in C_{2}$.

For each $y \in C_{2}$ there is $T \in \mathcal{A}$ with $N(y) \cap(A-T) \subseteq S^{y}$.
Also

$$
\begin{align*}
& \left\|z_{1}, A\right\|=a-1 \tag{5.9}\\
& \left\|z_{1}, B\right\|=2 b+1 \tag{5.10}\\
& \left\|C_{2}, B\right\|=0 \tag{5.11}
\end{align*}
$$

and

$$
\begin{equation*}
\text { every vertex in } B \text { is good. } \tag{5.12}
\end{equation*}
$$

Let $X \in \mathcal{A}^{\prime}-Z$. As z_{1} is unmovable, (5.9) implies it has a unique neighbor $v_{X} \in X$, and

$$
\begin{equation*}
d\left(v_{X}\right) \leq a+1 \tag{5.13}
\end{equation*}
$$

Suppose $x \in X$ and $y, y^{\prime} \in S_{x} \cap C_{2}$ are distinct, and note $y y^{\prime} \notin E$. By Lemma 20(1), x is unmovable. If x is low then $\|x, B\| \leq b+1$, and, by symmetry in B, we may assume that $N(x) \cap V^{+}=\left\{y, y^{\prime}\right\}$ and so switching x with y and y^{\prime}, and switching witnesses on a X, V^{-}-path in \mathcal{F} contradicts (3.1). So
if $x \in X$ is low it has at most one solo neighbor in C_{2}.
Suppose $\mathcal{A}=\left\{V^{-}, X\right\}$. By Lemma $16, b \geq 2$. Assume $V^{-}=\left\{z_{1}, z_{2}\right\}$, as otherwise moving z_{3} to V^{-}yields this. By (5.13), $\left\|v_{X}, B_{0}-z_{1}\right\| \leq 2 \leq b$. For any $y \in B_{1}, d(y) \geq$ $a+b-1$, so, since $\theta(G) \leq 2 k+1, z_{2}$ is unmovable and $N\left(z_{2}\right) \supseteq B_{1},\left\|z_{2}, C_{2}\right\| \leq 3$. Using this and (5.11), $G\left[B_{0}-z_{1}+v_{X}\right]$ has an equitable ($b+1$)-coloring, and by (5.9), $X-v_{X}+z_{1}$ is independent, contradicting (3.1). So $a \geq 3$, and \mathcal{F} has two leaves.

An unmovable vertex $x \in A$ is big if $\|x, B\| \geq 2 b+1$, and small if $\|x, B\| \leq 2 b$. By Case 2.2,

> no class has two small vertices.

Suppose z_{1} and z_{2} are big. Then $\left|N\left(z_{1}\right) \cap N\left(z_{2}\right) \cap C_{2}\right| \geq b+1$. Let $y, y^{\prime} \in N\left(z_{1}\right) \cap N\left(z_{2}\right) \cap C_{2}$. Each $x \in X \cap N\left(\left\{y, y^{\prime}\right\}\right)$ is solo by (5.8). By Lemma 20 each $v \in N_{A}[x]$ is unmovable; so $x \in N\left(\left\{z_{1}, z_{2}\right\}\right)$. As z_{1} and z_{2} are high, x is low. By (5.14) $\left|S_{x} \cap C_{2}\right| \leq 1<b+1$. So X contains at least two distinct low solo vertices x and x^{\prime}. Lemma 20(1) implies x and x^{\prime} are unmovable. So $\|x, B\|,\left\|x^{\prime}, B\right\| \leq b+1$. Thus x and x^{\prime} are small, contradicting (5.15). So
no class has two big vertices.
For a class $U \in \mathcal{A}$, let $S(U):=\left\{v \in C_{2}:\|v, U\|=1\right\}$. Over all color classes in \mathcal{A} with two unmovable vertices, pick Z, with $S(Z) \neq \emptyset$ if possible; subject to this, choose Z to be a leaf if possible; and subject to these, choose $|S(Z)|$ maximum. Suppose $S(Z)=\emptyset$ or Z is not a leaf. By (5.8) there is a leaf X with $S(X) \geq \frac{1}{2}\left|C_{2}\right| \geq b+1$. By (5.13) and (5.14), $\left|S_{v_{X}} \cap C_{2}\right| \leq 1$. So there is a solo vertex $x \in X-v_{X}$. By Lemma 20(1), the solo vertices in X are unmovable. Because we did not choose X for Z, both vertices in $X-x$ are movable. So $S_{x}=S(X)$. Say v_{X} is movable to $W \in \mathcal{A}$.

As X is a leaf, $X \notin \mathcal{P}:=W \mathcal{F}$. If $Z \in \mathcal{P}$, let u witness $U Z \in \mathcal{P}$. Consider any $y \in C_{2}$. By (5.8), $y \in S_{x} \cup S_{z_{1}}$. Suppose $y \in S_{z_{1}}$. If $u y \notin E$ or u is undefined, then moving y to $Z-z_{1}, z_{1}$ to $X-v_{X}, v_{X}$ to W, and shifting witnesses along \mathcal{P} contradicts (3.1). So $u y \in E$. By Lemma 20(1), $u y$ is not solo. By (5.8), $y \in S_{x}$. Thus $C_{2} \subseteq S_{x}$. So x is big. Since $\theta(G) \leq 2 k+1, x z_{1} \notin E$. Now $X \in \mathcal{A}^{\prime}, y \in S_{x}$ for some $y \in C_{2}$, and $\|x, A\| \leq a-1$, so Lemma 20(2) implies $x z_{2} \in E$. Since $\theta(G) \leq 2 k+1, d\left(z_{2}\right) \leq a+1$, and so $\left\|z_{2}, C_{2}\right\| \leq 2-b \leq 1$. Let $V^{+}=\left\{y_{0}, y_{1}, y_{2}, y^{*}\right\}$, where $y^{*} \in B_{2}$ and $N\left(z_{2}\right) \cap V^{+} \subseteq\left\{y_{0}, y^{*}\right\}$. Shifting vertices starting with z_{3} (if z_{3} exists) on $Z \mathcal{F}$, and recoloring $X, Z-z_{3}, V^{+}$as $X-x+y_{0},\left\{z_{2}, y_{1}, y_{2}\right\},\left\{z_{1}, x, y^{*}\right\}$ contradicts (3.1). So $S(Z) \neq \emptyset$ and Z is a leaf.

Let $X=\left\{v_{X}, x_{2}, x_{3}\right\} \neq Z$ be a leaf, where x_{3} witnesses an edge of \mathcal{F}. Put $H=$ $G\left[X \cup Z \cup V^{+}\right]$. Since $S_{z_{1}}=S(Z) \neq \emptyset,(5.9)$ and Lemma 20(2) imply that v_{X} is unmovable. By (3.1),
if some $v \in V(H)$ is movable to $\mathcal{A}-X-Z$ then $H-v$ has no equitable 3-coloring.

By (5.16), z_{2} is small, so $\left|C_{2} \backslash N\left(z_{2}\right)\right| \geq b+1 \geq 2$. Using (5.11), choose $V^{+}=$ $\left\{y_{1}, y_{2}, y_{3}, y^{*}\right\}$ so that $y^{*} \in B_{2}$ and $y_{1}, y_{2} \in C_{2} \backslash N\left(z_{2}\right)$. Since v_{X} is unmovable, (5.13) implies that $\left\|v_{X}, B \cup\left\{z_{2}, z_{3}\right\}\right\| \leq d\left(v_{X}\right)-(a-1) \leq 2$. As z_{3} witnesses an edge of \mathcal{F}, (5.17) implies $\left\{\left\{x_{2}, x_{3}, z_{1}\right\},\left\{z_{2}, y_{1}, y_{2}\right\},\left\{y_{3}, y^{*}, v_{X}\right\}\right\}$ is not a coloring of $H-z_{3}$. So $\left\|v_{X},\left\{y_{3}, y^{*}\right\}\right\| \geq 1$ and $v_{X} y_{i} \notin E$ for some $i \in[2]$. Also $\left\{\left\{x_{2}, x_{3}, z_{1}\right\},\left\{z_{2}, v_{X}, y_{i}\right\}, V^{+}-y_{i}\right\}$ is not a coloring. So $v_{X} z_{2} \in E, v_{X} z_{3} \notin E$ and $\left\|v_{X}, B\right\|=1$. In particular, $v_{X} y_{1}, v_{X} y_{2} \notin E$.

Suppose x_{2} is unmovable. By Case $2.2, \mathbf{Z}_{1, \mathbf{b}+\mathbf{1}} \subseteq G\left[X \cup B-x_{3}\right]$. Since $\left\|v_{X}, B\right\| \leq 1$, $B=V^{+}$and x_{2} is big. So $\left\|x_{2}, A\right\|=a-1$ and $\left\|x_{2}, B\right\|=3$. If x_{2} is not solo, then for every $y \in N\left(x_{2}\right) \cap B, N(y) \cap X=\left\{x_{2}, x_{3}\right\}$ and $\|y, Z\|=1$, so since z_{3} is movable, by Lemma 20(1), $y z_{3} \notin E$. Let $\tilde{y} \in B \backslash N\left(x_{2}\right)$, so $N_{H}\left(z_{3}\right) \subseteq\left\{x_{2}, x_{3}, \tilde{y}\right\}$. Let $H^{\prime}:=H-x_{3}$ and $e \in E\left(H^{\prime}\right)$. If $e=w z_{3}$, then $w \in\left\{x_{2}, \tilde{y}\right\}$, and $d_{H^{\prime}}(w) \leq 4$, so $\theta\left(H^{\prime}\right) \leq 7$. If e is not incident to z_{3}, then both ends have at least $a-2$ neighbors in $V\left(G-H^{\prime}\right)$, so $\theta\left(H^{\prime}\right) \leq 7$. Since for every $w \in Y-\tilde{y}+z_{3}, d_{H^{\prime}}(w) \leq 2, \Delta\left(H^{\prime}\right) \leq 4, \chi\left(H^{\prime}\right) \leq 3$, the maximality of k and Lemma 16 imply that there exists an equitable 3 -coloring of H^{\prime}, contradicting (5.17). Now assume x_{2} is solo. Since $\left\|x_{2}, A\right\|=a-1$, Lemma 20(2) implies that x_{2} has an unmovable neighbor in
Z. Since $\theta(G) \leq 2 k+1, x_{2} z_{1} \notin E$ and so $x_{2} z_{2} \in E$. For each color class $T \notin\left\{V^{+}, Z\right\}$, $\left\|y^{*} z_{2}, T\right\| \geq 2$ and each $y \in V^{+}$satisfies $\left\|y z_{1}, T\right\| \geq 2$. Let $Q=z_{1} v_{X} z_{2} x_{2}$. Note Q induces P_{4}. By inspection, $d_{H}\left(z_{1}\right)=4=d_{H}\left(x_{2}\right), d_{H}\left(z_{2}\right)=3=d_{H}\left(v_{X}\right)$, and $\left\|V^{+},\left\{x_{3}, z_{3}\right\}\right\| \leq 5$. Say $d_{H}\left(z_{3}\right) \leq d_{H}\left(x_{3}\right)$. Let $H^{\prime}=H-x_{3}$. Then $\Delta\left(H^{\prime}\right) \leq 4, \theta\left(H^{\prime}\right) \leq 7, \chi\left(H^{\prime}\right) \leq 3$, and $d_{H^{\prime}}\left(z_{3}\right) \leq 2$. Since H^{\prime} contains an induced P_{4}, and $d_{H^{\prime}}\left(z_{3}\right) \leq 2$, by (3.2), H^{\prime} has a nearly equitable 3-coloring. An analogous argument works if $d_{H^{\prime}}\left(x_{3}\right) \leq d_{H^{\prime}}\left(z_{3}\right)$. So x_{2} is movable. By Lemma $20(1)$, for $j \in\{1,2\},\left\|y_{j}, X\right\|=2$, so $\left\{x_{2}, x_{3}\right\} \subseteq N\left(y_{j}\right)$. Also $y_{j} z_{3} \notin E$ by (5.8) Let $i \in\{2,3\}$. By (5.17), $\left\{\left\{v_{X}, z_{3}, y_{1}\right\},\left\{z_{1}, z_{2}, x_{i}\right\}, V^{+}-y_{1}\right\}$ is not a coloring of $H-x_{5-i}$. So $x_{i} z_{2} \in E$.

Now suppose $v_{X} y^{*} \in E$. Then by (5.13), $v_{X} y_{3} \notin E$. Because v_{X} is the only unmovable vertex in X, then $y_{3} x_{2}, y_{3} x_{3} \in E$ by Lemma 20(1). By (5.8), $\left\{z_{2}, z_{3}, y_{3}\right\}$ is an independent set. For $i \in\{2,3\}$, consider coloring $\left\{\left\{z_{2}, z_{3}, y_{3}\right\},\left\{x_{i}, z_{1}, y^{*}\right\},\left\{v_{X}, y_{1}, y_{2}\right\}\right\}$. Since x_{5-i} is movable, (5.17) implies this is not a proper coloring, so by (5.9) and (5.10), $y^{*} x_{i} \in E$. But now

$$
d\left(y^{*}\right)+d\left(z_{2}\right) \geq(a+2+b-1)+(a+1+b)=2 k+2
$$

contradicting $\theta(G) \leq 2 k+1$. Therefore $v_{X} y^{*} \notin E$, and so $v_{X} y_{3} \in E$. Now by Lemma 20(1), $y^{*} x_{2}, y^{*} x_{3} \in E$. Then $d\left(y^{*}\right)+d\left(z_{2}\right) \geq(a+1+b-1)+(a+1+b)=2 k+1$; so equality holds, and in particular $z_{2} y_{3} \notin E$. Now $\left\{\left\{z_{2}, y_{2}, y_{3}\right\},\left\{v_{X}, y_{1}, y^{*}\right\},\left\{z_{1}, x_{2}, x_{3}\right\}\right\}$ is a proper equitable coloring of $H-z_{3}$, contradicting (5.17).

If $T \in \mathcal{A}$ and $T \cap \bar{M} \neq \emptyset$, let $T=\left\{u_{T}, m_{T}, w_{T}\right\}$, where $u_{T} \in \bar{M}$.
Lemma 22 Every $y \in B$ is good.
Proof Suppose not. Say $G_{0}:=G\left[B-y_{0}\right]$ has no equitable b-coloring. Then $b \geq 2$. Also $\left|B-y_{0}\right|=3 b, \chi(G[B]) \leq b$, and, as every $y \in B$ is unmovable, $\theta(G[B]) \leq 2 b+1$. So (3.2) implies $G_{0} \in\left\{\mathbf{X}, \mathbf{Y}_{\mathbf{b}}\right\}$ or $\mathbf{Z}_{\mathbf{c}, \mathbf{b}} \subseteq G_{0}$ for some odd c. For any $y, y^{\prime} \in E\left(G_{0}\right)$, if $\left\|y y^{\prime}, B\right\|=2 b+1$ then define $y y^{\prime}, y$ and y^{\prime} to be B-heavy. If $\|y, B\|>b$ then y is B-high. If y is B-heavy then $\|y, A\|=a$, and so y has a solo neighbor v in every class $X \in \mathcal{A}$. If y is good then Lemmas 20(1) and 21 imply v is the unique unmovable vertex $u_{X} \in X$. Suppose there exists $Y^{\prime} \subseteq V\left(G_{0}\right)$ such that $|Y|=b+2$ and every vertex in Y^{\prime} is both B-heavy and good, and furthermore there exists $y \in Y^{\prime}$ that is B-high. Given some $X \in \mathcal{A}^{\prime}$, every vertex in Y^{\prime} is adjacent to an unmovable u_{X}, so $d\left(u_{X}\right) \geq(a-1)+(b+2)=k+1$. Since y is B-high, $d(y) \geq a+b+1=k+1$. Then $\theta\left(u_{X} y\right) \geq 2 k+2$, contradicting $\theta(G) \leq 2 k+1$. So:

$$
\begin{equation*}
\text { if } b+2 \text { vertices are good and } B \text {-heavy, then none of them is } B \text {-high, } \tag{5.18}
\end{equation*}
$$

Consider several cases, always assuming previous cases fail for all bad $y_{0} \in B$.
Case 1: $G_{0}=\mathbf{X}$. Then $\Delta(G[B])=4$. Using the notation of Example 9, x_{3} is B-high and all five vertices in $N_{G_{0}}\left[x_{3}\right]$ are B-heavy. By (5.18), there is a bad $v \in N_{G_{0}}\left[x_{3}\right]$. By $\Theta(G) \leq 2 k+1$, no vertex in $N_{G_{0}}\left[x_{3}\right]$ is adjacent to y_{0}, and, since the neighbors in B of y_{0} are high, $\left\|y_{0}, B\right\| \leq 3$. so $\Delta(G[B-v]) \leq 3$, and $G[B-v]$ does not contain \mathbf{Y}_{3} or $\mathbf{Z}_{\mathbf{1}, \mathbf{3}}$, so $\delta(G[B-v]) \geq 3$. Furthermore, since y_{0} is high, $N\left(y_{0}\right)$ is independent; thus $N\left(y_{0}\right) \cap B=\left\{x_{1}, x_{2}, w_{3}\right\}$. So, the B-high vertices $x_{1}, x_{2}, x_{3}, w_{3}$ are good and B-heavy; by inspection, w_{1} is B-heavy and good. This contradicts (5.18).
Case 2: $G_{0}=\mathbf{Y}_{\mathbf{b}}$. Let y be the vertex with degree $2 b$ in G_{0}. Then the class of f containing y is $\left\{y, y_{0}, w\right\}$, where $w \in K_{b-1}$. So $V^{+} \subseteq N(y)$. Since $\|N[y], B-y\|=0$, the vertices of
$N(y)$ are all good; by inspection, also y is good. But the vertices of $N[y]$ are B-heavy and y is B-high, contradicting (5.18).

Case 3: $G_{0} \supseteq \mathbf{Z}_{\mathbf{c}, \mathbf{b}}$, for some odd $c \leq b$. Recall $M=\{v \in A: v$ is movable $\}$ and $\bar{M}=A \backslash M$, and use the notation of Example 11 with $V=B-y_{0}$.

Case 3.1: $a=2$. Then $x \in A$ is movable if and only if it has no neighbors in A. Thus an unmovable vertex has an unmovable neighbor. By Lemma $21,|M| \geq 3$. So $\|A\| \leq 1$, and $\{S, A \backslash S\}$ is an equitable coloring for any 2-set $S \subseteq A$ with $|S \cap \bar{M}|,|(A-S) \cap \bar{M}| \leq 1$. Thus (C1) implies every $w \in B$ satisfies $\|w, M\| \geq 3$ or $\|w, \bar{M}\| \geq 2$. Let $e \in E(Q)$. Then $\theta(e) \geq 2 b+\|e, A\|$. Since $\theta(G) \leq 2 k+1$, e has an end w_{0} with $\left\|w_{0}, A\right\|=2$; say $N\left(w_{0}\right) \cap A=\left\{u_{1}, u_{2}\right\}$. So $u_{1} u_{2} \in E$ and $u_{1}, u_{2} \in \bar{M}$. Set $R=\{w \in B:\|w, M\| \geq 3\}$ and $P=\{w \in B:\|w, \bar{M}\| \geq 2\}$. As $\theta\left(u_{1} u_{2}\right) \leq 2 k+1,|P| \leq b+1$. Let $v \in M$. Then $2 b \leq|R| \leq d(v)$. Thus there is $y_{2} \in R \cap B_{1}$. Then $d\left(y_{2}\right) \geq 3+c$. Since $2 b+3+c \leq$ $\theta\left(v y_{2}\right) \leq 2 k+1$ and c is odd, $c=1$, and $y_{2} \in C_{2}$. Let $C_{1}=\left\{y_{1}\right\}$. Then $y_{1} \in P$, and $d\left(y_{1}\right) \geq 2 b+1$. By Lemma 15 , there is $w^{*} \in R \cap B_{2}$. As $d\left(w^{*}\right) \geq b+2, \theta(G) \leq 2 k+1$ implies $|R| \leq d(v) \leq b+3$. So $|P| \geq 2 b-2$ and $d\left(u_{1}\right) \geq 2 b-1$. Since $\theta(G) \leq 2 k+1$, $4 b \leq \theta\left(u_{1} y_{1}\right) \leq 2 k+1$. Thus $b=2$, and by Lemma $15, P$ is independent. So $y_{1} \in P$ implies $C_{2} \subseteq R$ and, since $\theta(G) \leq 2 k+1, N\left(C_{2}\right)=M+y_{1}$ and $d(v) \leq 5$. If there is $y \in P \cap R$ then $|R| \geq 5$ and $d(y) \geq 5$, contradicting $\theta(v y) \leq 9$. Else $w^{*} u_{i} \notin E$ for some $i \in[2]$. If $|P|=3$ then $\left\{\left\{u_{i}, w^{*}, y_{2}\right\}, C_{2}-y_{2}+u_{3-i}, M, P\right\}$ contradicts (3.1). Else $|R|=5$, and the coloring $\left\{\left\{u_{i}, w^{*}, y_{2}\right\}, M-v+u_{3-i}, P+v, R-w^{*}-y_{2}\right\}$ contradicts (3.1).

Case 3.2: There is a bad $y_{1} \in B_{1}$. Say $G\left[B-y_{1}\right] \supseteq Q^{\prime}+K^{\prime}:=K\left(C_{1}^{\prime}, C_{2}^{\prime}\right)+K\left(B_{2}^{\prime}\right)$. Set $B_{0}=B_{1}+y_{0}$. Then each $v \in V^{+}$is good, $V^{+} \backslash B_{2} \subseteq C_{i}$ and $V^{+} \backslash B_{2}^{\prime} \subseteq C_{i^{\prime}}^{\prime}$ for some $i, i^{\prime} \in[2]$. By (C2) and $a \geq 3$, there are distinct $Z_{1}, Z_{2} \in \mathcal{A}^{\prime}$. For distinct $v_{1}, v_{2} \in B_{2}$,
$2 k+1 \geq \theta\left(v_{1} v_{2}\right) \geq 2(a-2)+\left\|v_{1} v_{2}, Z_{1} \cup Z_{2}\right\|+2(b-1) \geq 2 k-6+\left\|v_{1} v_{2}, Z_{1} \cup Z_{2}\right\|$.
So there exists $Z^{*}=\left\{z, z^{*}, z^{\prime}\right\} \in\left\{Z_{1}, Z_{2}\right\}$ and $v^{*} \in\left\{v_{1}, v_{2}\right\}$ such that $z^{*}, z^{\prime} \in M$ and $z^{*} v^{*} \notin E$. Shifting witnesses on $Z^{*} \mathcal{F}$, starting with z^{\prime}, yields an equitable ($a-1$)-coloring \mathcal{A}^{*} of $A-z-z^{*}$.

Case 3.2.1: $b=2$. Say $\mathcal{B}=\left\{Y, V^{+}\right\}$. Then $Q=K_{1,3}, C_{2}=V^{+} \backslash B_{2}$, and $C_{1}=\left\{y_{1}\right\}$. So $Y=\left\{y_{0}, y_{1}, y_{2}\right\}$, where $y_{2} \in B_{2}$. Since Case 2 fails, $\Delta(G[B]) \leq 3$. As y_{1} is bad, $\left\|\left\{y_{0}, y_{2}\right\}, V^{+}\right\| \geq 4$, and $\left\|y^{*}, V^{+}\right\|=3$ for some y^{*}, where $Y=\left\{y_{1}, y^{*}, y^{\prime}\right\}$. So y_{1} and y^{*} are high. Thus each $v \in V^{+}$satisfies $\|v, B\| \leq 2$ and $\left\|y^{\prime}, B\right\| \leq 2$. So V^{+}has the form $\left\{v_{1}, v_{2}, v_{3}, v^{\prime}\right\}$, where $1 \leq\left\|v^{\prime}, B\right\| \leq 2$, and $\left\|v_{i}, B\right\|=2$ for $i \in$ [3]. Thus $\left\|v_{i}, A\right\|=a$. As v_{i} is good, Lemma 20(1) and Lemma 21 imply that $z \in N\left(v_{i}\right) \cap A=\bar{M}$. So $d(z) \geq a+2+\left\|z,\left\{y_{1}, y^{*}\right\}\right\|$, and $\left\{z, y_{1}, y^{*}\right\}$ is independent. If $v^{\prime} y^{\prime} \notin E$, then we can label so that $y^{\prime} v_{1} \notin E$ and let $\mathcal{B}^{*}:=\left\{\left\{y^{\prime}, v^{\prime}, v_{1}\right\},\left\{v_{2}, v_{3}, z^{*}\right\}\right\}$, otherwise we can reselect Z^{*} and z^{*} if necessary so that $\left\|z^{*},\left\{v^{\prime}, y^{\prime}\right\}\right\| \leq 1$, which implies that there exists an equitable 2-coloring \mathcal{B}^{*} of $V^{+}+y^{\prime}+z^{*}$. In either case, $\mathcal{A}^{*} \cup \mathcal{B}^{*}+\left\{z, y_{1}, y_{2}\right\}$ contradicts (3.1).

Case 3.2.2: $B_{2}=B_{2}^{\prime}$ and $b \geq 3$. Then $V\left(Q \cap Q^{\prime}\right)=B_{0}-y_{0}-y_{1}$. As Q and Q^{\prime} are connected, so is $Q \cup Q^{\prime}$. If $O \subseteq Q \cup Q^{\prime}$ is an odd cycle then $y_{0} \in V(O)$, and $V(O)-y_{0}:=$ $v_{1} \ldots y_{2 r} \subseteq V(Q)$. So $v_{1} v_{2 r} \in E$ and $\theta\left(v_{1} v_{2 r}\right)=2 a+2 b+2$, contradicting $\theta(G) \leq 2 k+1$. Thus $Q \cup Q^{\prime}$ is bipartite. Since it has bad vertices, it is complete. So $\theta_{Q \cup Q^{\prime}}(e)=2 b+1$ for every $e \in E\left(B_{0}\right)$, and every $w \in B_{0}$ satisfies $\|w, A\|=a$ and $\left\|w, B_{2}\right\|=0$. Let $\left\{D_{1}, D_{2}\right\}$ be the unique 2 -coloring of $Q \cup Q^{\prime}$, where $\left|D_{1}\right|$ is odd. Consider any $w_{1} \in D_{1}$. Then w_{1} is good, so $y_{0}, y_{1} \in D_{2}$. By Lemmas 20 and $21, N\left(w_{1}\right) \cap A=\bar{M}$. Let $z \in Z^{*} \cap \bar{M}$. Then $D_{1} \subseteq N(z)$, and $\theta\left(z w_{1}\right) \geq 2 a-1+2 b+1+\left\|z, D_{2}\right\|$. Thus $\left\|z, D_{2}\right\| \leq 1$. If $\left\|z, D_{2}\right\|=0$

(a) $B-y_{0}=B_{1} \cup B_{2}$

(b) $B-y_{1}=B_{1}^{\prime} \cup B_{2}^{\prime}$

Fig. $6 G[B]$ in Case 3.2.3, maybe missing the edge $y_{0} y_{1}$
then $\left(^{*}\right)\left|D_{2} \backslash N(z)\right| \geq 2$. Else there is $w_{2} \in N(z) \cap D_{2}$. Then $\theta\left(z w_{2}\right) \geq 2 a-1+2\left|D_{1}\right|$. So $\left|D_{1}\right| \leq b+1,\left|D_{2}\right| \geq b \geq 3$, and again (*) holds. So there are distinct $y^{\prime}, y^{\prime \prime} \in D_{2} \backslash N(z)$. Let $B^{*}=B_{0}+z^{*}-y^{\prime}-y^{\prime \prime}$. Then $D_{1}+z^{*}$ and $D_{2}-y^{\prime}-y^{\prime \prime}$ are even independent sets, and $N\left(B^{*}\right) \cap B_{2}=N\left(z^{*}\right) \cap B_{2} \neq B_{2}$. So B^{*} has an equitable b-coloring \mathcal{B}^{*}. Thus the coloring $\mathcal{A}^{*} \cup \mathcal{B}^{*}+\left\{z, y^{\prime}, y^{\prime \prime}\right\}$ contradicts (3.1).
Case 3.2.3: $B_{2} \neq B_{2}^{\prime}$ and $b \geq 3$. Let $w \in B_{2} \cap B_{1}^{\prime}$. As $\left|B_{2}\right| \geq 3$ and $\left\|w, B_{2}^{\prime}\right\| \leq 1$, there is $w^{\prime} \in B_{2} \cap B_{1}^{\prime}-w$. As $\left\|w w^{\prime}, B_{2}^{\prime}\right\| \leq 1, B_{2} \subseteq B_{1}^{\prime}$. Thus $b=3$. Now there are $i \in$ [2] and distinct $w^{\prime}, w^{\prime \prime} \in C_{i}^{\prime} \cap B_{2}$. Then $\theta\left(w^{\prime} w^{\prime \prime}\right) \geq 2\left(a+1+\left|C_{3-i}^{\prime}\right|\right)$, and $\left|C_{3-i}^{\prime}\right|=1$. Say $C_{1}^{\prime}=\{w\}$. Similarly, $C_{1}=\{v\}$, where $B_{2}^{\prime}=\left\{v, v^{\prime}, v^{\prime \prime}\right\} \subseteq B_{1}$. (See Fig. 6.) So all vertices of $B-\left\{y_{0}, y_{1}\right\}$ are B-heavy and good, and w is B-high, contradicting (5.18).

Case 3.3: Every $y \in B_{1}$ is good. There is $i \in[2]$ with $\|w, A\|=a$ for all $w \in C_{i}$ and $\|w, A\| \leq a+1$ for all $w \in C_{3-i}$. We set $\left|C_{i}\right|=c$, for some odd $c \in[2 b-1]$. By Lemma 20(1) and Lemma 21, $C_{i} \subseteq N(x)$ for all $x \in \bar{M}$ and $\left|S_{z} \cap C_{3-i}\right| \geq\left|C_{3-i}\right| / 2$ for some $z \in \bar{M}$ with $z \in Z \in\left\{Z_{1}, Z_{2}\right\} \subseteq \mathcal{A}^{\prime}$. Suppose $\left|C_{i}\right| \geq\left|C_{3-i}\right|$. Let $z^{\prime} \in \bar{M}-z$ with $z^{\prime} \in Z^{\prime} \in \mathcal{A}^{\prime}$ and $w \in C_{i}$. If $c=2 b-1$, then, for any $y^{\prime} \in N(z) \cap C_{3-i}, \theta\left(z y^{\prime}\right) \geq a-1+2 b+a+c>2 k+1$, so $2 b-c \geq 3$. If $C_{3-i} \subseteq N\left(z^{\prime}\right)$ then $\theta\left(z^{\prime} w\right) \geq a-1+2 b+a+2 b-c \geq 2 k+2$, contradicting $\theta(G) \leq 2 k+1$. So there is $y^{\prime} \in C_{3-i} \backslash N\left(z^{\prime}\right)$. By Lemma 20(1), $\left\|y^{\prime}, Z^{\prime}\right\|=2$ and $y^{\prime} z \in E$. Now

$$
2 k+1 \geq \theta\left(z y^{\prime}\right) \geq a-1+\left|C_{i}\right|+\left|C_{3-i}\right| / 2+a+1+\left|C_{i}\right| \geq 2 k+\left|C_{i}\right|-\left|C_{3-i}\right| / 2,
$$

another contradiction. So $\left|C_{i}\right|<\left|C_{3-i}\right|$. Say $i=1$. For $y \in C_{1}$,

$$
2 k+1 \geq \theta(z y) \geq a-1+\left|C_{1}\right|+\left|C_{2}\right| / 2+a+\left|C_{2}\right| \geq 2 k-1+\left|C_{2}\right| / 2 .
$$

So $\left|C_{2}\right|=3,\left|C_{1}\right|=1$, and $b=2$. Let $\mathcal{B}=\left\{W, V^{+}\right\}$and $C_{1}=\{w\}$. Then $C_{2}=V^{+} \backslash B_{2}$ and $d(w) \geq a+3$. Also $d(z) \geq a-1+\left|C_{1}\right|+\left|C_{2}\right| / 2$. As $w z \in E, d(z)=a+2$ and $d(w)=a+3$. So z has exactly two neighbors $v_{1}, v_{2} \in V^{+}$, and $v_{1}, v_{2} \in S_{z}$ by the choice of z. Switching witnesses on $Z \mathcal{F}$, and switching z with v_{1} and v_{2} yields an equitable k-coloring.

For $w \in W \in \mathcal{A}$ and $i \in[3]$, let $B_{i}(w):=\{y \in N(w) \cap B:\|y, W\|=i\}$ and let $B_{0}(w):=B \backslash N(w)$. Let $b_{i}(w):=\left|B_{i}(w)\right|$ for $i \in\{0,1,2,3\}$.

Corollary 23 For every $X=\left\{x, x^{\prime}, x^{\prime \prime}\right\} \in \mathcal{A}^{\prime}$ with $b_{1}(x)>0, B_{0}(x) \cup B_{3}(x) \subseteq N\left(x^{\prime}\right) \cap$ $N\left(x^{\prime \prime}\right)$.

Proof By definition, $B_{3}(x) \subseteq N\left(x^{\prime}\right) \cap N\left(x^{\prime \prime}\right)$. Since $b_{1}(x)>0$, by Lemmas 22 and 20(b), x is unmovable, and by Lemma 21, x^{\prime} and $x^{\prime \prime}$ are both movable. By Lemmas 22 and 20(b) again, every vertex of $B_{0}(x)$ is adjacent to both x^{\prime} and $x^{\prime \prime}$.

Lemma 24 Every solo $x \in X \in \mathcal{A}^{\prime}$ satisfies $\|x, B\| \leq 2 b$.
Proof Suppose $\|x, B\| \geq 2 b+1$, and let $y \in S_{x}$. Since $\theta(x y) \leq 2 k+1$, Lemmas 20 and 22 imply $a+2 b \leq d(x) \leq a+2 b+1$. First suppose $d(x)=a+2 b+1$. Consider any $w \in N(x) \cap B$. Then $\theta(x w) \leq 2 k+1$ implies $\|w, A\|=a$. Thus $S^{w}=N(w) \cap A=\bar{M}$. So for unmovable $u_{Z} \in Z \in \mathcal{A}, d\left(u_{Z}\right) \geq a-1+\|x, B\| \geq k+1$. Thus the set $\left\{u_{Z}: U \in \mathcal{A}\right\}$ is independent. By Lemma 21, the unique vertex $v \in V^{-}-u_{V^{-}}$is movable; say v is movable to $U \in \mathcal{A}$. Since u_{U} is not movable to V^{-}, it is adjacent to $u_{V^{-}}$, a contradiction.

So $d(x)=a+2 b,\|x, A\|=a-1$ and $\|w, A\| \leq a+1$ for every $w \in N(x) \cap B$. As $X \in \mathcal{A}^{\prime}$, Lemmas 20 and 22 imply $N[x] \cap A=\bar{M}$. Some $W \in \mathcal{B}$ satisfies $\|x, W\| \geq 3$; set $W^{\prime}=N(x) \cap W$. Each $w \in W^{\prime}$ has at most one neighbor in $\left\{x_{1}, x_{2}\right\}:=X-x$. Thus $\left\|x_{i}, W^{\prime}-w^{\prime}\right\|=0$, for some $i \in[2]$ and $w^{\prime} \in W^{\prime}$. Say x_{i} is movable to $U \in \mathcal{A}$, and $x_{U} \in N(x) \cap U$. Then

$$
\begin{equation*}
\left\|x_{U}, B \cup\left\{x_{1}, x_{2}\right\}\right\| \leq 2 k+1-d(x)-\left\|x_{U}, A-X+x\right\| \leq a+1-a-1=2 . \tag{5.19}
\end{equation*}
$$

If $x_{U} x_{3-i} \notin E$ then switch x and x_{U}. As $N[x] \cap A=\bar{M}$, this yields a new normal k-coloring f^{\prime} with $X^{\prime}:=X-x+x_{U} \in \mathcal{A}^{\prime}\left(f^{\prime}\right)$. By (5.19), some $w \in W^{\prime}$ is not adjacent to x_{U}. By Lemmas 20 and $22,\left\|w, X^{\prime}\right\| \geq 2$, a contradiction.

Else $x_{U} x_{3-i} \in E$. By (5.19), $\left\|x_{U}, W\right\| \leq 1$. So there is $w \in W$ with $\left\{w, x_{U}, x_{i}\right\}$ independent. Shift witnesses, starting with x_{3-i}, on an X, V^{-}-path in \mathcal{H}. This does not affect neighbors of x since they are unmovable. Now switch x with x_{U}, move w to $X-x-x_{3-i}+x_{U}$, and equitably b-color $B-w$. This yields an equitable k-coloring of G.

Lemma 25 If $x \in X \in \mathcal{A}^{\prime}, y \in S_{x}, y^{\prime} \in N(x) \cap B-y$ and $\left\|y^{\prime}, X\right\| \leq 2$, then $y y^{\prime} \in E$.
Proof If not, there exist $y \in S_{x}$ and $y^{\prime} \in N(x) \cap B-N[y]$ with $\left\|y^{\prime}, X\right\| \leq 2$. Choose such a pair with $\|y, B\|$ maximum. By Lemmas 20 and $22, x$ is unmovable; so $\|x, A-X\| \geq a-1$. Put $A^{*}=A-x+y, X^{*}=X-x+y$ and $B^{*}=B-y$. By Lemma 22, $G\left[B^{*}\right]$ has an equitable b-coloring \mathcal{B}^{*}; say $y^{\prime} \in Y \in \mathcal{B}^{*}$. Then $\mathcal{A}^{*}:=\mathcal{A}-X+X^{*}$ is an equitable a-coloring of A^{*}. By Lemma $24,\|x, B\| \leq 2 b$. So $\|x, W\| \leq 1$ for some $W \in \mathcal{B}^{*}$; consider any such W.

Since x is unmovable and $X \in \mathcal{A}^{\prime}$, if \mathcal{B}^{+}is an equitable b-coloring of $B^{*}+x$, then $f^{+}:=\mathcal{A}^{*} \cup \mathcal{B}^{+}$is a normal k-coloring with $X^{*} \in \mathcal{A}\left(f^{+}\right)$. As y is unmovable in f and $y y^{\prime} \notin E,\left\|y^{\prime}, X^{*}\right\| \geq 2$, a contradiction. So $B^{*}+x$ has no equitable b-coloring. Thus x has a neighbor in every class of $\mathcal{B}^{*}-W$. In particular, $N(x) \cap W=\{w\}$. Then $\|w, A-X+x\| \geq a$, and $w\left(\right.$ like x) has a neighbor in every class of $\mathcal{B}^{*}-W$.

For $x_{0} \in X-x, G\left[A-X+x_{0}\right]$ has an equitable ($a-1$)-coloring obtained by shifting witnesses, starting with x_{0}, on an X, V^{-}-path in \mathcal{H}. If $G\left[B^{*}+x-u\right]$ has an equitable b-coloring, where $u \in B^{*}$, then (3.1) implies $X^{*}+u-x_{0}$ is not independent. Thus w is not movable to X^{*}, and $\left\|w, Y-y^{\prime}\right\|,\left\|x, Y-y^{\prime}\right\| \geq 1$ where $y^{\prime} \in Y \in \mathcal{B}^{*}$. So $d(w) \geq$ $\|w, A-X+x\|+\left\|w, B^{*}\right\|+\left\|w, X^{*}\right\| \geq k$ and $d(x) \geq k+1$. Since $\theta(G) \leq 2 k+1$, $d(x)=k+1, d(w)=k,\|x, B\|=b+2,\|x, A\|=a-1$, and $\left\|w, X^{*}\right\|=1$. So $w y \in E$, $w \in S_{x},\|w, A\|=a,\|w, B\|=b$, and $\|w, Y\|=1$. Thus $w y^{\prime} \notin E$.

As $\theta(x y) \leq 2 k+1,\|y, B\| \leq b$. So any $w^{\prime} \in S:=N(x) \cap B \backslash Y$ can play the role of y. By the maximality of $\|y, B\|,\left\|w^{\prime}, B\right\|=b$ and $\left\|w^{\prime}, A\right\|=a$ for all $w^{\prime} \in S$. By Lemmas 20, 21 and 22, $N\left(w^{\prime}\right) \cap A=\bar{M}$ for each $w^{\prime} \in S$, and $N(x) \cap A=\bar{M}-x$. Let $u_{Z} \in Z \cap \bar{M}$ for $Z \in \mathcal{A}$. By Lemma $15, \omega(G)<k$. Since S is a clique, there are distinct $Z, Z^{\prime} \in \mathcal{A}-X$
with $u_{Z} u_{Z^{\prime}} \notin E$. First, we note $\left\|u_{Z}, Z\right\| \geq 2$ by Lemmas $20(0), 21$, and 22 . Since $u_{Z} x \in E$, and $\theta(G) \leq 2 k+1, d\left(u_{Z}\right) \leq k$, so $\left\|u_{Z}, A\right\|=a$ and $\left\|u_{Z}, B\right\|=b=|S|$. In particular, $u_{Z} y^{\prime} \notin E$. Then switching x and u_{Z} yields a normal k-coloring in which y^{\prime} has a movable, solo neighbor in a terminal class, a contradiction.

6 Optimal colorings

A normal k-coloring f of G is optimal if
(C3) among normal k-colorings, $|H(B)|$ is minimum, and
(C4) subject to (C3), a^{\prime} is maximum.
Let f be optimal.
Lemma 26 If $y \in H(B)$ then $S^{y} \cap A^{\prime}=\emptyset$.
Proof Suppose $y \in H(B), X \in \mathcal{A}^{\prime}$ and $x \in S^{y} \cap X$. We will obtain a contradiction by showing that either G has a normal coloring with $|H(B)|$ smaller or $\omega(G)=k$.

By Lemmas 20 and 22, x is unmovable and $G[B-y]$ has an equitable b-coloring \mathcal{B}^{*}. Thus if $G[B+x-y]$ has an equitable b-coloring then putting y in $X-x$ yields a normal k-coloring with fewer high vertices in B, contradicting (C3). Thus $\|x, Y\| \geq 1$ for all $Y \in \mathcal{B}^{*}$. Because $x y \in E$ and y is high, $k \leq d(x)$; but by the above, $d(x) \geq(a-1)+b+1$, so indeed x has precisely one neighbor in every class of \mathcal{B}^{*}. By Lemma 20, $N[x] \cap A=\bar{M}$ and $d(y)=k+1$. Suppose there exists $y^{\prime} \in N(x) \cap B-y$ in class $Y^{\prime} \in \mathcal{B}^{*}$ that is movable to class $Y^{\prime \prime} \in \mathcal{B}^{*}$. Then moving y^{\prime} to $Y^{\prime \prime}$ and x to $Y^{\prime}-y^{\prime}$ yields an equitable b-coloring of $G[B+x-y]$. Thus each $y^{\prime} \in N(x) \cap B-y$ satisfies $\left\|y^{\prime}, B-y\right\| \geq b-1$.

Let $W=B \cap N(x) \cap N(y)$ and $W^{\prime}=B \cap N(x) \backslash N[y]$. Let $w \in W$; then w is low. So $\|w, A\|=a$ and $\|w, B\|=b$. Thus $W+y \subseteq S_{x}$, and by Lemma $20, S^{w}=N[w] \cap A=\bar{M}$. By Lemma $25, S_{x}$ is a clique. As $G[B]$ is b-colorable, $|W| \leq b-1$, so $\left|W^{\prime}\right| \geq 1$. Consider any $w^{\prime} \in W^{\prime}$. As $w^{\prime} y \notin E$, Lemma 25 implies $X \subseteq N\left(w^{\prime}\right)$. So $d\left(w^{\prime}\right) \geq(b-1)+3+(a-1)=$ $k+1$. Let $X=\left\{x, x^{\prime}, x^{\prime \prime}\right\}$. Every $u \in B \backslash N(x)+w^{\prime}$ is adjacent to x^{\prime} by Lemmas 20(1) and 21. Thus $2 k+1 \geq \theta\left(x^{\prime} w^{\prime}\right) \geq 2 b+1+k+1$. So $a>b$; as $k \geq 4, a \geq 3$. Thus there is $Z \in \mathcal{A}^{\prime}-X$. Then $u_{Z} \in S^{w^{\prime}}$. So $W \cup W^{\prime} \subseteq S_{u_{Z}}$ is a b-clique. As w^{\prime} is high, $\left|W^{\prime}\right|=1$. Also Z, u_{Z}, w^{\prime} can play the role of X, x, y. Thus there is a high $w^{\prime \prime}$ with $\left\|w^{\prime \prime}, W\right\|=b-1$ and $\left\|w^{\prime \prime}, Z\right\|=3$. Indeed, we can choose $w^{\prime \prime}=y$. So

$$
\begin{equation*}
N[x]=N\left[u_{Z}\right]=N[w]=\bar{M} \cup W+y+w^{\prime} \text { for all } w \in W . \tag{6.1}
\end{equation*}
$$

Choose $T \in \mathcal{A} \backslash\{X, Z\}$. By (6.1), $W \subseteq N\left(u_{T}\right)$ and $u_{T} x \in E$. Thus

$$
k+1 \geq d\left(u_{T}\right) \geq a-3+|W|+\left\|u_{T}, X+y\right\|+\left\|u_{T}, Z+w^{\prime}\right\| .
$$

So $\left\|u_{T}, X+y\right\|+\left\|u_{T}, Z+w^{\prime}\right\| \leq 5$. Say $\left\|u_{T}, X+y\right\| \leq 2$. Then there is $x^{\prime} \in X-x$ with $\left\|u_{T}, X-x-x^{\prime}\right\|=0$. Suppose $u_{T} y \notin E$. Let x^{\prime} be movable to $U \in \mathcal{A}^{\prime}-X$; move x^{\prime} to U, and switch witnesses along a $U V^{-}$path in $\mathcal{A}-X$; moving u_{T} and y to $X-x-x^{\prime}$, and moving x to $T-u_{T}$ contradicts (3.1). So $u_{T} y \in E$ and $\left\|u_{T}, X+y\right\| \geq 2$. As y is high, $d\left(u_{T}\right) \leq k$, so $\left\|u_{T}, Z+w^{\prime}\right\| \leq 2$. By an analogous argument, $u_{T} w^{\prime} \in E$. Thus

$$
\begin{equation*}
N\left(u_{T}\right) \supseteq W \cup\left\{y, w^{\prime}, x, u_{Z}\right\} \quad \text { for every } U \in \mathcal{A}-X-Z . \tag{6.2}
\end{equation*}
$$

Finally, switching u_{Z} with x yields a nearly equitable k-coloring f^{\prime} of G. As the neighbors of x in A are unmovable and X is terminal, $A=A\left(f^{\prime}\right), X-x+u_{T}, Z \in \mathcal{A}^{\prime}\left(f^{\prime}\right)$, and $u_{T} \in S^{y}$.

Thus f^{\prime} is normal. By (6.2) and Lemma 20, $N\left[u_{T}\right]=\bar{M} \cup W+y+w^{\prime}$. Combining this with (6.1), shows $\bar{M} \cup W+y$ is a k-clique, contradicting Lemma 25 .

7 Almost all color classes in \mathcal{A} are terminal

For $X \in \mathcal{A}$, let $\mathcal{T}(X)$ be the set of $U \in \mathcal{A}-X$ such that every U, V^{-}-path in \mathcal{H} contains X. Then $\mathcal{T}(X)=\emptyset$ if and only if $X \in \mathcal{A}^{\prime}$, and if $X^{\prime} \in \mathcal{T}(X)$ then $\mathcal{T}\left(X^{\prime}\right) \subsetneq \mathcal{T}(X)$. So $\mathcal{T}(X)$ contains a terminal class if X is nonterminal. Choose $X_{0} \in \mathcal{A} \backslash \mathcal{A}^{\prime}$ so that $\mathcal{T}\left(X_{0}\right)$ is a minimum nonempty set. Then $\mathcal{T}\left(X_{0}\right) \subseteq \mathcal{A}^{\prime}$. Set $\mathcal{A}^{\prime \prime}=\mathcal{T}\left(X_{0}\right)$. As usual, set $A^{\prime \prime}:=\bigcup \mathcal{A}^{\prime \prime}$, and $a^{\prime \prime}:=\left|\mathcal{A}^{\prime \prime}\right|$. Then $1 \leq a^{\prime \prime} \leq a^{\prime}$, and if $a^{\prime}=a-1$, then $X_{0}=V^{-}$and $\mathcal{A}^{\prime \prime}=\mathcal{A}^{\prime}$. Also, $\|w, A\| \geq a-a^{\prime \prime}-1$ for every $w \in A^{\prime \prime}$.
Proposition 27 If $a^{\prime \prime}=a^{\prime}$, then $a=a^{\prime}+1$.
Proof Argue by contraposition. If $a^{\prime} \leq a-2$ then the set X_{0} defined above the proposition differs from V^{-}, and $\mathcal{A}^{\prime \prime}=\mathcal{T}\left(X_{0}\right) \subseteq \mathcal{A}^{\prime}$. Let \mathcal{P} be a minimum X_{0}, V^{-}-path in \mathcal{H}, and let its last edge be $U V^{-}$. If there exists $W \neq U$ such that $W V^{-} \in E(\mathcal{H})$, then $W \notin V(\mathcal{P})$ by the minimality of \mathcal{P}. So $\mathcal{T}(W) \cap \mathcal{T}\left(X_{0}\right)=\emptyset$ and $\mathcal{T}(W)+W$ contains a terminal class. Thus $a^{\prime \prime}<a^{\prime}$. Else $\mathcal{A}^{\prime} \subseteq \mathcal{T}(U)=\mathcal{A}-V^{-}-U$. Shifting a witness w of $U V^{-}$to V^{-}yields a normal k-coloring f^{\prime} with small class $U-w, A(f)=A\left(f^{\prime}\right)$ and $\mathcal{A}^{\prime}\left(f^{\prime}\right)=\mathcal{A}^{\prime}(f)+\left(V^{-}+w\right)$, preserving (C3) and contradicting (C4).

Lemma 28 If $b \leq a^{\prime}-1$ then $|L(B)| \leq b+1$. Moreover, if $|L(B)|=b+1$ then $d(y)=k$ for all $y \in L(B), G[L(B)]$ is the disjoint union of cliques, and $a^{\prime}=b+1$. If in addition $a^{\prime}=a-1$, then $b \leq 2$.

Proof Suppose $L=L(B), b \leq a^{\prime}-1$ and $|L| \geq b+1$. Let I be an inclusion maximal independent subset of L of size at least 2 ; it exists since $G[B]$ is b-colorable.

$$
\begin{equation*}
\text { All } y \in L \text { satisfy } a+b \geq d(y) \geq a+a^{\prime}-\left|S^{y} \cap A^{\prime}\right|+\|y, B\| . \tag{7.1}
\end{equation*}
$$

By Lemmas 21 and 20, each solo vertex in A^{\prime} is the unique unmovable vertex in its class. By Theorem $25,\left|S_{x} \cap I\right| \leq 1$ for all $x \in A^{\prime}$. By maximality, $\|L \backslash I, I\| \geq|L \backslash I|$. Thus

$$
\begin{aligned}
a^{\prime} & \geq \sum_{x \in A^{\prime}}\left|S_{x} \cap I\right|=\sum_{y \in I}\left|S^{y} \cap A^{\prime}\right| \geq \sum_{y \in I}\left(a^{\prime}-b+| | y, B \|\right) \geq|I|\left(a^{\prime}-b\right)+\|L \backslash I, I\| \\
& \geq|I|\left(a^{\prime}-b-1\right)+|L|=(|I|-1)\left(a^{\prime}-b-1\right)+\left(a^{\prime}-b-1+|L|\right) \geq a^{\prime} .
\end{aligned}
$$

So all four inequalities in the chain are sharp. This yields (in order) $E(X, I)$ has a solo edge for all $X \in \mathcal{A}^{\prime} ; y$ has a solo neighbor in A^{\prime} and $d(y)=k$ for all $y \in I ;\|w, B\|=\|w, I\|=1$ for all $w \in L \backslash I$; and $a^{\prime}=b+1$ and $|L|=b+1$. As I can contain any pair of nonadjacent vertices in L, no $w \in L$ has two nonadjacent neighbors in L; so $G[L]$ is the disjoint union of cliques.

Finally, suppose $a^{\prime}=a-1$ and $b \geq 3$. Let C_{1} and C_{2} be components of $G[L]$ with $\left|C_{1}\right| \leq\left|C_{2}\right|$. For $i=1,2$, let $y_{i} \in V\left(C_{i}\right)$, and $x_{i} y_{i} \in E\left(C, A^{\prime}\right)$ be a solo edge, where $X_{i}=\left\{x_{i}, x_{i}^{\prime}, x_{i}^{\prime \prime}\right\} \in \mathcal{A}^{\prime}$. By Lemma 25, each $y^{\prime} \in B-C_{i}$ is adjacent to x_{3-i}^{\prime} and $x_{3-i}^{\prime \prime}$. So x_{i}^{\prime} and $x_{i}^{\prime \prime}$ are low, and

$$
2 b+2=a+b \geq d\left(x_{i}^{\prime}\right), d\left(x_{i}^{\prime \prime}\right) \geq\left\|x_{i}^{\prime}, B\right\|,\left\|x_{i}^{\prime}, B\right\| \geq 3 b+1-\left|C_{i}\right| .
$$

Thus $b-1 \leq\left|C_{1}\right| \leq(b+1) / 2, b=3,\left|C_{1}\right|=2=\left|C_{2}\right|, 8=k \geq d\left(x_{i}^{\prime}\right), d\left(x_{i}^{\prime \prime}\right) \geq 8$, and $\left\|x_{i}^{\prime}, A\right\|=0=\left\|x_{i}^{\prime \prime}, A\right\|$. Then switching x_{1} with x_{2} yields a nearly equitable coloring with a larger a, since $y_{1} x_{2} \notin E$. So $\left\|y_{1},\left\{x_{2}, x_{1}^{\prime}, x_{1}^{\prime \prime}\right\}\right\|=0$.

When $b \geq a^{\prime}$, we use the following analog of low vertices. A vertex $y \in B$ is petite if $d(y) \leq a+a^{\prime}-1$ or both $d(y)=a+a^{\prime}$ and the following strengthening of inequality (7.1) holds: $\|y, A\| \geq a+a^{\prime}+1-\left|S^{y} \cap A^{\prime}\right|$. This inequality implies y has 3 neighbors in a terminal class or at least two neighbors in a nonterminal class of \mathcal{A}. If y is petite, modifying (7.1), yields

$$
\begin{equation*}
\left|S^{y} \cap A^{\prime}\right| \geq\|y, B\|+1 \tag{7.2}
\end{equation*}
$$

so y is solo. For a subset C of B, let $L^{\prime}(C)$ denote the set of the petite vertices in C and $H^{\prime}(C)=C-L^{\prime}(C)$. By (7.2) and Lemma 26,

$$
\begin{equation*}
L^{\prime}(B) \subseteq L(B) \tag{7.3}
\end{equation*}
$$

Lemma $29\left|L^{\prime}(B)\right| \leq a^{\prime}$.
Proof Suppose $\left|L^{\prime}(B)\right| \geq a^{\prime}+1$ and let I be an inclusion maximal independent subset of $L^{\prime}(B)$. By (7.2), the total number of solo neighbors in A^{\prime} of vertices in I is at least

$$
\sum_{y \in I}(1+\|y, B\|) \geq\left|L^{\prime}(B)\right| \geq a^{\prime}+1
$$

But A^{\prime} has at most a^{\prime} unmovable vertices, contradicting Lemma 20.
If $\mathcal{T}(X) \neq \emptyset$ (i.e., X is not terminal), let $\mathcal{T}^{\prime}(X)$ be a minimum nonempty subset $\mathcal{S} \subseteq \mathcal{T}(X)$ with no out-neighbors in $\mathcal{A} \backslash(\mathcal{S}+X)$. Choose $X_{0}^{\prime} \in \mathcal{A} \backslash \mathcal{A}^{\prime}$ such that $\left|\mathcal{T}^{\prime}\left(X_{0}^{\prime}\right)\right|$ is minimum, and set $\mathcal{A}^{\prime \prime \prime}=\mathcal{T}^{\prime}\left(X_{0}^{\prime}\right)$. As usual, set $A^{\prime \prime \prime}=\bigcup \mathcal{A}^{\prime \prime \prime}$, and $a^{\prime \prime \prime}=\left|\mathcal{A}^{\prime \prime \prime}\right|$. By definition, for all $z \in A^{\prime \prime \prime}$

$$
\begin{equation*}
\|z, A\| \geq a-a^{\prime \prime \prime}-1 \tag{7.4}
\end{equation*}
$$

Lemma 30 Every $z \in A^{\prime \prime \prime}$ satisfies $\|z, B\| \leq \max \left\{b, 2 b+2+a^{\prime \prime \prime}-a^{\prime}-\beta\right\}$, where $\beta=1$ if every vertex in $N(z) \cap B$ is petite or $\|z, A\| \geq a-a^{\prime \prime \prime}$; else $\beta=0$.

Proof Let $z \in Z \in \mathcal{A}^{\prime \prime \prime}$ and $B_{1}=N(z) \cap B$. Suppose the lemma fails for z. Then $\left|B_{1}\right| \geq b+1$ and $\left|B_{1}\right| \geq 2 b+2+a^{\prime \prime \prime}-a^{\prime}-\beta+1$. So $B_{1} \neq \emptyset$. Also, every $y \in B_{1}$ is petite: if not

$$
d(z)=\|z, A \cup B\| \geq\left(a-a^{\prime \prime \prime}-1\right)+\left(2 b+2+a^{\prime \prime \prime}-a^{\prime}\right)+1=2 k+2-a-a^{\prime} ;
$$

so every $y \in B_{1}$ is petite since $d(y) \leq \theta(z y)-d(z) \leq a+a^{\prime}-1$. By (7.2)

$$
\begin{equation*}
\left|S^{y} \cap A^{\prime}\right| \geq 1+\|y, B\| \tag{7.5}
\end{equation*}
$$

So by Lemma 26, $B_{1} \subseteq L(B)$ and $|L(B)| \geq b+1$. By Lemma $28, a^{\prime} \leq b+1$. Let I be a largest independent subset of B_{1}. Counting the solo edges in $E\left(A^{\prime}, I\right)$ as in Lemma 28 and using (7.5) yields the contradiction:
$a^{\prime} \geq \sum_{z \in A^{\prime}}\left|S_{z} \cap I\right|=\sum_{y \in I}\left|S^{y} \cap A^{\prime}\right| \geq|I|+\|I, B\| \geq\left|B_{1}\right| \geq 2 b+2+a^{\prime \prime \prime}-a^{\prime} \geq a^{\prime}+a^{\prime \prime \prime}$.

Lemma $31 a^{\prime} \leq a^{\prime \prime \prime}+1$.
Proof Suppose $a^{\prime} \geq a^{\prime \prime \prime}+2$ and let $Z \in \mathcal{A}^{\prime \prime \prime}$. Then Lemma 30 implies

$$
\begin{equation*}
\|v, B\| \leq \max \left\{b, 2 b+2+a^{\prime \prime \prime}-a^{\prime}\right\} \leq 2 b \quad \text { for all } v \in Z \tag{7.6}
\end{equation*}
$$

Consider the discharging from B to Z, where each $y \in B$ sends $\operatorname{ch}(y)=\|y, Z\|^{-1}$ to each of its neighbors in Z. If $v \in Z$ has no solo neighbors in B, then $\operatorname{ch}(v) \leq\|v, B\| / 2 \leq b$. As Z gets charge $3 b+1$, there is a solo edge $z y \in E(Z, B)$ with $z \in Z$ and $\operatorname{ch}(z) \geq b+1$. For $i \in[3]$, let $c_{i}=\mid\{y \in N(z) \cap B:\|y, Z\|=i\}$. Then $\|Z-z, B\| \geq 2\left(3 b+1-c_{1}\right)-c_{2}$. So $3 b+1-c_{1}-c_{2} / 2 \leq d\left(z^{\prime}\right) \leq 2 b$ for some $z^{\prime} \in Z-z$. Thus $c_{1}+c_{2} \geq b+1+c_{2} / 2$. If $c_{2}=0$ then $\left|S_{z}\right| \geq b+1$, contradicting Lemma 25. Else $c_{2} \geq 1$ and $c_{1}+c_{2} \geq b+2$. By Lemma $25,\|y, B\| \geq c_{1}+c_{2}-1$. Then $d(y) \geq a+b+1$, contradicting Lemma 26.

Lemma 32 If $a^{\prime}=a^{\prime \prime \prime}+1 \leq a-2$ then $a^{\prime}=2$ and $a^{\prime \prime}=1$.
Proof Suppose $a^{\prime}=a^{\prime \prime \prime}+1 \leq a-2$. Then by Proposition $27,1 \leq a^{\prime \prime}<a^{\prime}$; so $a^{\prime} \geq 2$. By Lemma 31, $a^{\prime} \leq a^{\prime \prime \prime}+1$. So it suffices to show $a^{\prime \prime \prime}=1$. As a and a^{\prime} are invariants of optimal colorings, it suffices to show $a^{\prime \prime \prime}\left(f^{\prime}\right)=1$ for some optimal coloring f^{\prime}.

Let $\mathcal{A}^{\prime \prime}=\mathcal{T}(X) \subseteq \mathcal{A}^{\prime}$. Since $1 \leq a^{\prime}-1=a^{\prime \prime \prime} \leq a^{\prime \prime}=|\mathcal{T}(X)| \leq a^{\prime}-1$, there is exactly one $Z \in \mathcal{A}^{\prime}-\mathcal{T}(X)$. Let $\mathcal{H}^{\prime}=\mathcal{H}[\mathcal{A}]-\left(\mathcal{A}^{\prime}+X\right)$. We first prove that
for every $W \in V\left(\mathcal{H}^{\prime}\right), V^{-}$is reachable from W in \mathcal{H}^{\prime}.
Suppose V^{-}is unreachable from $W \in V\left(\mathcal{H}^{\prime}\right)$ in \mathcal{H}^{\prime}. As $W \notin \mathcal{A}^{\prime}=\mathcal{T}(X)+Z$, there is a W, V^{-}-path \mathcal{P} in \mathcal{H}^{\prime} avoiding X. So $\mathcal{P} \cap \mathcal{T}(X)=\emptyset$. Thus $Z \in \mathcal{P}$ and $Z \notin \mathcal{T}(W)$. Similarly, there is a W, V^{-}-path \mathcal{Q} avoiding Z. Thus $\mathcal{Q} \cap(\mathcal{T}(X)+X) \neq \emptyset$, and so $X \in \mathcal{Q}$. Thus $\mathcal{T}(W) \cap \mathcal{T}(X)=\emptyset$. So $\mathcal{A}^{\prime} \cap \mathcal{T}(W)=\emptyset$, contradicting $W \notin \mathcal{A}^{\prime}$. This proves (7.7).

Pick a spanning in-tree \mathcal{F}^{\prime} of \mathcal{H}^{\prime} that is rooted at V^{-}, and whose leaf set \mathcal{L} is maximum. Since $\mathcal{L} \cap \mathcal{A}^{\prime}=\emptyset$, every leaf $L \in \mathcal{L}$ satisfies $\mathcal{T}(L) \cap\{X, Z\} \neq \emptyset$. Also by definition, $\mathcal{T}(L) \cap \mathcal{T}\left(L^{\prime}\right)=\emptyset$ for distinct $L, L^{\prime} \in \mathcal{L}$. So $|\mathcal{L}| \leq 2$. If $|\mathcal{L}|=2$, then we may assume $\mathcal{L}=\left\{X^{\prime}, Z^{\prime}\right\}$, where $X \in \mathcal{T}\left(X^{\prime}\right)$ and $Z \in \mathcal{T}\left(Z^{\prime}\right)$. In this case, $a^{\prime \prime \prime} \leq\left\|\mathcal{T}\left(Z^{\prime}\right)\right\|=1$ and lemma holds. So suppose $\mathcal{L}=\{W\}$. Then \mathcal{F}^{\prime} is a W, V^{-}-path.

First, suppose $W=V^{-}$. Then $\mathcal{A}=\left\{V^{-}, Z, X\right\} \cup \mathcal{T}(X)$. If V^{-}is the only out-neighbor of Z, then $\mathcal{T}^{\prime}\left(V^{-}\right)=\{Z\}$ and so $a^{\prime \prime \prime}=1$. If Z has an out-neighbor $Z^{\prime} \in \mathcal{A}-V^{-}$, then move a witness x of $X V^{-} \in E(\mathcal{H})$ to V^{-}to get a new coloring f^{\prime}. In f^{\prime}, the class $V^{-}+x$ is terminal, because of Z^{\prime}. If $Z^{\prime} \notin \mathcal{T}(X)$ in f or is terminal in f^{\prime}, then $a^{\prime}\left(f^{\prime}\right)>a^{\prime}(f)$, a contradiction. Else $Z^{\prime} \in \mathcal{T}(X)$ and is nonterminal in f^{\prime}. Then $\mathcal{T}\left(Z^{\prime}\right)=\{Z\}, f^{\prime}$ is optimal, and $a^{\prime \prime \prime}\left(f^{\prime}\right)=1$.

Now suppose $W \neq V^{-}$. Let W^{\prime} be the penultimate vertex on the path $W \mathcal{F}^{\prime} V^{-}$, and f^{\prime} be the coloring obtained by moving a witness x of $W^{\prime} V^{-}$to V^{-}. If each of X and Z has an out-neighbor in $\mathcal{A} \backslash \mathcal{T}(X)-V^{-}$, then $\mathcal{A}^{\prime}\left(f^{\prime}\right)=\mathcal{A}^{\prime}+\left(V^{-}+x\right)$, a contradiction. If $X \notin \mathcal{T}(W)$ then $\mathcal{T}(W)=\{Z\}$ and $a^{\prime \prime \prime}=1$. Otherwise $X \in \mathcal{T}(W)$ and Z has an out-neighbor in $\mathcal{T}(X)+V^{-}$. If $N^{+}(Z)=\left\{V^{-}\right\}$then we can take $\mathcal{A}^{\prime \prime \prime}=\{Z\} \subseteq \mathcal{T}\left(V^{-}\right)$, and so $a^{\prime \prime \prime}=1$. Else there is $U \in N^{+}(Z) \cap \mathcal{T}(X)$. Then $\mathcal{A}^{\prime}\left(f^{\prime}\right)=\mathcal{A}^{\prime}+\left(V^{-}+x\right)-U$ and in f^{\prime} we can take $\mathcal{A}^{\prime \prime \prime}=\mathcal{T}^{\prime}(U)$; so $a^{\prime \prime \prime}\left(f^{\prime}\right)=1$.

Lemma 33 Suppose $a^{\prime \prime}=1, a^{\prime}=2, \mathcal{A}^{\prime \prime}=\{W\}$ and $\mathcal{A}^{\prime}=\{W, Z\}$. Then $\mathcal{H}[\mathcal{A}]$ has a W, V^{-}-path $\mathcal{P}=W X_{0} \ldots X_{s} V^{-}$and a Z, V^{-}-path $\mathcal{P}^{\prime}=Z U_{0} \ldots U_{t} V^{-}$such that $V(\mathcal{P}) \cup V\left(\mathcal{P}^{\prime}\right)=\mathcal{A}$ and $V(\mathcal{P}) \cap V\left(\mathcal{P}^{\prime}\right)=\left\{V^{-}\right\}$. Moreover, each of W and Z has exactly one out-neighbor in $\mathcal{H}[\mathcal{A}]$.

Proof Let $\mathcal{A}^{\prime \prime}=\mathcal{T}\left(X_{0}\right)$. Since $Z \notin \mathcal{T}\left(X_{0}\right), X_{0} \neq V^{-}$. Then X_{0} is the only out-neighbor of W in \mathcal{A}. Since $Z \in \mathcal{A}^{\prime}, \mathcal{H}$ has a shortest W, V^{-}-path $\mathcal{P}=W, X_{0}, \ldots, X_{s}=V^{-}$ avoiding Z. Since $Z \notin \mathcal{T}\left(X_{0}\right), \mathcal{H}$ has a shortest Z, V^{-}-path $\mathcal{P}^{\prime}=Z, U_{0}, \ldots, U_{t}=V^{-}$
avoiding X_{0}. Choose such a shortest path with the most common edges with \mathcal{P}. If $\mathcal{C}=$ $\mathcal{A}-\left(V(\mathcal{P}) \cup V\left(\mathcal{P}^{\prime}\right)\right) \neq \emptyset$, then $\mathcal{H}[\mathcal{A}]$ has a spanning in-tree with root V^{-}and a leaf in \mathcal{C}. But any such leaf is in \mathcal{A}^{\prime}, a contradiction. Thus $V(\mathcal{P}) \cup V\left(\mathcal{P}^{\prime}\right)=\mathcal{A}$.

Suppose $X_{i}=U_{j} \neq V^{-}$for some i and j. Then $X_{i+1} \mathcal{P} V^{-}=U_{j+1} \mathcal{P}^{\prime} V^{-}$by the choice of \mathcal{P}^{\prime}. Then moving a witness from X_{s-1} to $X_{s}=V^{-}$, we obtain a coloring with more terminal classes, a contradiction. Thus $V(\mathcal{P}) \cap V\left(\mathcal{P}^{\prime}\right)=\left\{V^{-}\right\}$.

Moreover, observe that if $U_{0} \neq V^{-}$and Z has an out-neighbor $Z^{\prime} \in \mathcal{A}-U_{0}$, then $U_{0} \in \mathcal{A}^{\prime}$, a contradiction.

Lemma $34 a^{\prime}=a-1$.
Proof By Lemmas 31, and 32, if $a^{\prime}<a-1$, then $a^{\prime \prime}=1$ and $a^{\prime}=2$. By Lemma 33, there are $X_{0} \in \mathcal{A}-\mathcal{A}^{\prime}-V^{-}, U_{0} \in \mathcal{A}-\mathcal{A}^{\prime}-X_{0}$ and a labeling $\{W, Z\}=\mathcal{A}^{\prime}$ such that $\mathcal{T}\left(X_{0}\right)=\{W\}$ and U_{0} is the only outneighbor of Z in $\mathcal{H}[\mathcal{A}]$. In particular, if $U_{0} \neq V^{-}$, then $\mathcal{T}\left(U_{0}\right)=\{Z\}$. Also, there are chordless paths $\mathcal{P}=W X_{0} \ldots X_{s} V^{-}$and a $\mathcal{P}^{\prime}=Z U_{0} \ldots U_{t} V^{-}$such that $V(\mathcal{P}) \cup V\left(\mathcal{P}^{\prime}\right)=\mathcal{A}$ and $V(\mathcal{P}) \cap V\left(\mathcal{P}^{\prime}\right)=\left\{V^{-}\right\}$. Both $\mathcal{A}^{\prime \prime \prime}=\{W\}$ and $\mathcal{A}^{\prime \prime \prime}=\{Z\}$ work; so Lemma 30 applies to both W and Z. Let $Z=\left\{z, z^{\prime}, z^{\prime \prime}\right\}, U_{0} \subseteq\left\{u, u^{\prime}, u^{\prime \prime}\right\}$ and $X_{0}=$ $\left\{x, x^{\prime}, x^{\prime \prime}\right\}$ with $w^{\prime \prime}, x^{\prime \prime}, z^{\prime \prime}$ being a witness of $W X_{0}, X_{0} X_{1}, Z U_{0} \in E(\mathcal{F})$, respectively. Also if $U_{0}=V^{-}$, then $u^{\prime \prime}$ does not exist; otherwise, let $u^{\prime \prime}$ be a witness of $U_{0} U_{1} \in E(\mathcal{F})$.

Our first claim is that

$$
\begin{equation*}
\text { neither of } X_{0} \cup W-x^{\prime \prime} \quad \text { and } \quad U_{0} \cup Z-u^{\prime \prime} \text { is independent. } \tag{7.8}
\end{equation*}
$$

Indeed, if $X_{0} \cup W-x^{\prime \prime}$ is independent, then $\left\|y, X_{0} \cup W-x^{\prime \prime}\right\| \geq 4$ for all $y \in B$, since otherwise we can color equitably $X_{0} \cup W-x^{\prime \prime}+y$ with two colors, $B-y$ with b colors, and $A-X_{0}-W+x^{\prime \prime}$ with $a-2$ colors. So $\left\|B, X_{0} \cup W-x^{\prime \prime}\right\| \geq 4(3 b+1)>5(2 b+1)$, and there is $s \in W \cup X_{0}-x^{\prime \prime}$ with $\|s, B\| \geq 2 b+2$. Assume $s \in W$ as else s can be swapped with $w^{\prime \prime}$. This contradicts Lemma 30 .

Similarly, if $U_{0} \neq V^{-}$, then $U_{0} \cup Z-u^{\prime \prime}$ is not independent. Finally suppose $U_{0}=$ V^{-}, and $V^{-} \cup Z$ is independent. Then as above, $\left\|y, V^{-} \cup Z\right\| \leq 4$ for each $y \in B$ and $\left\|B, V^{-} \cup Z\right\| \geq 4(3 b+1)$. Since $\left\|V^{-}, B\right\| \leq\left|V^{-}\right| \cdot|B|=6 b+2,\|B, Z\| \geq 6 b+2$. So there exists $z \in Z$ with $\|z, B\| \geq 2 b+1=2 b+2+a^{\prime \prime \prime}-a^{\prime}$. Then by Lemma 30, there exists some non-petite neighbor of z in B. Since every vertex in B has two neighbors in V^{-} or three in Z, the non-petite neighbor y of z in B has $d(y)>a+a^{\prime}=a+2$. But now $d(z)+d(y)>2 b+1+a-2+a+2=2 k+1$, contradicting the degree conditions of G. This yields (7.8).

Each vertex $w^{*} \in W$ with a neighbor in X_{0} is unmovable; by Lemma 21 such w^{*} is unique and $w^{*} \neq w^{\prime \prime}$. Say $w=w^{*}$. Similarly, let z be unmovable. Then w^{\prime} and z^{\prime} are movable to X_{0} and U_{0}. Using (7.8), assume $w x, z u \in E(G)$. As $\|w, A\|=a-a^{\prime \prime \prime}=\|z, A\|$, Lemma 30 implies

$$
\begin{equation*}
\text { each of } w \text { and } z \text { has at most } 2 b \text { neighbors in } B . \tag{7.9}
\end{equation*}
$$

Next we claim

$$
\begin{equation*}
\|W, Z\| \geq 4 \tag{7.10}
\end{equation*}
$$

Indeed, as $W Z, Z W \notin E(\mathcal{H})$, if $\|W, Z\| \leq 3$, then $\|W, Z\|=3$ and these three edges form a matching. In this case, by symmetry, we may assume $N\left(z^{\prime}\right) \cap W=\left\{w^{\prime}\right\}$ and $N\left(w^{\prime}\right) \cap Z=\left\{z^{\prime}\right\}$. Then switch w^{\prime} with z^{\prime}. Since Z and W are leaves in \mathcal{F}, V^{-}is reachable from every class in $\mathcal{A}-W-Z$ in the new coloring f^{*}. Also, X_{0} and U_{0} are out-neighbors of $W^{*}=W-w^{\prime}+z^{\prime}$
and so X_{0} is a new terminal class in f^{*}, a contradiction to the maximality of \mathcal{A}^{\prime}. This proves (7.10).

Case 1: Vertex w is not solo. By (7.9), $\|w, B\| \leq 2 b$ and by Lemma 30, $\left\|w^{\prime}, B\right\|,\left\|w^{\prime \prime}, B\right\| \leq$ $2 b+1$. As $\|W, B\| \geq 6 b+2$, equality holds throughout and $\beta=0$ in Lemma 30. Thus $\left\|w^{\prime}, B\right\|,\left\|w^{\prime \prime}, B\right\| \leq a-2=a-a^{\prime \prime \prime}-1$, so $\left\|\left\{w^{\prime}, w^{\prime \prime}\right\}, Z\right\|=2$ and $\|w, Z\|=2$, by (7.10). So $d(w) \geq 2 b+a$. Therefore, since $\theta(G) \leq 2 k+1,\|y, Z\|=1$ and $\|y, B\|=0$ for all of the $2 b$ vertices $y \in N(w) \cap B$, a contradiction to Lemma 25 .

The proof of the case when z is not solo is analogous. So the remaining case is:
Case 2: Both w and z are solo. Then $B_{1}(w) \neq \emptyset$ and $B_{1}(z) \neq \emptyset$. Since each $y^{\prime} \in B_{0}(w) \cup$ $B_{3}(w)$ is adjacent to both w^{\prime} and $w^{\prime \prime}$ by Corollary 23, Lemma 30 yields $b_{0}(w)+b_{3}(w) \leq$ $\left\|B, w^{\prime}\right\| \leq 2 b+1$. So, $b_{1}(w)+b_{2}(w) \geq|B|-(2 b+1)=b$. Similarly, $b_{1}(z)+b_{2}(z) \geq b$.

Case 2.1: $b_{1}(w)+b_{2}(w) \geq b+1$. By Lemma $25, B_{1}(w) \cup B_{2}(w) \subseteq N[y]$ for each $y \in B_{1}(w)$. Fix $y \in B_{1}(w)$. By Lemma 26, $y \in L(B)$. So $k \leq a+\left(b_{1}(w)+b_{2}(w)-1\right) \leq d(y) \leq k$. Thus $b_{0}(w)+b_{3}(w)=\left\|w^{*}, B_{0}(w)+B_{3}(w)\right\| \geq 2 b$ for both $w^{*} \in W-w$. Since $G[B]$ is b-colorable, there are $y_{1}, y_{2} \in B_{1}(w) \cup B_{2}(w)$ with $y_{1} y_{2} \notin E(G)$. Then $y_{1}, y_{2} \in B_{2}(w)$. Applying Lemma 25 to Z, yields $i \in[2]$ with $\left\|y_{i}, Z\right\| \geq 2$, and there is $w^{*} \in N\left(y_{i}\right) \cap W-w$. So $d\left(y_{i}\right) \geq(a+2)+1, d\left(w^{*}\right) \geq(a-2)+(2 b+1)$, and $\theta\left(w^{*} y_{i}\right) \geq 2 k+2$, a contradiction.

The proof of the case $b_{1}(z)+b_{2}(z) \geq b+1$ is exactly the same. So, since $b_{1}(w)+b_{2}(w) \geq b$ and $b_{1}(z)+b_{2}(z) \geq b$, the last subcase is:

Case 2.2: $b_{1}(w)+b_{2}(w)=b=b_{1}(z)+b_{2}(z)$. Then $b_{0}(w)+b_{3}(w)=2 b+1=b_{0}(z)+b_{3}(z)$. Let $y \in\left(B_{0}(w) \cup B_{3}(w)\right) \backslash\left(B_{1}(z) \cup B_{2}(z)\right)$. For both $w^{*} \in W-w$
$2 k+1 \geq \theta\left(w^{*} y\right) \geq\left\|w^{*}, A\right\|+\|y, A\|+2 b+1 \geq(a-2)+(a+2)+2 b+1=2 k+1$.
So all three inequalities in the chain are sharp. In particular, $\left\|w^{*}, Z\right\|=1$ and $\|y, W \cup Z\|=$ 4. Thus $y \in B_{0}(w) \cap B_{0}(z)$. Similarly, $\left\|z^{*}, W\right\|=1$ for both $z^{*} \in Z-z$. If $z^{*} w^{*} \in E(G)$, then as in the proof of (7.10), switching w^{*} with z^{*} yields a coloring with more terminal classes, a contradiction. Thus, $\left\{w z^{\prime}, w z^{\prime \prime}, z w^{\prime}, z w^{\prime \prime}\right\} \subset E(G)$. As w and z are solo, they are unmovable. So $\|w, V-z\| \geq k$ and $\|z, V-w\| \geq k$. Thus $w z \notin E(G)$. Finally, obtain an equitable k-coloring by combining an equitable b-coloring of $B-y$ with $\{y, z, w\}$, $\left\{w^{\prime}, z^{\prime}, z^{\prime \prime}\right\}$, and shifting witnesses along \mathcal{P} (starting from $w^{\prime \prime}$).

8 Properties of the set of solo vertices

Let f be an optimal coloring. Let $S_{f} \subseteq E$ be the set of solo edges $x y$ with $x \in A^{\prime}$ and $y \in B$. For any $W \subseteq V$, let $S_{f}(W)$ be the set of the solo vertices in W, i.e., vertices in W incident to a solo edge, and let $T_{f}(W)=W \backslash S(W)$. We will normally drop the subscript when the coloring is clear from the context. For every $x \in X \in A$ and $i \in\{0,1,2,3\}$ let $B_{i}(x)=\{y \in B:\|y, X\|=i\}$ and $b_{i}(x)=\left|B_{i}(x)\right|$. Call a vertex x free if $\|x, A\|=0$. For easier reference, we restate several important lemmas using this new notation.
(A.1) $a=a^{\prime}+1$ (Lemma 34);
(A.2) for every $y \in B, G[B-y]$ has an equitable b-coloring (Lemma 22);
(A.3) every $x \in S\left(A^{\prime}\right)$ is unmovable (Lemmas 20 and 22);
(A.4) for every $X=\left\{x, x^{\prime}, x^{\prime \prime}\right\} \in \mathcal{A}^{\prime}$ with $b_{1}(x)>0, B_{0}(x) \cup B_{3}(x) \subseteq N\left(x^{\prime}\right) \cap N\left(x^{\prime \prime}\right)$ (Corollary 23);
(A.5) for every $x \in S\left(A^{\prime}\right), B_{1}(x)$ is a clique (Theorem 25);
(A.6) for every $x \in S\left(A^{\prime}\right), y \in B_{1}(x)$ and $y^{\prime} \in B_{2}(x), y y^{\prime} \in E$ (Theorem 25);
(A.7) every color class of \mathcal{A}^{\prime} contains at most one unmovable vertex (Lemma 21); and
(A.8) for every $y \in S(B), d(y) \leq k$ (Lemma 26).

Proposition 35 There are at most $b+1$ vertices y in B such that $d(y)<2 a-1$.
Proof If $b \geq a^{\prime}$, then using (A.1), $2 a-1=a+a^{\prime} \leq k$. By Lemma 28, $\left|L^{\prime}(B)\right| \leq a^{\prime} \leq b$. By the definition of $L^{\prime}(B)$, there are at most b vertices y in B with $d(y) \leq a+a^{\prime}-1=2 a-2$.

If $b \leq a^{\prime}-1$, then by Lemma 29, $|L(B)| \leq b+1$. Also, $2 a-1 \geq k+1$, so there exist at most $b+1$ vertices y in B with $d(y)<2 a-1$.

Proposition 36 (a) If $x \in A^{\prime}$ and $\|x, B\| \geq 2 b+1$, then $d(x) \leq 2 b+2$.
(b) If $x \in S\left(A^{\prime}\right)$, then $b-1 \leq b_{1}(x)+b_{2}(x) \leq b+1$.

Proof If $\|x, B\| \geq 2 b+1>b+1$ then, by Proposition 35, there exists $y \in N(x) \cap B$ such that $d(y) \geq 2 a-1$. Together with $\theta(x y) \leq 2 k+1$, this yields $d(x) \leq 2 b+2$, proving (a).

Suppose $x \in S\left(A^{\prime}\right)$, where $x \in X \in \mathcal{A}^{\prime}$, and $y \in B_{1}(x)$. By (a) and (A.4), $b_{0}(x)+b_{3}(x) \leq$ $2 b+2$, so $b_{1}(x)+b_{2}(x) \geq b-1$. Finally, (A.5), (A.6) and (A.8), yield

$$
b_{1}(x)+b_{2}(x)-1 \leq\|y, B\|=d(y)-\|y, A\| \leq k-a=b
$$

Proposition 37 Let $x \in X \in \mathcal{A}^{\prime}, z \in A-X, x z \notin E$, and $A^{*}=A-x-z$. Then either

1. $N(z) \cup N(x) \supseteq B$, or
2. there is no equitable $(a-1)$-coloring of $G\left[A^{*}\right]$.

In particular, if $\left\|X-x, A^{*}\right\| \leq 1$ and $z \notin V^{-}$, then (1) holds.
Proof If $x z \notin E$ and there exists $y \in B \backslash(N(z) \cup N(x))$, then the class $\{x, z, y\}$ together with an equitable $(a-1)$-coloring of $G\left[A^{*}\right]$ and an equitable b-coloring of $G[B-y]$ (which exists by (A.2)) give an equitable coloring of G. For the second part, note that if $\left\|X-x, A^{*}\right\| \leq 1$ and $z \notin V^{-}$, then $G\left[A^{*}\right]$ has an equitable $(a-1)$-coloring.

Lemma 38 Let $X=\left\{x, x^{\prime}, x^{\prime \prime}\right\} \in \mathcal{A}^{\prime}$ with $x \in S(X)$. Then $B_{2}(x) \subseteq S(B)$, and $N\left(x^{\prime}\right), N\left(x^{\prime \prime}\right) \supseteq T(B)$.

Proof The second part of the lemma follows from the first part and (A.4). For the first part, let $x y \in S$; then $y \in B_{1}(x)$. By (A.6), $B_{2}(x) \subseteq N(y)$. By (A.3), (A.8), and (A.5)

$$
\begin{equation*}
d(x) \geq a-1+b_{1}(x)+b_{2}(x) \quad \text { and } \quad k \geq d(y) \geq a+b_{1}(x)+b_{2}(x)-1 \tag{8.1}
\end{equation*}
$$

Assume the lemma fails, and pick $y^{\prime} \in T(B) \cap B_{2}(x)$. As $\left\|y^{\prime}, U\right\| \geq 2$, (A.7) implies there is $u^{\prime} \in N\left(y^{\prime}\right) \cap U \cap M$ for each class $U \in \mathcal{A}^{\prime}$. Let $U=\left\{u, u^{\prime}, u^{\prime \prime}\right\}$, where $u \in \bar{M}$; set $M^{\prime}=\left\{u^{\prime}: U \in \mathcal{A}^{\prime}\right\}, M^{\prime \prime}=\left\{u^{\prime \prime}: U \in \mathcal{A}^{\prime}\right\}$ and $V^{-}=\left\{v, v^{\prime}\right\}$, where $v \in \bar{M}$. Ву (А.4), $B_{0}(x) \cup B_{3}(x)+y^{\prime} \subseteq N\left(x^{\prime}\right)$. By (A.6), $B_{1}(x) \subseteq N\left(y^{\prime}\right)$. Using Proposition 36,

$$
d\left(x^{\prime}\right) \geq 3 b+1-b_{1}(x)-b_{2}(x)+1 \geq 2 b+1 \quad \text { and } \quad d\left(y^{\prime}\right) \geq 2 a-1+b_{1}(x) \geq 2 a
$$

Thus $\theta\left(x^{\prime} y^{\prime}\right)=2 k+1, b_{1}(x)=1, b_{2}(x)=b, b_{0}(x)+b_{3}(x)=2 b$ and $N\left(y^{\prime}\right) \cap B=\{y\}$. By (8.1), $\|y, A\|=a$ and $\|y, B\|=b$. By (A.3), $u y \in S$ for all $U \in \mathcal{A}^{\prime}$. By (A.5) and (A.6),

$$
\begin{equation*}
N[y]=\bar{M} \cup B_{1} \cup B_{2}(x) \tag{8.2}
\end{equation*}
$$

We will obtain a contradiction to Lemma 15 by proving $\bar{M} \cup B_{2}(x)-y^{\prime}+y$ is a k-clique. Consider any $U \in \mathcal{A}^{\prime}$. Since $u y \in S$ and $u^{\prime} y^{\prime} \in E$, we have $B_{1}(u) \cup B_{2}(u) \subseteq N[y] \cap B=$ $B_{1}(x) \cup B_{2}(x), B_{0}(u) \cup B_{3}(u) \supseteq B_{0}(x) \cup B_{3}(x),\left\|u^{\prime}, B\right\| \geq 2 b+1, \theta\left(u^{\prime} y^{\prime}\right)=2 k+1$, $N\left(u^{\prime}\right) \cap B_{2}(x)-y^{\prime}=\emptyset$ and u^{\prime} is free. Using (A.4)

$$
\begin{equation*}
B_{2}(x)-y^{\prime}+y \subseteq B_{1}(u) \cup B_{2}(u) \subseteq N(u) \text { for all } U \in \mathcal{A}^{\prime} \tag{8.3}
\end{equation*}
$$

Consider any $y^{\prime \prime} \in B_{2}(x)-y^{\prime}$. As $y^{\prime} y^{\prime \prime} \notin E, y^{\prime} \notin B_{2}(u)$ or $y^{\prime \prime} \notin B_{1}(u)$. Anyway, $N\left(u^{\prime \prime}\right) \cap\left\{y^{\prime}, y^{\prime \prime}\right\} \neq \emptyset$. So $\left\|u^{\prime \prime}, B\right\| \geq b_{0}(x)+b_{3}(x)+1 \geq 2 b+1$, and $\left\|u^{\prime \prime}, A\right\| \leq 1$. Consider $w \in \bar{M} \backslash\{u, v\}$. By Proposition 37 and $\left.\|\left\{u^{\prime}, u^{\prime \prime}\right\}, A\right\} \| \leq 1, u w \in E$. Thus

$$
\begin{equation*}
\bar{M}-v \text { is a clique. } \tag{8.4}
\end{equation*}
$$

If $v y^{\prime \prime} \notin E$ then moving v^{\prime} to some class $W \in \mathcal{A}^{\prime}$, moving w^{\prime} and $y^{\prime \prime}$ to the class of v, and equitably b-coloring $B-y^{\prime \prime}$ yields an equitable k-coloring. Thus $v y^{\prime \prime} \in E$. Suppose $u v \notin E$. If $v u^{\prime \prime} \in E$ then switch v with $u^{\prime \prime}$; else switch v with u^{\prime}. Moving y to the class of v^{\prime} and equitably b-coloring $G[B]-y$ yields an equitable k-coloring. So $u v \in E$ and

$$
\begin{equation*}
\bar{M} \cup B_{2}(x) \backslash\left\{v, y^{\prime}\right\} \subseteq N(v) . \tag{8.5}
\end{equation*}
$$

If there is $y^{\prime \prime} \in B_{2}(x) \cap T(B)-y^{\prime}$ then $y^{\prime \prime}$ plays the same role as y^{\prime}. Thus $B_{2}(x)=\left\{y^{\prime}, y^{\prime \prime}\right\}$ and $B_{2}(x)-y^{\prime}$ is a 1 -clique. Otherwise for every $y^{\prime \prime} \in B_{2}(x) \cap T(B)-y^{\prime}$ there is $U \in \mathcal{A}^{\prime}$ with $y^{\prime \prime} \in B_{1}(u)$. By (8.3), any other $y^{*} \in B_{2}(x)-y^{\prime}$ satisfies $y^{*} \in B_{1}(u) \cup B_{2}(u)$, so $y^{\prime \prime} y^{*}$. Thus $B_{2}(x)-y^{\prime}$ is a k-clique. Combining this with (8.2), (8.3), (8.4), and (8.5) yields that $\bar{M} \cup B_{2}(x)-y^{\prime}+y$ is a k-clique.

Lemma $39 S(B)$ is a clique.
Proof Suppose $y, y^{\prime} \in S(B)$ and $y y^{\prime} \notin E$. Then there are $X=\left\{x, x^{\prime}, x^{\prime \prime}\right\} \in \mathcal{A}^{\prime}$ and $Z=\left\{z, z^{\prime}, z^{\prime \prime}\right\} \in \mathcal{A}^{\prime}$ with $y x, y^{\prime} z \in S$. As $y y^{\prime} \notin E$, (A.5), (A.6), and (A.4) imply $X \neq Z$, $a^{\prime} \geq 2, y^{\prime} \in B_{0}(x) \cup B_{3}(x), y \in B_{0}(z) \cup B_{3}(z), N(y) \supseteq\left\{z^{\prime}, z^{\prime \prime}\right\}$ and $N\left(y^{\prime}\right) \supseteq\left\{x^{\prime}, x^{\prime \prime}\right\}$. Using Proposition 36(b), assume $b_{1}(z)+b_{2}(z) \geq b_{1}(x)+b_{2}(x) \geq b-1$. Let $V^{-}=\left\{v, v^{\prime}\right\}$.

Case 1: $b_{1}(x)+b_{2}(x)=b-1$. Since $b_{1}(x) \geq 1, b \geq 2$. By Proposition 36(a), $N\left(x^{\prime}\right)=$ $N\left(x^{\prime \prime}\right)=B_{0}(x) \cup B_{3}(x)$, so $d\left(x^{\prime}\right), d\left(x^{\prime \prime}\right)=b_{0}(x)+b_{3}(x)=2 b+2$, and x^{\prime} and $x^{\prime \prime}$ are free. Subcase 1.a: $b_{1}(z)+b_{2}(z)=b-1$. Then $d\left(z^{\prime}\right), d\left(z^{\prime \prime}\right)=b_{0}(z)+b_{3}(z)=2 b+2$ and both z^{\prime} and $z^{\prime \prime}$ are free. As $x z^{\prime}, y^{\prime} z^{\prime} \notin E$, Proposition 37 implies $x y^{\prime} \in E$. Similarly, $z y \in E$. Since $d(y), d\left(y^{\prime}\right) \leq k$ by (A.8), and since $\|y, A\|,\left\|y^{\prime}, A\right\| \geq a+2$ and $\|y, B\|,\left\|y^{\prime}, B\right\| \geq b-2$, both y and y^{\prime} have solo neighbors in every class in $\mathcal{A}^{\prime}-X-Z$. As $y y^{\prime} \notin E$, (A.5) implies $\mathcal{A}^{\prime}=$ $\{X, Z\}$ and $a=3$. Since $z^{\prime} y \in E$ and $\theta\left(z^{\prime} y\right) \geq 2 b+2+a+b=a+3 b+2, b \leq a-1=2$. So $b=2, S(B)=\left\{y, y^{\prime}\right\}$ and $T(B)=\left\{y_{1}, \ldots, y_{5}\right\}$. By Lemma 38, $N\left(y_{i}\right) \supseteq\left\{x^{\prime}, x^{\prime \prime}, z^{\prime}, z^{\prime \prime}, v_{i}\right\}$ for some $v_{i} \in V^{-}$for all $i \in[5]$. By (H2), B is independent and both x and z have no neighbors in $T(B)$. Now $\left\{\left\{v, x^{\prime}, x^{\prime \prime}\right\},\left\{v^{\prime}, z^{\prime}, z^{\prime \prime}\right\},\left\{x, y_{1}, y_{2}\right\},\left\{z, y_{3}, y_{4}\right\},\left\{y, y^{\prime}, y_{5}\right\}\right\}$ is an equitable 5 -coloring.
Subcase 1.b: $b_{1}(z)+b_{2}(z) \geq b$. Then $\left\|z^{\prime}, B\right\| \geq 2 b+1$. By (A.8), (A.5) and (A.6),

$$
k \geq d\left(y^{\prime}\right)=\left\|y^{\prime}, B \cup(A \backslash X) \cup\left\{x^{\prime}, x^{\prime \prime}\right\}+x\right\| \geq b-1+a-1+2+0 \geq k
$$

$\left\|y^{\prime}, A \backslash X\right\|=a-1,\left\|y^{\prime}, U\right\|=1$ for all $U \in \mathcal{A}-X$, and $x y^{\prime} \notin E$. Say $v y^{\prime} \in E$. Consider any class $U=\left\{u, u^{\prime}, u^{\prime \prime}\right\} \in \mathcal{A}^{\prime}-X$ with $u y^{\prime} \in S$. As x^{\prime} and $x^{\prime \prime}$ are free and $v^{\prime} y^{\prime}, u^{\prime} y^{\prime}, u^{\prime \prime} y^{\prime} \notin E$, Proposition 37 implies $v^{\prime} x, u^{\prime} x, u^{\prime \prime} x \in E$. Also $v^{*} x \in E$ for both
$v^{*} \in\{u, v\}$: else moving y^{\prime} to the class of v^{*}, v^{*} to X, and x^{\prime} to V^{-}, and equitably b coloring $B-y^{\prime}$ contradicts (3.1). As $k \geq 5$, this gives the contradiction

$$
\theta\left(x z^{\prime}\right)=\|x, A \cup B\|+d\left(z^{\prime}\right) \geq 3(a-2)+2+b-1+2 b+2 \geq 3 k-3 \geq 2 k+2 .
$$

Case 2: $b_{1}(x)+b_{2}(x) \geq b$. By (A.8), (A.5) and (A.6), $\|y, B\|=b-1=\left\|y^{\prime}, B\right\|$ and $\|y, A\|=a+1=\left\|y^{\prime}, A\right\|$. Thus $\|y, U\|=1$ for all $U \in \mathcal{A}-X$ and $\left\|y^{\prime}, U\right\|=1$ for all $U \in \mathcal{A}-Z$. As $y y^{\prime} \notin E$, (A.1) and (A.5) imply $\mathcal{A}^{\prime}=\left\{V^{-}, X, Z\right\}$. Also $b_{1}(x)+b_{2}(x)=$ $b_{1}(z)+b_{2}(z)=b$ and $b_{0}(x)+b_{3}(x)=b_{0}(z)+b_{3}(z)=2 b+1$. By Proposition 36(a), $\|u, A\| \leq 1$ for all $u \in\left\{x^{\prime}, x^{\prime \prime}, z^{\prime}, z^{\prime \prime}\right\}$. Also $y \in B_{0}(z)$ and $y^{\prime} \in B_{0}(x)$.

Suppose $x^{\prime} z^{\prime} \in E$. Then $\left\|Z-z, X-x^{\prime}\right\| \leq 1$ and $y \notin N\left(x^{\prime}\right) \cup N(z)$. By Proposition 37, $x^{\prime} z \in E$. Thus $\left\|x^{\prime}, A\right\| \geq 2$, a contradiction. By similar arguments, $\|X-x, Z-z\|=0$.

Suppose $\|x, Z-z\| \leq 1$. Then $\|X, Z-z\| \leq 1$. Again Proposition 37 implies $z x^{\prime} \in E$. Similarly, $z x^{\prime \prime} \in E$. Thus $\|\{x, Z-z \|=2$ or $\|z, X-x\|=2$. Say $\|z, X-x\|=2$. Then $\|z, A\| \geq a$. By (A.3), x and z are unmovable. Say $v z \in E$.

Suppose $x z \notin E$. Then x has a movable neighbor (say) z^{\prime} in Z. By Lemma 20, $\|x, A\| \geq a$. By Proposition 37, $B \subseteq N(x) \cup N(z)$. By Proposition 35, there is $w \in B$ with $d(w) \geq 2 a-1$. Let $u^{\prime} \in\left\{x^{\prime}, z^{\prime}\right\}$, where $u^{\prime}=z^{\prime}$ if and only if $z w \in E$. Then
$4 k+2 \geq d(x)+d(z)+d(w)+d\left(u^{\prime}\right) \geq 2 a+3 b+1+2 a-1+2 b+2 \geq 4 k+b+2$,
a contradiction. Thus $x z \in E$ and $\|z, X\|=3$; as $d\left(y^{\prime}\right)=k$ and $\|z, B\| \geq b$, we have $d(z)=k+1,\left\|z, V^{-}\right\|=1, v^{\prime} z \notin E, d(x) \leq k$ and $\|x, Z-z\| \leq 1$. By (C2), $v^{\prime} z^{*} \notin E$ for some $z^{*} \in Z-z$; say $z^{*}=z^{\prime}$. Then $\left\{v^{\prime}, z, z^{\prime}\right\}$ and $\left\{v, x^{\prime}, x^{\prime \prime}\right\}$ are independent and $x y^{\prime}, z^{\prime \prime} y^{\prime} \notin E$, so $x z^{\prime \prime} \in E$ by Proposition 37 . Now $v^{\prime} z^{\prime \prime} \notin E$. Switching z^{\prime} and $z^{\prime \prime}$, yields $x z^{\prime} \in E$ and $d(x)=k+1$, contradicting (3.1)

Lemma 40 Every $x \in S\left(A^{\prime}\right)$ satisfies $b_{1}(x)+b_{2}(x)=b$.
Proof Suppose the lemma fails for some $x \in\left\{x, x^{\prime}, x^{\prime \prime}\right\}=X \in \mathcal{A}^{\prime}$ with $x \in S\left(A^{\prime}\right)$. By Lemma 38, $S(B) \supseteq B_{1}(x) \cup B_{2}(x), S(B)$ is a clique, and by Lemma 39, $b_{1}(x)+b_{2}(x) \leq$ $\chi(G[B]) \leq b$. Using Proposition 36, this implies $1 \leq b_{1}(x)+b_{2}(x)=b-1, N\left(x^{\prime}\right)=$ $N\left(x^{\prime \prime}\right)=B_{0}(x) \cup B_{3}(x), x^{\prime}$ and $x^{\prime \prime}$ are free, and $b_{2}(x)=0$.

Suppose there exists $y \in B_{3}(x)$. If $y \in T(B)$, then $\|y, A\| \geq 2 a$, but the fact that $y x^{\prime} \in E$ and $d\left(x^{\prime}\right) \geq 2 b+2$ contradicts $\theta(G) \leq 2 k+1$. Otherwise, $y \in S(B),|S(B)| \geq b-1+1=b$, and since $S(B)$ is a clique, $\|y, B\| \geq b-1$. Since $\|y, A\| \geq a+2, d(y) \geq a+b+1$, contradicting (A.8). So $b_{3}(x)=0$ and $b_{0}(x)=2 b+2$. As $T(B) \subseteq N\left(x^{\prime}\right),\left\|w, V^{-}\right\|=1$, $\|w, U\|=2$ and $\|w, B\|=0$ for every $w \in T(B)$ and $U \in \mathcal{A}^{\prime}$.

Suppose $|S(B)|=b-1$. Then $|T(B)|=2 b+2$ and $G[B]=K_{b-1}+\overline{K_{2 b+2}}$. There exist distinct $y_{1}, y_{2}, y_{3}, y_{4} \in T(B)$ and $v, v^{\prime} \in V^{-}$with $v y_{1}, v y_{2} \in E$. Then $\left\{v^{\prime}, y_{1}, y_{2}\right\}$, $\left\{v, x^{\prime}, x^{\prime \prime}\right\}$ and $\left\{x, y_{3}, y_{4}\right\}$ are independent sets. Then $B \backslash\left\{y_{1}, y_{2}, y_{3}, y_{4}\right\}$ admits an equitable ($b-1$)-coloring, a contradiction. So $|S(B)|=b$.

Now there exist $y^{\prime} \in S(B) \backslash B_{1}(x)$ and $Z=\left\{z, z^{\prime}, z^{\prime \prime}\right\} \in \mathcal{A}^{\prime}-X$ with $z y^{\prime} \in S$. Recall that $S(B)$ is a clique, $N\left(y^{\prime}\right) \supseteq\left\{x^{\prime}, x^{\prime \prime}\right\}$ and $d\left(y^{\prime}\right) \leq k$, so $N\left(y^{\prime}\right) \cap B=S(B)-y^{\prime}$ and $\left\|y^{\prime}, A\right\|=a+1$. Let $\left\{y_{1}, y_{2}, y_{3}\right\} \subseteq T(B)$ be a 3-set. Then $\left\|y_{i}, Z\right\|=2$ for every $i \in[3]$. Since $B_{2}(z) \subseteq S(B), z y_{i} \notin E$. So $\left\{x, y^{\prime}, y_{1}\right\},\left\{z, y_{2}, y_{3}\right\}, V^{-}+x^{\prime}$ and $\left\{z^{\prime}, z^{\prime \prime}, x^{\prime \prime}\right\}$ are independent. As $G[B]-\left\{y^{\prime}, y_{1}, y_{2}, y_{3}\right\}$ admits an equitable ($b-1$)-coloring, this completes the contradiction.

Corollary 41 Suppose $X=\left\{x, x^{\prime}, x^{\prime \prime}\right\} \in \mathcal{A}^{\prime}$. If x is solo, then $G[S(B)]=K_{b}, N(x) \supseteq$ $S(B), N\left(x^{\prime}\right), N\left(x^{\prime \prime}\right) \supseteq T(B)$ and $\left\|x^{\prime}, A\right\|,\left\|x^{\prime \prime}, A\right\| \leq 1$.

9 Finding a clique on \boldsymbol{k} vertices

Lemma 42 If $W \subseteq A$ is a 5 -set and there is an equitable ($a-2$)-coloring of $G[A \backslash W]$, then $G[W]$ contains an edge. In particular, $\left\|X, V^{-}\right\| \geq 1$ for every $X \in \mathcal{A}^{\prime}$.

Proof Suppose $W \subseteq A$ is an independent 5 -set and that there is an equitable ($a-2$)-coloring of $G[A \backslash W]$. For every $y \in B, G[W+y]$ has no equitable 2 -coloring by (A.2), which implies $\|y, W\| \geq 4$. So there exist distinct $w, w^{\prime} \in W$ such that

$$
\left\|\left\{w, w^{\prime}\right\}, B\right\| \geq\lceil 8|B| / 5\rceil=4 b+1+\lceil(4 b+3) / 5\rceil \geq 4 b+3 .
$$

Therefore using Proposition 36(a), we can assume that $\|w, B\|=2 b+2,\left\|w^{\prime}, B\right\| \geq 2 b+1$ and $b \leq 2$. Proposition 36(a) further implies that $d(w), d\left(w^{\prime}\right) \leq 2 b+2$, and $\left\|\left\{w, w^{\prime}\right\}, A\right\| \leq$ 1, and there is an optimal coloring f^{\prime} such that $V^{-}\left(f^{\prime}\right)=\left\{w, w^{\prime}\right\}$ and $X=W-\left\{w, w^{\prime}\right\} \in$ $\mathcal{A}^{\prime}\left(f^{\prime}\right)$. Furthermore, since $\left|S_{f^{\prime}}(B)\right| \leq b$ by Lemma 39, there exists $y \in T_{f^{\prime}}(B)$ such that $w y \in E$, so $d(y)=2 a-1$. Since $y \in T_{f^{\prime}}(B),\|y, Z\| \geq 2$ for every $Z \in \mathcal{A}^{\prime}\left(f^{\prime}\right)-X$, so $4+2(a-2) \leq d(y)=2 a-1$, a contradiction.

Lemma $43 a \geq 3$.
Proof Suppose $a=2$. Since $k \geq 4, b \geq 2$. Let $\left\{v, v^{\prime}\right\}=V^{-}$and $\left\{x, x^{\prime}, x^{\prime \prime}\right\}=X \in \mathcal{A}^{\prime}$. By Lemma 42, we can assume that $x v \in E$. Since X has at most one unmovable vertex, every edge in $E(G[A])$ is incident to x. We know that $x v^{\prime} \notin E$, for otherwise, $\left\{x, x^{\prime}\right\},\left\{v, v^{\prime}, x^{\prime \prime}\right\}$ are both independent sets and both v and v^{\prime} are unmovable in the new coloring. Therefore, $E(G[A])=\{x v\}$. Let $X^{\prime}=\left\{v^{\prime}, x^{\prime}, x^{\prime \prime}\right\}$. For any $y \in B$, there is no equitable 2-coloring of $G[A+y]$ by (A.2). Hence, either $N(y) \supseteq\{x, v\}$ or $N(y) \supseteq X^{\prime}$.

Suppose there exists $w \in X^{\prime}$ with $d(w) \geq 2 b+2$. By the degree-sum condition, every vertex in $N(w)$ has degree precisely three, with neighborhood X^{\prime} or $\{w, x, v\}$ and $d(w)=$ $2 b+2$. Note that $|B-N(w)|=b-1$. Since one of $\{x, v\}$ is low, and both are adjacent to every vertex in $B-N(w)$, there are at most two vertices in $N(w)$ whose neighborhood is $\{w, x, v\}$, so there are at least $(2 b+2)-2 \geq 4$ vertices in $N(w)$ whose neighborhood is X^{\prime}. Let $\left\{y_{1}, \ldots, y_{4}\right\}$ be four such vertices. Now $\left\{x, y_{1}, y_{2}\right\},\left\{v, y_{3}, y_{4}\right\}$ and X^{\prime} are independent sets and we can equitably $(b-1)$-color, $B-\left\{y_{1}, \ldots, y_{4}\right\}$ by pairing each of the $b-1$ vertices of $B-N(w)$ with two vertices in $N(w)-\left\{y_{1}, \ldots, y_{4}\right\}$. Then every vertex in X^{\prime} has degree at most $2 b+1$.

Suppose there exists $y \in S(B)$. Since x is not movable, $x y \in S$ and, by Corollary 41, $G[S(B)]=K_{b}$. Since y is not adjacent to x^{\prime}, y must be adjacent to v. So $S(B) \cup\{x, v\}$ is a clique, which contradicts the fact that $\omega(G) \leq k-1$. Therefore, for every $y \in B, y \in T(B)$ and $\left|N(y) \cap\left\{x^{\prime}, x^{\prime \prime}\right\}\right| \geq 1$. Let $Y^{\prime}=\{y \in B: N(y) \supseteq\{x, v\}\}$. Since $d(x)+d(v) \leq 2 b+5$, $\left|Y^{\prime}\right| \leq b+1$. For every vertex $y^{\prime} \in B-Y^{\prime}, N\left(y^{\prime}\right) \supseteq X^{\prime}$. Therefore, we have the following contradiction

$$
4 b+3 \leq 5 b+1 \leq 2|B|-\left|Y^{\prime}\right| \leq\left\|\left\{x^{\prime}, x^{\prime \prime}\right\}, B\right\| \leq 4 b+2 .
$$

Let $T^{\prime}(B):=\{y \in T(B): d(y) \geq 2 a\}$.
Lemma 44 If there exists an edge $x y \in G\left[T^{\prime}(B)\right]$, then $a \leq b$.
Proof Since $x, y \in T^{\prime}(B), 4 a \leq d(x)+d(y) \leq 2 a+2 b+1$ and the conclusion follows.

Lemma 45 Suppose that $\left\{x, x^{\prime}, x^{\prime \prime}\right\}=X \in \mathcal{A}^{\prime}$ has no solo vertex. The following statements are true:
(a) $\|X, A\| \geq 2$ and if every vertex in X is movable, then $\|X, A\| \geq 3$.
(b) For every $y \in B,|N(y) \cap X|=2$, so $\left\{B_{0}(x), B_{0}\left(x^{\prime}\right), B_{0}\left(x^{\prime \prime}\right)\right\}$ is a partition of B.
(c) There are no edges with one endpoint in $S(B)$ and one endpoint in $T(B)$.
(d) There exists $x^{*} \in X$ with $N\left(x^{*}\right) \cap T^{\prime}(B)=\emptyset$.
(e) For every $y \in T(B), d(y) \leq 2 a$.
(f) If $G[T(B)]$ contains an edge, then $3=a \leq b$, and X contains an unmovable vertex.

Proof We will first show that $\|X, A\| \geq 2$. If X has an unmovable vertex x, then this is clear, because in this case $\|x, A\| \geq a-1 \geq 2$. Now suppose that every vertex in X is movable. Move the witness w_{X} along a path in \mathcal{H} to V^{-}. The new coloring is optimal, since otherwise there is a class $Z \neq V^{-}+w_{X}$ in which all 3 vertices are adjacent to $X-w_{X}$, as claimed. Thus by Lemma 42 for the new coloring, each of the classes has a neighbor in $X-w_{X}$. So $\|X, A\| \geq\left\|X-w_{X}, A\right\| \geq a-1 \geq 2$ with equality only if $a=3$ and w_{X} is free. In this case, we can assume each class $V^{-}+w_{X}$ and $Z \in \mathcal{A}^{\prime}-X$ has exactly one neighbor in $X-w_{X}$. Since each vertex in X is movable in the original coloring, these two neighbors are distinct. Then taking the neighbor of Z in X as w_{X} yields (a).

Assume that $\left\|x^{\prime}, B\right\| \leq\left\|x^{\prime \prime}, B\right\|$. Let $y \in B$. If $y \in S(B)$, then since $\|y, X\| \geq 2$, $d(y) \leq a+b, S(B)$ is a clique and $|S(B)| \geq b, N(y) \cap B=S(B)-y,\|y, T(B)\|=0$, $\|y, A\|=a+1$ and $\|y, X\|=2$. If $y \in T(B)$, then $\|y, X\|=3$ implies $d(y) \geq 2 a$ and $d(x), d\left(x^{\prime}\right), d\left(x^{\prime \prime}\right) \leq 2 b+1$, so $\|X, A\| \leq d(x)+d\left(x^{\prime}\right)+d\left(x^{\prime \prime}\right)-(2|B|+1)=0$, a contradiction to (a). This proves (b) and (c).

We will now prove (d) and (e). Let $y \in T^{\prime}(B)$. By (b), we can label so that $x, x^{\prime} \in N(y)$ and $x^{\prime \prime} \notin N(y)$. If $d(y)=2 a$, suppose, for a contradiction to (d), that there exists $y^{\prime} \in$ $T^{\prime}(B) \cap N\left(x^{\prime \prime}\right)$. If $d(y) \geq 2 a+1$, then $\|x, B\|,\left\|x^{\prime}, B\right\| \leq 2 b$, so $\left\|x^{\prime \prime}, B\right\| \geq 2 b+2$, so we can let $y^{\prime} \in N\left(x^{\prime \prime}\right) \cap T(B)$. In either case, $2 d(y)+d\left(y^{\prime}\right) \geq 6 a$, so $d(x)+d\left(x^{\prime}\right)+d\left(x^{\prime \prime}\right) \leq 6 b+3$, since $\|y, X\|=2$. This implies that $\|X, A\| \leq 1$, which is a contradiction to (a).

Suppose there exists $y y^{\prime} \in E(G[T(B)])$, so $y, y^{\prime} \in T^{\prime}(B)$. By (d), there exists $x^{\prime \prime} \in X$ such that $N\left(x^{\prime \prime}\right) \cap T^{\prime}(B)=\emptyset$, so $d(x), d\left(x^{\prime}\right) \leq 2 b+1$ and $\left\|x^{\prime \prime}, B\right\| \geq 2 b$. Since $|S(B)| \leq b$, $x^{\prime \prime}$ is adjacent to a vertex in $T(B)$, so $d\left(x^{\prime \prime}\right) \leq 2 b+2$, hence

$$
\|X, A\| \leq d(x)+d\left(x^{\prime}\right)+d\left(x^{\prime \prime}\right)-(6 b+2) \leq 2
$$

So $\|X, A\|=2$ and there exists an unmovable vertex $x \in X$. Since $a^{\prime} \leq\|x, A\| \leq\|X, A\|=$ 2 and $a \geq 3$, it must be that $a=3$. By Lemma 44, $b \geq a$ which proves (f).

Lemma 46 If there exists $y \in T(B)$ such that $N(y) \supseteq V^{-}$, then $a \leq b+1$. In particular, if $b=1$, then for every $y \in T(B),\left\|y, V^{-}\right\|=1$.

Proof Suppose $V^{-}=\left\{v, v^{\prime}\right\}$ and some $y \in T(B)$ is adjacent to both v and v^{\prime} and that $a \geq b+2$. Since $\left\|V^{-}, B\right\| \geq 3 b+2$, Lemma 42 implies that $d(v)+d\left(v^{\prime}\right) \geq(3 b+2)+(a-$ $1) \geq 4 b+3$. So we may assume $d(v) \geq 2 b+2$. But $d(y) \geq 2 a$ and so $d(y)+d(v) \geq 2 k+2$.

Lemma $47|S(B)|=b$.
Proof By Corollary 41, we are done when $S(B) \neq \emptyset$. So assume $S(B)=\emptyset$, which means that no class in \mathcal{A}^{\prime} contains a solo vertex. Let $X=\left\{x, x^{\prime}, x^{\prime \prime}\right\} \in \mathcal{A}^{\prime}$. Let $x \in X$ be the unmovable vertex in X, if it exists and, in this case, assume $\left\|x^{\prime}, B\right\| \leq\left\|x^{\prime \prime}, B\right\|$. Otherwise,
every vertex in X is movable and we label them so that $\|x, B\| \leq\left\|x^{\prime}, B\right\| \leq\left\|x^{\prime \prime}, B\right\|$. In either case $\|x, B\| \leq 2 b$, so $\left|B_{0}(x)\right| \geq b+1$.

Suppose there exists an edge $y y^{\prime} \in E(G[B])$. Since $B=T(B)$, Lemma 45(f) implies that $a=3 \leq b$ and x is unmovable. By Lemma 45(d), there exists x^{*} such that $N\left(x^{*}\right) \cap T^{\prime}(B)=\emptyset$. If $x=x^{*}$, then $\left\{x^{\prime}, x^{\prime \prime}\right\} \subseteq N(y)$, and $\|x, B\|=2 b,\left\|x^{\prime}, B\right\|=\left\|x^{\prime \prime}, B\right\|=2 b+1$ and both x^{\prime} and $x^{\prime \prime}$ are free. If $x^{*} \neq x$, then $\|x, B\| \leq 2 b+1-(a-1)=2 b-1$, so it must be that $\left\|x^{\prime}, B\right\|=2 b+1,\left\|x^{\prime \prime}, B\right\|=2 b+2$, both x^{\prime} and $x^{\prime \prime}$ are free and $x^{*}=x^{\prime \prime}$. In either case, $\left|B_{0}(x)\right|,\left|B_{0}\left(x^{\prime}\right)\right| \geq 3$, so there exist $y_{1}, y_{2} \in B_{0}(x)$ and $y_{3}, y_{4} \in B_{0}\left(x^{\prime}\right)$ such that $\left\{x, y_{1}, y_{2}\right\}$ and $\left\{x^{\prime}, y_{3}, y_{4}\right\}$ are independent 3 -sets. Graph $G\left[B-y_{1}-y_{2}-y_{3}-y_{4}\right]$ has an equitable ($b-1$)-coloring, since $\Delta(G[B]) \leq 1$ and $b \geq 3$. The independent set $V^{-}+x^{\prime \prime}$ completes an equitable coloring of G. So assume that B is an independent set.

We can assume $b_{0}\left(x^{\prime}\right) \leq 1$, for otherwise, as in the previous case, we can form two independent 3 -sets that contain x and x^{\prime} and 4 vertices from B; an equitable ($a-1$)-coloring of $A-X+x^{\prime \prime}$ (move $x^{\prime \prime}$ and switch witnesses); and an equitable ($b-1$)-coloring of the remaining vertices in B. By the same reasoning, we can assume $b_{0}\left(x^{\prime \prime}\right) \leq 1$. Then $\left\|x^{\prime \prime}, B\right\| \geq 3 b$, so $3 b \leq 2 b+2$, hence $b \leq 2$.

Suppose $b=2$. Then $\left\|x^{\prime}, B\right\|,\left\|x^{\prime \prime}, B\right\| \leq 2 b+2=6$, so $b_{0}\left(x^{\prime}\right)=b_{0}\left(x^{\prime \prime}\right)=1$. Say $B_{0}\left(x^{\prime}\right)=\left\{y^{\prime}\right\}$ and $B_{0}\left(x^{\prime \prime}\right)=\left\{y^{\prime \prime}\right\}$. Then $\left\|x^{\prime}, B\right\|=\left\|x^{\prime \prime}, B\right\|=2 b+2$, so x^{\prime} and $x^{\prime \prime}$ are free, and $\|x, B\|=2$. Since $d\left(x^{\prime}\right)=2 b+2, d\left(y^{\prime}\right)=d\left(y^{\prime \prime}\right)=2 a-1$ and y^{\prime} and $y^{\prime \prime}$ each have precisely one neighbor $v_{y^{\prime}}$ resp. $v_{y^{\prime \prime}}$ in V^{-}. If $v_{y^{\prime}}=v_{y^{\prime \prime}}$, we color $\left\{v_{y^{\prime}}, x^{\prime}, x^{\prime \prime}\right\}$ and $V-v_{y^{\prime}}+\left\{y^{\prime}, y^{\prime \prime}\right\}$. If $v_{y^{\prime}} \neq v_{y^{\prime \prime}}$, we color $\left\{v_{y^{\prime}}, x^{\prime \prime}, y^{\prime \prime}\right\}$ and $\left\{v_{y^{\prime \prime}}, x^{\prime}, y^{\prime}\right\}$. In either case, we then color x with two non-neighbors in B, and the remaining uncolored vertices in B are an independent triple. Then we can assume $b=1$.

Suppose $b=1$ and $b_{0}\left(x^{\prime}\right)=b_{0}\left(x^{\prime \prime}\right)=0$. Then $\left\|x^{\prime}, B\right\|=\left\|x^{\prime \prime}, B\right\|=4=2 b+2$, so by Proposition 36(a), x^{\prime} and $x^{\prime \prime}$ are free. Also, $\|x, B\|=0$. By Lemma 46, every vertex in B has precisely one neighbor in V^{-}, so we can choose $y^{\prime}, y^{\prime \prime} \in B$ that are both nonadjacent to some $v \in V^{-}$. Since $b_{0}(x) \geq b+1=2$, we color $B-y^{\prime}-y^{\prime \prime}+x,\left\{v, y^{\prime}, y^{\prime \prime}\right\}$, and $V^{-}-v+X-x$. Together with the remaining color classes $\mathcal{A}-V^{-}-X$, this is an equitable k-coloring of G.

Now we can assume $b=1$ and $b_{0}\left(x^{\prime}\right)=1$, so $\left\|x^{\prime}, B\right\|=3$. Since every vertex of B has degree at least $2 a-1, d(x), d\left(x^{\prime \prime}\right) \leq 2 b+2=4$. Since $\|X, B\|=2|B|=8$, $\left\|\left\{x, x^{\prime \prime}\right\}, B\right\|=5$, so $\left\|\left\{x, x^{\prime \prime}\right\}, A\right\| \leq 3$. Since x^{\prime} is movable, there exists an equitable coloring of $A-\left\{x, x^{\prime \prime}\right\}$; combine this with $\left\{x, x^{\prime \prime}\right\}$ and B to form a nearly-equitable coloring f^{\prime} of G. In $f^{\prime},\left\{x, x^{\prime \prime}\right\}$ is the small class, and $\left\|\left\{x, x^{\prime \prime}\right\}, B\right\|=5$, so some vertex of B has two neighbors in the small class of f^{\prime}. By Lemma 46, f^{\prime} is not optimal. If $\left\{x, x^{\prime \prime}\right\}$ have only two neighbors to every class of $f^{\prime}-B-\left\{x, x^{\prime \prime}\right\}$, then f^{\prime} is optimal, so there exists a class Z of $f^{\prime}-B-\left\{x, x^{\prime \prime}\right\}$ with $\left\|\left\{x, x^{\prime \prime}\right\}, Z\right\|=3$. Since $\left\|\left\{x, x^{\prime \prime}\right\}, A\right\| \leq 3$ and $a \geq 3$, there exists a class W in f^{\prime}, distinct from $Z,\left\{x, x^{\prime \prime}\right\}$, and B, such that $\left\|\left\{x, x^{\prime \prime}\right\}, W\right\|=0$. This violates Lemma 42.

Lemma 48 Every color class in \mathcal{A}^{\prime} has an unmovable vertex.
Proof Suppose that $\left\{x, x^{\prime}, x^{\prime \prime}\right\}=X \in \mathcal{A}^{\prime}$ has no unmovable vertex (and so also no solo vertex). By Lemma 47, there exists $y \in S(B)$, so there exists $\left\{z, z^{\prime}, z^{\prime \prime}\right\}=Z \in \mathcal{A}^{\prime}$ such that $y z \in S$. Assume that $\|x, B\| \leq\left\|x^{\prime}, B\right\| \leq\left\|x^{\prime \prime}, B\right\|$. This implies that $\left\|\left\{x^{\prime}, x^{\prime \prime}\right\}, B\right\| \geq 4 b+2$. Since $\left\|x^{\prime \prime}, B\right\| \leq 2 b+2,\left\|x^{\prime}, B\right\| \geq 2 b>b$, so both x^{\prime} and $x^{\prime \prime}$ are adjacent to some $y^{\prime} \in T(B)$. Hence $d\left(x^{\prime}\right), d\left(x^{\prime \prime}\right) \leq 2 b+2$ and $\left\|\left\{x^{\prime}, x^{\prime \prime}\right\}, A\right\| \leq 2$. Since there is an equitable $(a-1)$ coloring of $A-X+x$ and $a \geq 3$, Lemma 42 implies that $\left\|\left\{x^{\prime}, x^{\prime \prime}\right\}, A\right\|=2=a-1$, so $d\left(x^{\prime}\right)=d\left(x^{\prime \prime}\right)=2 b+2,\left\|\left\{x^{\prime}, x^{\prime \prime}\right\}, B\right\|=4 b+2$ and $\|x, B\|=2 b$. So $\mathcal{A}^{\prime}=\{X, Z\}$, and therefore, since X is terminal, there exists $z^{\prime} \in Z-z$ that is movable to V^{-}. Note that, since
every vertex in X is movable, for every vertex in X there is at least one class in $\left\{V^{-}, Z\right\}$ to which it is movable. Therefore, if we assume $N(z) \cap X=\{w\}$, then $V^{-}+w, Z-z+y$ and $X-w+z$ is an equitable a-coloring of $G[A+y]$. Therefore, because z is unmovable, z must have at least two neighbors $\left\{w, w^{\prime}\right\} \subseteq X$. Let $w^{\prime \prime}=X-\left\{w, w^{\prime}\right\}$ and note that Lemma 42 implies $\left\|X, V^{-}\right\| \geq 1$, so since $\left\|\left\{w, w^{\prime}\right\}, V^{-}\right\|=0, w^{\prime \prime}$ has a neighbor in V^{-}and therefore does not have a neighbor in Z, so $Z-z^{\prime}+w^{\prime \prime}$ is an independent set. Since $\left\|w^{\prime \prime}, A\right\| \geq 1$ and $d\left(w^{\prime \prime}\right) \leq 2 b+2,\left\|w^{\prime \prime}, B\right\| \leq 2 b+1<|B|$, so there exists $y^{\prime} \in B_{0}\left(w^{\prime \prime}\right)$. Note that $V^{-}+z^{\prime}$, $Z-z^{\prime}+w^{\prime \prime}, X-w^{\prime \prime}$ and \mathcal{B} form an optimal coloring of G, because $\left\|V^{-}+z^{\prime}, X-w^{\prime \prime}\right\|=0$ and $\left\|w^{\prime \prime}, X-w^{\prime \prime}\right\|=0$. Therefore, because $N\left(y^{\prime}\right) \supseteq X-w^{\prime \prime}$, Lemma 46 implies that $b \geq 2$. If either w or w^{\prime}, say w, is adjacent to z^{\prime}, then $d\left(z^{\prime}\right)=|T(B)|+1=2 b+2$ and, since $\|w, A\| \geq 2, d(w) \geq 2 b+2$, so $4 b+4 \leq 2 a+2 b+1$, which implies that $2 b+3 \leq 2 a=6$, and $b<2$ a contradiction. Therefore, $V^{-}+z^{\prime}+w+w^{\prime}$ is an independent set, and this contradicts Lemma 42, because $\left\{z, z^{\prime \prime}, w^{\prime \prime}\right\}$ is also an independent set.

Lemma 49 There exists an optimal coloring f^{\prime} such that $\mathcal{F}\left(f^{\prime}\right)$ is a star.
Proof If \mathcal{F} is not star, there exists $X \in \mathcal{A}^{\prime}$ such that $X V^{-}$is not an edge in \mathcal{F}. Because $a^{\prime}=a-1$, there exists $Z \in \mathcal{A}^{\prime}$ such that $Z V^{-}$is an edge in \mathcal{F}. Because Z is in \mathcal{A}^{\prime}, there exists an X, V^{-}-path X, \ldots, W, V^{-}in \mathcal{F} that avoids Z. Therefore, there exists another classes and $W \in \mathcal{A}^{\prime}-X-Z$ such that $Z V^{-}$and $W V^{-}$are both edges in \mathcal{F}. Hence,

$$
\begin{equation*}
a \geq 4 \tag{9.1}
\end{equation*}
$$

We let $X=\left\{x, x^{\prime}, x^{\prime \prime}\right\}$ with x unmovable. Since $X V^{-} \notin E(\mathcal{F})$,

$$
\begin{equation*}
\text { every vertex in } X \text { has a neighbor in } V^{-} \text {. } \tag{9.2}
\end{equation*}
$$

We make the following claims.
Claim 1 For any $U \in \mathcal{A}^{\prime}$, if $u \in U$ is unmovable and $\|U-u, A\| \geq 2$, then u is solo.
Proof If $\|U-u, A\| \geq 2$, then $\|U-u, B\| \leq 4 b+2$ by Proposition 36. If u is not solo, $\|u, B\| \geq 2 b$. So u is adjacent to some $y \in T(B)$, but this implies $d(u)+d(y) \geq$ $2 b+a-1+2 a-1$, which contradicts (9.1).

Claim 1 and (9.2) imply

$$
\begin{equation*}
x \text { is solo. } \tag{9.3}
\end{equation*}
$$

By Corollary 41,

$$
\begin{equation*}
\left\|x^{\prime}, A\right\|=\left\|x^{\prime \prime}, A\right\|=\left\|x^{\prime}, V^{-}\right\|=\left\|x^{\prime \prime}, V^{-}\right\|=1 \tag{9.4}
\end{equation*}
$$

Claim 2 For every $Z \in \mathcal{A}^{\prime},\|x, Z\| \leq 2$.
Proof Suppose $\|x, Z\|=3$ for some $Z \in \mathcal{A}^{\prime}$. By Claim 1 and Lemma 48, we can assume that there exists $z \in Z$ such that z is solo, and by Corollary $41,\|z, B\| \geq b$ and for any $u \in Z-z$, $N(u) \cap A=\{x\}$. Since $\|x, B\| \geq b$ by (9.3) and Corollary 41 , and since $\|x, A\| \geq a+1$ and x is adjacent to z, we have $d(z) \leq a+b$. Since $\|z, B\| \geq b$, we have that $\|z, A\| \leq a$. This implies that $\|z, U\| \leq 2$ for every $U \in \mathcal{A}^{\prime}$. If we let $\left\{z^{\prime}, z^{\prime \prime}\right\}=Z-z$, then we can move $z^{\prime \prime}$ to V^{-}. Now $\left\{z, z^{\prime}\right\}$ is the small class of a nearly equitable coloring. In this new coloring, using (9.4), the classes $V^{-}+z^{\prime \prime}$ and $\left\{x, x^{\prime}, x^{\prime \prime}\right\}$ are movable to $\left\{z, z^{\prime}\right\}$. Furthermore, any class $U \in \mathcal{A}^{\prime}-Z-X$ is still a class of the new coloring, and it is movable to $\left\{z, z^{\prime}\right\}$ since the only neighbor of z^{\prime} in A is x and z has at most two neighbors in U. This implies that, in the new coloring, every class of $\mathcal{A}-V^{-}$is movable to V^{-}.

Claim 3 For every $u \in A^{\prime}-X$, if x is not adjacent to u, then u is not movable to V^{-}.
Proof Suppose there exists a vertex $z^{\prime} \in A^{\prime}-X$ such that $z^{\prime} \in Z \in \mathcal{A}^{\prime}$ is not adjacent to x and z^{\prime} is movable to V^{-}. Form a new nearly equitable coloring by moving z^{\prime} to V^{-}and $x^{\prime \prime}$ to $Z-z^{\prime}$, which forms an independent set by (9.4). Note that $\left\{x, x^{\prime}\right\}$ is the small class in this coloring and that z^{\prime}, and hence $V^{-}+z^{\prime}$, is movable to $\left\{x, x^{\prime}\right\}$. Clearly $Z-z^{\prime}+x^{\prime \prime}$ is movable to $\left\{x, x^{\prime}\right\}$. Every $U \in \mathcal{A}^{\prime}-Z-X$ is a color class of the new coloring and, since $\left\|x^{\prime}, U\right\|=0$ and $\|x, U\| \leq 2$ by Claim 2, U is movable to $\left\{x, x^{\prime}\right\}$. This implies that, in the new coloring, every class of $\mathcal{A}-V^{-}$is movable to V^{-}.

By Claim 3, every vertex in $Z \cup W$ has a neighbor in A : either x or a vertex in V^{-}. Therefore, by Claim 1, there exist solo vertices $z \in Z$ and $w \in W$. Furthermore, by Corollary 41, each vertex in $Z \cup W-z-w$ has exactly one neighbor in $V^{-}+x$ and no neighbors in $A^{\prime}-x$.

Note that since both z and w are solo, and hence unmovable, they both have neighbors in X. By (9.4), x is adjacent to both w and z. Furthermore, there exists $w^{\prime} \in W-w$ and $z^{\prime} \in Z-z$ that witness the edges $W V^{-}$and $Z V^{-}$, respectively. Claim 3 then implies x is adjacent to both w^{\prime} and z^{\prime}. This, with the fact that x is solo and unmovable, implies that $\|x, A\| \geq a+1$. Since $\|x, B\|,\|w, B\|,\|z, B\| \geq b$ by Corollary $41,\|w, A\|,\|z, A\| \leq$ $2 a+2 b+1-(a+1)-b-b=a$. Therefore, each of w and z has at most 2 neighbors in any class of \mathcal{A}. Let $\left\{z^{\prime \prime}\right\}=Z-z-z^{\prime}$. The only neighbor of $z^{\prime \prime}$ in A is either x or a vertex in V^{-}by Corollary 41 and Claim 3. Moving z^{\prime} to V^{-}then creates a coloring f^{\prime} with small class $\left\{z, z^{\prime \prime}\right\}$. We have that z^{\prime}, x^{\prime} and $x^{\prime \prime}$ are movable to $\left\{z, z^{\prime \prime}\right\}$. This implies that the classes $V^{-}+z^{\prime}$ and X are both movable to $\left\{z, z^{\prime \prime}\right\}$. We also have that for any class $U \in \mathcal{A}^{\prime}-X-Z$, $z^{\prime \prime}$ has no neighbors in $A^{\prime}-X \supseteq U$ and z has at most 2 neighbors in U. This implies that every class of $\mathcal{A}\left(f^{\prime}\right)$ is movable to $\left\{z, z^{\prime \prime}\right\}$ and $\mathcal{F}\left(f^{\prime}\right)$ is a star.

By Lemma 49, we will assume below that \mathcal{F} is a star.
Lemma 50 For every movable vertex $x^{\prime} \in A^{\prime},\left\|x^{\prime}, A\right\| \leq 1$. Furthermore, for any distinct $X, Z \in \mathcal{A}$, with unmovable $x \in X$ and $z \in Z$, there is an equitable 2-coloring of $G^{\prime}:=$ $G\left[V^{-} \cup(X-x) \cup(Z-z)\right]$.

Proof Let $\left\{x, x^{\prime}, x^{\prime \prime}\right\}=X \in \mathcal{A}^{\prime}$ with x unmovable and $\left\|x^{\prime}, B\right\| \leq\left\|x^{\prime \prime}, B\right\|$. If x is solo, then by Lemmas 38 and 40, and by Proposition 36(a), the conclusion holds for x^{\prime} and $x^{\prime \prime}$, so assume that x is not solo and $\left\|x^{\prime}, A\right\| \geq 2$. By Proposition 36(a) and Lemma 43, $\|x, B\| \leq 2 b$ and $\left\|x^{\prime}, B\right\| \leq 2 b$. Since $\|X, B\| \geq 2(3 b+1)=2(2 b)+(2 b+2)$, this leaves $\left\|x^{\prime \prime}, B\right\| \geq 2 b+2$. By Proposition 36(a), $\left\|x^{\prime \prime}, B\right\|=2 b+2$ and $\|x, B\|=\left\|x^{\prime}, B\right\|=2 b$. Since $d\left(x^{\prime}\right)=d\left(x^{\prime \prime}\right)=2 b+2$, for every $y^{\prime} \in T(B),\left\|y^{\prime}, B\right\|=0$. Since $\left|B_{0}(x)\right|,\left|B_{0}\left(x^{\prime}\right)\right|=$ $b+1>|S(B)|$ and $\left|B_{0}\left(x^{\prime \prime}\right)\right|=b-1<|S(B)|$, both $B_{0}(x)$ and $B_{0}\left(x^{\prime}\right)$ intersect $T(B)$ and at least one of $B_{0}(x)$ and $B_{0}\left(x^{\prime}\right)$ intersects $S(B)$. Therefore, using Lemma 45(c) we can select a 4-set $\left\{y_{1}, y_{2}, y_{3}, y_{4}\right\} \subseteq B_{0}(x) \cup B_{0}\left(x^{\prime}\right)$ such that $\left\{x, y_{1}, y_{2}\right\}$ and $\left\{x^{\prime}, y_{3}, y_{4}\right\}$ are independent sets and there exists $i \in[4]$ such that $y_{i} \in S(B)$. Therefore, there is a ($b-1$)-coloring of $B-y_{1}-y_{2}-y_{3}-y_{4}$. Since $x^{\prime \prime}$ is movable, we can obtain an equitable k-coloring of G.

Recall \mathcal{F} is a star, so for $v \in V^{-},\left\|v, V\left(G^{\prime}\right)\right\| \leq 2$. As we just showed, every vertex in $(X-x) \cup(Z-z)$ has at most one neighbor in A. Then for every $u u^{\prime} \in E\left(G^{\prime}\right), d_{G^{\prime}}(u)+$ $d_{G^{\prime}}\left(u^{\prime}\right) \leq 3<2(2)+1$. Now the final sentence of the statement follows from Theorem 12.

Lemma 51 If $x \in A^{\prime}$ is unmovable, then $N(x) \supseteq S(B)$.
Proof The conclusion is true by Corollary 41 if x is solo, so assume that x is not solo and there exists $y \in S(B) \cap B_{0}(x)$. Let $z \in\left\{z, z^{\prime}, z^{\prime \prime}\right\}=Z \in \mathcal{A}^{\prime}-X$ be such that $z y \in S$. Since
$y \in B_{0}(x)$ and $|S(B)|=b$, either $\|x, B\| \leq b-1$, or there exists $y^{\prime} \in N(x) \cap T(B)$. Since $\left\|x^{\prime}, B\right\|,\left\|x^{\prime \prime}, B\right\| \leq 2 b+2$, we have $\|x, B\| \geq 2 b-2$. So we have such a y^{\prime} unless $b=1$, $\|x, B\|=0$, and $N\left(x^{\prime}\right), N\left(x^{\prime \prime}\right) \supseteq B$. Note that in this case, since $\left\|x^{\prime}, B\right\|=\left\|x^{\prime \prime}, B\right\|=$ $2 b+2$, for every $y^{\prime} \in T(B), d\left(y^{\prime}\right)=2 a-1$, so $\left\|y^{\prime}, Z\right\|=2$; by Corollary $41, z^{\prime}, z^{\prime \prime} \in N\left(y^{\prime}\right)$, so $y^{\prime} z \notin E$. Therefore, we can label B as $\left\{y, y_{1}, y_{2}, y_{3}\right\}$ to have the independent sets $\left\{x, y, y_{1}\right\}$, $\left\{z, y_{2}, y_{3}\right\}$. Since, by Lemma 50, there is an equitable 2-coloring of $G\left[V^{-} \cup X-x \cup Z-z\right]$ we are done. So assume there exists $y^{\prime} \in N(x) \cap T(B)$ which implies $d(x) \leq 2 b+2$. Then since $\|x, A\| \geq a-1 \geq 2,\|x, B\| \leq 2 b<|T(B)|$, so there exists $y^{\prime \prime} \in T(B) \cap B_{0}(x)$.

First assume that $\left\|x^{\prime}, A\right\| \leq 1$ and $\left\|x^{\prime \prime}, A\right\|=0$. By Proposition 37, and the fact that $x y$, $z^{\prime} y$ and $z^{\prime \prime} y$ are all not edges, $x z^{\prime}$ and $x z^{\prime \prime}$ must both be edges. Since $d\left(z^{\prime}\right), d\left(z^{\prime \prime}\right)=2 b+2$, $d\left(y^{\prime \prime}\right)=2 a-1$, so $\left\|y^{\prime \prime}, Z\right\|=2$ and $y^{\prime \prime} z$ is not an edge. Again by Proposition $37, x y^{\prime \prime} \notin E$ implies that $x z \in E$, so $\|x, A\| \geq a+1$. Now $\|x, A\|+\|x, B\| \leq 2 b+2,\|x, B\| \geq 2 b-2$, and $a \geq 3$ imply that $\|x, B\|=2 b-2$ and $a=3$. Since $y^{\prime} \in N(x), 2 b-2=\|x, B\| \geq 1$. So, $b \geq 2$. But, $d(x)+d\left(z^{\prime}\right)=4 b+4$ implies that $6 \leq 2 b+2 \leq 2 a-1=5$, a contradiction.

So $\left\|\left\{x^{\prime}, x^{\prime \prime}\right\}, A\right\| \geq 2$, which by Proposition 36(a) implies $\|x, B\|=2 b$ and $d\left(x^{\prime}\right)=$ $d\left(x^{\prime \prime}\right)=2 b+2$. Since $d(x) \leq 2 b+2$, we have that $a=3$. Also, since both x^{\prime} and $x^{\prime \prime}$ are adjacent to $y, a+b+2 b+2 \leq 2 a+2 b+1$, so $b \leq a-1=2$. Since $d\left(x^{\prime}\right)=d\left(x^{\prime \prime}\right)=2 b+2$ and $N\left(x^{\prime}\right) \cup N\left(x^{\prime \prime}\right) \supseteq T(B)$, all vertices of $T(B)$ are isolated in B and $N(z) \cap T(B)=\emptyset$ by (A.6). Therefore, there exist $y_{1}, y_{2} \in T(B)-y^{\prime \prime}$, and $\left\{x, y, y^{\prime \prime}\right\}$ and $\left\{z, y_{1}, y_{2}\right\}$ are independent sets. Since $y \in S(B)$, there is an equitable $(b-1)$-coloring of $B-y-y^{\prime \prime}-y_{1}-y_{2}$. By Lemma 50, there is also an equitable 2-coloring of $G\left[V^{-} \cup(X-x) \cup(Z-z)\right]$, which completes the proof.

Lemma 52 The set of unmovable vertices in A^{\prime} forms a clique.
Proof By Lemma 43, $a \geq 3$. Suppose there exist distinct, unmovable $x, z \in A^{\prime}$ such that $x z \notin E$. Let $y \in S(B)$. We know $|S(B)|=b, S(B)$ is clique and $d(y) \leq a+b$, so $\|y, A\| \leq a+1$. Then y has a solo neighbor in all but at most one class of \mathcal{A}, so either $y x$ or $y z$ is in S. Assume $y x \in S$. Since x and z are not movable, there exist vertices $z^{\prime} \in N(x) \cap Z$ and $x^{\prime} \in N(z) \cap X$. With Lemma 50, this implies that $N\left(z^{\prime}\right) \cap A=\{x\}$ and $N\left(x^{\prime}\right) \cap A=\{z\}$. Let $\left\{x, x^{\prime}, x^{\prime \prime}\right\}=X \in \mathcal{A}^{\prime}$ and $\left\{z, z^{\prime}, z^{\prime \prime}\right\}=Z \in \mathcal{A}^{\prime}$ be the color classes of x and z, respectively, and let $\left\{v, v^{\prime}\right\}=V^{-}$. If $x z^{\prime \prime} \notin E$, then $\left\{z^{\prime}, v, v^{\prime}\right\},\left\{y, x^{\prime}, x^{\prime \prime}\right\}$, $\left\{x, z, z^{\prime \prime}\right\}$ are independent sets. These sets, together with an equitable k-coloring with the classes of $\mathcal{A}-V^{-}-X-Z$ and an equitable b-coloring of $B-y$, provides an equitable k-coloring of G. So we can assume that $x z^{\prime \prime}$ is an edge. Since $d\left(x^{\prime}\right) \geq 2 b+2$, every vertex in $T(B)$ has degree exactly $2 a-1$, with precisely two neighbors in every class of \mathcal{A}^{\prime} and no neighbors in B. Therefore, no vertex in $T(B)$ is adjacent to x. Since $\left\|z^{\prime}, A\right\|=\left\|z^{\prime \prime}, A\right\|=1$ by Lemma 50, if z is not solo, then $\|z, B\|=2 b,\left\|z^{\prime}, B\right\|=\left\|z^{\prime \prime}, B\right\|=2 b+1$ and $a=3$ by Proposition 36(a). Therefore, if z is solo or not solo, there exists $y^{\prime \prime} \in B_{0}(z) \cap T(B)$. Since $\left\{v, v^{\prime}, z^{\prime}\right\},\left\{x^{\prime}, x^{\prime \prime}, z^{\prime \prime}\right\}$ and $\left\{x, z, y^{\prime \prime}\right\}$ are independent sets, we are done with an equitable b-coloring of $B-y^{\prime \prime}$.

Lemma 53 There exists $v \in V^{-}$such that every unmovable vertex in A^{\prime} is adjacent to v.
Proof Let $\left\{v, v^{\prime}\right\}=V^{-}$. Suppose the contrary, i.e., there exist unmovable vertices $x \in X \in$ \mathcal{A}^{\prime} and $z \in Z \in \mathcal{A}^{\prime}$ such that $x v \notin E$ and $z v^{\prime} \notin E$. Since x and z are unmovable, $x \neq z$. Let $y \in S(B)$. Since $\|y, A\| \leq a+1$,

$$
\begin{equation*}
y \text { is adjacent to at most one vertex in } W:=(X-x) \cup(Z-z) \tag{9.5}
\end{equation*}
$$

Note there is no equitable 3-coloring of $V \cup X \cup Z \cup\{y\}$, since such a coloring could be extended to an equitable coloring of G. Call distinct $w_{1}, w_{2} \in W$ a good pair if there is
an equitable 2-coloring of $V^{-} \cup\left\{x, z, w_{1}, w_{2}\right\}$. Suppose that $\left\{w_{1}, w_{2}\right\}$ is a good pair and let $\left\{w_{3}, w_{4}\right\}=W-\left\{w_{1}, w_{2}\right\}$. Then $\left\{w_{3}, w_{4}, y\right\}$ is not an independent set, since otherwise we could combine it with an equitable 2-coloring of $V^{-} \cup\left\{x, z, w_{1}, w_{2}\right\}$ to create an equitable 3coloring of $V \cup X \cup Z \cup\{y\}$. If $w_{3} w_{4} \in E(G)$, by Lemma 50, both $\left\{w_{1}, w_{3}\right\}$ and $\left\{w_{2}, w_{4}\right\}$ are good pairs. Then neither $\left\{w_{2}, w_{4}, y\right\}$ nor $\left\{w_{1}, w_{3}, y\right\}$ is an independent set, lest we equitaly 3 -color $V \cup X \cup Z \cup\{y\}$. This contradicts (9.5). So $w_{3} w_{4} \notin E(G)$. Therefore,

$$
\begin{equation*}
\text { if }\left\{w_{1}, w_{2}\right\} \text { is a good pair, then }\left\|y, W-w_{1}-w_{2}\right\| \geq 1 \tag{9.6}
\end{equation*}
$$

Since \mathcal{F} is a star, there exist vertices $x^{\prime} \in X$ and $z^{\prime} \in Z$ that are movable to V^{-}. Let $X=\left\{x, x^{\prime}, x^{\prime \prime}\right\}$ and $Z=\left\{z, z^{\prime}, z^{\prime \prime}\right\}$. Since $\left\{x^{\prime}, z^{\prime}\right\}$ is a good pair, we can assume, by the symmetry of $x^{\prime \prime}$ and $z^{\prime \prime}$, (9.5) and (9.6), that $x^{\prime \prime}$ is the unique neighbor of y in W. So (9.6) implies that $\left\{z^{\prime}, x^{\prime \prime}\right\}$ is not a good pair. With Lemma 50, this implies that x and v are the unique neighbors in A of z^{\prime} and $x^{\prime \prime}$, respectively. So $\left\{x^{\prime}, x^{\prime \prime}\right\}$ is a good pair and $\left\{y, z^{\prime}, z^{\prime \prime}\right\}$ is an independent set, a contradiction.

Lemma $54 \omega(G) \geq k$.
Proof Let $\left\{v, v^{\prime}\right\}=V^{-}$. By Lemma 53, we can assume that every unmovable vertex in \mathcal{A}^{\prime} is adjacent to v. Recall that for every $y \in S(B),\|y, A\| \leq a+1$ and for every $y^{\prime} \in T(B)$, $\left\|y^{\prime}, A\right\| \geq 2 a-1$. Therefore, since $a \geq 3$, if f^{\prime} is an optimal coloring such that $B\left(f^{\prime}\right)=$ $B(f)$, then $T_{f^{\prime}}(B)=T_{f}(B)$ and $S_{f^{\prime}}(B)=S_{f}(B)$.

By Corollary 41, Lemmas 48, 51 and 52, and (A.5), we only need to show that $N(v) \supseteq$ $S(B)$. We will achieve this by showing that there exists an optimal coloring f^{\prime} in which $\mathcal{F}\left(f^{\prime}\right)$ is a star and v is not movable and not in $V^{-}\left(f^{\prime}\right)$. The conclusion then follows from Lemma 51. By Lemma 43, Lemma 48, and Lemma 52, there exists a class $\left\{x, x^{\prime}, x^{\prime \prime}\right\} \in$ $X \in \mathcal{A}^{\prime}$ such that x is low and unmovable. Since $\mathcal{F}\left(f^{\prime}\right)$ is a star, one of x^{\prime} or $x^{\prime \prime}$, say x^{\prime}, is movable to V^{-}. By the selection of v, v is not movable, and we are done unless there exists $\left\{z, z^{\prime}, z^{\prime \prime}\right\}=Z \in \mathcal{A}^{\prime}-X-V^{-}$such that no vertex in Z is movable to $\left\{x, x^{\prime \prime}\right\}$. So assume that this is the case. Since $N(x) \supseteq S(B),\|x, B\| \geq b$, so $\|x, A\| \leq a$. So since $\left\|x^{\prime \prime}, A\right\| \leq 1$ by Lemma 50 , we can assume that x is adjacent to z and z^{\prime}, and $x^{\prime \prime}$ is adjacent to $z^{\prime \prime}$ and there are no other edges in $G\left[Z+x+x^{\prime \prime}\right]$. Since $\left\|z^{\prime \prime}, A\right\| \leq 1, x^{\prime}$ is not adjacent to $z^{\prime \prime}$. Therefore we get the desired coloring by moving $x^{\prime \prime}$ instead of x^{\prime} to V^{-}.

The contradiction between this lemma and Lemma 15 completes the proof of Theorem 13.

Acknowledgements We thank a referee for helpful comments.

References

1. Alon, N., Füredi, Z.: Spanning subgraphs of random graphs. Graphs Comb. 8, 91-94 (1992)
2. Alon, N., Yuster, R.: H-factors in dense graphs. J. Comb. Theory Ser. B 66, 269-282 (1996)
3. Blazewicz, J., Ecker, K., Pesch, E., Schmidt, G., Weglarz, J.: Scheduling Computer and Manufacturing Processes, 2nd edn. Springer, Berlin (2001)
4. Chen, B.-L., Lih, K.-W., Wu, P.-L.: Equitable coloring and the maximum degree. Eur. J. Comb. 15, 443-447 (1994)
5. Corrádi, K., Hajnal, A.: On the maximal number of independent circuits in a graph. Acta Math. Acad. Sci. Hung. 14, 423-439 (1963)
6. Enomoto, H.: On the existence of disjoint cycles in a graph. Combinatorica 18, 487-492 (1998)
7. Hajnal, A., Szemerédi, E.: Proof of a conjecture of P. Erdős. Combinatorial Theory and its Application, pp. 601-623. North-Holland, London (1970)
8. Kierstead, H.A., Kostochka, A.V.: An Ore-type theorem on equitable coloring. J. Comb. Theory Ser. B 98, 226-234 (2008)
9. Kierstead, H.A., Kostochka, A.V.: Ore-type versions of Brooks’ theorem. J. Comb. Theory Ser. B 99, 298-305 (2009)
10. Kierstead, H.A., Kostochka, A.V.: Every 4-colorable graph with maximum degree 4 has an equitable 4-coloring. J. Graph Theory 71, 31-48 (2012)
11. Kierstead, H.A., Kostochka, A.V.: A refinement of a result of Corrádi and Hajnal. Combinatorica 35, 497-512 (2015)
12. Kierstead, H.A., Kostochka, A.V., Yeager, E.C.: On the Corrádi-Hajnal Theorem and a question of Dirac J. Comb. Theory 122, 121-148 (2017)
13. Kierstead, H.A., Kostochka, A.V., Yeager, E.C.: The $(2 k-1)$-connected multigraphs with at most k-1 disjoint cycles. Combinatorica (2015). doi:10.1007/s00493-015-3291-8
14. Kierstead, H., Rabern, L.: Personal communication
15. Kostochka, A.V., Rabern, L., Stiebitz, M.: Graphs with chromatic number close to maximum degree. Discret. Math. 312, 1273-1281 (2012)
16. Lih, L.-W., Wu, P.-L.: On equitable coloring of bipartite graphs. Discret. Math. 151, 155-160 (1996)
17. Postle, L.: Personal communication
18. Rabern, L.: Δ-critical graphs with small high vertex cliques. J. Comb. Theory Ser. B 102, 126-130 (2012)
19. Rödl, V., Ruciński, A.: Perfect matchings in ϵ-regular graphs and the blow-up lemma. Combinatorica 19, 437-452 (1999)
20. Smith, B.F., Bjorstad, P.E., Gropp, W.D.: Domain Decomposition. Parallel Multilevel Methods for Elliptic Partial Differential Equations. Cambridge University Press, Cambridge (1996)
21. Wang, H.: On the maximum number of disjoint cycles in a graph. Discret. Math. 205, 183-190 (1999)
22. Yap, H.-P., Zhang, Y.: The equitable Δ-colouring conjecture holds for outerplanar graphs. Bull. Inst. Math. Acad. Sin. 5, 143-149 (1997)
23. Yap, H.-P., Zhang, Y.: Equitable colorings of planar graphs. J. Comb. Math. Comb. Comput. 27, 97-105 (1998)

[^0]: H. A. Kierstead
 kierstead@asu.edu
 A. V. Kostochka
 kostochk@math.uiuc.edu
 T. Molla
 molla@illinois.edu
 E. C. Yeager
 elyse@math.ubc.ca
 1 School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ 85287, USA
 2 Department of Mathematics, University of Illinois, Urbana, IL 61801, USA
 3 Institute of Mathematics, Novosibirsk, Russia

