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a b s t r a c t

Two graphs G1 and G2, each on n vertices, pack if there exists a bijection f from V (G1) onto
V (G2) such that uv ∈ E(G1) only if f (u)f (v) ∉ E(G2). In 2014, Alon and Yuster proved
that, for sufficiently large n, if |E(G1)| < n − δ(G2) and ∆(G2) ≤

√
n/200, then G1 and G2

pack. In this paper, we characterize the pairs of graphs for which the theorem of Alon and
Yuster is sharp.We also prove the stronger result that for sufficiently large n, if |E(G1)| ≤ n,
∆(G2) ≤

√
n/60, and ∆(G1) + δ(G2) ≤ n − 1, then G1 and G2 pack whenever there is a

vertex v1 ∈ V (G1) such that d(v1) = ∆(G1) and α(G1 − N[v1]) ≥ δ(G2).
© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Throughout this paper, the maximum degree and minimum degree of a vertex in a graph G are denoted by ∆(G) and
δ(G), respectively. The size of a largest independent set in G is denoted by α(G).

Two graphs G1 and G2 with |V (G2)| = |V (G1)| pack if there is a bijection f : V (G1) → V (G2) such that if uv ∈ E(G1), then
f (u)f (v) ∉ E(G2). In other words, graphs G1 and G2 pack if G1 is a subgraph of the complement of G2. Important results on
graph packing were obtained in 1978 by Bollobás and Eldridge [2] and by Sauer and Spencer [6]. In particular, they proved
that if two n-vertex graphs together contain at most 3

2n − 2 edges, they are guaranteed to pack.

Theorem 1.1 ([2,6]). Let G1 and G2 be two n-vertex graphs. If

|E(G1)| + |E(G2)| ≤
3
2
n − 2, (1)

then G1 and G2 pack.

Restriction (1) cannot be relaxed in view of the pair {G1,G2} where G1 is an n-vertex star and G2 has no isolated vertices.
Furthermore, Bollobás and Eldridge showed that if neither graph contains a star on n vertices, then (1) can be relaxed
significantly.

Theorem 1.2 ([2]). Let G1 and G2 be two n-vertex graphs. If ∆(G1), ∆(G2) ≤ n − 2 and |E(G1)| + |E(G2)| ≤ 2n − 3, then
either G1 and G2 pack, or {G1,G2} is one of the following 7 pairs: {2K2, K1 ∪ K3}, {K2 ∪ K3, K2 ∪ K3}, {3K2, K2 ∪ K4}, {K3 ∪

K3, 2K3}, {2K2 ∪ K3, K3 ∪ K4}, {K4 ∪ K4, K2 ∪ 2K3}, {K5 ∪ K4, 3K3}.
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Fig. 1. Sharpness examples for Theorem 1.4 [1].

The restriction 2n− 3 in Theorem 1.2 is again sharp, since the cycle Cn does not pack with K1,n−2 ∪K1 and, together, they
have 2n − 2 edges. In a sense, Theorems 1.1 and 1.2 describe global properties of the graphs, since there are no restrictions
on how the edges are arranged in the graph. On the other hand, the following result of Sauer and Spencer shows that two
graphs even with many more edges will pack if their maximum degrees are not too large.

Theorem 1.3 ([6]). Let G1 and G2 be two n-vertex graphs. If ∆(G1)∆(G2) < n
2 , then G1 and G2 pack.

Recently, Alon and Yuster [1] considered packing a graph with few edges with a graph of bounded maximum degree.

Theorem 1.4 ([1]). For all n sufficiently large, let G1 and G2 be n-vertex graphs such that |E(G1)| ≤ n − δ(G2) − 1 and
∆(G2) ≤

√
n/200. Then G1 and G2 pack.

Alon and Yuster phrased their theorem in the language of Turán numbers. The Turán number ex(n,G) of a graph G is the
maximum number of edges in an n-vertex graph that does not contain a subgraph isomorphic to G. A result of Ore [5] from
1961 shows that ex(n, Cn) =

n−1
2


+ 1 and that for n ≥ 5 the only graph with n vertices and

n−1
2


+ 1 edges that does not

contain a Cn is Kn minus a star with n − 2 edges [5]. In this language, Theorem 1.4 is the following stronger version of Ore’s
result.

Theorem 1.5 ([1]). For all n sufficiently large, if G is a graph of order n with no isolated vertices and ∆(G) ≤
√
n/200, then

ex(n,G) =
n−1

2


+ δ(G) − 1.

Theorem 1.4 has the additional property that, unlike Ore’s result, there are different sharpness examples. In particular,
the following two examples are provided in [1], though we rephrase them in the language of graph packing. First, let G1 be a
star with n − 2 edges and an additional vertex, that is G1 = K1,n−2 ∪ K1. Let G2 be a graph on n vertices in which all vertices
but one have degree 3, the last vertex has degree 2 and the neighbors of this vertex are adjacent. Then G1 has n − δ(G2)
edges, but the two graphs do not pack (Fig. 1(a)). Alternatively, if G1 is the disjoint union of a star with n− 3 vertices and an
edge and G2 remains unchanged, then G1 and G2 still do not pack (Fig. 1(b)).

In Fig. 1(a), ∆(G1) + δ(G2) ≥ n, so G1 and G2 cannot pack since there is no suitable vertex in G2 to which we might map
the vertex of maximum degree in G1. In Fig. 1(b), ∆(G1) + δ(G2) = n − 1, so a potential packing could (and must) map
the vertex of maximum degree in G1 to the vertex of degree 2 in G2. However, such an attempt will eventually fail to be a
packing because no set of vertices could be mapped to the neighborhood of the degree 2 vertex.

With this observation, we can obtain a larger set of sharpness examples for Theorem 1.4. For example, fix constants n
and dwith nmuch larger than d. Let G2 be a d-regular graph on n vertices consisting of a disjoint union of cliques. Let G1 be
the disjoint union of d − 1 edges, together with a star containing n − 2(d − 1) − 1 edges (Fig. 2(a), here d = 6). In fact, as
long as there is no independent set of size d among the vertices in G1 not in the star, we can create still more examples, e.g.
Fig. 2(b).

The main result of this paper shows that if there is such an independent set of size δ(G2), then G1 and G2 will pack even
if G1 contains as many as n edges.

Theorem 1.6. For n sufficiently large (n ≥ 109), let G1 and G2 be graphs of order n such that ∆(G2) ≤
√
n/60, |E(G1)| ≤ n,

and ∆(G1) + δ(G2) ≤ n − 1. If there is a vertex v1 ∈ V (G1) such that

d(v1) = ∆(G1) and α(G1 − N[v1]) ≥ δ(G2), (2)

then G1 and G2 pack.

Our theorem shows that if we are able to appropriately place the vertex of maximum degree in the sparse graph,
then the remainder of the graph can also be placed. In fact, Theorem 1.6 is a generalization of Theorem 1.4. Indeed, if
|E(G1)| ≤ n − δ(G2) − 1, then ∆(G1) + δ(G2) ≤ n − 1. Also, if v1 ∈ V (G1) with d(v1) = ∆(G1), then G − N[v1] contains
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Fig. 2. Additional sharpness examples for Theorem 1.4.

n − d(v1) − 1 vertices and n − d(v1) − δ(G2) − 1 edges. Hence, G − N[v1] contains at least δ(G2) components and an
independent set of size at least δ(G2).

We also adapt the methods used in the proof of Theorem 1.6 to characterize the sharpness examples for Theorem 1.4.

Corollary 1.7. For n sufficiently large (n ≥ 109), let G1 and G2 be graphs of order n such that ∆(G2) ≤
√
n/60, |E(G1)| ≤

n − δ(G2). Then,

1. G1 and G2 pack, or
2. ∆(G1) + δ(G2) = n, or
3. G1 has exactly n − δ(G2) edges and exactly one vertex of degree greater than 1. Moreover, for each w ∈ V (G2) with

d(w) = δ(G2), the neighborhood of w induces a clique.

The remainder of the paper is organized as follows. In the next section, we provide some notation and preliminary results
that will be used in the later sections. Section 3 introduces the framework of the proof and includes several lemmas that
will be used in the proof of Theorem 1.6. In Section 4, we prove Theorem 1.6 by providing a packing of G1 and G2 in a 4-stage
process. Finally, in Section 5, we prove Corollary 1.7 which describes the sharpness examples of Theorem 1.4.

2. Notation and preliminary results

Wemainly use standard notation. All logarithms are base e. For distinct vertices x, y in a graph G, by ∥x, y∥we denote the
number of edges in G connecting x with y. For W ⊆ V (G), by N(W ) we denote the set of vertices in G that have a neighbor
inW , and let N[W ] = W ∪ N(W ). IfW = {v}, then we write N(v) and N[v] instead of N({v}) and N[{v}], respectively. For
a positive integer d, a graph G is d-degenerate if every subgraph G′ of G has a vertex of degree (in G′) at most d. A degenerate
ordering v1, . . . , vn of a graph G on n vertices is defined inductively. Let G1 = G and define v1 to be a vertex of minimum
degree in G1. For i ∈ {1, . . . , n − 1}, let Gi+1 = Gi − vi and define vi+1 be a vertex of minimum degree in Gi+1. A greedy
ordering of V (G) is defined similarly, with the only difference that we always choose a vertex of the maximum (and not
minimum) degree.
We will use the following result from [3] on packing a d-degenerate graph with a graph with a small maximum degree.

Theorem 2.1 ([3]). Let d ≥ 2. Let G1 be a d-degenerate graph of order n and maximum degree ∆1 and G2 a graph of order n and
maximum degree at most ∆2. If 40∆1 log∆2 < n and 40d∆2 < n, then G1 and G2 pack.

We use Theorem 2.1 only for d =

√
2n


− 1. The proof of it uses the following lemma that also will be helpful for us.

Lemma 2.2 ([3]). Fix ∆ ≥ 90 (hence ∆ ≥ 20 log∆) and let m =


∆

log∆


. Let G be a graph with maximum degree at most ∆.

Then, for every V ′
⊆ V (G), there exists a partition


V (1), . . . , V (m)


of V ′ such that for each vertex v of G, the neighborhood N(v)

has the following properties:

1. for each i, |N(v) ∩ V (i)
| ≤ 5 log∆,

2. for each i1 and i2, |N(v) ∩ (V (i1) ∪ V (i2))| ≤ 8.7 log∆, and
3. for each i1, i2, and i3, |N(v) ∩ (V (i1) ∪ V (i2) ∪ V (i3))| ≤ 12.3 log∆.

Throughout this paper, we will consider two n-vertex graphs G1 and G2 that satisfy the conditions of Theorem 1.6. For
i ∈ {1, 2}, we let Vi = V (Gi) and Ei = E(Gi). Similarly, let ∆i denote the maximum degree of Gi and δi denote the minimum
degree of Gi. We will construct the packing f : V1 → V2 iteratively. For subsets W1 ⊆ V1 and W2 ⊆ V2, we say that
f ′

: W1 → W2 is a partial packing of G1 and G2 if f ′ is a packing of G1[W1] and G2[W2]. Throughout the proof, we will have a
partial packing f of G1 and G2 and enlarge the domain of f at each step.
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3. Setup

We will construct a packing f : V1 → V2 in four stages. In the first two stages, we consider each vertex v ∈ V1 of large
degree and for each such vertex, we find a permissible vertex in V2 for its image. Then, we use a technique of Alon and Yuster
in [1] to find a set X ⊆ V1 such that an assignment f (X) = N(f (v)) keeps f a partial packing. Lemmas 3.1 and 3.2 show
that, for each vertex v ∈ V1 with large degree, we can find a permissible set X to map to N(f (v)). Lemma 2.2 will guarantee
N(f (v)) is evenly distributed andwewill then use amethod similar to [3] to construct the packing of the remaining vertices.

First, observe that

G1 is d-degenerate for d =

√
2n


− 1. (3)

Indeed, if there is a subgraph H ⊆ G1 such that δ(H) > d, then δ(H) ≥ d + 1 and |V (H)| > d + 2. So

2|E(H)| =


v∈H

d(v) ≥ |V (H)| · δ(H) ≥ (d + 2)(d + 1) > 2n,

a contradiction to |E(G1)| ≤ n. Thus, (3) holds.
Since ∆2 ≤

√
n

60 , we obtain 40d∆2 < 40
√
2n

√
n

60 < n. If also 40∆1 log∆2 < n, then G1 and G2 pack by Theorem 2.1. Thus
we assume that 40∆1 log∆2 ≥ n. Then, since ∆2 <

√
n,

∆1 >
n

20 log n
. (4)

Let V1 = {v1, . . . , vn} and d(v1) ≥ · · · ≥ d(vn). We also may assume that (2) holds. Let k ∈ [n] be the largest integer
such that d(vk) ≥

n
50 log n . Since e1 ≤ n, we have 2n ≥

k
i=1 d(vi) ≥ k


n

50 log n


and so k ≤ 100 log n.

Lemma 3.1. G1 has an independent set B1 ⊆ V1 − N[v1] with |B1| = δ2. Moreover, if k > 1, then such a set B1 can be chosen
so that each vertex in it has degree at most 2 in G1.

Proof. By (2), G1 has an independent set B1 ⊆ V1 − N[v1] such that |B1| ≥ δ(G2). This proves the first part. If k ≥ 2, then
d(v2) ≥

n
50 log n .

The subgraph G′
= G1[V1 − v1 − v2] has n − 2 vertices and at most n − d(v1) − d(v2) + ∥v1, v2∥ edges. Then G′

has at least d(v1) + d(v2) − 2 − ∥v1, v2∥ tree components and therefore contains an independent set of size at least
d(v1) + d(v2) − 2 − ∥v1, v2∥. Moreover, we form this independent set using only vertices of degree at most one in G′.
Let B′

1 denote the set of these vertices that are contained in V1 − N[v1] − v2. By the above, |B′

1| ≥ d(v2) − 2. Since n ≥ 109

and d(v2) ≥
n

50 log n ,

|B′

1| ≥
n

50 log n
− 2 ≥ δ2.

Since each vertex in B′

1 has degree at most 1 in G1 − v1 − v2 and B1 ∩ N[v1] = ∅, every vertex in B′

1 has degree at most 2 in
G1. So we let B1 be a subset of B′

1 of cardinality δ2. �

When k ≥ 2, we also wish to find, for each i ∈ {2, . . . , k}, an independent set Bi ⊆ V1 − N[vi] such that we can map the
vertices of Bi to the neighborhood of f (vi).

Lemma 3.2. Let k ≥ 2 and B1 satisfy Lemma 3.1. There exist disjoint sets B2, . . . , Bk such that

(a) |Bi| ≥ ∆2 for each i ∈ {2, . . . , k},
(b) Bj ∩ Bi = ∅ for all j ≠ i,
(c) each vertex in

k
i=1 Bi has degree at most 2 in G1,

(d) the set
k

i=1 Bi is independent in G1,
(e) each vertex in V1 − v1 is adjacent in G1 to at most one vertex in

k
j=2 Bj.

Proof. Let W ⊆ V1 be the set of all vertices reachable in G1 − v1 from {v2, . . . , vk}. In particular, {v2, . . . , vk} ⊆ W . By
definition, G1[W ] has at least |W | − (k− 1) edges. Let X = V1 −W − v1. Then |X | = n− 1− |W | and, since G1 has at most
n edges, |E(G1[X])| ≤ n− [|W | − (k− 1)] − d(v1). Therefore, the number of tree components in G1[X] is at least d(v1) − k.
We form an independent set B by choosing one leaf or isolated vertex from each tree component in G[X] and then removing
all vertices in N[B1]. Since each vertex in B1 has degree at most 2 by Lemma 3.1, we have

|B| ≥ (d(v1) − k) − 3δ2. (5)

Suppose that

d(v1) − k − 3δ2 ≥ (k − 1)∆2. (6)
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Then by (5), B can be partitioned into k−1 disjoint sets B2, . . . , Bk, each of size at least ∆2. Since all vertices u ∈ B are leaves
or isolated vertices in distinct components of G1 − v1, the claims (c) and (e) of the lemma hold. Since the sets B2, . . . , Bk are
formed by partitioning an independent set that is disjoint from N[B1], claims (b) and (d) also hold. So, to prove the lemma,
it is enough to check that (6) holds. Now,

(d(v1) − k) − 3δ2 ≥ (k − 1)∆2 if
(d(v1) − k) − 3∆2 ≥ (k − 1)∆2 if
d(v1) − 1 − 3∆2 ≥ (k − 1) (∆2 + 1) if

d(v1) ≥ (k + 2) (∆2 + 1) − 2.

Since k ≤ 100 log n, d(v1) ≥ n/(20 log n), and ∆2 ≤
√
n/60, the last inequality follows from

n
20 log n

≥ (100 log n + 2)
√

n
60

+ 1


,

which holds for n ≥ 109. This proves (6) and thus the lemma. �

4. Proof of Theorem 1.6

Let B1, B2, . . . , Bk be as stipulated in Lemmas 3.1 and 3.2. Note that by 3.2(c), {v1, . . . , vk} ∩ (B1 ∪ · · · ∪ Bk) = ∅. Let
m =


∆2

log∆2


and (V (1), . . . , V (m)) be a partition of V2 with the properties guaranteed by Lemma 2.2. Order the parts of the

partition so that |V (1)
| ≥ · · · ≥ |V (m)

|. For i = 1, . . . , k, let V̂ (i)
=

i
j=1 V

(j). We will construct a packing f : V1 → V2 in 4
stages. At each step in the proof, we ensure that f remains a partial packing.
Stage 1. Let w1 ∈ V2 be a vertex of minimum degree in G2. Define f (v1) = w1. For each w′

∈ NG2(w1), we can choose an
element u ∈ B1 and assign f (u) = w′. In this way, all neighbors of w1 are matched and, since B1 ∪ {v1} is an independent
set, after this assignment f remains a partial packing.
Stage 2. If k = 1, then proceed to Stage 3. Otherwise, wewill iterativelymatch v2, . . . , vk with vertices ofG2. During iteration
i, we will match vi to some vertex f (vi) in V (1). We will then proceed to match an unmatched subset of Bi to NG2(f (vi)).
Notice that after iteration i, the function f will remain a partial packing, the only matched vertices of V1 will be v1, . . . , vi,
and vertices from

i
j=1 Bj, and at most i(∆2 + 1) vertices of G1 (and, respectively, G2) will be matched.

Consider the ith iteration. At this point, we have matched vertices v1, . . . , vi−1 ∈ V1 to vertices w1, . . . , wi−1 ∈ V2,
respectively. Since w2, . . . , wi−1 were chosen to be in V (1) and w1 may also have been in V (1), at most i − 1 < k of these
vertices are in V (1). The only other matched vertices in G2 are in

i−1
j=1 NG2(wj). By Lemma 2.2, |NG2(wj)∩V (1)

| ≤ 5 log∆2. So
there are at most k(1 + 5 log∆2) vertices in V (1) that have already been matched. There are at least

 n
m


− k(1 + 5 log∆2)

remaining vertices in V (1). From these remaining vertices, wewill choose a vertexwi such that after assigning f (vi) = wi, the
function f remains a partial packing. If a vertex x ∈ N(vi) is already matched, then either x ∈ {v1, . . . , vi−1} or x ∈

i−1
j=1 Bj.

However, for each j < i, N(f (vj)) is alreadymatched, so vi will not be matched to a neighbor of f (vj). Further, by Lemma 3.2,
no vertex adjacent to {v1, . . . , vi−1} was chosen to be in Bj. So any available choice for wi will allow f to remain a partial
packing. Since there were

 n
m


− k(1 + 5 log∆2) > 0 vertices to choose from, there is a permissible choice of wi.

To complete the iteration, wemust map some subset of Bi to the unmatched neighbors ofwi. However, by Lemma 3.2(d),
Bj and Bi were chosen to be disjoint for each j, so no vertex in Bi is already matched. Further, if sending a vertex x ∈ Bi to
an unmatched vertex y ∈ N(wi) causes f to no longer be a partial packing, then x has a neighbor u such that y ∈ N(f (u)).
Notice that if this is the case, then u ∉ {v1, . . . , vi−1}, since y is unmatched and N(f ({v1, . . . , vi−1})) contains only matched
vertices. Therefore, if there is an x ∈ Bi such that sending x to a vertex y ∈ NG2(wi) forces f to not be a partial packing,
then x ∈

i−1
j=1 N(Bj). Again by Lemma 3.2, Bi does not contain any such vertex, so any vertex x ∈ Bi can be mapped to any

unmatched vertex in NG2(wi). By Lemma 3.2, |Bi| ≥ ∆2, so we can match a subset of Bi to the neighborhood of wi.
Stage 3. Let W1 ⊂ V1 be the set of vertices that have been matched before the start of Stage 3 and let V ′

2 be their matches.
Recall that G1 is d-degenerate for some d ≤

√
2n. Since G1[V1 − W1] ⊆ G1, it must also be d-degenerate. We will define

disjoint subsetsW2, . . . ,Wm with the goal of sendingWi into V̂ (i) for each i.
Let X1 = Y1 = ∅ and z :=

 n
15m


≤


n log∆2
15∆2


≤ 2

√
n log n. We now inductively construct sets Xi, Yi and Wi for

i ∈ 2, . . . ,m. Let X̂i =
i

j=1 Xj, Ŷi =
i

j=1 Yj, and Ŵi =
i

j=1 Wj and then consider a greedy ordering of V1 − Ŵi−1. Define Xi

to be the first z vertices in this ordering, so |X̂i| = (i− 1)z. Add to Yi any vertex in y ∈ V1 − Ŵi−1 −Xi such that y has at least
4d neighbors in {Ŵi−1 ∪ Xi ∪ Yi} −W1. Continue to add vertices to Yi until every remaining vertex has at most 4d neighbors
in Ŵi−1 ∪ Xi ∪ Yi. Finally, let Wi = Xi ∪ Yi.

We next show that |Ŵi| is not too large. We have e(G1[Ŵi −W1]) ≥ 4d|Ŷi|, since each vertex in Ŷi has at least 4d edges to
previouslymatched vertices and atmost k+1 of them are incident to verticesmapped in Stage 1. However, sinceG[Ŵi−W1]
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is d-degenerate and has |X̂i|+|Ŷi| vertices, it has less than (|X̂i|+|Ŷi|)d edges. This implies that 4d|Ŷi|−(k+1) < d(|X̂i|+|Ŷi|).
Since d ≥ 1, solving for |Ŷi| yields |Ŷi| < (i−1)z

3 +
1
3 (k + 1). Finally, since |Ŵi| = |W1| + |X̂i| + |Ŷi| andW1 ≤ k(∆2 + 1), we

have

|Ŵi| <
4(i − 1)

3
z + k


∆2 +

4
3


+

1
3

≤
4(i − 1)

3

 n
15m


+ k


∆2 +

4
3


+

1
3

≤
4(i − 1)

3
n

15m
+

4(i − 1)
3

+ k


∆2 +
4
3


+

1
3

≤
4(i − 1)

3
n

15m
+

4i
3

+ k


∆2 +
4
3


− 1

≤


4(i − 1) +

60im
n

+
km(45∆2 + 60)

n


n

45m
− 1

≤


4 +

60m
n

+
km(45∆2 + 60)

n


in

45m
− 1

≤

4 +
60
n


∆2

log∆2


+

k(45∆2 + 60)


∆2
log∆2


n

 in
45m

− 1. (7)

Finally, recall that ∆2/ log(∆2) ≤
√
n/(60 log(

√
n/60)) and k ≤ 100 log n. We can substitute these upper bounds into

(7) and calculate that for n ≥ 109,

4 +
60
n


∆2

log∆2


+

k(45∆2 + 60)


∆2
log∆2


n

< 9. (8)

Therefore, by (7) and (8),

|Ŵi| <
in
5m

. (9)

Now, we place Wi in V̂ (i) for each i ∈ {2, . . . ,m}. Consider a degenerate ordering of the vertices in Wi. We pack the
vertices into V (i) in this order. Suppose it is the turn of vertex w to be packed. In particular, we have placed at most |Ŵi|

vertices so far, so there are at least in
m − |Ŵi| ≥

4in
5m free vertices left in V̂ (i). Suppose we send w to some unmatched vertex

v ∈ V̂ (i). Ifw has a neighborw′ alreadymatched to a neighbor of v, then f is not a partial packing. We show that the number
of such bad vertices v is at most 4in

5m .
Let w′ be a matched neighbor of w. Then either w′

∈ W1 or w′
∈ X̂j ∪ Ŷj for some j. If w′

∈ {v1, . . . , vk}, by Stage 1 and
2, all neighbors of the images of {v1, . . . , vk} are already matched and are therefore not adjacent to v. On the other hand,
by Lemma 3.2, w is only adjacent to at most one vertex ofW1 − {v1, . . . , vk} (since vertices in Bi were chosen from distinct
components of V1 − v1).

Next, since the vertices of Wi are placed using a degenerate ordering of Wi and each vertex in Wi has fewer than 4d
vertices in Ŵi−1 − W1, vertex w has at most 5d neighbors in Ŵi − W1. We conclude that w has at most 1 + 5

√
2n ≤ 8

√
n

previously matched neighbors adjacent to unmatched neighbors in V2. Further, by Lemma 2.2 the image of each of these
neighbors has at most 5i log∆2 neighbors in V̂ (i). Thus, there are at most 40i

√
n log∆2 choices for v that cause f to not be a

partial packing. Since we have |Wi| > 4in
5m vertices to choose from and 4n

5m − 40
√
n log∆2 > 0, there is a vertex to which we

can send w.
Stage 4. We now place the remaining vertices, i.e. those in V1 − Ŵm. Consider a degenerate ordering of V1 − Ŵm and place
these vertices in the reverse order. Suppose it is the turn of vertex w to be packed. Then, there is some unmatched vertex
v ∈ V2. We show that either we can send w to v or that there is another previously matched vertex w′

∈ V1 − Ŵm such that
w can be matched to the image of w′, let us call it v′

∈ V2, and w′ can be matched to v.
Notice that for any x ∈ N(w), we are unable to match w to an unmatched vertex v ∈ V2 that is a neighbor of the image

of x. Let us call such vertices red/blue neighbors, since they can be reached from w via a 2-edge path with the first edge being
wx ∈ E1 (i.e. red) and the second edge being f (x)v ∈ E2 (i.e. blue). As in Stage 3, we notice that when it is the turn of w to be
packed, it has at most 4d neighbors in Ŵm −W1 and, since we are placing V1 − V̂m in the reverse of a degenerate order, it has
at most d neighbors in V1 − V̂m previously matched during Stage 4. In total, w has at most 5d previously matched neighbors
in V1 −W1. By Lemma 3.2,w has at most 1 neighbor inW1 −{v1, . . . , vk}. The vertexw may be adjacent to many vertices in
{v1, . . . , vk} but, by Stage 1 and Stage 2, the images of {v1, . . . , vk} have no unmatched neighbors so no red/blue neighbors
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may arise from these vertices. We conclude that, apart from {v1, . . . , vk}, the vertexw has at most 2+5d ≤ 8
√
n previously

matched neighbors. The image of each of these neighbors has at most ∆2 blue neighbors, so there are at most 8
√
n∆2 ≤

8n
60

red/blue neighbors of w.
On the other hand, for each vi ∈ {v1, . . . , vk}, the neighbors of f (vi) are matched to vertices inW1. So v has no neighbors

in f (W1). We now count the number of vertices x ∈ V1 such that x has a neighbor in V1 matched to a neighbor of v in V2. We
call this set of vertices the blue/red neighbors of v. In particular, we only concern ourselves with blue/red neighbors x such
that x ∉ Ŵm. We will use the method used in [4] to bound the number of such neighbors.

Let br(v) be the number of blue/red neighbors inV1−Ŵm and let ni = |NG2(v)∩V (i)
|. Recall that, in Stage 3,we considered

a greedy ordering of V1 − Ŵi−1. Let Di be the maximum degree of a vertex in G[V1 −Wi−1]. In particular, if x ∈ Xj is matched
to a vertex in V̂ (j) for j ≥ 2, then x has at most Dj neighbors in V1 − Ŵi and at least Dj+1 such neighbors. This implies
|X2|D3 + · · · + |Xm−1|Dm = z(D3 + · · · + Dm) < n, since there are at most n edges in G1.

Further, we know that if a vertex vi ∈ V1 has more than n/(50 log n) neighbors in G1, then not only was it matched in
Stage 1, but all vertices of NG2(f (vi)) are matched in Stage 1 as well. So if a vertex x is matched to a neighbor of v, then
d(x) ≤ n/(100 log n). In particular,

br(v) ≤ n1
n

50 log n
+ n2

n
50 log n

+

m
k=3

nkDk

≤
n

50 log n
(n1 + n2) + (D3 + · · · + Dm)5 log∆2

≤
n

50 log n
(8.7 log∆2) +

n
z
5 log∆2

≤
4.35n
50

+ (15m)5 log∆2

≤
4.35n
50

+ 75


∆2

log∆2


log∆2

≤
4.35n
50

+ 75∆2 + 75 log∆2

≤
4.35n
50

+
5
√
n

4
+ 75 log

√
n/60


<

n
10

.

We know that there are fewer than n
10 blue/red neighbors of v, at most 8n

60 red/blue neighbors of w, and at most n
5 vertices

in Ŵm. This means that either we can send w to v and maintain that f is a partial packing or there is a vertex w′ in V1 − Ŵm
placed on a vertex v′

∈ V2 such that w′ is not a blue/red neighbor of v and also that v′ is not a red/blue neighbor of w.
This implies that we can send v to w′ and w to v′ and maintain that f is a partial packing. Repeating this process for each
unmatched vertex in V1 yields a packing of G1 and G2.

5. Proof of Corollary 1.7

Let G1 and G2 be graphs such that |E1| ≤ n−δ2 and∆2 ≤
√
n/60.Wewill show that if G1 and G2 do not satisfy conclusion

(2) nor conclusion (3) of Corollary 1.7, then they pack. Let v1 ∈ V1 be a vertex of maximum degree in G1. If ∆1 = n − δ2,
then part 2 of the theorem holds and the proof is complete. So we assume that ∆1 ≤ n − δ2 − 1.

Let v1, . . . , vn be an ordering of V (G1) such that d(v1) ≥ · · · ≥ d(vn) and let X ⊆ E(G1 − v1) be the set of edges incident
to N(v1). The subgraph G1 −N[v1] has n− d(v1) − 1 vertices and |E1| − d(v1) − |X | edges. In particular, the number of tree
components in G1 − N[v1] is at least

(n − |E1|) + |X | − 1. (10)

By Theorem 1.6, if there exists an independent set S in G1 − N[v1] of size δ2, then G1 and G2 pack. We form an independent
set S by taking one vertex from each component in G1 − N[v1].

If |E1| ≤ n−δ2 −1 or |X | ≥ 1, then by (10) there are at least δ2 tree components in G1 −N[v1] and so |S| ≥ δ2. Therefore,
we assume that |E1| = n− δ2 and |X | = 0. Hence, the number of tree components in G1 −N[v1] is exactly δ2 −1. Moreover,
if any tree component contains at least three vertices, two vertices from the same component could be selected to be in S
and we would obtain an independent set of size δ2. Finally, we assume that G1 − N[v1] contains no other components, as
otherwise we could add an additional vertex to S and obtain an independent set of size δ2. After these assumptions, we are
now in the case that G1 is a forest with exactly n − δ2 edges and v1 is the only vertex with degree greater than 1. Further,
since d(v1) ≤ n − 1 − δ2, some component of G1 − N[v1] contains an edge.

We finally show that if conclusion (3) of Corollary 1.7 is not satisfied, then G1 and G2 pack. In this case, there is a vertex
w1 of degree δ2 such that N(w1) does not induce a clique. By our assumptions on G1, we can find an independent set S of
size δ2 − 1 by selecting one vertex from each component. Recall that G1 −N[v1] has some component that contains exactly
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one edge and let x be the vertex in that component not chosen to be in S. Let B′

1 ⊆ V1 −N[v1] be the set of vertices obtained
by adding x to S and note that G[B′

1] contains exactly δ2 vertices and exactly one edge.
We can now construct a packing of G1 and G2 almost exactly as we did in the proof of Theorem 1.6. In Stage 1, we define

f (v1) = w1 and wish to map the set B′

1 to the neighborhood of w1 so that f remains a partial packing. Since N(w1) does not
induce a clique and B′

1 contains only one edge, such a mapping is possible. Now, since v1 is the only vertex in G1 with degree
greater than 1, we proceed directly to Stage 3. However, Stage 3 and Stage 4 follow exactly as they did in Section 4, resulting
in the desired packing of G1 and G2.
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