
Discrete Mathematics 340 (2017) 2688–2690

Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

A stability version for a theorem of Erdős on nonhamiltonian
graphs
Zoltán Füredi a, Alexandr Kostochka b,c,*, Ruth Luo b

a Alfréd Rényi Institute of Mathematics, Hungary
b University of Illinois at Urbana–Champaign, Urbana, IL 61801, United States
c Sobolev Institute of Mathematics, Novosibirsk 630090, Russia

a r t i c l e i n f o

Article history:
Received 27 April 2016
Accepted 28 August 2016
Available online 14 November 2016

Dedicated to the memory of Professor H.
Sachs

Keywords:
Turán problem
Hamiltonian cycles
Extremal graph theory

a b s t r a c t

Let n, d be integers with 1 ≤ d ≤
⌊ n−1

2

⌋
, and set h(n, d) :=

( n−d
2

)
+ d2 and e(n, d) :=

max{h(n, d), h(n,
⌊ n−1

2

⌋
)}. Because h(n, d) is quadratic in d, there exists a d0(n) = (n/6) +

O(1) such that

e(n, 1) > e(n, 2) > · · · > e(n, d0) = e(n, d0 + 1) = · · · = e
(
n,

⌊
n − 1
2

⌋)
.

A theorem by Erdős states that for d ≤
⌊ n−1

2

⌋
, any n-vertex nonhamiltonian graph G with

minimumdegree δ(G) ≥ dhas atmost e(n, d) edges, and for d > d0(n) the unique sharpness
example is simply the graph Kn − E(K⌈(n+1)/2⌉). Erdős also presented a sharpness example
Hn,d for each 1 ≤ d ≤ d0(n).

We show that if d < d0(n) and a 2-connected, nonhamiltonian n-vertex graph G
with δ(G) ≥ d has more than e(n, d + 1) edges, then G is a subgraph of Hn,d. Note that
e(n, d) − e(n, d + 1) = n − 3d − 2 ≥ n/2 whenever d < d0(n) − 1.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

We use standard notation. In particular, V (G) denotes the vertex set of a graph G, E(G) denotes the edge set of G, and
e(G) = |E(G)|. Also, if v ∈ V (G), then N(v) denotes the neighborhood of v and d(v) = |N(v)|. Ore [3] proved the following
Turán-type result:

Theorem 1 (Ore [3]). If G is a nonhamiltonian graph on n vertices, then e(G) ≤
( n−1

2

)
+ 1.

This bound is achieved only for the n-vertex graph obtained from the complete graph Kn−1 by adding a vertex of degree
1. Erdős [2] refined the bound in terms of the minimum degree of the graph:

Theorem 2 (Erdős [2]). Let n, d be integers with 1 ≤ d ≤
⌊ n−1

2

⌋
, and set h(n, d) :=

( n−d
2

)
+ d2. If G is a nonhamiltonian graph

on n vertices with minimum degree δ(G) ≥ d, then

e(G) ≤ max
{
h(n, d), h

(
n,

⌊
n − 1
2

⌋)}
=: e(n, d).

This bound is sharp for all 1 ≤ d ≤
⌊ n−1

2

⌋
.
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Fig. 1. H11,3 .

To show the sharpness of the bound, for n, d ∈ Nwith d ≤
⌊ n−1

2

⌋
, consider the graph Hn,d obtained from a copy of Kn−d,

say with vertex set A, by adding d vertices of degree d each of which is adjacent to the same d vertices in A. An example of
H11,3 is given in Fig. 1.

By construction, Hn,d has minimum degree d, is nonhamiltonian, and e(Hn,d) =
( n−d

2

)
+ d2 = h(n, d). Elementary

calculation shows that h(n, d) > h(n,
⌊ n−1

2

⌋
) in the range 1 ≤ d ≤

⌊ n−1
2

⌋
if and only if d < (n + 1)/6 and n is odd or

d < (n + 4)/6 and n is even. Hence there exists a d0 := d0(n) such that

e(n, 1) > e(n, 2) > · · · > e(n, d0) = e(n, d0 + 1) = · · · = e
(
n,

⌊
n − 1
2

⌋)
,

where d0(n) :=
⌈ n+1

6

⌉
if n is odd, and d0(n) :=

⌈ n+4
6

⌉
if n is even. Let H ′

n,d denote the graph that is an edge-disjoint union of
two complete graphs Kn−d and Kd+1 sharing one vertex.

The result of this note is the following refinement of Theorem 2.

Theorem 3. Let n ≥ 3 and d ≤
⌊ n−1

2

⌋
. Suppose that G is an n-vertex nonhamiltonian graph with minimum degree δ(G) ≥ d

such that

e(G) > e(n, d + 1) = max
{
h(n, d + 1), h

(
n,

⌊
n − 1
2

⌋)}
. (1)

(So we have d < d0(n).) Then G is a subgraph of either Hn,d or H ′

n,d.

This is a stability result in the sense that for d < n/6, each 2-connected, nonhamiltonian n-vertex graph with minimum
degree at least d and ‘‘close’’ to h(n, d) edges is a subgraphof the extremal graphHn,d. Note that h(n, d)−h(n, d+1) = n−3d−2
is at least n/2 for d < d0 − 1. Note also that e(H ′

n,d) > e(n, d + 1) only when d = O(
√
n).

We will use the following well-known theorems of Pósa.

Theorem 4 (Pósa [4]). Let n ≥ 3. If G is a nonhamiltonian n-vertex graph, then there exists 1 ≤ k ≤
⌊ n−1

2

⌋
such that G has a set

of k vertices with degree at most k.

Theorem 5 (Pósa [5]). Let n ≥ 3, 1 ≤ ℓ < n and let G be an n-vertex graph such that
d(u) + d(v) ≥ n + ℓ for every non-edge uv in G. Then for every linear forest F with ℓ edges contained in G, the graph G has a

hamiltonian cycle containing all edges of F .

2. Proof of Theorem 3

Call a graph G saturated if G is nonhamiltonian but for each uv ̸∈ E(G), G + uv has a hamiltonian cycle. Ore’s proof [3] of
Dirac’s Theorem [1] yields that

for every n-vertex saturated graph G and for each uv ̸∈ E(G), d(u) + d(v) ≤ n − 1. (2)

First we show two facts on saturated graphs with many edges.

Lemma 6. Let G be a saturated n-vertex graph with e(G) > h(n,
⌊ n−1

2

⌋
). Then for some 1 ≤ k ≤

⌊ n−1
2

⌋
, V (G) contains a subset

D of k vertices of degree at most k such that G − D is a complete graph.

Proof. Since G is nonhamiltonian, by Theorem 4, there exists some 1 ≤ k ≤
⌊ n−1

2

⌋
such that G has k vertices with degree

at most k. Pick the maximum such k, and let D be the set of the vertices with degree at most k. Since e(G) > h(n,
⌊ n−1

2

⌋
),

k <
⌊ n−1

2

⌋
. So, by the maximality of k, |D| = k.
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Suppose there exist x, y ∈ V (G) − D such that xy ̸∈ E(G). Among all such pairs, choose x and y with the maximum d(x).
Since y ̸∈ D, d(y) > k. Let D′

:= V (G) − N(x) − {x} and k′
:= |D′

| = n − 1 − d(x). By (2),

d(z) ≤ n − 1 − d(x) = k′ for all z ∈ D′. (3)

So D′ is a set of k′ vertices of degree at most k′. Since y ∈ D′, k′
≥ d(y) > k. Thus by the maximality of k, we get

k′
= n − 1 − d(x) >

⌊ n−1
2

⌋
. Equivalently, d(x) < ⌈

n−1
2 ⌉. For all z ∈ D′

+ {x}, either z ∈ D where d(z) ≤ k ≤
⌊ n−1

2

⌋
,

or z ∈ V (G) − D, and so d(z) ≤ d(x) ≤
⌊ n−1

2

⌋
. It follows that e(G) ≤ h(n,

⌊ n−1
2

⌋
), a contradiction. □

Lemma 7. Under the conditions of Lemma 6, if k = δ(G), then G = Hn,δ(G) or G = H ′

n,δ(G).

Proof. Set d := δ(G), and let D be a set of d vertices with degree at most d. Let u ∈ D. Since δ(G) ≥ |D| = d, u has a neighbor
w ∈ V (G)−D. Consider any v ∈ D−{u}. By Lemma 6, w is adjacent to all of V (G)−D−{w}. It also is adjacent to u, therefore
its degree is at least n − d. We obtain

d(w) + d(v) ≥ (n − d) + d = n.

Then by (2), w is adjacent to v, and hence w is adjacent to all vertices of D.
LetW be the set of vertices in V (G) − D having a neighbor in D. We have obtained thatW ̸= ∅ and

N(u) ∩ (V (G) − D) = W for all u ∈ D. (4)

Let G′
= G[D ∪ W ]. If |W | = 1, then G = H ′

n,d. If |V (G′)| = 2d, then by (4), each vertex u ∈ D has the same d neighbors in
V (G) − D. Because d(u) = d, D is an independent set. Thus G = Hn,d. Otherwise, d + 2 ≤ |V (G′)| ≤ 2d − 1, |D| ≥ 2.

Fix a pair of vertices w1, w2 ∈ W . For any x, y ∈ V (G′),

d(x) + d(y) ≥ d + d ≥ |V (G′)| + 1.

Therefore by Theorem5,G′ has a hamiltonian cycleC that uses the edgew1w2. SinceG′′
:= G−(V (G′)−{w1, w2}) is a complete

graph, it contains a hamiltonian w1, w2-path P . Then P ∪ (C − w1w2) is a hamiltonian cycle of G, a contradiction. □

Proof of Theorem 3. Suppose that an n-vertex, nonhamiltonian graph G satisfies the constraints of Theorem 3 for some
1 ≤ d ≤

⌊ n−1
2

⌋
. We may assume G is saturated, since if a graph containing G is a subgraph of Hn,d or H ′

n,d, then G is as well.
By Lemma 6, G has a set D of k ≤

⌊ n−1
2

⌋
vertices with degree at most k such that G − D is a complete graph. Therefore

e(G) ≤
( n−k

2

)
+ k2 = h(n, k). If k ≥ d + 1, then e(G) ≤ max{h(n, d + 1), h(n,

⌊ n−1
2

⌋
)} = e(n, d + 1), a contradiction. Thus

k ≤ d. Furthermore, k ≥ δ(G) ≥ d, and hence k = d. Also, since e(G) > h(n,
⌊ n−1

2

⌋
), we have d + 1 ≤ d0(n) ≤ (n + 8)/6.

Applying Lemma 7 completes the proof. □
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