

Contents lists available at ScienceDirect

Journal of Combinatorial Theory, Series B

www.elsevier.com/locate/jctb

On the Corrádi–Hajnal theorem and a question of Dirac

H.A. Kierstead ^{a,1}, A.V. Kostochka ^{b,c,2}, E.C. Yeager ^{d,3}

- $^{\mathrm{a}}$ Department of Mathematics and Statistics, Arizona State University, Tempe, AZ 85287, USA
- ^b Department of Mathematics, University of Illinois, Urbana, IL, 61801, USA
- ^c Institute of Mathematics, Novosibirsk, Russia
- d University of British Columbia, 1984 Mathematics Rd, Vancouver, BC V6R 1G2, Canada

ARTICLE INFO

Article history: Received 8 May 2014 Available online 7 June 2016

Keywords:
Disjoint cycles
Ore-degree
Graph packing
Equitable coloring
Minimum degree

ABSTRACT

In 1963, Corrádi and Hajnal proved that for all $k \geq 1$ and $n \geq 3k$, every graph G on n vertices with minimum degree $\delta(G) \geq 2k$ contains k disjoint cycles. The bound $\delta(G) \geq 2k$ is sharp. Here we characterize those graphs with $\delta(G) \geq 2k-1$ that contain k disjoint cycles. This answers the simple-graph case of Dirac's 1963 question on the characterization of (2k-1)-connected graphs with no k disjoint cycles.

Enomoto and Wang refined the Corrádi–Hajnal Theorem, proving the following Ore-type version: For all $k \geq 1$ and $n \geq 3k$, every graph G on n vertices contains k disjoint cycles, provided that $d(x) + d(y) \geq 4k - 1$ for all distinct nonadjacent vertices x, y. We refine this further for $k \geq 3$ and $n \geq 3k + 1$: If G is a graph on n vertices such that $d(x) + d(y) \geq 4k - 3$ for all distinct nonadjacent vertices x, y, then G has k vertex-disjoint cycles if and only if the independence number $\alpha(G) \leq n - 2k$ and G is not one of two small exceptions in the case k = 3. We also show how the case

 $^{^{\}diamond}$ The first two authors thank Institut Mittag-Leffler (Djursholm, Sweden) for the hospitality and creative environment.

E-mail addresses: kostochk@math.uiuc.edu (A.V. Kostochka), Elyse@math.ubc.ca (E.C. Yeager).

 $^{^{\}rm 1}$ Research of this author is supported in part by NSA grant H98230-12-1-0212.

 $^{^2}$ Research of this author is supported in part by NSF grants DMS-1266016 and DMS-1600592 and by grant 12-01-00448 of the Russian Foundation for Basic Research.

Research of this author is supported in part by NSF grant DMS-1266016.

k=2 follows from Lovász' characterization of multigraphs with no two disjoint cycles.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

For a graph G = (V, E), let |G| = |V|, ||G|| = |E|, $\delta(G)$ be the minimum degree of G, and $\alpha(G)$ be the independence number of G. Let \overline{G} denote the complement of G and for disjoint graphs G and H, let $G \vee H$ denote $G \cup H$ together with all edges from V(G) to V(H). The degree of a vertex v in a graph H is $d_H(v)$; when H is clear, we write d(v). In 1963, Corrádi and Hajnal proved a conjecture of Erdős by showing the following:

Theorem 1.1 ([5]). Let $k \in \mathbb{Z}^+$. Every graph G with (i) $|G| \geq 3k$ and (ii) $\delta(G) \geq 2k$ contains k disjoint cycles.

Clearly, hypothesis (i) in the theorem is sharp. Hypothesis (ii) also is sharp. Indeed, if a graph G has k disjoint cycles, then $\alpha(G) \leq |G| - 2k$, since every cycle contains at least two vertices of G-I for any independent set I. Thus $H:=\overline{K_{k+1}}\vee K_{2k-1}$ satisfies (i) and has $\delta(H)=2k-1$, but does not have k disjoint cycles, because $\alpha(H)=k+1>|H|-2k$. There are several works refining Theorem 1.1. Dirac and Erdős [7] showed that if a graph G has many more vertices of degree at least 2k than vertices of degree at most 2k-2, then G has k disjoint cycles. Dirac [6] asked:

Question 1.2. Which (2k-1)-connected graphs do not have k disjoint cycles?

He also resolved his question for k=2 by describing all 3-connected multigraphs on at least 4 vertices in which every two cycles intersect. It turns out that the only simple 3-connected graphs with this property are wheels. Lovász [20] fully described all multigraphs in which every two cycles intersect.

The following result in this paper yields a full answer to Dirac's question for simple graphs.

Theorem 1.3. Let $k \geq 2$. Every graph G with (i) $|G| \geq 3k$ and (ii) $\delta(G) \geq 2k-1$ contains k disjoint cycles if and only if

- (H3) $\alpha(G) \leq |G| 2k$, and
- (H4) if k is odd and |G| = 3k, then $G \neq 2K_k \vee \overline{K_k}$ and if k = 2 then G is not a wheel.

Since for every independent set I in a graph G and every $v \in I$, $N(v) \subseteq V(G) - I$, if $\delta(G) \ge 2k - 1$ and $|I| \ge |G| - 2k + 1$, then |I| = |G| - 2k + 1 and N(v) = V(G) - I for every $v \in I$. It follows that every graph G satisfying (ii) and not satisfying (H3) contains

Fig. 1. Graphs \mathbf{Y}_1 and \mathbf{Y}_2 .

 $K_{2k-1,|G|-2k+1}$ and is contained in $K_{|G|} - E(K_{|G|-2k+1})$. The conditions of Theorem 1.3 can be tested in polynomial time.

Most likely, Dirac intended his question to refer to multigraphs; indeed, his result for k=2 is for multigraphs. But the case of simple graphs is the most important in the question. In [18] we heavily use the results of this paper to obtain a characterization of (2k-1)-connected multigraphs that contain k disjoint cycles, answering Question 1.2 in full.

Studying Hamiltonian properties of graphs, Ore introduced the *minimum Ore-degree* σ_2 : If G is a complete graph, then $\sigma_2(G) = \infty$, otherwise $\sigma_2(G) := \min\{d(x) + d(y) : xy \notin E(G)\}$. Enomoto [8] and Wang [21] generalized the Corrádi-Hajnal Theorem in terms of σ_2 :

Theorem 1.4 ([8,21]). Let $k \in \mathbb{Z}^+$. Every graph G with (i) $|G| \geq 3k$ and

(E2)
$$\sigma_2(G) > 4k - 1$$

contains k disjoint cycles.

Again $H := \overline{K_{k+1}} \vee K_{2k-1}$ shows that hypothesis (E2) of Theorem 1.4 is sharp. What happens if we relax (E2) to (H2): $\sigma_2(G) \geq 4k-3$, but again add hypothesis (H3)? Here are two interesting examples.

Example 1.5. Let k=3 and \mathbf{Y}_1 be the graph obtained by twice subdividing one of the edges wz of K_8 , i.e., replacing wz by the path wxyz. Then $|\mathbf{Y}_1| = 10 = 3k + 1$, $\sigma_2(\mathbf{Y}_1) = 9 = 4k - 3$, and $\alpha(\mathbf{Y}_1) = 2 \le |\mathbf{Y}_1| - 2k$. However, \mathbf{Y}_1 does not contain k=3 disjoint cycles, since each cycle would need to contain three vertices of the original K_8 (see Fig. 1(a)).

Example 1.6. Let k=3. Let Q be the graph obtained from $K_{4,4}$ by replacing a vertex v and its incident edges vw, vx, vy, vz by new vertices u, u' and edges uu', uw, ux, u'y, u'z; so d(u)=3=d(u') and contracting uu' in Q yields $K_{4,4}$. Now set $\mathbf{Y}_2:=K_1\vee Q$. Then $|\mathbf{Y}_2|=10=3k+1,\ \sigma_2(\mathbf{Y}_2)=9=4k-3,\ \text{and}\ \alpha(\mathbf{Y}_2)=4\leq |\mathbf{Y}_2|-2k.$ However, \mathbf{Y}_2 does not contain k=3 disjoint cycles, since each 3-cycle contains the only vertex of K_1 (see Fig. 1(b)).

Our main result is:

Theorem 1.7. Let $k \in \mathbb{Z}^+$ with $k \geq 3$. Every graph G with

- (H1) |G| > 3k + 1,
- (H2) $\sigma_2(G) \ge 4k 3$, and
- (H3) $\alpha(G) \leq |G| 2k$

contains k disjoint cycles, unless k = 3 and $G \in \{\mathbf{Y}_1, \mathbf{Y}_2\}$. Furthermore, there is a polynomial time algorithm that either produces k disjoint cycles or demonstrates that one of the hypotheses fails.

Theorem 1.7 is proved in Section 2. In Section 3 we discuss the case k = 2. In Section 4 we discuss connections to equitable colorings and derive Theorem 1.3 from Theorem 1.7 and known results.

Now we show examples demonstrating the sharpness of hypothesis (H2) that $\sigma(G) \ge 4k - 3$, then discuss some unsolved problems, and then review our notation.

Example 1.8. Let $k \geq 3$, $Q = K_3$ and $G_k := \overline{K_{2k-2}} \vee (\overline{K_{2k-3}} + Q)$. Then $|G_k| = 4k - 2 \geq 3k + 1$, $\delta(G_k) = 2k - 2$ and $\alpha(G_k) = |G_k| - 2k$. If G_k contained k disjoint cycles, then at least $4k - |G_k| = 2$ would be 3-cycles; this is impossible, since any 3-cycle in G_k contains an edge of Q. This construction can be extended. Let k = r + t, where $k + 3 \leq 2r \leq 2k$, $Q' = K_{2t}$, and put $H = G_r \vee Q'$. Then $|H| = 4r - 2 + 2t = 2k + 2r - 2 \geq 3k + 1$, $\delta(H) = 2r - 2 + 2t = 2k - 2$ and $\alpha(H) = 2r - 2 = |H| - 2k$. If H contained k disjoint cycles, then at least 4k - |H| = 2t + 2 would be 3-cycles; this is impossible, since any 3-cycle in H contains an edge of Q or a vertex of Q'.

There are several special examples for small k. The constructions of \mathbf{Y}_1 and \mathbf{Y}_2 can be extended to k=4 at the cost of lowering σ_2 to 4k-4. Below is another small family of special examples. The blow-up of G by H is denoted by G[H]; that is, $V(G[H]) = V(G) \times V(H)$ and $(x,y)(x',y') \in E(G[H])$ if and only if $xx' \in E(G)$, or x=x' and $yy' \in E(H)$.

Example 1.9. For k=4, $G:=C_5[\overline{K_3}]$ satisfies $|G|=15\geq 3k+1$, $\delta(G)=2k-2$ and $\alpha(G)=6<|G|-2k$. Since girth(G)=4, we see that G has at most $\frac{|G|}{4}< k$ disjoint cycles. This example can be extended to k=5,6 as follows. Let $I=\overline{K_{2k-8}}$ and $H=G\vee I$. Then $|G|=2k+7\geq 3k+1$, $\delta=2k-2$ and $\alpha(G)=6<|G|-2k=7$. If H has k disjoint cycles then each of the at least k-(2k-8)=8-k cycles that do not meet I use 4 vertices of G, and the other cycles use at least 2 vertices of G. Then $15=|G|\geq 2k+2(8-k)=16$, a contradiction.

Unsolved problems 1. For every fixed k, we know only a finite number of extremal examples. It would be very interesting to describe all graphs G with $\sigma_2(G) = 4k - 4$

that do not have k disjoint cycles, but this most likely would need new techniques and approaches.

- 2. Recently, there were several results in the spirit of the Corrádi–Hajnal Theorem giving degree conditions on a graph G sufficient for the existence in G of k disjoint copies of such subgraphs as chorded cycles [1,3] and Θ -graphs [4]. It could be that our techniques can help in similar problems.
 - 3. One also may try to sharpen the above-mentioned theorem of Dirac and Erdős [7].

Notation A bud is a vertex with degree 0 or 1. A vertex is high if it has degree at least 2k-1, and low otherwise. For vertex subsets A, B of a graph G = (V, E), let

$$\|A,B\| := \sum_{u \in A} |\{uv \in E(G) : v \in B\}|.$$

Note A and B need not be disjoint. For example, ||V,V|| = 2||G|| = 2|E|. We will abuse this notation to a certain extent. If A is a subgraph of G, we write ||A,B|| for ||V(A),B||, and if A is a set of disjoint subgraphs, we write ||A,B|| for $||\bigcup_{H\in A}V(H),B||$. Similarly, for $u \in V(G)$, we write ||u,B|| for $||\{u\},B||$. Formally, an edge e = uv is the set $\{u,v\}$; we often write ||e,A|| for $||\{u,v\},A||$.

If T is a tree or a directed cycle and $u, v \in V(T)$ we write uTv for the unique subpath of T with endpoints u and v. We also extend this: if $w \notin T$, but has exactly one neighbor $u \in T$, we write wTv for w(T+w+wu)v. Finally, if w has exactly two neighbors $u, v \in T$, we may write wTw for the cycle wuTvw.

2. Proof of Theorem 1.7

Suppose G = (V, E) is an edge-maximal counterexample to Theorem 1.7. That is, for some $k \geq 3$, (H1)–(H3) hold, and G does not contain k disjoint cycles, but adding any edge $e \in E(\overline{G})$ to G results in a graph with k disjoint cycles. The edge e will be in precisely one of these cycles, so G contains k-1 disjoint cycles, and at least three additional vertices. Choose a set C of disjoint cycles in G so that:

- (O1) $|\mathcal{C}|$ is maximized;
- (O2) subject to (O1), $\sum_{C \in \mathcal{C}} |C|$ is minimized;
- (O3) subject to (O1) and (O2), the length of a longest path P in $R := G \bigcup \mathcal{C}$ is maximized:
- (O4) subject to (O1), (O2), and (O3), ||R|| is maximized.

Call such a \mathcal{C} an *optimal set*. We prove in Subsection 2.1 that R is a path, and in Subsection 2.2 that |R| = 3. We develop the structure of \mathcal{C} in Subsection 2.3. Finally, in Subsection 2.4, these results are used to prove Theorem 1.7.

Our arguments will have the following form. We will make a series of claims about our optimal set C, and then show that if any part of a claim fails, then we could have

improved C by replacing a sequence $C_1, \ldots, C_t \in C$ of at most three cycles by another sequence of cycles $C'_1, \ldots, C'_{t'}$. Naturally, this modification may also change R or P. We will express the contradiction by writing " $C'_1, \ldots, C'_t, R', P'$ beats C_1, \ldots, C_t, R, P ," and may drop R' and R or P' and P if they are not involved in the optimality criteria.

This proof implies a polynomial time algorithm. We start by adding enough extra edges—at most 3k—to obtain from G a graph with a set \mathcal{C} of k disjoint cycles. Then we remove the extra edges in \mathcal{C} one at a time. After removing an extra edge, we calculate a new collection \mathcal{C}' . This is accomplished by checking the series of claims, each in polynomial time. If a claim fails, we calculate a better collection (again in polynomial time) and restart the check, or discover an independent set of size greater than |G|-2k. (Observe that if I is an independent set with $|I| \geq n-2k+1$, then there exists $x \in I$ with $I = V \setminus N(x)$, so the existence of |I| can be checked in polynomial time.) As there can be at most n^4 improvements, corresponding to adjusting the four parameters (O1)–(O4), this process ends in polynomial time.

We now make some simple observations. Recall that $|\mathcal{C}| = k - 1$ and R is acyclic. By (O2) and our initial remarks, $|R| \geq 3$. Let a_1 and a_2 be the endpoints of P. (Possibly, R is an independent set, and $a_1 = a_2$.)

Claim 2.1. For all $w \in V(R)$ and $C \in C$, if $||w,C|| \ge 2$ then $3 \le |C| \le 6 - ||w,C||$. In particular, (a) $||w,C|| \le 3$, (b) if ||w,C|| = 3 then |C| = 3, and (c) if |C| = 4 then the two neighbors of w in C are nonadjacent.

Proof. Let \overrightarrow{C} be a cyclic orientation of C. For distinct $u, v \in N(w) \cap C$, the cycles $wu\overrightarrow{C}vw$ and $wu\overleftarrow{C}vw$ have length at least |C| by (O2). Thus $2\|C\| \leq \|wu\overrightarrow{C}vw\| + \|wu\overleftarrow{C}vw\| = \|C\| + 4$, so $|C| \leq 4$. Similarly, if $\|w, C\| \geq 3$ then $3\|C\| \leq \|C\| + 6$, and so |C| = 3. \square

The next claim is a simple corollary of condition (O2).

Claim 2.2. If $xy \in E(R)$ and $C \in \mathcal{C}$ with $|C| \geq 4$ then $N(x) \cap N(y) \cap C = \emptyset$.

2.1. R is a path

Suppose R is not a path. Let L be the set of buds in R; then $|L| \geq 3$.

Claim 2.3. For all $C \in \mathcal{C}$, distinct $x, y, z \in V(C)$, $i \in [2]$, and $u \in V(R-P)$:

- (a) $\{ux, uy, a_i z\} \nsubseteq E$;
- (b) $\|\{u, a_i\}, C\| \le 4$;
- (c) $\{a_i x, a_i y, a_{3-i} z, zu\} \nsubseteq E$;

Fig. 2. Claim 2.3.

- (d) if $\|\{a_1, a_2\}, C\| \ge 5$ then $\|u, C\| = 0$;
- (e) $||\{u, a_i\}, R|| \ge 1$; in particular $||a_i, R|| = 1$ and $|P| \ge 2$;
- (f) $4 ||u, R|| \le ||\{u, a_i\}, C||$ and $||\{u, a_i\}, D|| = 4$ for at least |C| ||u, R|| cycles $D \in C$.

Proof. (a) Else ux(C-z)yu, Pa_iz beats C, P by (O3) (see Fig. 2(a)).

- (b) Else |C| = 3 by Claim 2.1. Then there are distinct $p, q, r \in V(C)$ with $up, uq, a_i r \in E$, contradicting (a).
 - (c) Else $a_i x(C-z) y a_i$, $(P-a_i) a_{3-i} z u$ beats C, P by (O3) (see Fig. 2(b)).
- (d) Suppose $\|\{a_1, a_2\}, C\| \ge 5$ and $p \in N(u) \cap C$. By Claim 2.1, |C| = 3. Pick $j \in [2]$ with $pa_j \in E$, preferring $\|a_j, C\| = 2$. Then $V(C) p \subseteq N(a_{3-j})$, contradicting (c).
- (e) Since a_i is an end of the maximal path P, we get $N(a_i) \cap R \subseteq P$; so $a_i u \notin E$. By (b)

$$4(k-1) \ge \|\{u, a_i\}, V \setminus R\| \ge 4k - 3 - \|\{u, a_i\}, R\|.$$
 (2.1)

Thus $||\{u, a_i\}, R|| \ge 1$. Hence G[R] has an edge, $|P| \ge 2$, and $||a_i, P|| = ||a_i, R|| = 1$.

(f) By (2.1) and (e), $\|\{u, a_i\}, V \setminus R\| \ge 4|\mathcal{C}| - \|u, R\|$. Using (b), this implies the second assertion, and $\|\{u, a_i\}, C\| + 4(|\mathcal{C}| - 1) \ge 4|\mathcal{C}| - \|u, R\|$ implies the first assertion. \square

Claim 2.4. $|P| \geq 3$. In particular, $a_1 a_2 \notin E(G)$.

Proof. Suppose $|P| \le 2$. Then $||u, R|| \le 1$. As $|L| \ge 3$, there is a bud $c \in L \setminus \{a_1, a_2\}$. By Claim 2.3(f), there exists $C = z_1 \dots z_t z_1 \in C$ such that $||\{c, a_1\}, C|| = 4$ and $||\{c, a_2\}, C|| \ge 3$.

If ||c,C||=3 then the edge between a_1 and C contradicts Claim 2.3(a). If ||c,C||=1 then $||\{a_1,a_2\},C||=5$, contradicting Claim 2.3(d). Therefore, we assume $||c,C||=2=||a_1,C||$ and $||a_2,C||\geq 1$. By Claim 2.3(a), $N(a_1)\cup N(a_2)=N(c)$, so there exists $z_i\in N(a_1)\cap N(a_2)$ and $z_j\in N(c)-z_i$. Then $a_1a_2z_ia_1,cz_jz_{j\pm 1}$ beats C,P by (O3). \square

Claim 2.5. Let $c \in L - a_1 - a_2$, $C \in C$, and $i \in [2]$.

- (a) $||a_1, C|| = 3$ if and only if ||c, C|| = 0, and if and only if $||a_2, C|| = 3$.
- (b) There is at most one cycle $D \in \mathcal{C}$ with $||a_i, D|| = 3$.

- (c) For every $C \in C$, $||a_i, C|| > 1$ and ||c, C|| < 2.
- (d) If $\|\{a_i, c\}, C\| = 4$ then $\|a_i, C\| = 2 = \|c, C\|$.

Proof. (a) If ||c, C|| = 0 then by Claims 2.1 and 2.3(f), $||a_i, C|| = 3$. If $||a_i, C|| \ge 3$ then by Claim 2.3(b), $||c, C|| \le 1$. By Claim 2.3(f), $||a_{3-i}, C|| \ge 2$, and by Claim 2.3(d), ||c, C|| = 0.

- (b) As $c \in L$, $||c, R|| \le 1$. Thus Claim 2.3(f) implies ||c, D|| = 0 for at most one cycle $D \in \mathcal{C}$.
 - (c) Suppose ||c, C|| = 3. By Claim 2.3(a), $||\{a_1, a_2\}, C|| = 0$. By Claims 2.4 and 2.3(d):

$$4k-3 \le \|\{a_1,a_2\}, R \cup C \cup (V-R-C)\| \le 2+0+4(k-2)=4k-6,$$

a contradiction. Thus $||c,C|| \leq 2$. Thus by Claim 2.3(f), $||a_i,C|| \geq 1$.

(d) Now (d) follows from (a) and (c). \Box

Claim 2.6. R has no isolated vertices.

Proof. Suppose $c \in L$ is isolated. Fix $C \in \mathcal{C}$. By Claim 2.3(f), $\|\{c, a_1\}, C\| = 4$. By Claim 2.5(d), $\|a_1, C\| = 2 = \|c, C\|$; so d(c) = 2(k-1). By Claim 2.3(a), $N(a_1) \cap C = N(c) \cap C$. Let $w \in V(C) \setminus N(c)$. Then $d(w) \geq 4k-3-d(c) = 2k-1 = 2|\mathcal{C}|+1$. Therefore, either $\|w, R\| \geq 1$ or $|N(w) \cap D| = 3$ for some $D \in \mathcal{C}$. In the first case, c(C-w)c beats C by (O4). In the second case, by Claim 2.5(c) there exists some $x \in N(a_1) \cap D$. Then c(C-w)c, w(D-x)w beats C, D by (O3). \square

Claim 2.7. L is an independent set.

Proof. Suppose $c_1c_2 \in E(L)$. By Claim 2.4, $c_1, c_2 \notin P$. By Claim 2.3(f) and using $k \geq 3$, there is $C \in C$ with $||\{a_1, c_1\}, C|| = 4$ and $||\{a_1, c_2\}, C||$, $||\{a_2, c_1\}, C|| \geq 3$. By Claim 2.5(d), $||a_1, C|| = 2 = ||c_1, C||$; so $||a_2, C||$, $||c_2, C|| \geq 1$. By Claim 2.3(a), $N(a_1) \cap C, N(a_2) \cap C \subseteq N(c_1) \cap C$. Then there are distinct $x, y \in N(c_1) \cap C$ with $xa_1, xa_2, ya_1 \in E$. If $xc_2 \in E$ then $c_1c_2xc_1$, ya_1Pa_2 beats C, P by (O3). Else $a_1Pa_2xa_1$, $c_1(C-x)c_2c_1$ beats C, P by (O1). \square

Claim 2.8. If $|L| \geq 3$ then for some $D \in \mathcal{C}$, ||l,C|| = 2 for every $C \in \mathcal{C} - D$ and every $l \in L$.

Proof. Suppose some $D_1, D_2 \in \mathcal{C}$ and $l_1, l_2 \in L$ satisfy $D_1 \neq D_2$ and $||l_1, D_1|| \neq 2 \neq ||l_2, D_2||$.

CASE 1: $l_j \notin \{a_1, a_2\}$ for some $j \in [2]$. Say j = 1. For $i \in [2]$: $\|\{a_i, l_1\}, D_1\| \neq 4$ by Claim 2.5(d); $\|\{a_i, l_1\}, D_2\| = 4$ by Claim 2.3(f); $\|a_i, D_2\| = 2$ by Claim 2.5(d). Then $l_2 \notin \{a_1, a_2\}$. By Claim 2.7, $l_1 l_2 \notin E(G)$. Claim 2.5(c) yields the contradiction:

$$4k-3 \le ||\{l_1, l_2\}, R \cup D_1 \cup D_2 \cup (V-R-D_1-D_2)|| \le 2+3+3+4(k-3) = 4k-4.$$

Fig. 3. Claim 2.10.

CASE 2: $\{l_1, l_2\} \subseteq \{a_1, a_2\}$. Let $c \in L - l_1 - l_2$. As above, $\|\{l_1, c\}, D_1\| \neq 4$, and so $\|c, D_2\| = 2 = \|l_1, D_2\|$. This implies $l_1 \neq l_2$. By Claim 2.5(a, c), $\|l_2, D_2\| = 1$. Thus $\|\{l_2, c\}, D_1\| = 4$; so $\|c, D_1\| = 2$, and $\|l_1, D_1\| = 1$. With Claim 2.4, this yields the contradiction:

$$4k - 3 \le \|\{l_1, l_2\}, R \cup D_1 \cup D_2 \cup (V - R - D_1 - D_2)\|$$

$$< 2 + 3 + 3 + 4(k - 3) = 4k - 4. \quad \Box$$

Claim 2.9. R is a subdivided star (possibly a path).

Proof. Suppose not. Then we claim R has distinct leaves $c_1, d_1, c_2, d_2 \in L$ such that c_1Rd_1 and c_2Rd_2 are disjoint paths. Indeed, if R is disconnected then each component has two distinct leaves by Claim 2.6. Else R is a tree. As R is not a subdivided star, it has distinct vertices s_1 and s_2 with degree at least three. Deleting the edges and interior vertices of s_1Rs_2 yields disjoint trees containing all leaves of R. Let T_i be the tree containing s_i , and pick $c_i, d_i \in T_i$.

By Claim 2.8, using $k \geq 3$, there is a cycle $C \in \mathcal{C}$ such that ||l,C|| = 2 for all $l \in L$. By Claim 2.3(a), $N(a_1) \cap C = N(l) \cap C = N(a_2) \cap C =: \{w_1, w_3\}$ for $l \in L - a_1 - a_2$. Then replacing C in C with $w_1c_1Rd_1w_1$ and $w_3c_2Rd_2w_3$ yields k disjoint cycles. \square

Claim 2.10. R is a path or a star.

Proof. By Claim 2.9, R is a subdivided star. If R is neither a path nor a star then there are vertices r, p, d with $||r, R|| \ge 3$, ||p, R|| = 2, $d \in L - a_1 - a_2$ and (say) $pa_1 \in E$. Then a_2Rd is disjoint from pa_1 (see Fig. 3(a)). By Claim 2.5(c), $d(d) \le 1 + 2(k-1) = 2k - 1$. Then:

$$||p, V - R|| \ge 4k - 3 - ||p, R|| - d(d) \ge 4k - 5 - (2k - 1) = 2k - 4 \ge 2.$$
 (2.2)

In each of the following cases, $R \cup C$ has two disjoint cycles, contradicting (O1).

CASE 1: ||p,C|| = 3 for some $C \in C$. Then |C| = 3. By Claim 2.5(a), if ||d,C|| = 0 then $||a_1,C|| = 3 = ||a_2,C||$. Then for $w \in C$, wa_1pw and $a_2(C-w)a_2$ are disjoint cycles (see Fig. 3(b)). Else by Claim 2.5(c), ||d,C||, $||a_2,C|| \in \{1,2\}$. By Claim 2.3(f), $||\{d,a_2\},C|| \ge 3$, so there are $l_1,l_2 \in \{a_2,d\}$ with $||l_1,C|| \ge 1$ and $||l_2,C|| = 2$; say $w \in N(l_1) \cap C$. If $l_2w \in E$ then wl_1Rl_2w and p(C-w)p are disjoint cycles (see Fig. 3(c)); else l_1wpRl_1 and $l_2(C-w)l_2$ are disjoint cycles (see Fig. 3(d)).

CASE 2: There are distinct $C_1, C_2 \in \mathcal{C}$ with $||p, C_1||$, $||p, C_2|| \ge 1$. By Claim 2.8, for some $i \in [2]$ and all $c \in L$, $||c, C_i|| = 2$. Let $w \in N(p) \cap C_i$. If $wa_1 \in E$ then $D := wpa_1w$ is a cycle and $G[(C_i - w) \cup a_2Rd]$ contains cycle disjoint from D. Else, if $w \in N(a_2) \cup N(d)$, say $w \in N(c)$, then $a_1(C_i - w)a_1$ and cwpRc are disjoint cycles. Else, by Claim 2.1 there exist vertices $u \in N(a_2) \cap N(d) \cap C_i$ and $v \in N(a_1) \cap C_i - u$. Then ua_2Rdu and $a_1v(C_i - u)wpa_1$ are disjoint cycles.

CASE 3: Otherwise. Then using (2.2), ||p, V - R|| = 2 = ||p, C|| for some $C \in \mathcal{C}$. In this case, k = 3 and d(p) = 4. By (H2), $d(a_2)$, $d(d) \ge 5$. Say $\mathcal{C} = \{C, D\}$. By Claim 2.3(b), $||\{a_2, d\}, D|| \le 4$. Thus,

$$\|\{a_2,d\},C\| = \|\{a_2,d\},(V-R-D)\| \ge 10-2-4=4.$$

By Claim 2.5(c, d), $||a_2, C|| = ||d, C|| = 2$ and $||a_1, C|| \ge 1$. Say $w \in N(a_1) \cap C$. If $wp \in E$ then $dRa_2(C-w)d$ contains a cycle disjoint from wa_1pw . Else, by Claim 2.3(a) there exists $x \in N(a_2) \cap N(d) \cap C$. If $x \ne w$ then xa_2Rdx and $wa_1p(C-x)w$ are disjoint cycles. Else x = w, and xa_2Rdx and p(C-w)p are disjoint cycles. \square

Lemma 2.11. R is a path.

Proof. Suppose R is not a path. Then it is a star with root r and at least three leaves, any of which can play the role of a_i or a leaf in $L-a_1-a_2$. Thus Claim 2.5(c) implies $||l,C|| \in \{1,2\}$ for all $l \in L$ and $C \in \mathcal{C}$. By Claim 2.8 there is $D \in \mathcal{C}$ such that for all $l \in L$ and $C \in \mathcal{C}-D$, ||l,C|| = 2. By Claim 2.3(f) there is $l \in L$ such that for all $l \in L$ such that $l \in L$

Let Z = N(l') - R and $A = V \setminus (Z \cup \{r\})$. By the first paragraph, every $C \in \mathcal{C}$ satisfies $|Z \cap C| = 2$, so |A| = |G| - 2k + 1. For a contradiction, we show that A is independent. Note $A \cap R = L$, so by Claim 2.7, $A \cap R$ is independent. By Claim 2.3(a),

for all
$$c \in L$$
 and for all $C \in C$, $N(c) \cap C \subseteq Z$. (2.3)

Therefore, ||L, A|| = 0. By Claim 2.1(c), for all $C \in \mathcal{C}$, $C \cap A$ is independent. Suppose, for a contradiction, A is not independent. Then there exist distinct $C_1, C_2 \in \mathcal{C}$, $v_1 \in A \cap C_1$, and $v_2 \in A \cap C_2$ with $v_1v_2 \in E$. Subject to this choose C_2 with $||v_1, C_2||$ maximum. Let $Z \cap C_1 = \{x_1, x_2\}$ and $Z \cap C_2 = \{y_1, y_2\}$.

CASE 1: $||v_1, C_2|| \ge 2$. Choose $i \in [2]$ so that $||v_1, C_2 - y_i|| \ge 2$. Then define $C_1^* := v_1(C_2 - y_i)v_1$, $C_2^* := l'x_1(C_1 - v_1)x_2l'$, and $P^* := y_il''rl$ (see Fig. 4(a)). By (2.3), P^* is a path and C_2^* is a cycle. Then C_1^*, C_2^*, P^* beats C_1, C_2, P by (O3).

CASE 2: $||v_1, C_2|| \le 1$. Then for all $C \in \mathcal{C}$, $||v_1, C|| \le 2$ and $||v_1, C_2|| = 1$; so $||v_1, \mathcal{C}|| = ||v_1, C_2 \cup (\mathcal{C} - C_2)|| \le 1 + 2(k - 2) = 2k - 3$. By (2.3) $||v_1, L|| = 0$ and $d(l) \le 2k - 1$. By (H2), $||v_1, r|| = ||v_1, R|| = (4k - 3) - ||v_1, \mathcal{C}|| - d(l) \le (4k - 3) - (2k - 3) - (2k - 1) = 1$, and $v_1 r \in E$. Let $C_1^* := l'x_1(C_1 - v_1)x_2l'$, $C_2^* := l''y_1(C_2 - v_2)y_2l''$, and $P^* := v_2v_1rl$ (see Fig. 4(b)). Then C_1^*, C_2^*, P^* beats C_1, C_2, P by (O3). \square

Fig. 4. Claim 2.10.

2.2. |R| = 3

By Lemma 2.11, R is a path, and by Claim 2.4, $|R| \ge 3$. Next we prove |R| = 3. First, we prove a claim that will also be useful in later sections.

Claim 2.12. Let C be a cycle, $P = v_1 v_2 \dots v_s$ be a path in R, and 1 < i < s. At most one of the following two statements holds.

- (1) (a) $||x, v_1 P v_{i-1}|| \ge 1$ for all $x \in C$ or (b) $||x, v_1 P v_{i-1}|| \ge 2$ for two $x \in C$;
- (2) (c) $||y, v_i P v_s|| \ge 2$ for some $y \in C$ or (d) $N(v_i) \cap C \ne \emptyset$ and $||v_{i+1} P v_s, C|| \ge 2$.

Proof. Suppose (1) and (2) hold. If (c) holds then the disjoint graphs $G[v_iPv_s+y]$ and $G[v_1Pv_{i-1}\cup C-y]$ contain cycles. Else (d) holds, but (c) fails; say $z\in N(v_i)\cap C$ and $z\notin N(v_{i+1}Pv_s)$. If (a) holds then $G[v_1Pv_i+z]$ and $G[v_{i+1}Pv_s\cup C-z]$ contain cycles. If (b) holds then $G[v_1Pv_{i-1}+w]$ and $G[v_iPv_s\cup C-w]$ contain cycles, where $||w,v_1Pv_{i-1}|| \geq 2$. \square

Suppose, for a contradiction, $|R| \ge 4$. Say $R = a_1 a_1' a_1'' \dots a_2'' a_2' a_2$. It is possible that $a_1'' \in \{a_2'', a_2'\}$, etc. Set $e_i := a_i a_i' = \{a_i, a_i'\}$ and $F := e_1 \cup e_2$.

Claim 2.13. If $C \in \mathcal{C}$, $h \in [2]$ and $||e_h, C|| \ge ||e_{3-h}, C||$ then $||C, F|| \le 7$; if ||C, F|| = 7 then

$$|C| = 3$$
, $||a_h, C|| = 2$, $||a_h', C|| = 3$, $||a_h''Ra_{3-h}, C|| = 2$, and $N(a_h) \cap C = N(e_{3-h}) \cap C$.

Proof. We will repeatedly use Claim 2.12 to obtain a contradiction to (O1) by showing that $G[C \cup R]$ contains two disjoint cycles. Suppose $||C, F|| \ge 7$ and say h = 1. Then $||e_1, C|| \ge 4$. There is $x \in e_1$ with $||x, C|| \ge 2$. Thus $|C| \le 4$ by Claim 2.1, and if |C| = 4 then no vertex in C has two adjacent neighbors in F. Then (1) holds with $v_1 = a_1$ and $v_i = a'_2$, even when |C| = 4.

If $||e_1, C|| = 4$, as is the case when |C| = 4, then $||e_2, C|| \ge 3$. If |C| = 4 there is a cycle $D := yza_2'a_2y$ for some $y, z \in C$. As (a) holds, $G[a_1Ra_2'' \cup C - y - z]$ contains another disjoint cycle. Thus, |C| = 3. As (c) must fail with $v_i = a_2'$, (a) and (c) hold for $v_i = a_1'$

and $v_1 = a_2$, a contradiction. Then $||e_1, C|| \ge 5$. If $||a_1, C|| = 3$ then (a) and (c) hold with $v_1 = a_1$ and $v_i = a_1'$. Now $||a_1, C|| = 2$, $||a_1', C|| = 3$ and $||a_1''Ra_2, C|| \ge 2$. If there is $b \in P - e_1$ and $c \in N(b) \cap V(C) \setminus N(a_1)$ then $G[a_1'Ra_2 + c]$ and $G[a_1(C - c)a_1]$ both contain cycles. For every $b \in R - e_1$, $N(b) \cap C \subseteq N(a_1)$. Then if $||a_1''Ra_2, C|| \ge 3$, (c) holds for $v_1 = a_1$ and $v_1 = a_1''$, contradicting that (1) holds. Now $||a_1''Ra_2, C|| = ||e_1, C|| = 2$ and $N(a_1) = N(e_2)$. \square

Lemma 2.14. |R| = 3 and $m := \max\{|C| : C \in \mathcal{C}\} = 4$.

Proof. Let $t = |\{C \in \mathcal{C} : ||F,C|| \le 6\}|$ and $r = |\{C \in \mathcal{C} : |C| \ge 5\}|$. It suffices to show r = 0 and |R| = 3: then $m \le 4$, and $|V(\mathcal{C})| = |G| - |R| \ge 3(k-1) + 1$ implies some $C \in \mathcal{C}$ has length 4. Choose R so that:

- (P1) R has as few low vertices as possible, and subject to this,
- (P2) R has a low end if possible.

Let $C \in \mathcal{C}$. By Claim 2.13, $||F,C|| \le 7$. By Claim 2.1, if $|C| \ge 5$ then $||a,C|| \le 1$ for all $a \in F$; so $||F,C|| \le 4$. Thus $r \le t$. Hence

$$2(4k-3) \le ||F,(V \setminus R) \cup R|| \le 7(k-1) - t - 2r + 6 \le 7k - t - 2r - 1. \tag{2.4}$$

Therefore, $5 - k \ge t + 2r \ge 3r \ge 0$. Since $k \ge 3$, this yields $3r \le t + 2r \le 2$, so r = 0 and $t \le 2$, with t = 2 only if k = 3.

CASE 1: $k - t \geq 3$. That is, there exist distinct cycles $C_1, C_2 \in \mathcal{C}$ with $||F, C_i|| \geq 7$. In this case, $t \leq 1$: if k = 3 then $\mathcal{C} = \{C_1, C_2\}$ and t = 0; if k > 3 then t < 2. For both $i \in [2]$, Claim 2.13 yields $||F, C_i|| = 7$, $||C_i|| = 3$, and there is $x_i \in V(C_i)$ with $||x_i, R|| = 1$ and ||y, R|| = 3 for both $y \in V(C_i - x_i)$. Moreover, there is a unique index $j = \beta(i) \in [2]$ with $||a'_j, C_i|| = 3$. For $j \in [2]$, put $I_j := \{i \in [2] : \beta(i) = j\}$; that is, $I_j = \{i \in [2] : ||a'_j, C_i|| = 3\}$. Then $V(C_i) - x_i = N(a_{\beta(i)}) \cap C_i = N(e_{3-\beta(i)}) \cap C_i$. As $x_i a_{\beta(i)} \notin E$, one of $x_i, a_{\beta(i)}$ is high. As we can switch x_i and $a_{\beta(i)}$ (by replacing C_i with $a_{\beta(i)}(C_i - x_i)a_{\beta(i)}$ and R with $R - a_{\beta(i)} + x_i$), we may assume $a_{\beta(i)}$ is high.

Suppose $I_j \neq \emptyset$ for both $j \in [2]$; say $||a'_1, C_1|| = ||a'_2, C_2|| = 3$. Then for all $B \in \mathcal{C}$ and $j \in [2]$, a_j is high, and either $||a_j, B|| \leq 2$ or $||F, B|| \leq 6$. Since $t \leq 1$, we get

$$2k - 1 \le d(a_j) = ||a_j, B \cup F|| + ||a_j, C - B|| \le ||a_j, B|| + 1 + 2(k - 2) + t$$

$$\le 2k - 2 + ||a_j, B||.$$

Thus $N(a_j) \cap B \neq \emptyset$ for all $B \in \mathcal{C}$. Let $y_j \in N(a_{3-j}) \cap C_j$. Then using Claim 2.13, $y_j \in N(a_j)$, and $a'_1(C_1 - y_1)a'_1$, $a'_2(C_2 - y_2)a'_2$, $a_1y_1a_2y_2a_1$ beats C_1, C_2 by (O1).

Otherwise, say $I_1 = \emptyset$. If $B \in \mathcal{C}$ with $||F, B|| \le 6$ then $||e_1, B|| + 2||a_2, B|| \le ||F, B|| + ||a_2, B|| \le 9$. Thus, using Claim 2.13,

Fig. 5. Lemma 2.14, Case 1.

$$2(4k-3) \le d(a_1) + d(a'_1) + 2d(a_2) = 5 + ||e_1, \mathcal{C}|| + 2||a_2, \mathcal{C}|| \le 5 + 6(k-1-t) + 9t$$
$$\Rightarrow 2k \le 5 + 3t.$$

Since $k-t \geq 3$ (by the case), we see $3(k-t)+(5+3t)\geq 3(3)+2k$ and so $k\geq 4$. Since $t\leq 1$, in fact k=4 and t=1, and equality holds throughout: say B is the unique cycle in \mathcal{C} with $||F,B||\leq 6$. Then $||a_2,B||=||e_1,B||=3$. Using Claim 2.13, $d(a_1)+d(a_1')=||e_1,R||+||e_1,\mathcal{C}-B||+||e_1,B||=3+4+3=10$, and $d(a_1),d(a_2)\geq (4k-3)-d(a_2)=13-(1+4+3)=5$, so $d(a_1)=d(a_2)=5$. Note a_1 and a_2 share no neighbors: they share none in R because R is a path, they share none in $\mathcal{C}-B$ by Claim 2.13, and they share no neighbor $b\in B$ lest $a_1a_1'ba_1$ and $a_2(B-b)a_2$ beat B by (O1). Thus every vertex in $V-e_1$ is high.

Since $||e_1, B|| = 3$, first suppose $||a_1, B|| \ge 2$, say $B - b \subseteq N(a_1)$. Then $a_1(B - b)a_1$, $a'_1a'_2a_1b$ beat B, R by (P1) (see Fig. 5(a)). Now suppose $||a'_1, B|| \ge 2$, this time with $B - b \subseteq N(a'_1)$. Since $d(a_1) = 5$ and $||a_1, R \cup B|| \le 2$, there exists $c \in C \in C - B$ with $a_1c \in E(G)$. Now $c \in N(a_2)$ by Claim 2.13, so $a'_1(B - b)a'_1$, $a'_2(C - c)a'_2$, and a_1ca_2b beat B, C, and R by (P1) (see Fig. 5(b)).

CASE 2: $k - t \le 2$. That is, $||F,C|| \le 6$ for all but at most one $C \in \mathcal{C}$. Then, since $5 - k \ge t$, we get k = 3 and $||F,V|| \le 19$. Say $\mathcal{C} = \{C,D\}$, so $||F,C \cup D|| \ge 2(4k - 3) - ||F,R|| = 2(4 \cdot 3 - 3) - 6 = 12$. By Claim 2.13, ||F,C||, $||F,D|| \le 7$. Then ||F,C||, $||F,D|| \ge 5$. If $||R| \ge 5$, then for the (at most two) low vertices in R, we can choose distinct vertices in R not adjacent to them. Then $||R,V-R|| \ge 5|R| - 2 - ||R,R|| = 3|R|$. Thus we may assume $||R,C|| \ge \lceil 3|R|/2 \rceil \ge ||R|| + 3 \ge 8$. Let $w' \in C$ be such that $q = ||w',R|| = \max\{||w,R|| : w \in C\}$. Let $N(w') \cap R = \{v_{i_1},\ldots,v_{i_q}\}$ with $i_1 < \ldots < i_q$. Suppose $q \ge 4$. If $||v_1Rv_{i_2},C-w'|| \ge 2$ or $||v_{i_2+1}Rv_s,C-w'|| \ge 2$, then $G[C \cup R]$ has two disjoint cycles. Otherwise, $||R,C-w'|| \le 2$, contradicting $||R,C|| \ge ||R|| + 3$. Similarly, if q = 3, then $||v_1Rv_{i_2-1},C-w'|| \le 1$ and $||v_{i_2+1}Rv_s,C-w'|| \le 1$ yielding $||v_{i_2},C|| = ||R,C|| - ||(R-v_{i_2}),C-w'|| - ||R-v_{i_2},w'|| \ge (|R|+3) - 2 - (3-1) \ge 4$, a contradiction to Claim 2.1(a). Therefore, $q \le 2$, and hence $|R| + 3 \le ||R,C|| \le 2|C|$. It follows that |R| = 5, |C| = 4 and ||w,R|| = 2 for each $w \in C$. This in turn yields that $G[C \cup R]$ has no triangles and $||v_i,C|| \le 2$ for each $i \in [5]$. By Claim 2.13, $||F,C|| \le 6$, so $||v_3,C|| = 2$. Thus we may assume that for some $w \in C$, $N(w) \cap R = \{v_1,v_3\}$. Then

 $||e_2, C|| = ||e_2, C - w|| \le 1$, lest there exist a cycle disjoint from $wv_1v_2v_3w$ in $G[C \cup R]$. Therefore, $||e_1, C|| \ge 8 - 1 - 2 = 5$, a contradiction to Claim 2.1(b). This yields $|R| \le 4$.

Claim 2.15. Either a_1 or a_2 is low.

Proof. Suppose a_1 and a_2 are high. Then since $||R, V|| \le 19$, we may assume a_1' is low. Suppose there is $c \in C$ with $ca_2 \in E$ and $||a_1, C - c|| \ge 2$. If $a_1'c \in E$, then $R \cup C$ contains two disjoint cycles; so $a_1'c \notin E$ and hence c is high. Thus either $a_1(C-c)a_1$ is shorter than C or the pair $a_1(C-c)a_1$, $ca_2a_2'a_1'$ beats C, R by (P2). Thus if $ca_2 \in E$ then $||a_1, C - c|| \le 1$. As a_2 is high, $||a_2, C|| \ge 1$ and hence $||a_1, C|| = ||a_1, C \setminus N(a_2)|| + ||a_1, N(a_2)|| \le 2$. Similarly, $||a_1, D|| \le 2$. Since a_1 is high, we see $||a_1, C|| = ||a_1, D|| = 2$, and $d(a_1) = 5$. Hence

$$N(a_2) \cap C \subseteq N(a_1) \cap C$$
 and $N(a_2) \cap D \subseteq N(a_1) \cap D$. (2.5)

As a_2 is high, $d(a_2) = 5$ and in (2.5) equalities hold. Also $d(a'_1) = 4 \le d(a'_2)$.

If there are $c \in C$ and $i \in [2]$ with $ca_i, ca_i' \in E$ then by (O2), |C| = 3. Also $ca_i'a_ic$, $a_{3-i}'a_{3-i}(C-c)$ beats C, R by either (P1) or (P2). (Recall $N(a_1) \cap C = N(a_2) \cap C$ and neighbors of a_2 in C are high.) Then $N(a_i) \cap N(a_i') = \emptyset$. Thus the set $N(a_1) - R = N(a_2) - R$ contains no low vertices. Also, if $||a_1', C|| \ge 1$ then |C| = 3: else C has the form $c_1c_2c_3c_4c_1$, where $a_1c_1, a_1c_3 \in E$, and so $a_1a_1'c_1c_2a_1, c_3c_4a_2a_2'$ beats C, R by either (P1) or (P2). Thus |C| = 3 and $a_1'c \in E$ for some $c \in V(C) - N(a_1)$. If $||a_2', C|| \ge 1$, we have disjoint cycles $ca_1'a_2'c, a_1(C-c)a_1$ and D. Then $||a_1', C|| = 0$, so $d(a_1') \le 2 + |D \setminus N(a_1)| \le 4$. Now a_1' and a_2' are symmetric, and we have proved that $||a_1', C|| + ||a_2', C|| \le 1$. Similarly, $||a_1', D|| + ||a_2', D|| \le 1$, a contradiction to $d(a_1'), d(a_2') \ge 4$. \square

By Claim 2.15, we can choose notation so that a_1 is low.

Claim 2.16. If a'_1 is low then each $v \in V \setminus e_1$ is high.

Proof. Suppose $v \in V - e_1$ is low. Since a_1 is low, all vertices in $R - e_1$ are high, so $v \in C$ for some $C \in C$. Then $C' := ve_1v$ is a cycle and so by (O2), |C| = 3. Since a_2 is high, $||a_2, C|| \ge 1$. As v is low, $va_2 \notin E$. Since a'_1 is low, it is adjacent to the low vertex v, and $||a'_1, C - v|| \le 1$. Then $C', a'_2a_2(C - v)$ beats C, R by (P1). \square

Claim 2.17. If |C| = 3 and $||e_1, C||$, $||e_2, C|| \ge 3$, then either

- (a) $||c, e_1|| = 1 = ||c, e_2||$ for all $c \in V(C)$ or
- (b) a'_1 is high and there is $c \in V(C)$ with ||c, R|| = 4 and C c has a low vertex.

Proof. If (a) fails then $||c, e_i|| = 2$ for some $i \in [2]$ and $c \in C$. If $||e_{3-i}, C - c|| \ge 2$ then there is a cycle $C' \subseteq C \cup e_{3-i} - c$, and $R \cup C$ contains disjoint cycles $ce_i c$ and C'. Else,

$$||c, R|| = ||c, e_i|| + (||C, e_{3-i}|| - ||C - c, e_{3-i}||) \ge 2 + (3-1) = 4 = |R|.$$

If C-c has no low vertices then ce_1c , $e_2(C-c)$ beats C, R by (P1). Then C-c contains a low vertex c'. If a'_1 is low then $c'a'_1a_1c'$ and $ca_2a'_2c$ are disjoint cycles. Thus, (b) holds. \Box

CASE 2.1: |D| = 4. By (O2), $G[R \cup D]$ does not contain a 3-cycle. Then $5 \le d(a_2) \le 3 + ||a_2, C|| \le 6$. Thus $d(a_1), d(a'_1) \ge 3$.

Suppose $||e_1, D|| \ge 3$. Pick $v \in N(a_1) \cap D$ with minimum degree, and $v' \in N(a'_1) \cap D$. Since $N(a_1) \cap D$ and $N(a'_1) \cap D$ are nonempty, disjoint and independent, we see $vv' \in E$. Say D = vv'ww'v. As $D = K_{2,2}$ and low vertices are adjacent, $D' := a_1a'_1v'va_1$ is a 4-cycle and v is the only possible low vertex in D. Note $a_1w \notin E$: else $a_1ww'va_1$, $v'a'_1a'_2a_2$ beats D, R by (P1). As $||e_1, D|| \ge 3$, $a'_1w' \in E$. Also note $||e_2, ww'|| = 0$: else $G[a_2, a'_2, w, w']$ contains a 4-path R', and D', R' beats D, R by (P1). Similarly, replacing D' by $D'' := a_1a'_1w'va_1$ yields $||e_2, v'|| = 0$. Then $||e_1 \cup e_2, D|| \le 3 + 1 = 4$, a contradiction. Thus

$$||e_1, D|| \le 2$$
 and so $||R, D|| \le 6$. (2.6)

Suppose $d(a'_1) = 3$. Then $||a'_1, D|| \le 1$. Then there is $uv \in E(D)$ with $||a'_1, uv|| = 0$. Thus $d(u), d(v), d(a_2) \ge 6$, and $||a_2, C|| = 3$. Now |C| = 3, |G| = 11, and there is $w \in N(u) \cap N(v)$. If $w \in C$ put $C' = a_2(C - w)a_2$; else C' = C. In both cases, |C'| = |C| and ||uuvw|| = 3 < |D|, so C', ||uvw|| = 3 by (O2). Thus $d(a'_1) \ge 4$. If $d(a_1) = 3$ then $d(a_2), d(a'_2) \ge 9 - 3 = 6$, and $||a_2, C|| \ge 3$. By (2.6),

$$||R, C|| \ge 3 + 4 + 6 + 6 - ||R, R|| - ||R, D|| \ge 19 - 6 - 6 = 7,$$

contradicting Claim 2.13. Then $d(a_1) = 4 \le d(a'_1)$ and by (2.6), $||e_1, C|| \ge 3$. Thus (2.6) fails for C in place of D; so |C| = 3. As $||a_2, C|| \ge 2$ and $||a'_2, C|| \ge 1$, Claim 2.17 implies either (a) or (b) of Claim 2.17 holds. If (a) holds then (a) and (d) of Claim 2.12 both hold, and so $G[C \cup R]$ has two disjoint cycles. Else, Claim 2.17 gives a'_1 is high and there is $c \in C$ with ||c, R|| = 4. As a'_1 is high, $||R, C|| \ge 7$. Now ||c, R|| = 4 contradicts Lemma 2.13.

CASE 2.2: |C| = |D| = 3 and |R, V| = 18. Then $d(a_1) + d(a'_2) = 9 = d(a'_1) + d(a_2)$, a_1 and a'_1 are low, and by Claim 2.16 all other vertices are high. Moreover, $d(a'_1) \leq d(a_1)$, since

$$18 = ||R, V|| = d(a'_1) - d(a_1) + 2d(a_1) + d(a'_2) + d(a_2) \ge d(a'_1) - d(a_1) + 9 + 9.$$

Suppose $d(a'_1) = 2$. Then $d(v) \ge 7$ for all $v \in V - a_1 a'_1 a'_2$. In particular, $C \cup D \subseteq N(a_2)$. If $d(a_1) = 2$ then $d(a'_2) \ge 7$, and $G = \mathbf{Y_1}$. Else $||a_1, C \cup D|| \ge 2$. If there is $c \in C$ with $V(C) - c \subseteq N(a_1)$, then $a_1(C - c)a_1$, $a'_1 a'_2 a_2 c$ beats C, R by (P1). Else $d(a_1) = 3$, $d(a'_2) = 6$, and there are $c \in C$ and $d \in D$ with $c, d \in N(a_1)$. If $ca'_2 \in E$ then $C \cup R$ contains disjoint cycles $a_1 ca'_2 a'_1 a_1$ and $a_2(C - c)a_2$, so assume not. Similarly, assume

 $da'_2 \notin E$. Since $d(d) \geq 7$ and $a'_1, a'_2 \notin N(d)$, we see $cd \in E(G)$. Then there are three disjoint cycles $a'_2(C-c)a'_2$, $a_2(D-d)a_2$, and a_1cda_1 . Thus $d(a'_1) \geq 3$.

Suppose $d(a'_1) = 3$. Say $a'_1v \in E$ for some $v \in D$. As $d(a_2) \ge 6$, $||a_2, D|| \ge 2$. Then $e_2 + D - v$ contains a 4-path R'. Thus $a_1v \notin E$: else ve_1v, R' beats D, R by (P1). Also $||a_1, D - v|| \le 1$: else $a_1(D - v)a_1, va'_1a'_2a_2$ beats D, R by (P1). Then $||a_1, D|| \le 1$.

Suppose $||a_1, C|| \geq 2$. Pick $c \in C$ with $C - c \subseteq N(a_1)$. Then

$$a_2c \notin E$$
: (2.7)

else $a_1(C-c)a_1$, $a'_1a'_2a_2c$ beats C,R by (P1). Then $||a_2,C||=2$ and $||a_2,D||=3$. Also $a_1c \notin E$: else picking a different c violates (2.7). As $a'_1c \notin E$, ||c,D||=3 and $a'_2c \in E(G)$. Then $a_1(C-c)a_1$, $a_2(D-v)a_2$ and $cva'_1a'_2c$ are disjoint cycles. Otherwise, $||a_1,C|| \le 1$ and $d(a_1) \le 3$. Then $d(a_1) = 3$ since $d(a_1) \ge d(a'_1)$.

Now $d(a'_2) = 6$. Say D = vbb'v and $a_1b \in E$. As $b'a'_1 \notin E$, $d(b') \ge 9 - 3 = 6$. Since $||e_2, V|| = 12$, we see that a_2 and a'_2 have three common neighbors. If one is b' then $D' := a_1a'_1vba_1$, $b'e_2b'$, and C are disjoint cycles; else ||b', C|| = 3 and there is $c' \in C$ with $||c', e_2|| = 2$. Then D', $c'e_2c'$ and b'(C - c')b' are disjoint cycles. Thus, $d(a'_1) = 4$.

Since a_1 is low and $d(a_1) \geq d(a'_1)$, we see $d(a_1) = d(a'_1) = 4$ and $\|\{a_1, a'_1\}, C \cup D\| = 5$, so we may assume $\|e_1, C\| \geq 3$. If $\|e_2, C\| \geq 3$, then because a'_1 is low, Claim 2.17(a) holds. Now, $V(C) \subseteq N(e_1)$ and there is $x \in e_1 = xy$ with $\|x, C\| \geq 2$. First suppose $\|x, C\| = 3$. As x is low, $x = a_1$. Pick $c \in N(a_2) \cap C$, which exists because $\|a_2, C \cup D\| \geq 4$. Then $a_1(C - c)a_1$, $a'_1a'_2a_2c$ beats C, R by (P1). Now suppose $\|x, C\| = 2$. Let $c \in C \setminus N(x)$. Then x(C - c)x, yce_2 beats C, R by (P1).

CASE 2.3: |C| = |D| = 3 and ||R, V|| = 19. Say ||C, R|| = 7 and ||D, R|| = 6.

CASE 2.3.1: a_1' is low. Then $||a_1', C \cup D|| \le 4 - ||a_1', R|| = 2$, so by Claim 2.13, $||e_2, C|| = 5$ with $||a_2, C|| = 2$. Then $5 \le d(a_2) \le 6$.

If $d(a_2) = 5$ then $d(a_1) = d(a_1') = 4$ and $d(a_2') = 6$. Then $||a_2, D|| = 2$ and $||a_2', D|| = 1$. Say $D = b_1b_2b_3b_1$, where $a_2b_2, a_2b_3 \in E$. As a_1' is low, (a) of Claim 2.17 holds. Then $||b_1, a_1a_1'a_2'|| = 2$, and there is a cycle $D' \subseteq G[b_1a_1a_1'a_2']$. Then $a_2(D - b_1)a_2$ and D' are disjoint.

If $d(a_2) = 6$ then $||a_2, D|| = 3$. Let $c_1 \in C - N(a_2)$. By Claim 2.13, $||c_1, R|| = 1$, so c_1 is high, and $||c_1, D|| \ge 2$. If $||a_2', D|| \ge 1$, then (a) and (d) hold in Claim 2.12 for $v_1 = a_2$ and $v_i = a_2'$, so $G[D \cup c_1 a_2' a_2]$ has two disjoint cycles, and $c_2 e_1 c_3 c_2$ contains a third. Therefore, assume $||a_2', D|| = 0$, and so $d(a_2') = 5$. Thus $d(a_1) = d(a_1') = 4$. Again, $||e_1, D|| = 3 = ||a_2, D||$. Now there are $x \in e_1$ and $b \in V(D)$ with $D - b \subseteq N(x)$. As a_1' is low and has two neighbors in R, if ||x, D|| = 3 then $x = a_1$. Anyway, using Claim 2.17, G[R + b - x] contains a 4-path R', and x(D - b)x, R' beats D, R by (P1).

CASE 2.3.2: a'_1 is high. Since $19 = ||R, V|| \ge d(a_1) + d(a'_1) + 2(9 - d(a_1)) \ge 23 - d(a_1)$, we get $d(a_1) = 4$ and $d(a'_1) = d(a'_2) = d(a_2) = 5$. Choose notation so that $C = c_1 c_2 c_3 c_1$, $D = b_1 b_2 b_3 b_1$, and $||c_1, R|| = 1$. By Claim 2.13, there is $i \in [2]$ with $||a_i, C|| = 2$, $||a'_i, C|| = 3$, and $a_i c_1 \notin E$. If i = 1 then every low vertex is in $N(a_1) - a'_1 \subseteq D \cup C'$,

where $C' = a_1c_2c_3a_1$. Then C', $c_1a'_1a'_2a_2$ beats C, R by (P1). Thus let i = 2. Now $||a_2, C|| = 2 = ||a_2, D||$.

Say $a_2b_2, a_2b_3 \in E$. Also $||a'_2, D|| = 0$ and $||e_1, D|| = 4$. Then $||b_j, e_1|| = 2$ for some $j \in [3]$. If j = 1 then $b_1e_1b_1$ and $a_2b_2b_3a_2$ are disjoint cycles. Else, say j = 2. By inspection, all low vertices are contained in $\{a_1, b_1, b_3\}$. If b_1 and b_3 are high then $b_2e_1b_2$, $b_1b_3e_2$ beats D, R by (P1). Else there is a 3-cycle $D' \subseteq G[D+a_1]$ that contains every low vertex of G. Pick D' with $b_1 \in D'$ if possible. If $b_2 \notin D'$ then D' and $b_2a'_1a'_2a_2b_2$ are disjoint cycles. If $b_3 \notin D'$ then D', $b_3a_2a'_2a'_1$ beats D, R by (P1). Else $b_1 \notin D'$, $a_1b_1 \notin E$, and b_1 is high. If $b_1a'_1 \in E$ then D', $b_1a'_1a'_2a_2$ beats D, R by (P1). Else, $||b_1, C|| = 3$. Then D', $b_1c_1c_2b_1$, and $c_3e_2c_3$ are disjoint cycles. \square

2.3. Key lemma

Now |R| = 3; say $R = a_1 a' a_2$. By Lemma 2.14 the maximum length of a cycle in \mathcal{C} is 4. Fix $C = w_1 \dots w_4 w_1 \in \mathcal{C}$.

Lemma 2.18. If $D \in \mathcal{C}$ with $||R, D|| \ge 7$ then |D| = 3, ||R, D|| = 7 and $G[R \cup D] = K_6 - E(K_3)$.

Proof. Since $||R, D|| \ge 7$, there exists $a \in R$ with $||a, D|| \ge 3$. By Claim 2.1, |D| = 3. If $||a_i, D|| = 3$ for any $i \in [2]$, then (a) and (c) in Claim 2.12 hold, violating (O1). Then $||a_1, D|| = ||a_2, D|| = 2$ and ||a', D|| = 3. If $G[R \cup D] \ne K_6 - K_3$ then $N(a_1) \cap D \ne N(a_2) \cap D$. Then there is $w \in N(a_1) \cap D$ with $||a_2, D - w|| = 2$. Then $wa_1a'w$ and $a_2(D - w)a_2$ are disjoint cycles. \square

Lemma 2.19. Let $D \in C$ with $D = z_1 \dots z_t z_1$. If $||C, D|| \ge 8$ then ||C, D|| = 8 and

$$W := G[C \cup D] \in \{K_{4,4}, \quad K_1 \vee K_{3,3}, \quad \overline{K}_3 \vee (K_1 + K_3)\}.$$

Proof. First suppose |D| = 4. Suppose

W contains two disjoint cycles T and C' with
$$|T| = 3$$
. (2.8)

Then C' := C - C - D + T + C' is an optimal choice of k - 1 disjoint cycles, since C is optimal. By Lemma 2.14, $|C'| \le 4$. Thus C' beats C by (O2).

CASE 1: $\Delta(W) = 6$. By symmetry, assume $d_W(w_4) = 6$. Then $||\{z_i, z_{i+1}\}, C - w_4|| \ge 2$ for some $i \in \{1, 3\}$. Then (2.8) holds with $T = w_4 z_{4-i} z_{5-i} w_4$.

CASE 2: $\Delta(W) = 5$. Say $z_1, z_2, z_3 \in N(w_1)$. Then $\|\{z_i, z_4\}, C - w_1\| \ge 2$ for some $i \in \{1, 3\}$. Then (2.8) holds with $T = w_1 z_{4-i} z_2 w_1$.

CASE 3: $\Delta(W) = 4$. Then W is regular. If W has a triangle then (2.8) holds. Else, say $w_1z_1, w_1z_3 \in E$. Then $z_1, z_3 \notin N(w_2) \cup N(w_4)$, so $z_2, z_4 \in N(w_2) \cup N(w_4)$, and $z_1, z_3 \in N(w_3)$.

Now, suppose |D| = 3.

CASE 1: $d_W(z_h) = 6$ for some $h \in [3]$. Say h = 3. If $w_i, w_{i+1} \in N(z_j)$ for some $i \in [4]$ and $j \in [2]$, then $z_3w_{i+2}w_{i+3}z_3$, $z_jw_iw_{i+1}z_j$ beats C, D by (O2). Else for all $j \in [2]$, $||z_j, C|| = 2$, and the neighbors of z_j in C are nonadjacent. If $w_i \in N(z_1) \cap N(z_2) \cap C$, then $z_3w_{i+1}w_{i+2}z_3$, $z_1z_2w_iz_1$ are preferable to C, D by (O2). Whence $W = K_1 \vee K_{3,3}$.

CASE 2: $d_W(z_h) \leq 5$ for every $h \in [3]$. Say $d(z_1) = 5 = d(z_2)$, $d(z_3) = 4$, and $w_1, w_2, w_3 \in N(z_1)$. If $N(z_1) \cap C \neq N(z_2) \cap C$ then $W - z_3$ contains two disjoint cycles, preferable to C, D by (O2); if $w_i \in N(z_3)$ for some $i \in \{1, 3\}$ then $W - w_4$ contains two disjoint cycles. Then $N(z_3) = \{w_2, w_4\}$, and so $W = \overline{K}_3 \vee (K_1 + K_3)$, where $V(K_1) = \{w_4\}$, $w_2 z_1 z_2 w_2 = K_3$, and $V(K_3) = \{w_1, w_3, z_3\}$. \square

Claim 2.20. For $D \in \mathcal{C}$, if $\|\{w_1, w_3\}, D\| \ge 5$ then $\|C, D\| \le 6$. If also |D| = 3 then $\|\{w_2, w_4\}, D\| = 0$.

Proof. Assume not. Let $D = z_1 \dots z_t z_1$. Then $\|\{w_1, w_3\}, D\| \ge 5$ and $\|C, D\| \ge 7$. Say $\|w_1, D\| \ge \|w_3, D\|$, $\{z_1, z_2, z_3\} \subseteq N(w_1)$, and $z_l \in N(w_3)$.

Suppose $||w_1, D|| = 4$. Then |D| = 4. If $||z_h, C|| \ge 3$ for some $h \in [4]$ then there is a cycle $B \subseteq G[w_2, w_3, w_4, z_h]$; so B, $w_1 z_{h+1} z_{h+2} w_1$ beats C, D by (O2). Else there are $j \in \{l-1, l+1\}$ and $i \in \{2, 3, 4\}$ with $z_i w_j \in E$. Then $z_l z_j [w_i w_3] z_l$, $w_1 (D - z_l - z_j) w_1$ beats C, D by (O2), where $[w_i w_3] = w_3$ if i = 3.

Else, $\|w_1, D\| = 3$. By assumption, there is $i \in \{2, 4\}$ with $\|w_i, D\| \ge 1$. If |D| = 3, applying Claim 2.12 with $P := w_1 w_i w_3$ and cycle D yields two disjoint cycles in $(D \cup C) - w_{6-i}$, contradicting (O2). Therefore, suppose |D| = 4. Because $w_1 z_1 z_2 w_1$ and $w_1 z_2 z_3 w_1$ are triangles, there do not exist cycles in $G[\{w_i, w_3, z_3, z_4\}]$ or $G[\{w_i, w_3, z_1, z_4\}]$ by (O2). Then $\|\{w_i, w_3\}, \{z_3, z_4\}\|$, $\|\{w_i, w_3\}, \{z_1, z_4\}\| \le 1$. Since $\|\{w_i, w_3\}, D\| \ge 3$, one has a neighbor in z_2 . If both are adjacent to z_2 , then $w_i w_3 z_2 w_i$, $w_1 z_1 z_4 z_3 w_1$ beat C, D by (O2). Then $\|\{w_i, w_3\}, z_2\| = 1 = \|\{w_i, w_3\}, z_1\| = \|\{w_i, w_3\}, z_3\|$. Let z_m be the neighbor of w_i . Then $w_i w_1 z_m w_i$, $w_3 (D - z_m) w_3$ beat C, D by (O2).

Suppose |D| = 3 and $|\{w_1, w_3\}, D| \ge 5$. If $|\{w_2, w_4\}, D| \ge 1$, then $C \cup D$ contains two triangles, and these are preferable to C, D by (O2). \square

For $v \in N(C)$, set type $(v) = i \in [2]$ if $N(v) \cap C \subseteq \{w_i, w_{i+2}\}$. Call v light if ||v, C|| = 1; else v is heavy. For $D = z_1 \dots z_t z_1 \in C$, put $H := H(D) := G[R \cup D]$.

Claim 2.21. If $\|\{a_1, a_2\}, D\| \geq 5$ then there exists $i \in [2]$ such that

- (a) $||C, H|| \le 12$ and $||\{w_i, w_{i+2}\}, H|| \le 4$;
- (b) ||C, H|| = 12;
- (c) $N(w_i) \cap H = N(w_{i+2}) \cap H = \{a_1, a_2\} \text{ and } N(w_{3-i}) \cap H = N(w_{5-i}) \cap H = V(D) \cup \{a'\}.$

Proof. By Claim 2.1, |D| = 3. Choose notation so that $||a_1, D|| = 3$ and $z_2, z_3 \in N(a_2)$. (a) Using that $\{w_1, w_3\}$ and $\{w_2, w_4\}$ are independent and Lemma 2.19:

$$||C, H|| = ||C, V - (V - H)|| \ge 2(4k - 3) - 8(k - 2) = 10.$$
 (2.9)

Let $v \in V(H)$. As $K_4 \subseteq H$, H - v contains a 3-cycle. If C + v contains another 3-cycle then these 3-cycles beat C, D by (O2). Thus, $\operatorname{type}(v)$ is defined for all $v \in N(C) \cap H$, and $\|C, H\| \leq 12$. If only five vertices of H have neighbors in C then there is $i \in [2]$ such that at most two vertices in H have type i. Then $\|\{w_i, w_{i+2}\}, H\| \leq 4$. Else every vertex in H has a neighbor in C. By (2.9), H has at least four heavy vertices.

Let H' be the spanning subgraph of H with $xy \in E(H')$ iff $xy \in E(H)$ and $H - \{x, y\}$ contains a 3-cycle. If $xy \in E(H')$ then $N(x) \cap N(y) \cap C = \emptyset$ by (O2). Now, if x and y have the same type, then they are both light. By inspection, $H' \supseteq z_1a_1a'a_2z_2 + a_2z_3$.

Let type(a_2) = i. If a_2 is heavy then its neighbors a', z_2, z_3 have type 3 - i. Either z_1, a_1 are both light or they have different types. Anyway, $\|\{w_i, w_{i+2}\}, H\| \le 4$. Else a_2 is light. Then because there are at least four heavy vertices in H, at least one of z_1, a_1 is heavy and so they have different types. Also any type-i vertex in a', z_2, z_3 is light, but at most one vertex of a, z_2, z_3 is light because there are at most two light vertices in H. Then $\|\{w_i, w_{i+2}\}, H\| \le 4$.

(b) By (a), there is *i* with $\|\{w_i, w_{i+2}\}, H\| \le 4$; thus

$$||\{w_i, w_{i+2}\}, V - H|| \ge (4k - 3) - 4 = 4(k - 2) + 1.$$

Now $\|\{w_i, w_{i+2}\}, D'\| \ge 5$ for some $D' \in \mathcal{C} - C - D$. By (a), Claim 2.20, and Lemma 2.19,

$$|12 \ge ||C, H|| = ||C, V - D' - (V - H - D')|| \ge 2(4k - 3) - 6 - 8(k - 3) = 12.$$

(c) By (b), ||C, H|| = 12, so each vertex in H is heavy. Thus type(v) is the unique proper 2-coloring of H', and (c) follows. \square

Lemma 2.22. There exists $C^* \in \mathcal{C}$ such that $3 \leq \|\{a_1, a_2\}, C^*\| \leq 4$ and $\|\{a_1, a_2\}, D\| = 4$ for all $D \in \mathcal{C} - C^*$. If $\|\{a_1, a_2\}, C^*\| = 3$ then one of a_1, a_2 is low.

Proof. Suppose $\|\{a_1, a_2\}, D\| \ge 5$ for some $D \in \mathcal{C}$; set H := H(D). Using Claim 2.21, choose notation so that $\|\{w_1, w_3\}, H\| \le 4$. Now

$$\|\{w_1, w_3\}, V - H\| \ge 4k - 3 - 4 = 4(k - 2) + 1.$$

Thus there is a cycle $B \in \mathcal{C} - D$ with $||\{w_1, w_3\}, B|| \ge 5$; say $||\{w_1, B\}|| = 3$. By Claim 2.20, $||C, B|| \le 6$. Note by Claim 2.21, if |B| = 4 then for an edge $z_1 z_2 \in N(w_1)$, $w_1 z_1 z_2 w_1$ and $w_2 w_3 a_2 a' w_2$ beat B, C by (O2). Then |B| = 3. Using Claim 2.21(b) and Lemma 2.19,

$$2(4k-3) \le ||C,V|| = ||C,H \cup B \cup (V-H-B)|| \le 12 + 6 + 8(k-3) = 2(4k-3).$$

Thus, ||C, D'|| = 8 for all $D' \in C - C - D$. By Lemma 2.19, $||\{w_1, w_3\}, D'|| = ||\{w_2, w_4\}, D'|| = 4$. By Claim 2.21(c) and Claim 2.20,

Fig. 6. Claim 2.24.

$$4k-3 \le \|\{w_2, w_4\}, H \cup B \cup (V-H-B)\| \le 8+1+4(k-3)=4k-3,$$

and so $\|\{w_2, w_4\}, B\| = 1$. Say $\|w_2, B\| = 1$. Since |B| = 3, by Claim 2.12, $G[B \cup C - w_4]$ has two disjoint cycles that are preferable to C, B by (O2). This contradiction implies $\|\{a_1, a_2\}, D\| \le 4$ for all $D \in \mathcal{C}$. Since $\|\{a_1, a_2\}, V\| \ge 4k - 3$ and $\|\{a_1, a_2\}, R\| = 2$, we get $\|\{a_1, a_2\}, D\| \ge 3$, and equality holds for at most one $D \in \mathcal{C}$, and only if one of a_1 and a_2 is low. \square

2.4. Completion of the proof of Theorem 1.7

For an optimal C, let $C_i := \{D \in C : |D| = i\}$ and $t_i := |C_i|$. For $C \in C_4$, let $Q_C := Q_C(C) := G[R(C) \cup C]$. A 3-path R' is \mathcal{D} -useful if R' = R(C') for an optimal set C' with $\mathcal{D} \subseteq C'$; we write D-useful for $\{D\}$ -useful.

Lemma 2.23. Let C be an optimal set and $C \in C_4$. Then $Q = Q_C \in \{K_{3,4}, K_{3,4} - e\}$.

Proof. Since C is optimal, Q does not contain a 3-cycle. Then for all $v \in V(C)$, $N(v) \cap R$ is independent and $||a_1, C||$, $||a_2, C|| \leq 2$. By Lemma 2.22, $||\{a_1, a_2\}, C|| \geq 3$. Say $a_1w_1, a_1w_3 \in E$ and $||a_2, C|| \geq 1$. Then $type(a_1)$ and $type(a_2)$ are defined.

Claim 2.24. $type(a_1) = type(a_2)$.

Proof. Suppose not. Then $||w_i, R|| \le 1$ for all $i \in [4]$. Say $a_2w_2 \in E$. If $w_ia_j \in E$ and $||a_{3-j}, C|| = 2$, let $R_i = w_ia_ja'$ and $C_i = a_{3-j}(C - w_i)a_{3-j}$ (see Fig. 6). Then R_i is $(C - C + C_i)$ -useful. Let $\lambda(X)$ be the number of low vertices in $X \subseteq V$. As Q does not contain a 3-cycle, $\lambda(R) + \lambda(C) \le 2$. We claim:

$$\forall D \in \mathcal{C} - C, \quad \|a', D\| \le 2. \tag{2.10}$$

Fix $D \in \mathcal{C} - C$, and suppose $||a', D|| \geq 3$. By Claim 2.1, |D| = 3. Since

$$||C, D|| = ||C, C|| - ||C, C - D||$$

$$\ge 4(2k - 1) - \lambda(C) - ||C, R|| - 8(k - 2)$$

$$= 12 - ||C, R|| - \lambda(C) \ge 6 + \lambda(R), \tag{2.11}$$

we get that $||w_i, D|| \ge 2$ for some $i \in [4]$. If R_i is defined, R_i is $\{C_i, D\}$ -useful. By Lemma 2.22, $||\{w_i, a'\}, D|| \le 4$. As $||w_i, D|| \ge 2$, $||a', D|| \le 2$, proving (2.10). Then R_i is not defined, so a_2 is low with $N(a_2) \cap C = \{w_2\}$ and $||w_2, D|| \le 1$. Then by (2.11), $||C-w_2, D|| \ge 6$. Note $G[a'+D] = K_4$, so for any $z \in D$, D-z+a' is a triangle, so by (O2) the neighbors of z in C are independent. Then $||C-w_2, D|| = 6$ with $N(z) \cap C = \{w_1, w_3\}$ for every $z \in D$. Then $||w_2, D|| = 1$, say $zw_2 \in E(G)$, and now $w_2w_3zw_2$, $w_1(D-z)w_1$ beat C, D by (O2).

If $||a', C|| \ge 1$ then $a'w_4 \in E$ and $N(a_2) \cap C = \{w_2\}$. Now R_2 is C_2 -useful, type $(a') \ne \text{type}(w_2)$ with respect to C_2 , and the middle vertex a_2 of R_2 has no neighbors in C_2 . Thus we may assume ||a', C|| = 0. Then a' is low:

$$d(a') = ||a', C \cup R|| + ||a', C - C|| \le 0 + 2 + 2(k - 2) = 2k - 2.$$
(2.12)

Thus all vertices of C are high. Using Lemma 2.19, this yields:

$$4 \ge ||C, R|| = ||C, V - (V - R)|| \ge 4(2k - 1) - 8(k - 1) = 4. \tag{2.13}$$

As this calculation is tight, d(w) = 2k - 1 for every $w \in C$. Thus $d(a') \ge 2k - 2$, so (2.12) is tight. Hence ||a', D|| = 2 for all $D \in \mathcal{C} - C$.

Pick $D = z_1 \dots z_t z_1 \in \mathcal{C} - C$ with $\|\{a_1, a_2\}, D\|$ maximum. By Lemma 2.22, $3 \le \|\{a_1, a_2\}, D\| \le 4$. Say $\|a_i, D\| \ge 2$. By (2.13), $\|C, D\| = 8$. By Lemma 2.19,

$$W := G[C \cup D] \in \{K_{4,4}, \ \overline{K}_3 \lor (K_3 + K_1), \ K_1 \lor K_{3,3}\}.$$

CASE 1: $W = K_{4,4}$. Then $||D,R|| \ge 5 > |D| = 4$, so $||z,R|| \ge 2$ for some $z \in V(D)$. Let $w \in N(z) \cap C$. Either w and z have a common neighbor in $\{a_1, a_2\}$ or z has two consecutive neighbors in R. Regardless, G[R + w + z] contains a 3-cycle D' and G[W - w - z] contains a 4-cycle C'. Thus C', D' beats C, D by (O2).

CASE 2: $W = \overline{K}_3 \vee (K_3 + K_1)$. As $\|\{a', a_i\}, D\| \ge 4 > |D|$, there is $z \in V(D)$ with $D' := za'a_iz \subseteq G$. Also W - z contains a 3-cycle C', so C', D' beats C, D by (O2).

CASE 3: $W = K_1 \vee K_{3,3}$. Some $v \in V(D)$ satisfies ||v,W|| = 6. There is no $w \in W - v$ such that w has two adjacent neighbors in R: else a and v would be contained in disjoint 3-cycles, contradicting the choice of C, D. Then $||w,R|| \le 1$ for all $w \in W - v$, because $\operatorname{type}(a_1) \ne \operatorname{type}(a_2)$. Similarly, no $z \in D - v$ has two adjacent neighbors in R. Thus

$$2+3 \leq \|a',D\| + \|\{a_1,a_2\},D\| = \|R,D\| = \|R,D-v\| + \|R,v\| \leq 2+3,$$

so $\|\{a_1, a_2\}, D\| = 3$, $R \subseteq N(v)$, and $N(a_i) \cap K_{3,3}$ is independent. By Lemma 2.22 and the maximality of $\|\{a_1, a_2\}, D\| = 3$, k = 3. Thus $G = \mathbf{Y}_2$, a contradiction. \square

Returning to the proof of Lemma 2.23, we have $\operatorname{type}(a_1) = \operatorname{type}(a_2)$. Using Lemma 2.22, choose notation so that $a_1w_1, a_1w_3, a_2w_1 \in E$. Then Q has bipartition $\{X,Y\}$ with $X := \{a', w_1, w_3\}$ and $Y := \{a_1, a_2, w_2, w_4\}$. The only possible nonedges

between X and Y are $a'w_2$, $a'w_4$ and a_2w_3 . Let $C' := w_1Rw_1$. Then $R' := w_2w_3w_4$ is C'-useful. By Lemma 2.22, $\|\{w_2, w_4\}, C'\| \ge 3$. It is already true that $w_2, w_4 \in N(w_1)$; so because Q has no C_3 , (say) $a'w_2 \in E$. Now, let $C'' := a_1a'w_2w_3a_1$. Then $R'' := a_2w_1w_4$ is C''-useful; so $\|\{a_2, w_4\}, C''\| \ge 3$. Again, Q contains no C_3 , so $a'w_4$ or a_2w_3 is an edge of G. Thus $Q \in \{K_{3,4}, K_{3,4} - e\}$. \square

Proof of Theorem 1.7. Using Lemma 2.23, one of two cases holds:

- (C1) For some optimal set C and $C' \in C_4$, $Q_{C'} = K_{3,4} x_0 y_0$;
- (C2) for all optimal sets C and $C \in C_4$, $G[R \cup C] = K_{3,4}$.

Fix an optimal set C and $C' \in C_4$, where $R = y_0 x' y$ with $d(y_0) \leq d(y)$, such that in (C1), $Q_{C'} = K_{3,4} - x_0 y_0$. By Lemmas 2.22 and 2.23, for all $C \in C_4$, $1 \leq \|y_0, C\| \leq \|y, C\| \leq 2$ and $\|y_0, C\| = 1$ only in Case (C1) when C = C'. Put $H := R \cup \bigcup C_4$, $S = S(C) := N(y) \cap H$, and $T = T(C) := V(H) \setminus S$. As $\|y, R\| = 1$ and $\|y, C\| = 2$ for each $C \in C_4$, $|S| = 1 + 2t_4 = |T| - 1$.

Claim 2.25. *H* is a bipartite graph with parts *S* and *T*. In case (C1), $H = K_{2t_4+1,2t_4+2} - x_0y_0$; else $H = K_{2t_4+1,2t_4+2}$.

Proof. By Lemma 2.23, $||x', S|| = ||y, T|| = ||y_0, T|| = 0$.

By Lemmas 2.22 and 2.23, $||y_0, S|| = |S| - 1$ in (C1) and $||y_0, S|| = |S|$ otherwise. We claim that for every $t \in T - y_0$, ||t, S|| = |S|. This clearly holds for y, so take $t \in H - \{y, y_0\}$. Then $t \in C$ for some $C \in \mathcal{C}_4$. Let $\mathcal{R}^* := tx'y_0$ and $\mathcal{C}^* := y(C - t)y$. (Note R^* is a path and C^* is a cycle by Lemma 2.23 and the choice of y_0 .) Since R^* is C^* -useful, by Lemmas 2.22 and 2.23, and by choice of y_0 , ||t, S|| = ||y, S|| = |S|. Then in (C1), $H \supseteq K_{2t_4+1,2t_4+2} - x_0y_0$ and $x_0y_0 \notin E(H)$; else $H \supseteq K_{2t_4+1,2t_4+2}$.

Now we easily see that if any edge exists inside S or T, then $C_3 + (t_4 - 1)C_4 \subseteq H$, and these cycles beat C_4 by (O2). \square

By Claim 2.25 all pairs of vertices of T are the ends of a C_3 -useful path. Now we use Lemma 2.22 to show that they have essentially the same degree to each cycle in C_3 .

Claim 2.26. If $v \in T$ and $D \in C_3$ then $1 \le ||v, D|| \le 2$; if ||v, D|| = 1 then v is low and for all $C \in C_3 - D$, ||v, C|| = 2.

Proof. By Claim 2.25, $H + x_0y_0$ is a complete bipartite graph. Let $y_1, y_2 \in T - v$ and $u \in S - x_0$. Then $R' = y_1uv$, $R'' = y_2uv$, and $R''' = y_1uy_2$ are C_3 -useful. By Lemma 2.22,

$$3 \le \|\{v, y_1\}, D\|, \|\{v, y_2\}, D\|, \|\{y_1, y_2\}, D\| \le 4.$$

Say $||y_1, D|| \le 2 \le ||y_2, D||$. Thus

$$1 \le \|\{v, y_1\}, D\| - \|y_1, D\| = \|v, D\| = \|\{v, y_2\}, D\| - \|y_2, D\| \le 2.$$

Suppose ||v, D|| = 1. By Claim 2.25 and Lemma 2.22, for any $v' \in T - v$,

$$4k-3 \le \|\{v,v'\}, H \cup (\mathcal{C}_3 - D) \cup D\| \le 2(2t_4+1) + 4(t_3-1) + 3 = 4k-3.$$

Thus for all $C \in \mathcal{C}_3 - D_0$, $||\{v, v'\}, C|| = 4$, and so ||v, C|| = 2. Hence v is low. \square

Next we show that all vertices in T have essentially the same neighborhood in each $C \in \mathcal{C}_3$.

Claim 2.27. Let $z \in D \in C_3$ and $v, w \in T$ with w high.

- (1) If $zv \in E$ and $zw \notin E$ then $T w \subseteq N(z)$.
- (2) $N(v) \cap D \subseteq N(w) \cap D$.

Proof. (1) Since w is high, Claim 2.26 implies ||w,D|| = 2. Since $zw \notin E$, we see D' := w(D-z)w is a 3-cycle. Let $u \in S - x_0$. Then $zvu = R(\mathcal{C}')$ for some optimal set \mathcal{C}' with $\mathcal{C}_3 - D + D' \subseteq \mathcal{C}'$. By Claim 2.25, $T(\mathcal{C}') = S + z$ and $S(\mathcal{C}') = T - w$. If (C2) holds, then $T - w = S(\mathcal{C}') \subseteq N(z)$, as desired. Suppose (C1) holds, so there are $x_0 \in S$ and $y_0 \in T$ with $x_0y_0 \notin E$. By Claims 2.25 and 2.26, $d(y_0) \leq (|S| - 1) + 2t_3 = 2k - 2$, so y_0 is low. Since w is high, we see $y_0 \in T - w$. But now apply Claims 2.25 and 2.26 to $T(\mathcal{C}')$: $d(x_0) \leq |S(\mathcal{C}')| - 1 + 2t_3 = 2k - 2$, and x_0 is low. As $x_0y_0 \notin E$, this is a contradiction. Now $T - w = S(\mathcal{C}') \subseteq N(z)$.

(2) Suppose there exists $z \in N(v) \cap D \setminus N(w)$. By (1), $T - w \subseteq N(z)$. Let $w' \in T - w$ be high. By Claim 2.26, ||w', D|| = 2. Now there exists $z' \in N(w) \cap D \setminus N(w')$ and $z \neq z'$. By (1), $T - w' \subseteq N(z')$. As $|T| \ge 4$ and at least three of its vertices are high, there exists a high $w'' \in T - w - w'$. Since $w''z, w''z' \in E$, there exists $z'' \in N(w) \cap D \setminus N(w'')$ with $\{z, z', z''\} = V(D)$. By (1), $T - w'' \subseteq N(z'')$. Since $|T| \ge 4$, there exists $x \in T \setminus \{w, w', w''\}$. Now ||x, D|| = 3, contradicting Claim 2.26. \square

Let $y_1, y_2 \in T - y_0$ and let $x \in S$ with $x = x_0$ if $x_0 y_0 \notin E$. By Claim 2.25, $y_1 x y_2$ is a path, and $G - \{y_1, y_2, x\}$ contains an optimal set \mathcal{C}' . Recall y_0 was chosen in T with minimum degree, so y_1 and y_2 are high and by Claim 2.26 $||y_i, D|| = 2$ for each $i \in [2]$ and each $D \in \mathcal{C}_3$. Let $N = N(y_1) \cap \bigcup \mathcal{C}_3$ and $M = \bigcup \mathcal{C}_3 \setminus N$ (see Fig. 7). By Claim 2.25, T is independent. By Claim 2.27, for every $y \in T$, $N(y) \cap \bigcup \mathcal{C}_3 \subseteq N$, so $E(M,T) = \emptyset$. Since $y_2 \neq y_0$, also $N(y_2) \cap \bigcup \mathcal{C}_3 = N$.

Claim 2.28. M is independent.

Proof. First, we show

$$||z, S|| > t_4 \text{ for all } z \in M. \tag{2.14}$$

Fig. 7. Configuration of G, showing sets M, N, S, and T.

If not then there exists $z \in D \in \mathcal{C}_3$ with $||z, S|| \leq t_4$. Since ||M, T|| = ||T, T|| = 0,

$$\|\{y_1, z\}, \mathcal{C}_3\| \ge 4k - 3 - \|\{z, y_1\}, S\| \ge 4(t_4 + t_3 + 1) - 3 - (2t_4 + 1 + t_4)$$

= $t_4 + 4t_3 > 4t_3$.

Then there is $D' = z'z'_1z'_2z' \in \mathcal{C}_3$ with $\|\{z, y_1\}, D'\| \ge 5$ and $z' \in M$. As $\|y_1, D\| = 2$, $\|z, D'\| = 3$. Since $D^* := zz'z'_2z$ is a cycle, $xy_2z'_1$ is D^* -useful. As $\|z'_1, D^*\| = 3$, this contradicts Claim 2.26, proving (2.14).

Suppose $zz' \in E(M)$; say $z \in D \in \mathcal{C}_3$ and $z' \in D' \in \mathcal{C}_3$. By (2.14), there is $u \in N(z) \cap N(z') \cap S$. Then zz'uz, $y_1(D-z)y_1$ and $y_2(D'-z')y_2$ are disjoint cycles, contrary to (O1). \square

By Claims 2.25 and 2.28, M and T are independent; as remarked above $E(M,T) = \emptyset$. Then $M \cup T$ is independent. This contradicts (H3), since

$$|G| - 2k + 1 = 3t_3 + 4t_4 + 3 - 2(t_3 + t_4 + 1) + 1 = t_3 + 2t_4 + 2 = |M \cup T| \le \alpha(G).$$

The proof of Theorem 1.7 is now complete. \Box

3. The case k=2

Lovász [20] observed that any (simple or multi-) graph can be transformed into a multigraph with minimum degree at least 3, without affecting the maximum number of disjoint cycles in the graph, by using a sequence of operations of the following three types: (i) deleting a bud; (ii) suppressing a vertex v of degree 2 that has two neighbors x and y, i.e., deleting v and adding a new (possibly parallel) edge between x and y; and (iii) increasing the multiplicity of a loop or edge with multiplicity 2. Here loops and two parallel edges are considered cycles, so forests have neither. Also K_s and $K_{s,t}$ denote simple graphs. Let W_s^* denote a wheel on s vertices whose spokes, but not outer cycle edges, may be multiple. The following theorem characterizes those multigraphs that do not have two disjoint cycles.

Theorem 3.1 (Lovász [20]). Let G be a multigraph with $\delta(G) \geq 3$ and no two disjoint cycles. Then G is one of the following: (1) K_5 , (2) W_s^* , (3) $K_{3,|G|-3}$ together with a multigraph on the vertices of the (first) 3-class, and (4) a forest F and a vertex x with possibly some loops at x and some edges linking x to F.

Fig. 8. Theorem 3.2.

Let \mathcal{G} be the class of simple graphs G with $|G| \geq 6$ and $\sigma_2(G) \geq 5$ that do not have two disjoint cycles. Fix $G \in \mathcal{G}$. A vertex in G is low if its degree is at most 2. The low vertices form a clique Q of size at most 2—if |Q|=3, then Q is a component-cycle, and G-Q has another cycle. By Lovász's observation, G can be reduced to a graph H of type (1–4). Reversing this reduction, G can be obtained from H by adding buds and subdividing edges. Let $Q' := V(G) \setminus V(H)$. It follows that $Q \subseteq Q'$. If $Q' \neq Q$, then Q consists of a single leaf in G with a neighbor of degree 3, so G is obtained from H by subdividing an edge and adding a leaf to the degree-2 vertex. If Q' = Q, then Q is a component of G, or G = H + Q + e for some edge $e \in E(H,Q)$, or at least one vertex of Q subdivides an edge $e \in E(H)$. In the last case, when |Q| = 2, e is subdivided twice by Q. As G is simple, H has at most one multiple edge, and its multiplicity is at most 2.

In case (4), because $\delta(H) \geq 3$, either F has at least two buds, each linked to x by multiple edges, or F has one bud linked to x by an edge of multiplicity at least 3. This case cannot arise from G. Also, $\delta(H) = 3$, unless $H = K_5$, in which case $\delta(H) = 4$. Then Q is not an isolated vertex, lest deleting Q leave H with $\delta(H) \geq 5 > 4$; and if Q has a vertex of degree 1 then $H = K_5$. Else all vertices of Q have degree 2, and Q consists of the subdivision vertices of one edge of H. We have the following lemma.

Lemma 3.2. Let G be a graph with $|G| \ge 6$ and $\sigma_2(G) \ge 5$ that does not have two disjoint cycles. Then G is one of the following (see Fig. 8):

- (a) $K_5 + K_2$;
- (b) K_5 with a pendant edge, possibly subdivided;
- (c) K_5 with one edge subdivided and then a leaf added adjacent to the degree-2 vertex;
- (d) a graph H of type (1-3) with no multiple edge, and possibly one edge subdivided once or twice, and if |H| = 6 i with $i \ge 1$ then some edge is subdivided at least i times;

(e) a graph H of type (2) or (3) with one edge of multiplicity two, and one of its parallel parts is subdivided once or twice—twice if |H| = 4.

4. Connections to equitable coloring

A proper vertex coloring of a graph G is equitable if any two color classes differ in size by at most one. In 1970 Hajnal and Szemerédi proved:

Theorem 4.1 ([9]). Every graph G with $\Delta(G) + 1 \leq k$ has an equitable k-coloring.

For a shorter proof of Theorem 4.1, see [17]; for an $O(k|G|^2)$ -time algorithm see [16]. Motivated by Brooks' Theorem, it is natural to ask which graphs G with $\Delta(G) = k$ have equitable k-colorings. Certainly such graphs are k-colorable. Also, if k is odd then $K_{k,k}$ has no equitable k-coloring. Chen, Lih, and Wu [2] conjectured (in a different form) that these are the only obstructions to an equitable version of Brooks' Theorem:

Conjecture 4.2 ([2]). If G is a graph with $\chi(G), \Delta(G) \leq k$ and no equitable k-coloring then k is odd and $K_{k,k} \subseteq G$.

In [2], Chen, Lih, and Wu proved Conjecture 4.2 holds for k = 3. By a simple trick, it suffices to prove the conjecture for graphs G with |G| = ks. Combining the results of the two papers [13] and [14], we have:

Theorem 4.3. Suppose G is a graph with |G| = ks. If $\chi(G), \Delta(G) \leq k$ and G has no equitable k-coloring, then k is odd and $K_{k,k} \subseteq G$ or both $k \geq 5$ [13] and $s \geq 5$ [14].

A graph G is k-equitable if |G| = ks, $\chi(G) \le k$ and every proper k-coloring of G has s vertices in each color class. The following strengthening of Conjecture 4.2, if true, provides a characterization of graphs G with $\chi(G), \Delta(G) \le k$ that have an equitable k-coloring.

Conjecture 4.4 ([12]). Every graph G with $\chi(G), \Delta(G) \leq k$ has no equitable k-coloring if and only if k is odd and $G = H + K_{k,k}$ for some k-equitable graph H.

The next theorem collects results from [12]. Together with Theorem 4.3 it yields Corollary 4.6.

Theorem 4.5 ([12]). Conjecture 4.2 is equivalent to Conjecture 4.4. Indeed, for any k_0 and n_0 , Conjecture 4.2 holds for $k \le k_0$ and $|G| \le n_0$ if and only if Conjecture 4.4 holds for $k \le k_0$ and $|G| \le n_0$.

Corollary 4.6. A graph G with |G| = 3k and $\chi(G), \Delta(G) \leq k$ has no equitable k-coloring if and only if k is odd and $G = K_{k,k} + K_k$.

We are now ready to complete our answer to Dirac's question for simple graphs.

Proof of Theorem 1.3. Assume $k \geq 2$ and $\delta(G) \geq 2k-1$. It is apparent that if any of (i), (H3), or (H4) in Theorem 1.3 fail, then G does not have k disjoint cycles. Now suppose G satisfies (i), (H3), and (H4). If k=2 then $|G| \geq 6$ and $\delta(G) \geq 3$. Thus G has no subdivided edge, and only (d) of Lemma 3.2 is possible. By (i), $G \neq K_5$; by (H4), G is not a wheel; and by (H3), G is not type (3) of Theorem 3.1. Then G has 2 disjoint cycles. Finally, suppose $k \geq 3$. Since G satisfies (ii), we see $G \notin \{\mathbf{Y}_1, \mathbf{Y}_2\}$ and G satisfies (H2). If $|G| \geq 3k+1$, then G has k disjoint cycles by Theorem 1.7. Otherwise, |G| = 3k and G has k disjoint cycles if and only if its vertices can be partitioned into disjoint K_3 's. This is equivalent to \overline{G} having an equitable k-coloring. By (ii), $\Delta(\overline{G}) \leq k$, and by (H3), $\omega(\overline{G}) \leq k$. Then by Brooks' Theorem, $\chi(\overline{G}) \leq k$. By (H4) and Corollary 4.6, \overline{G} has an equitable k-coloring. \square

Next we turn to Ore-type results on equitable coloring. To complement Theorem 1.7, we need a theorem that characterizes when a graph G with |G|=3k that satisfies (H2) and (H3) has k disjoint cycles, or equivalently, when its complement \overline{G} has an equitable coloring. The complementary version of $\sigma_2(G)$ is the maximum Ore-degree $\theta(H) := \max_{xy \in E(H)} (d(x) + d(y))$. Then $\theta(\overline{G}) = 2|G| - \sigma_2(G) - 2$, and if |G| = 3k and $\sigma_2(G) \ge 4k - 3$ then $\theta(\overline{G}) \le 2k + 1$. Also, if G satisfies (H3) then $\omega(\overline{G}) \le k$. This would correspond to an Ore-Brooks-type theorem on equitable coloring.

Several papers, including [10,11,19], address equitable colorings of graphs G with $\theta(G)$ bounded from above. For instance, the following is a natural Ore-type version of Theorem 4.1.

Theorem 4.7 ([10]). Every graph G with $\theta(G) \leq 2k-1$ has an equitable k-coloring.

Even for proper (not necessarily equitable) coloring, an Ore–Brooks-type theorem requires forbidding some extra subgraphs when θ is 3 or 4. It was observed in [11] that for k=3,4 there are graphs for which $\theta(G) \leq 2k+1$ and $\omega(G) \leq k$, but $\chi(G) \geq k+1$. The following theorem was proved for $k \geq 6$ in [11] and then for $k \geq 5$ in [19].

Theorem 4.8. Let $k \geq 5$. If $\omega(G) \leq k$ and $\theta(G) \leq 2k+1$, then $\chi(G) \leq k$.

In the subsequent paper [15] we prove an analog of Theorem 1.7 for 3k-vertex graphs.

Acknowledgment

We thank the referees for the helpful comments.

References

 A. Bialostocki, D. Finkel, A. Gyárfás, Disjoint chorded cycles in graphs, Discrete Math. 308 (2008) 5886–5890.

- [2] B.-L. Chen, K.-W. Lih, P.-L. Wu, Equitable coloring and the maximum degree, European J. Combin. 15 (1994) 443–447.
- [3] S. Chiba, S. Fujita, Y. Gao, G. Li, On a sharp degree sum condition for disjoint chorded cycles in graphs, Graphs Combin. 26 (2010) 173–186.
- [4] S. Chiba, S. Fujita, K. Kawarabayashi, T. Sakuma, Minimum degree conditions for vertex-disjoint even cycles in large graphs, Adv. in Appl. Math. 54 (2014) 105–120.
- [5] K. Corrádi, A. Hajnal, On the maximal number of independent circuits in a graph, Acta Math. Acad. Sci. Hungar. 14 (1963) 423–439.
- [6] G. Dirac, Some results concerning the structure of graphs, Canad. Math. Bull. 6 (1963) 183–210.
- [7] G. Dirac, P. Erdős, On the maximal number of independent circuits in a graph, Acta Math. Acad. Sci. Hungar. 14 (1963) 79–94.
- [8] H. Enomoto, On the existence of disjoint cycles in a graph, Combinatorica 18 (4) (1998) 487–492.
- [9] A. Hajnal, E. Szemerédi, Proof of a conjecture of P. Erdős, in: P. Erdős, A. Rényi, V.T. Sós (Eds.), Combinatorial Theory and Its Application, North-Holland, London, 1970, pp. 601–623.
- [10] H.A. Kierstead, A.V. Kostochka, An Ore-type theorem on equitable coloring, J. Combin. Theory Ser. B 98 (2008) 226–234.
- [11] H.A. Kierstead, A.V. Kostochka, Ore-type versions of Brooks' theorem, J. Combin. Theory Ser. B 99 (2009) 298–305.
- [12] H.A. Kierstead, A.V. Kostochka, Equitable versus nearly equitable coloring and the Chen-Lih-Wu conjecture, Combinatorica 30 (2010) 201–216.
- [13] H.A. Kierstead, A.V. Kostochka, Every 4-colorable graph with maximum degree 4 has an equitable 4-coloring, J. Graph Theory 71 (2012) 31–48.
- [14] H.A. Kierstead, A.V. Kostochka, A refinement of a result of Corrádi and Hajnal, Combinatorica 35 (4) (2015) 497–512.
- [15] H.A. Kierstead, A.V. Kostochka, T. Molla, E.C. Yeager, Sharpening an Ore-type version of the Corrádi-Hajnal bound, submitted.
- [16] H.A. Kierstead, A.V. Kostochka, M. Mydlarz, E. Szemerédi, A fast algorithm for equitable coloring, Combinatorica 30 (2010) 217–224.
- [17] H.A. Kierstead, A.V. Kostochka, Gexin Yu, Extremal graph packing problems: Ore-type versus Dirac-type, in: S. Huczynska, J. Mitchell, C. Roney-Dougal (Eds.), Surveys in Combinatorics 2009, in: London Math. Soc. Lecture Note Ser., vol. 365, Cambridge University Press, Cambridge, 2009, pp. 113–136.
- [18] H.A. Kierstead, A.V. Kostochka, E.C. Yeager, The (2k-1)-connected multigraphs with at most k-1 disjoint cycles, Combinatorica (2015), http://dx.doi.org/10.1007/s00493-015-3291-8, in press.
- [19] A.V. Kostochka, L. Rabern, M. Stiebitz, Graphs with chromatic number close to maximum degree, Discrete Math. 312 (2012) 1273–1281.
- [20] L. Lovász, On graphs not containing independent circuits, Mat. Lapok (N.S.) 16 (1965) 289–299 (in Hungarian, English summary).
- [21] H. Wang, On the maximum number of disjoint cycles in a graph, Discrete Math. 205 (1999) 183–190.