On the Corrádi-Hajnal theorem and a question of Dirac ${ }^{\text {N }}$

H.A. Kierstead ${ }^{\text {a,1 }}$, A.V. Kostochka ${ }^{\text {b,c, }, 2}$, E.C. Yeager ${ }^{\text {d,3 }}$
${ }^{\text {a }}$ Department of Mathematics and Statistics, Arizona State University, Tempe, AZ 85287, USA
${ }^{\text {b }}$ Department of Mathematics, University of Illinois, Urbana, IL, 61801, USA
${ }^{\text {c }}$ Institute of Mathematics, Novosibirsk, Russia
${ }^{d}$ University of British Columbia, 1984 Mathematics Rd, Vancouver, BC V6R 1G2, Canada

A R T I C L E I N F O

Article history:

Received 8 May 2014
Available online 7 June 2016

Keywords:

Disjoint cycles
Ore-degree
Graph packing
Equitable coloring
Minimum degree

A B S T R A C T

In 1963, Corrádi and Hajnal proved that for all $k \geq 1$ and $n \geq 3 k$, every graph G on n vertices with minimum degree $\delta(G) \geq 2 k$ contains k disjoint cycles. The bound $\delta(G) \geq 2 k$ is sharp. Here we characterize those graphs with $\delta(G) \geq$ $2 k-1$ that contain k disjoint cycles. This answers the simplegraph case of Dirac's 1963 question on the characterization of ($2 k-1$)-connected graphs with no k disjoint cycles.
Enomoto and Wang refined the Corrádi-Hajnal Theorem, proving the following Ore-type version: For all $k \geq 1$ and $n \geq 3 k$, every graph G on n vertices contains k disjoint cycles, provided that $d(x)+d(y) \geq 4 k-1$ for all distinct nonadjacent vertices x, y. We refine this further for $k \geq 3$ and $n \geq 3 k+1$: If G is a graph on n vertices such that $d(x)+d(y) \geq 4 k-3$ for all distinct nonadjacent vertices x, y, then G has k vertex-disjoint cycles if and only if the independence number $\alpha(G) \leq n-2 k$ and G is not one of two small exceptions in the case $k=3$. We also show how the case

[^0]$k=2$ follows from Lovász' characterization of multigraphs with no two disjoint cycles.
© 2016 Elsevier Inc. All rights reserved.

1. Introduction

For a graph $G=(V, E)$, let $|G|=|V|,\|G\|=|E|, \delta(G)$ be the minimum degree of G, and $\alpha(G)$ be the independence number of G. Let \bar{G} denote the complement of G and for disjoint graphs G and H, let $G \vee H$ denote $G \cup H$ together with all edges from $V(G)$ to $V(H)$. The degree of a vertex v in a graph H is $d_{H}(v)$; when H is clear, we write $d(v)$.

In 1963, Corrádi and Hajnal proved a conjecture of Erdős by showing the following:
Theorem 1.1 ([5]). Let $k \in \mathbb{Z}^{+}$. Every graph G with (i) $|G| \geq 3 k$ and (ii) $\delta(G) \geq 2 k$ contains k disjoint cycles.

Clearly, hypothesis (i) in the theorem is sharp. Hypothesis (ii) also is sharp. Indeed, if a graph G has k disjoint cycles, then $\alpha(G) \leq|G|-2 k$, since every cycle contains at least two vertices of $G-I$ for any independent set I. Thus $H:=\overline{K_{k+1}} \vee K_{2 k-1}$ satisfies (i) and has $\delta(H)=2 k-1$, but does not have k disjoint cycles, because $\alpha(H)=k+1>|H|-2 k$. There are several works refining Theorem 1.1. Dirac and Erdős [7] showed that if a graph G has many more vertices of degree at least $2 k$ than vertices of degree at most $2 k-2$, then G has k disjoint cycles. Dirac [6] asked:

Question 1.2. Which $(2 k-1)$-connected graphs do not have k disjoint cycles?

He also resolved his question for $k=2$ by describing all 3 -connected multigraphs on at least 4 vertices in which every two cycles intersect. It turns out that the only simple 3-connected graphs with this property are wheels. Lovász [20] fully described all multigraphs in which every two cycles intersect.

The following result in this paper yields a full answer to Dirac's question for simple graphs.

Theorem 1.3. Let $k \geq 2$. Every graph G with (i) $|G| \geq 3 k$ and (ii) $\delta(G) \geq 2 k-1$ contains k disjoint cycles if and only if
(H3) $\alpha(G) \leq|G|-2 k$, and
(H4) if k is odd and $|G|=3 k$, then $G \neq 2 K_{k} \vee \overline{K_{k}}$ and if $k=2$ then G is not a wheel.

Since for every independent set I in a graph G and every $v \in I, N(v) \subseteq V(G)-I$, if $\delta(G) \geq 2 k-1$ and $|I| \geq|G|-2 k+1$, then $|I|=|G|-2 k+1$ and $N(v)=V(G)-I$ for every $v \in I$. It follows that every graph G satisfying (ii) and not satisfying (H3) contains

Fig. 1. Graphs \mathbf{Y}_{1} and \mathbf{Y}_{2}.
$K_{2 k-1,|G|-2 k+1}$ and is contained in $K_{|G|}-E\left(K_{|G|-2 k+1}\right)$. The conditions of Theorem 1.3 can be tested in polynomial time.

Most likely, Dirac intended his question to refer to multigraphs; indeed, his result for $k=2$ is for multigraphs. But the case of simple graphs is the most important in the question. In [18] we heavily use the results of this paper to obtain a characterization of $(2 k-1)$-connected multigraphs that contain k disjoint cycles, answering Question 1.2 in full.

Studying Hamiltonian properties of graphs, Ore introduced the minimum Ore-degree σ_{2} : If G is a complete graph, then $\sigma_{2}(G)=\infty$, otherwise $\sigma_{2}(G):=\min \{d(x)+d(y):$ $x y \notin E(G)\}$. Enomoto [8] and Wang [21] generalized the Corrádi-Hajnal Theorem in terms of σ_{2} :

Theorem 1.4 ([8,21]). Let $k \in \mathbb{Z}^{+}$. Every graph G with (i) $|G| \geq 3 k$ and
(E2) $\sigma_{2}(G) \geq 4 k-1$
contains k disjoint cycles.

Again $H:=\overline{K_{k+1}} \vee K_{2 k-1}$ shows that hypothesis (E2) of Theorem 1.4 is sharp. What happens if we relax (E2) to (H2): $\sigma_{2}(G) \geq 4 k-3$, but again add hypothesis (H3)? Here are two interesting examples.

Example 1.5. Let $k=3$ and \mathbf{Y}_{1} be the graph obtained by twice subdividing one of the edges $w z$ of K_{8}, i.e., replacing $w z$ by the path $w x y z$. Then $\left|\mathbf{Y}_{1}\right|=10=3 k+1$, $\sigma_{2}\left(\mathbf{Y}_{1}\right)=9=4 k-3$, and $\alpha\left(\mathbf{Y}_{1}\right)=2 \leq\left|\mathbf{Y}_{1}\right|-2 k$. However, \mathbf{Y}_{1} does not contain $k=3$ disjoint cycles, since each cycle would need to contain three vertices of the original K_{8} (see Fig. 1(a)).

Example 1.6. Let $k=3$. Let Q be the graph obtained from $K_{4,4}$ by replacing a vertex v and its incident edges $v w, v x, v y, v z$ by new vertices u, u^{\prime} and edges $u u^{\prime}, u w, u x, u^{\prime} y, u^{\prime} z$; so $d(u)=3=d\left(u^{\prime}\right)$ and contracting $u u^{\prime}$ in Q yields $K_{4,4}$. Now set $\mathbf{Y}_{2}:=K_{1} \vee Q$. Then $\left|\mathbf{Y}_{2}\right|=10=3 k+1, \sigma_{2}\left(\mathbf{Y}_{2}\right)=9=4 k-3$, and $\alpha\left(\mathbf{Y}_{2}\right)=4 \leq\left|\mathbf{Y}_{2}\right|-2 k$. However, \mathbf{Y}_{2} does not contain $k=3$ disjoint cycles, since each 3 -cycle contains the only vertex of K_{1} (see Fig. 1(b)).

Our main result is:
Theorem 1.7. Let $k \in \mathbb{Z}^{+}$with $k \geq 3$. Every graph G with
(H1) $|G| \geq 3 k+1$,
(H2) $\sigma_{2}(G) \geq 4 k-3$, and
(H3) $\alpha(G) \leq|G|-2 k$
contains k disjoint cycles, unless $k=3$ and $G \in\left\{\mathbf{Y}_{1}, \mathbf{Y}_{2}\right\}$. Furthermore, there is a polynomial time algorithm that either produces k disjoint cycles or demonstrates that one of the hypotheses fails.

Theorem 1.7 is proved in Section 2. In Section 3 we discuss the case $k=2$. In Section 4 we discuss connections to equitable colorings and derive Theorem 1.3 from Theorem 1.7 and known results.

Now we show examples demonstrating the sharpness of hypothesis (H2) that $\sigma(G) \geq$ $4 k-3$, then discuss some unsolved problems, and then review our notation.

Example 1.8. Let $k \geq 3, Q=K_{3}$ and $G_{k}:=\overline{K_{2 k-2}} \vee\left(\overline{K_{2 k-3}}+Q\right)$. Then $\left|G_{k}\right|=4 k-2 \geq$ $3 k+1, \delta\left(G_{k}\right)=2 k-2$ and $\alpha\left(G_{k}\right)=\left|G_{k}\right|-2 k$. If G_{k} contained k disjoint cycles, then at least $4 k-\left|G_{k}\right|=2$ would be 3 -cycles; this is impossible, since any 3 -cycle in G_{k} contains an edge of Q. This construction can be extended. Let $k=r+t$, where $k+3 \leq 2 r \leq 2 k$, $Q^{\prime}=K_{2 t}$, and put $H=G_{r} \vee Q^{\prime}$. Then $|H|=4 r-2+2 t=2 k+2 r-2 \geq 3 k+1$, $\delta(H)=2 r-2+2 t=2 k-2$ and $\alpha(H)=2 r-2=|H|-2 k$. If H contained k disjoint cycles, then at least $4 k-|H|=2 t+2$ would be 3 -cycles; this is impossible, since any 3-cycle in H contains an edge of Q or a vertex of Q^{\prime}.

There are several special examples for small k. The constructions of \mathbf{Y}_{1} and \mathbf{Y}_{2} can be extended to $k=4$ at the cost of lowering σ_{2} to $4 k-4$. Below is another small family of special examples. The blow-up of G by H is denoted by $G[H]$; that is, $V(G[H])=$ $V(G) \times V(H)$ and $(x, y)\left(x^{\prime}, y^{\prime}\right) \in E(G[H])$ if and only if $x x^{\prime} \in E(G)$, or $x=x^{\prime}$ and $y y^{\prime} \in E(H)$.

Example 1.9. For $k=4, G:=C_{5}\left[\overline{K_{3}}\right]$ satisfies $|G|=15 \geq 3 k+1, \delta(G)=2 k-2$ and $\alpha(G)=6<|G|-2 k$. Since $\operatorname{girth}(G)=4$, we see that G has at most $\frac{|G|}{4}<k$ disjoint cycles. This example can be extended to $k=5,6$ as follows. Let $I=\overline{K_{2 k-8}}$ and $H=G \vee I$. Then $|G|=2 k+7 \geq 3 k+1, \delta=2 k-2$ and $\alpha(G)=6<|G|-2 k=7$. If H has k disjoint cycles then each of the at least $k-(2 k-8)=8-k$ cycles that do not meet I use 4 vertices of G, and the other cycles use at least 2 vertices of G. Then $15=|G| \geq 2 k+2(8-k)=16$, a contradiction.

Unsolved problems 1. For every fixed k, we know only a finite number of extremal examples. It would be very interesting to describe all graphs G with $\sigma_{2}(G)=4 k-4$
that do not have k disjoint cycles, but this most likely would need new techniques and approaches.
2. Recently, there were several results in the spirit of the Corrádi-Hajnal Theorem giving degree conditions on a graph G sufficient for the existence in G of k disjoint copies of such subgraphs as chorded cycles [1,3] and Θ-graphs [4]. It could be that our techniques can help in similar problems.
3. One also may try to sharpen the above-mentioned theorem of Dirac and Erdős [7].

Notation A bud is a vertex with degree 0 or 1. A vertex is high if it has degree at least $2 k-1$, and low otherwise. For vertex subsets A, B of a graph $G=(V, E)$, let

$$
\|A, B\|:=\sum_{u \in A}|\{u v \in E(G): v \in B\}|
$$

Note A and B need not be disjoint. For example, $\|V, V\|=2\|G\|=2|E|$. We will abuse this notation to a certain extent. If A is a subgraph of G, we write $\|A, B\|$ for $\|V(A), B\|$, and if \mathcal{A} is a set of disjoint subgraphs, we write $\|\mathcal{A}, B\|$ for $\left\|\bigcup_{H \in \mathcal{A}} V(H), B\right\|$. Similarly, for $u \in V(G)$, we write $\|u, B\|$ for $\|\{u\}, B\|$. Formally, an edge $e=u v$ is the set $\{u, v\}$; we often write $\|e, A\|$ for $\|\{u, v\}, A\|$.

If T is a tree or a directed cycle and $u, v \in V(T)$ we write $u T v$ for the unique subpath of T with endpoints u and v. We also extend this: if $w \notin T$, but has exactly one neighbor $u \in T$, we write $w T v$ for $w(T+w+w u) v$. Finally, if w has exactly two neighbors $u, v \in T$, we may write $w T w$ for the cycle $w u T v w$.

2. Proof of Theorem 1.7

Suppose $G=(V, E)$ is an edge-maximal counterexample to Theorem 1.7. That is, for some $k \geq 3$, (H1)-(H3) hold, and G does not contain k disjoint cycles, but adding any edge $e \in E(\bar{G})$ to G results in a graph with k disjoint cycles. The edge e will be in precisely one of these cycles, so G contains $k-1$ disjoint cycles, and at least three additional vertices. Choose a set \mathcal{C} of disjoint cycles in G so that:
(O1) $|\mathcal{C}|$ is maximized;
(O2) subject to (O1), $\sum_{C \in \mathcal{C}}|C|$ is minimized;
(O3) subject to (O1) and (O2), the length of a longest path P in $R:=G-\bigcup \mathcal{C}$ is maximized;
(O4) subject to (O1), (O2), and (O3), \|R\| is maximized.
Call such a \mathcal{C} an optimal set. We prove in Subsection 2.1 that R is a path, and in Subsection 2.2 that $|R|=3$. We develop the structure of \mathcal{C} in Subsection 2.3. Finally, in Subsection 2.4, these results are used to prove Theorem 1.7.

Our arguments will have the following form. We will make a series of claims about our optimal set \mathcal{C}, and then show that if any part of a claim fails, then we could have
improved \mathcal{C} by replacing a sequence $C_{1}, \ldots, C_{t} \in \mathcal{C}$ of at most three cycles by another sequence of cycles $C_{1}^{\prime}, \ldots, C_{t^{\prime}}^{\prime}$. Naturally, this modification may also change R or P. We will express the contradiction by writing " $C_{1}^{\prime}, \ldots, C_{t}^{\prime}, R^{\prime}, P^{\prime}$ beats $C_{1}, \ldots, C_{t}, R, P$," and may drop R^{\prime} and R or P^{\prime} and P if they are not involved in the optimality criteria.

This proof implies a polynomial time algorithm. We start by adding enough extra edges-at most $3 k$-to obtain from G a graph with a set \mathcal{C} of k disjoint cycles. Then we remove the extra edges in \mathcal{C} one at a time. After removing an extra edge, we calculate a new collection \mathcal{C}^{\prime}. This is accomplished by checking the series of claims, each in polynomial time. If a claim fails, we calculate a better collection (again in polynomial time) and restart the check, or discover an independent set of size greater than $|G|-2 k$. (Observe that if I is an independent set with $|I| \geq n-2 k+1$, then there exists $x \in I$ with $I=V \backslash N(x)$, so the existence of $|I|$ can be checked in polynomial time.) As there can be at most n^{4} improvements, corresponding to adjusting the four parameters (O1)-(O4), this process ends in polynomial time.

We now make some simple observations. Recall that $|\mathcal{C}|=k-1$ and R is acyclic. By (O2) and our initial remarks, $|R| \geq 3$. Let a_{1} and a_{2} be the endpoints of P. (Possibly, R is an independent set, and $a_{1}=a_{2}$.)

Claim 2.1. For all $w \in V(R)$ and $C \in \mathcal{C}$, if $\|w, C\| \geq 2$ then $3 \leq|C| \leq 6-\|w, C\|$. In particular, (a) $\|w, C\| \leq 3$, (b) if $\|w, C\|=3$ then $|C|=3$, and (c) if $|C|=4$ then the two neighbors of w in C are nonadjacent.

Proof. Let \vec{C} be a cyclic orientation of C. For distinct $u, v \in N(w) \cap C$, the cycles $w u \vec{C} v w$ and $w u \overleftarrow{C} v w$ have length at least $|C|$ by (O2). Thus $2\|C\| \leq\|w u \vec{C} v w\|+$ $\|w u \overleftarrow{C} v w\|=\|C\|+4$, so $|C| \leq 4$. Similarly, if $\|w, C\| \geq 3$ then $3\|C\| \leq\|C\|+6$, and so $|C|=3$.

The next claim is a simple corollary of condition (O2).

Claim 2.2. If $x y \in E(R)$ and $C \in \mathcal{C}$ with $|C| \geq 4$ then $N(x) \cap N(y) \cap C=\emptyset$.

2.1. R is a path

Suppose R is not a path. Let L be the set of buds in R; then $|L| \geq 3$.

Claim 2.3. For all $C \in \mathcal{C}$, distinct $x, y, z \in V(C), i \in[2]$, and $u \in V(R-P)$:
(a) $\left\{u x, u y, a_{i} z\right\} \nsubseteq E$;
(b) $\left\|\left\{u, a_{i}\right\}, C\right\| \leq 4$;
(c) $\left\{a_{i} x, a_{i} y, a_{3-i} z, z u\right\} \nsubseteq E$;

Fig. 2. Claim 2.3.
(d) if $\left\|\left\{a_{1}, a_{2}\right\}, C\right\| \geq 5$ then $\|u, C\|=0$;
(e) $\left\|\left\{u, a_{i}\right\}, R\right\| \geq 1$; in particular $\left\|a_{i}, R\right\|=1$ and $|P| \geq 2$;
(f) $4-\|u, R\| \leq\left\|\left\{u, a_{i}\right\}, C\right\|$ and $\left\|\left\{u, a_{i}\right\}, D\right\|=4$ for at least $|\mathcal{C}|-\|u, R\|$ cycles $D \in \mathcal{C}$.

Proof. (a) Else $u x(C-z) y u, P a_{i} z$ beats C, P by (O3) (see Fig. 2(a)).
(b) Else $|C|=3$ by Claim 2.1. Then there are distinct $p, q, r \in V(C)$ with $u p, u q$, $a_{i} r \in E$, contradicting (a).
(c) Else $a_{i} x(C-z) y a_{i},\left(P-a_{i}\right) a_{3-i} z u$ beats C, P by (O3) (see Fig. 2(b)).
(d) Suppose $\left\|\left\{a_{1}, a_{2}\right\}, C\right\| \geq 5$ and $p \in N(u) \cap C$. By Claim 2.1, $|C|=3$. Pick $j \in[2]$ with $p a_{j} \in E$, preferring $\left\|a_{j}, C\right\|=2$. Then $V(C)-p \subseteq N\left(a_{3-j}\right)$, contradicting (c).
(e) Since a_{i} is an end of the maximal path P, we get $N\left(a_{i}\right) \cap R \subseteq P$; so $a_{i} u \notin E$. By (b)

$$
\begin{equation*}
4(k-1) \geq\left\|\left\{u, a_{i}\right\}, V \backslash R\right\| \geq 4 k-3-\left\|\left\{u, a_{i}\right\}, R\right\| \tag{2.1}
\end{equation*}
$$

Thus $\left\|\left\{u, a_{i}\right\}, R\right\| \geq 1$. Hence $G[R]$ has an edge, $|P| \geq 2$, and $\left\|a_{i}, P\right\|=\left\|a_{i}, R\right\|=1$.
(f) By (2.1) and (e), $\left\|\left\{u, a_{i}\right\}, V \backslash R\right\| \geq 4|\mathcal{C}|-\|u, R\|$. Using (b), this implies the second assertion, and $\left\|\left\{u, a_{i}\right\}, C\right\|+4(|\mathcal{C}|-1) \geq 4|\mathcal{C}|-\|u, R\|$ implies the first assertion.

Claim 2.4. $|P| \geq 3$. In particular, $a_{1} a_{2} \notin E(G)$.
Proof. Suppose $|P| \leq 2$. Then $\|u, R\| \leq 1$. As $|L| \geq 3$, there is a bud $c \in L \backslash\left\{a_{1}, a_{2}\right\}$. By Claim 2.3(f), there exists $C=z_{1} \ldots z_{t} z_{1} \in \mathcal{C}$ such that $\left\|\left\{c, a_{1}\right\}, C\right\|=4$ and $\left\|\left\{c, a_{2}\right\}, C\right\| \geq 3$.

If $\|c, C\|=3$ then the edge between a_{1} and C contradicts Claim 2.3(a). If $\|c, C\|=1$ then $\left\|\left\{a_{1}, a_{2}\right\}, C\right\|=5$, contradicting Claim 2.3(d). Therefore, we assume $\|c, C\|=2=$ $\left\|a_{1}, C\right\|$ and $\left\|a_{2}, C\right\| \geq 1$. By Claim 2.3(a), $N\left(a_{1}\right) \cup N\left(a_{2}\right)=N(c)$, so there exists $z_{i} \in N\left(a_{1}\right) \cap N\left(a_{2}\right)$ and $z_{j} \in N(c)-z_{i}$. Then $a_{1} a_{2} z_{i} a_{1}, c z_{j} z_{j \pm 1}$ beats C, P by (O3).

Claim 2.5. Let $c \in L-a_{1}-a_{2}, C \in \mathcal{C}$, and $i \in[2]$.
(a) $\left\|a_{1}, C\right\|=3$ if and only if $\|c, C\|=0$, and if and only if $\left\|a_{2}, C\right\|=3$.
(b) There is at most one cycle $D \in \mathcal{C}$ with $\left\|a_{i}, D\right\|=3$.
(c) For every $C \in \mathcal{C},\left\|a_{i}, C\right\| \geq 1$ and $\|c, C\| \leq 2$.
(d) If $\left\|\left\{a_{i}, c\right\}, C\right\|=4$ then $\left\|a_{i}, C\right\|=2=\|c, C\|$.

Proof. (a) If $\|c, C\|=0$ then by Claims 2.1 and 2.3(f), $\left\|a_{i}, C\right\|=3$. If $\left\|a_{i}, C\right\| \geq 3$ then by Claim 2.3(b), $\|c, C\| \leq 1$. By Claim 2.3(f), $\left\|a_{3-i}, C\right\| \geq 2$, and by Claim 2.3(d), $\|c, C\|=0$.
(b) As $c \in L,\|c, R\| \leq 1$. Thus Claim 2.3(f) implies $\|c, D\|=0$ for at most one cycle $D \in \mathcal{C}$.
(c) Suppose $\|c, C\|=3$. By Claim 2.3(a), $\left\|\left\{a_{1}, a_{2}\right\}, C\right\|=0$. By Claims 2.4 and 2.3(d):

$$
4 k-3 \leq\left\|\left\{a_{1}, a_{2}\right\}, R \cup C \cup(V-R-C)\right\| \leq 2+0+4(k-2)=4 k-6
$$

a contradiction. Thus $\|c, C\| \leq 2$. Thus by Claim 2.3(f), $\left\|a_{i}, C\right\| \geq 1$.
(d) Now (d) follows from (a) and (c).

Claim 2.6. R has no isolated vertices.

Proof. Suppose $c \in L$ is isolated. Fix $C \in \mathcal{C}$. By Claim 2.3(f), $\left\|\left\{c, a_{1}\right\}, C\right\|=4$. By Claim 2.5(d), $\left\|a_{1}, C\right\|=2=\|c, C\|$; so $d(c)=2(k-1)$. By Claim 2.3(a), $N\left(a_{1}\right) \cap C=$ $N(c) \cap C$. Let $w \in V(C) \backslash N(c)$. Then $d(w) \geq 4 k-3-d(c)=2 k-1=2|\mathcal{C}|+1$. Therefore, either $\|w, R\| \geq 1$ or $|N(w) \cap D|=3$ for some $D \in \mathcal{C}$. In the first case, $c(C-w) c$ beats C by (O4). In the second case, by Claim 2.5(c) there exists some $x \in N\left(a_{1}\right) \cap D$. Then $c(C-w) c, w(D-x) w$ beats C, D by (O3).

Claim 2.7. L is an independent set.

Proof. Suppose $c_{1} c_{2} \in E(L)$. By Claim 2.4, $c_{1}, c_{2} \notin P$. By Claim 2.3(f) and using $k \geq 3$, there is $C \in \mathcal{C}$ with $\left\|\left\{a_{1}, c_{1}\right\}, C\right\|=4$ and $\left\|\left\{a_{1}, c_{2}\right\}, C\right\|,\left\|\left\{a_{2}, c_{1}\right\}, C\right\| \geq 3$. By Claim 2.5(d), $\left\|a_{1}, C\right\|=2=\left\|c_{1}, C\right\|$; so $\left\|a_{2}, C\right\|,\left\|c_{2}, C\right\| \geq 1$. By Claim 2.3(a), $N\left(a_{1}\right) \cap C, N\left(a_{2}\right) \cap C \subseteq N\left(c_{1}\right) \cap C$. Then there are distinct $x, y \in N\left(c_{1}\right) \cap C$ with $x a_{1}, x a_{2}, y a_{1} \in E$. If $x c_{2} \in E$ then $c_{1} c_{2} x c_{1}, y a_{1} P a_{2}$ beats C, P by (O3). Else $a_{1} P a_{2} x a_{1}$, $c_{1}(C-x) c_{2} c_{1}$ beats C, P by (O1).

Claim 2.8. If $|L| \geq 3$ then for some $D \in \mathcal{C},\|l, C\|=2$ for every $C \in \mathcal{C}-D$ and every $l \in L$.

Proof. Suppose some $D_{1}, D_{2} \in \mathcal{C}$ and $l_{1}, l_{2} \in L$ satisfy $D_{1} \neq D_{2}$ and $\left\|l_{1}, D_{1}\right\| \neq 2 \neq$ $\left\|l_{2}, D_{2}\right\|$.

CASE 1: $l_{j} \notin\left\{a_{1}, a_{2}\right\}$ for some $j \in[2]$. Say $j=1$. For $i \in[2]:\left\|\left\{a_{i}, l_{1}\right\}, D_{1}\right\| \neq 4$ by Claim 2.5(d); $\left\|\left\{a_{i}, l_{1}\right\}, D_{2}\right\|=4$ by Claim 2.3(f); $\left\|a_{i}, D_{2}\right\|=2$ by Claim 2.5(d). Then $l_{2} \notin\left\{a_{1}, a_{2}\right\}$. By Claim 2.7, $l_{1} l_{2} \notin E(G)$. Claim 2.5(c) yields the contradiction:
$4 k-3 \leq\left\|\left\{l_{1}, l_{2}\right\}, R \cup D_{1} \cup D_{2} \cup\left(V-R-D_{1}-D_{2}\right)\right\| \leq 2+3+3+4(k-3)=4 k-4$.

Fig. 3. Claim 2.10.

CASE 2: $\left\{l_{1}, l_{2}\right\} \subseteq\left\{a_{1}, a_{2}\right\}$. Let $c \in L-l_{1}-l_{2}$. As above, $\left\|\left\{l_{1}, c\right\}, D_{1}\right\| \neq 4$, and so $\left\|c, D_{2}\right\|=2=\left\|l_{1}, D_{2}\right\|$. This implies $l_{1} \neq l_{2}$. By Claim 2.5(a, c), $\left\|l_{2}, D_{2}\right\|=1$. Thus $\left\|\left\{l_{2}, c\right\}, D_{1}\right\|=4$; so $\left\|c, D_{1}\right\|=2$, and $\left\|l_{1}, D_{1}\right\|=1$. With Claim 2.4, this yields the contradiction:

$$
\begin{aligned}
4 k-3 & \leq\left\|\left\{l_{1}, l_{2}\right\}, R \cup D_{1} \cup D_{2} \cup\left(V-R-D_{1}-D_{2}\right)\right\| \\
& \leq 2+3+3+4(k-3)=4 k-4 .
\end{aligned}
$$

Claim 2.9. R is a subdivided star (possibly a path).
Proof. Suppose not. Then we claim R has distinct leaves $c_{1}, d_{1}, c_{2}, d_{2} \in L$ such that $c_{1} R d_{1}$ and $c_{2} R d_{2}$ are disjoint paths. Indeed, if R is disconnected then each component has two distinct leaves by Claim 2.6. Else R is a tree. As R is not a subdivided star, it has distinct vertices s_{1} and s_{2} with degree at least three. Deleting the edges and interior vertices of $s_{1} R s_{2}$ yields disjoint trees containing all leaves of R. Let T_{i} be the tree containing s_{i}, and pick $c_{i}, d_{i} \in T_{i}$.

By Claim 2.8, using $k \geq 3$, there is a cycle $C \in \mathcal{C}$ such that $\|l, C\|=2$ for all $l \in L$. By Claim 2.3(a), $N\left(a_{1}\right) \cap C=N(l) \cap C=N\left(a_{2}\right) \cap C=:\left\{w_{1}, w_{3}\right\}$ for $l \in L-a_{1}-a_{2}$. Then replacing C in \mathcal{C} with $w_{1} c_{1} R d_{1} w_{1}$ and $w_{3} c_{2} R d_{2} w_{3}$ yields k disjoint cycles.

Claim 2.10. R is a path or a star.

Proof. By Claim 2.9, R is a subdivided star. If R is neither a path nor a star then there are vertices r, p, d with $\|r, R\| \geq 3,\|p, R\|=2, d \in L-a_{1}-a_{2}$ and (say) $p a_{1} \in E$. Then $a_{2} R d$ is disjoint from $p a_{1}$ (see Fig. 3(a)). By Claim 2.5(c), $d(d) \leq 1+2(k-1)=2 k-1$. Then:

$$
\begin{equation*}
\|p, V-R\| \geq 4 k-3-\|p, R\|-d(d) \geq 4 k-5-(2 k-1)=2 k-4 \geq 2 \tag{2.2}
\end{equation*}
$$

In each of the following cases, $R \cup C$ has two disjoint cycles, contradicting (O1).
CASE 1: $\|p, C\|=3$ for some $C \in \mathcal{C}$. Then $|C|=3$. By Claim 2.5(a), if $\|d, C\|=0$ then $\left\|a_{1}, C\right\|=3=\left\|a_{2}, C\right\|$. Then for $w \in C, w a_{1} p w$ and $a_{2}(C-w) a_{2}$ are disjoint cycles (see Fig. 3(b)). Else by Claim 2.5(c), $\|d, C\|,\left\|a_{2}, C\right\| \in\{1,2\}$. By Claim 2.3(f), $\left\|\left\{d, a_{2}\right\}, C\right\| \geq 3$, so there are $l_{1}, l_{2} \in\left\{a_{2}, d\right\}$ with $\left\|l_{1}, C\right\| \geq 1$ and $\left\|l_{2}, C\right\|=2$; say $w \in N\left(l_{1}\right) \cap C$. If $l_{2} w \in E$ then $w l_{1} R l_{2} w$ and $p(C-w) p$ are disjoint cycles (see Fig. 3(c)); else $l_{1} w p R l_{1}$ and $l_{2}(C-w) l_{2}$ are disjoint cycles (see Fig. 3(d)).

CASE 2: There are distinct $C_{1}, C_{2} \in \mathcal{C}$ with $\left\|p, C_{1}\right\|,\left\|p, C_{2}\right\| \geq 1$. By Claim 2.8, for some $i \in[2]$ and all $c \in L,\left\|c, C_{i}\right\|=2$. Let $w \in N(p) \cap C_{i}$. If $w a_{1} \in E$ then $D:=w p a_{1} w$ is a cycle and $G\left[\left(C_{i}-w\right) \cup a_{2} R d\right]$ contains cycle disjoint from D. Else, if $w \in N\left(a_{2}\right) \cup N(d)$, say $w \in N(c)$, then $a_{1}\left(C_{i}-w\right) a_{1}$ and $c w p R c$ are disjoint cycles. Else, by Claim 2.1 there exist vertices $u \in N\left(a_{2}\right) \cap N(d) \cap C_{i}$ and $v \in N\left(a_{1}\right) \cap C_{i}-u$. Then $u a_{2} R d u$ and $a_{1} v\left(C_{i}-u\right) w p a_{1}$ are disjoint cycles.

CASE 3: Otherwise. Then using (2.2), $\|p, V-R\|=2=\|p, C\|$ for some $C \in \mathcal{C}$. In this case, $k=3$ and $d(p)=4$. By (H2), $d\left(a_{2}\right), d(d) \geq 5$. Say $\mathcal{C}=\{C, D\}$. By Claim 2.3(b), $\left\|\left\{a_{2}, d\right\}, D\right\| \leq 4$. Thus,

$$
\left\|\left\{a_{2}, d\right\}, C\right\|=\left\|\left\{a_{2}, d\right\},(V-R-D)\right\| \geq 10-2-4=4
$$

By Claim 2.5(c, d), $\left\|a_{2}, C\right\|=\|d, C\|=2$ and $\left\|a_{1}, C\right\| \geq 1$. Say $w \in N\left(a_{1}\right) \cap C$. If $w p \in E$ then $d R a_{2}(C-w) d$ contains a cycle disjoint from $w a_{1} p w$. Else, by Claim 2.3(a) there exists $x \in N\left(a_{2}\right) \cap N(d) \cap C$. If $x \neq w$ then $x a_{2} R d x$ and $w a_{1} p(C-x) w$ are disjoint cycles. Else $x=w$, and $x a_{2} R d x$ and $p(C-w) p$ are disjoint cycles.

Lemma 2.11. R is a path.

Proof. Suppose R is not a path. Then it is a star with root r and at least three leaves, any of which can play the role of a_{i} or a leaf in $L-a_{1}-a_{2}$. Thus Claim 2.5(c) implies $\|l, C\| \in\{1,2\}$ for all $l \in L$ and $C \in \mathcal{C}$. By Claim 2.8 there is $D \in \mathcal{C}$ such that for all $l \in L$ and $C \in \mathcal{C}-D,\|l, C\|=2$. By Claim 2.3(f) there is $l \in L$ such that for all $c \in L-l$, $\|c, D\|=2$. Fix distinct leaves $l^{\prime}, l^{\prime \prime} \in L-l$.

Let $Z=N\left(l^{\prime}\right)-R$ and $A=V \backslash(Z \cup\{r\})$. By the first paragraph, every $C \in \mathcal{C}$ satisfies $|Z \cap C|=2$, so $|A|=|G|-2 k+1$. For a contradiction, we show that A is independent.

Note $A \cap R=L$, so by Claim 2.7, $A \cap R$ is independent. By Claim 2.3(a),

$$
\begin{equation*}
\text { for all } c \in L \text { and for all } C \in \mathcal{C}, N(c) \cap C \subseteq Z \tag{2.3}
\end{equation*}
$$

Therefore, $\|L, A\|=0$. By Claim 2.1(c), for all $C \in \mathcal{C}, C \cap A$ is independent. Suppose, for a contradiction, A is not independent. Then there exist distinct $C_{1}, C_{2} \in \mathcal{C}, v_{1} \in A \cap C_{1}$, and $v_{2} \in A \cap C_{2}$ with $v_{1} v_{2} \in E$. Subject to this choose C_{2} with $\left\|v_{1}, C_{2}\right\|$ maximum. Let $Z \cap C_{1}=\left\{x_{1}, x_{2}\right\}$ and $Z \cap C_{2}=\left\{y_{1}, y_{2}\right\}$.

CASE 1: $\left\|v_{1}, C_{2}\right\| \geq 2$. Choose $i \in[2]$ so that $\left\|v_{1}, C_{2}-y_{i}\right\| \geq 2$. Then define $C_{1}^{*}:=$ $v_{1}\left(C_{2}-y_{i}\right) v_{1}, C_{2}^{*}:=l^{\prime} x_{1}\left(C_{1}-v_{1}\right) x_{2} l^{\prime}$, and $P^{*}:=y_{i} l^{\prime \prime} r l$ (see Fig. 4(a)). By (2.3), P^{*} is a path and C_{2}^{*} is a cycle. Then $C_{1}^{*}, C_{2}^{*}, P^{*}$ beats C_{1}, C_{2}, P by (O3).

CASE 2: $\left\|v_{1}, C_{2}\right\| \leq 1$. Then for all $C \in \mathcal{C},\left\|v_{1}, C\right\| \leq 2$ and $\left\|v_{1}, C_{2}\right\|=1$; so $\left\|v_{1}, \mathcal{C}\right\|=$ $\left\|v_{1}, C_{2} \cup\left(\mathcal{C}-C_{2}\right)\right\| \leq 1+2(k-2)=2 k-3$. By $(2.3)\left\|v_{1}, L\right\|=0$ and $d(l) \leq 2 k-1$. By (H2), $\left\|v_{1}, r\right\|=\left\|v_{1}, R\right\|=(4 k-3)-\left\|v_{1}, \mathcal{C}\right\|-d(l) \leq(4 k-3)-(2 k-3)-(2 k-1)=1$, and $v_{1} r \in E$. Let $C_{1}^{*}:=l^{\prime} x_{1}\left(C_{1}-v_{1}\right) x_{2} l^{\prime}, C_{2}^{*}:=l^{\prime \prime} y_{1}\left(C_{2}-v_{2}\right) y_{2} l^{\prime \prime}$, and $P^{*}:=v_{2} v_{1} r l$ (see Fig. $4(\mathrm{~b})$). Then $C_{1}^{*}, C_{2}^{*}, P^{*}$ beats C_{1}, C_{2}, P by (O3).

Fig. 4. Claim 2.10.

2.2. $|R|=3$

By Lemma 2.11, R is a path, and by Claim 2.4, $|R| \geq 3$. Next we prove $|R|=3$. First, we prove a claim that will also be useful in later sections.

Claim 2.12. Let C be a cycle, $P=v_{1} v_{2} \ldots v_{s}$ be a path in R, and $1<i<s$. At most one of the following two statements holds.
(1) (a) $\left\|x, v_{1} P v_{i-1}\right\| \geq 1$ for all $x \in C$ or (b) $\left\|x, v_{1} P v_{i-1}\right\| \geq 2$ for two $x \in C$;
(2) (c) $\left\|y, v_{i} P v_{s}\right\| \geq 2$ for some $y \in C$ or (d) $N\left(v_{i}\right) \cap C \neq \emptyset$ and $\left\|v_{i+1} P v_{s}, C\right\| \geq 2$.

Proof. Suppose (1) and (2) hold. If (c) holds then the disjoint graphs $G\left[v_{i} P v_{s}+y\right]$ and $G\left[v_{1} P v_{i-1} \cup C-y\right]$ contain cycles. Else (d) holds, but (c) fails; say $z \in N\left(v_{i}\right) \cap C$ and $z \notin N\left(v_{i+1} P v_{s}\right)$. If (a) holds then $G\left[v_{1} P v_{i}+z\right]$ and $G\left[v_{i+1} P v_{s} \cup C-z\right]$ contain cycles. If (b) holds then $G\left[v_{1} P v_{i-1}+w\right]$ and $G\left[v_{i} P v_{s} \cup C-w\right]$ contain cycles, where $\left\|w, v_{1} P v_{i-1}\right\| \geq 2$.

Suppose, for a contradiction, $|R| \geq 4$. Say $R=a_{1} a_{1}^{\prime} a_{1}^{\prime \prime} \ldots a_{2}^{\prime \prime} a_{2}^{\prime} a_{2}$. It is possible that $a_{1}^{\prime \prime} \in\left\{a_{2}^{\prime \prime}, a_{2}^{\prime}\right\}$, etc. Set $e_{i}:=a_{i} a_{i}^{\prime}=\left\{a_{i}, a_{i}^{\prime}\right\}$ and $F:=e_{1} \cup e_{2}$.

Claim 2.13. If $C \in \mathcal{C}, h \in[2]$ and $\left\|e_{h}, C\right\| \geq\left\|e_{3-h}, C\right\|$ then $\|C, F\| \leq 7$; if $\|C, F\|=7$ then
$|C|=3,\left\|a_{h}, C\right\|=2, \quad\left\|a_{h}^{\prime}, C\right\|=3, \quad\left\|a_{h}^{\prime \prime} R a_{3-h}, C\right\|=2$, and $N\left(a_{h}\right) \cap C=N\left(e_{3-h}\right) \cap C$.
Proof. We will repeatedly use Claim 2.12 to obtain a contradiction to (O1) by showing that $G[C \cup R]$ contains two disjoint cycles. Suppose $\|C, F\| \geq 7$ and say $h=1$. Then $\left\|e_{1}, C\right\| \geq 4$. There is $x \in e_{1}$ with $\|x, C\| \geq 2$. Thus $|C| \leq 4$ by Claim 2.1, and if $|C|=4$ then no vertex in C has two adjacent neighbors in F. Then (1) holds with $v_{1}=a_{1}$ and $v_{i}=a_{2}^{\prime}$, even when $|C|=4$.

If $\left\|e_{1}, C\right\|=4$, as is the case when $|C|=4$, then $\left\|e_{2}, C\right\| \geq 3$. If $|C|=4$ there is a cycle $D:=y z a_{2}^{\prime} a_{2} y$ for some $y, z \in C$. As (a) holds, $G\left[a_{1} R a_{2}^{\prime \prime} \cup C-y-z\right]$ contains another disjoint cycle. Thus, $|C|=3$. As (c) must fail with $v_{i}=a_{2}^{\prime}$, (a) and (c) hold for $v_{i}=a_{1}^{\prime}$
and $v_{1}=a_{2}$, a contradiction. Then $\left\|e_{1}, C\right\| \geq 5$. If $\left\|a_{1}, C\right\|=3$ then (a) and (c) hold with $v_{1}=a_{1}$ and $v_{i}=a_{1}^{\prime}$. Now $\left\|a_{1}, C\right\|=2,\left\|a_{1}^{\prime}, C\right\|=3$ and $\left\|a_{1}^{\prime \prime} R a_{2}, C\right\| \geq 2$. If there is $b \in P-e_{1}$ and $c \in N(b) \cap V(C) \backslash N\left(a_{1}\right)$ then $G\left[a_{1}^{\prime} R a_{2}+c\right]$ and $G\left[a_{1}(C-c) a_{1}\right]$ both contain cycles. For every $b \in R-e_{1}, N(b) \cap C \subseteq N\left(a_{1}\right)$. Then if $\left\|a_{1}^{\prime \prime} R a_{2}, C\right\| \geq 3$, (c) holds for $v_{1}=a_{1}$ and $v_{1}=a_{1}^{\prime \prime}$, contradicting that (1) holds. Now $\left\|a_{1}^{\prime \prime} R a_{2}, C\right\|=\left\|e_{1}, C\right\|=2$ and $N\left(a_{1}\right)=N\left(e_{2}\right)$.

Lemma 2.14. $|R|=3$ and $m:=\max \{|C|: C \in \mathcal{C}\}=4$.

Proof. Let $t=|\{C \in \mathcal{C}:\|F, C\| \leq 6\}|$ and $r=|\{C \in \mathcal{C}:|C| \geq 5\}|$. It suffices to show $r=0$ and $|R|=3$: then $m \leq 4$, and $|V(\mathcal{C})|=|G|-|R| \geq 3(k-1)+1$ implies some $C \in \mathcal{C}$ has length 4 . Choose R so that:
(P1) R has as few low vertices as possible, and subject to this,
(P2) R has a low end if possible.

Let $C \in \mathcal{C}$. By Claim 2.13, $\|F, C\| \leq 7$. By Claim 2.1, if $|C| \geq 5$ then $\|a, C\| \leq 1$ for all $a \in F$; so $\|F, C\| \leq 4$. Thus $r \leq t$. Hence

$$
\begin{equation*}
2(4 k-3) \leq\|F,(V \backslash R) \cup R\| \leq 7(k-1)-t-2 r+6 \leq 7 k-t-2 r-1 . \tag{2.4}
\end{equation*}
$$

Therefore, $5-k \geq t+2 r \geq 3 r \geq 0$. Since $k \geq 3$, this yields $3 r \leq t+2 r \leq 2$, so $r=0$ and $t \leq 2$, with $t=2$ only if $k=3$.

CASE 1: $k-t \geq 3$. That is, there exist distinct cycles $C_{1}, C_{2} \in \mathcal{C}$ with $\left\|F, C_{i}\right\| \geq 7$. In this case, $t \leq 1$: if $k=3$ then $\mathcal{C}=\left\{C_{1}, C_{2}\right\}$ and $t=0$; if $k>3$ then $t<2$. For both $i \in$ [2], Claim 2.13 yields $\left\|F, C_{i}\right\|=7,\left|C_{i}\right|=3$, and there is $x_{i} \in V\left(C_{i}\right)$ with $\left\|x_{i}, R\right\|=1$ and $\|y, R\|=3$ for both $y \in V\left(C_{i}-x_{i}\right)$. Moreover, there is a unique index $j=\beta(i) \in[2]$ with $\left\|a_{j}^{\prime}, C_{i}\right\|=3$. For $j \in[2]$, put $I_{j}:=\{i \in[2]: \beta(i)=j\}$; that is, $I_{j}=\left\{i \in[2]:\left\|a_{j}^{\prime}, C_{i}\right\|=3\right\}$. Then $V\left(C_{i}\right)-x_{i}=N\left(a_{\beta(i)}\right) \cap C_{i}=N\left(e_{3-\beta(i)}\right) \cap C_{i}$. As $x_{i} a_{\beta(i)} \notin E$, one of $x_{i}, a_{\beta(i)}$ is high. As we can switch x_{i} and $a_{\beta(i)}$ (by replacing C_{i} with $a_{\beta(i)}\left(C_{i}-x_{i}\right) a_{\beta(i)}$ and R with $\left.R-a_{\beta(i)}+x_{i}\right)$, we may assume $a_{\beta(i)}$ is high.

Suppose $I_{j} \neq \emptyset$ for both $j \in[2]$; say $\left\|a_{1}^{\prime}, C_{1}\right\|=\left\|a_{2}^{\prime}, C_{2}\right\|=3$. Then for all $B \in \mathcal{C}$ and $j \in[2], a_{j}$ is high, and either $\left\|a_{j}, B\right\| \leq 2$ or $\|F, B\| \leq 6$. Since $t \leq 1$, we get

$$
\begin{aligned}
2 k-1 & \leq d\left(a_{j}\right)=\left\|a_{j}, B \cup F\right\|+\left\|a_{j}, \mathcal{C}-B\right\| \leq\left\|a_{j}, B\right\|+1+2(k-2)+t \\
& \leq 2 k-2+\left\|a_{j}, B\right\|
\end{aligned}
$$

Thus $N\left(a_{j}\right) \cap B \neq \emptyset$ for all $B \in \mathcal{C}$. Let $y_{j} \in N\left(a_{3-j}\right) \cap C_{j}$. Then using Claim 2.13, $y_{j} \in N\left(a_{j}\right)$, and $a_{1}^{\prime}\left(C_{1}-y_{1}\right) a_{1}^{\prime}, a_{2}^{\prime}\left(C_{2}-y_{2}\right) a_{2}^{\prime}, a_{1} y_{1} a_{2} y_{2} a_{1}$ beats C_{1}, C_{2} by (O1).

Otherwise, say $I_{1}=\emptyset$. If $B \in \mathcal{C}$ with $\|F, B\| \leq 6$ then $\left\|e_{1}, B\right\|+2\left\|a_{2}, B\right\| \leq\|F, B\|+$ $\left\|a_{2}, B\right\| \leq 9$. Thus, using Claim 2.13,

Fig. 5. Lemma 2.14, Case 1.

$$
\begin{aligned}
2(4 k-3) & \leq d\left(a_{1}\right)+d\left(a_{1}^{\prime}\right)+2 d\left(a_{2}\right)=5+\left\|e_{1}, \mathcal{C}\right\|+2\left\|a_{2}, \mathcal{C}\right\| \leq 5+6(k-1-t)+9 t \\
\Rightarrow 2 k & \leq 5+3 t
\end{aligned}
$$

Since $k-t \geq 3$ (by the case), we see $3(k-t)+(5+3 t) \geq 3(3)+2 k$ and so $k \geq 4$. Since $t \leq 1$, in fact $k=4$ and $t=1$, and equality holds throughout: say B is the unique cycle in \mathcal{C} with $\|F, B\| \leq 6$. Then $\left\|a_{2}, B\right\|=\left\|e_{1}, B\right\|=3$. Using Claim 2.13, $d\left(a_{1}\right)+d\left(a_{1}^{\prime}\right)=\left\|e_{1}, R\right\|+\left\|e_{1}, \mathcal{C}-B\right\|+\left\|e_{1}, B\right\|=3+4+3=10$, and $d\left(a_{1}\right), d\left(a_{2}\right) \geq$ $(4 k-3)-d\left(a_{2}\right)=13-(1+4+3)=5$, so $d\left(a_{1}\right)=d\left(a_{2}\right)=5$. Note a_{1} and a_{2} share no neighbors: they share none in R because R is a path, they share none in $\mathcal{C}-B$ by Claim 2.13, and they share no neighbor $b \in B$ lest $a_{1} a_{1}^{\prime} b a_{1}$ and $a_{2}(B-b) a_{2}$ beat B by (O1). Thus every vertex in $V-e_{1}$ is high.

Since $\left\|e_{1}, B\right\|=3$, first suppose $\left\|a_{1}, B\right\| \geq 2$, say $B-b \subseteq N\left(a_{1}\right)$. Then $a_{1}(B-b) a_{1}$, $a_{1}^{\prime} a_{2}^{\prime} a_{1} b$ beat B, R by (P1) (see Fig. $5(\mathrm{a})$). Now suppose $\left\|a_{1}^{\prime}, B\right\| \geq 2$, this time with $B-b \subseteq N\left(a_{1}^{\prime}\right)$. Since $d\left(a_{1}\right)=5$ and $\left\|a_{1}, R \cup B\right\| \leq 2$, there exists $c \in C \in \mathcal{C}-B$ with $a_{1} c \in E(G)$. Now $c \in N\left(a_{2}\right)$ by Claim 2.13, so $a_{1}^{\prime}(B-b) a_{1}^{\prime}, a_{2}^{\prime}(C-c) a_{2}^{\prime}$, and $a_{1} c a_{2} b$ beat B, C, and R by (P1) (see Fig. $5(\mathrm{~b})$).

CASE 2: $k-t \leq 2$. That is, $\|F, C\| \leq 6$ for all but at most one $C \in \mathcal{C}$. Then, since $5-k \geq t$, we get $k=3$ and $\|F, V\| \leq 19$. Say $\mathcal{C}=\{C, D\}$, so $\|F, C \cup D\| \geq$ $2(4 k-3)-\|F, R\|=2(4 \cdot 3-3)-6=12$. By Claim 2.13, $\|F, C\|,\|F, D\| \leq 7$. Then $\|F, C\|,\|F, D\| \geq 5$. If $|R| \geq 5$, then for the (at most two) low vertices in R, we can choose distinct vertices in R not adjacent to them. Then $\|R, V-R\| \geq 5|R|-2-\|R, R\|=3|R|$. Thus we may assume $\|R, C\| \geq\lceil 3|R| / 2\rceil \geq|R|+3 \geq 8$. Let $w^{\prime} \in C$ be such that $q=\left\|w^{\prime}, R\right\|=\max \{\|w, R\|: w \in C\}$. Let $N\left(w^{\prime}\right) \cap R=\left\{v_{i_{1}}, \ldots, v_{i_{q}}\right\}$ with $i_{1}<\ldots<i_{q}$. Suppose $q \geq 4$. If $\left\|v_{1} R v_{i_{2}}, C-w^{\prime}\right\| \geq 2$ or $\left\|v_{i_{2}+1} R v_{s}, C-w^{\prime}\right\| \geq 2$, then $G[C \cup R]$ has two disjoint cycles. Otherwise, $\left\|R, C-w^{\prime}\right\| \leq 2$, contradicting $\|R, C\| \geq|R|+3$. Similarly, if $q=3$, then $\left\|v_{1} R v_{i_{2}-1}, C-w^{\prime}\right\| \leq 1$ and $\left\|v_{i_{2}+1} R v_{s}, C-w^{\prime}\right\| \leq 1$ yielding $\left\|v_{i_{2}}, C\right\|=\|R, C\|-\left\|\left(R-v_{i_{2}}\right), C-w^{\prime}\right\|-\left\|R-v_{i_{2}}, w^{\prime}\right\| \geq(|R|+3)-2-(3-1) \geq 4$, a contradiction to Claim 2.1(a). Therefore, $q \leq 2$, and hence $|R|+3 \leq\|R, C\| \leq 2|C|$. It follows that $|R|=5,|C|=4$ and $\|w, R\|=2$ for each $w \in C$. This in turn yields that $G[C \cup R]$ has no triangles and $\left\|v_{i}, C\right\| \leq 2$ for each $i \in[5]$. By Claim 2.13, $\|F, C\| \leq 6$, so $\left\|v_{3}, C\right\|=2$. Thus we may assume that for some $w \in C, N(w) \cap R=\left\{v_{1}, v_{3}\right\}$. Then
$\left\|e_{2}, C\right\|=\left\|e_{2}, C-w\right\| \leq 1$, lest there exist a cycle disjoint from $w v_{1} v_{2} v_{3} w$ in $G[C \cup R]$. Therefore, $\left\|e_{1}, C\right\| \geq 8-1-2=5$, a contradiction to Claim 2.1(b). This yields $|R| \leq 4$.

Claim 2.15. Either a_{1} or a_{2} is low.
Proof. Suppose a_{1} and a_{2} are high. Then since $\|R, V\| \leq 19$, we may assume a_{1}^{\prime} is low. Suppose there is $c \in C$ with $c a_{2} \in E$ and $\left\|a_{1}, C-c\right\| \geq 2$. If $a_{1}^{\prime} c \in E$, then $R \cup C$ contains two disjoint cycles; so $a_{1}^{\prime} c \notin E$ and hence c is high. Thus either $a_{1}(C-c) a_{1}$ is shorter than C or the pair $a_{1}(C-c) a_{1}, c a_{2} a_{2}^{\prime} a_{1}^{\prime}$ beats C, R by $(P 2)$. Thus if $c a_{2} \in E$ then $\left\|a_{1}, C-c\right\| \leq$ 1. As a_{2} is high, $\left\|a_{2}, C\right\| \geq 1$ and hence $\left\|a_{1}, C\right\|=\left\|a_{1}, C \backslash N\left(a_{2}\right)\right\|+\left\|a_{1}, N\left(a_{2}\right)\right\| \leq 2$. Similarly, $\left\|a_{1}, D\right\| \leq 2$. Since a_{1} is high, we see $\left\|a_{1}, C\right\|=\left\|a_{1}, D\right\|=2$, and $d\left(a_{1}\right)=5$. Hence

$$
\begin{equation*}
N\left(a_{2}\right) \cap C \subseteq N\left(a_{1}\right) \cap C \quad \text { and } \quad N\left(a_{2}\right) \cap D \subseteq N\left(a_{1}\right) \cap D \tag{2.5}
\end{equation*}
$$

As a_{2} is high, $d\left(a_{2}\right)=5$ and in (2.5) equalities hold. Also $d\left(a_{1}^{\prime}\right)=4 \leq d\left(a_{2}^{\prime}\right)$.
If there are $c \in C$ and $i \in[2]$ with $c a_{i}, c a_{i}^{\prime} \in E$ then by (O 2), $|C|=3$. Also $c a_{i}^{\prime} a_{i} c$, $a_{3-i}^{\prime} a_{3-i}\left(C-c\right.$) beats C, R by either (P1) or (P2). (Recall $N\left(a_{1}\right) \cap C=N\left(a_{2}\right) \cap C$ and neighbors of a_{2} in C are high.) Then $N\left(a_{i}\right) \cap N\left(a_{i}^{\prime}\right)=\emptyset$. Thus the set $N\left(a_{1}\right)-R=$ $N\left(a_{2}\right)-R$ contains no low vertices. Also, if $\left\|a_{1}^{\prime}, C\right\| \geq 1$ then $|C|=3$: else C has the form $c_{1} c_{2} c_{3} c_{4} c_{1}$, where $a_{1} c_{1}, a_{1} c_{3} \in E$, and so $a_{1} a_{1}^{\prime} c_{1} c_{2} a_{1}, c_{3} c_{4} a_{2} a_{2}^{\prime}$ beats C, R by either (P1) or (P2). Thus $|C|=3$ and $a_{1}^{\prime} c \in E$ for some $c \in V(C)-N\left(a_{1}\right)$. If $\left\|a_{2}^{\prime}, C\right\| \geq 1$, we have disjoint cycles $c a_{1}^{\prime} a_{2}^{\prime} c, a_{1}(C-c) a_{1}$ and D. Then $\left\|a_{1}^{\prime}, C\right\|=0$, so $d\left(a_{1}^{\prime}\right) \leq 2+\left|D \backslash N\left(a_{1}\right)\right| \leq$ 4. Now a_{1}^{\prime} and a_{2}^{\prime} are symmetric, and we have proved that $\left\|a_{1}^{\prime}, C\right\|+\left\|a_{2}^{\prime}, C\right\| \leq 1$. Similarly, $\left\|a_{1}^{\prime}, D\right\|+\left\|a_{2}^{\prime}, D\right\| \leq 1$, a contradiction to $d\left(a_{1}^{\prime}\right), d\left(a_{2}^{\prime}\right) \geq 4$.

By Claim 2.15, we can choose notation so that a_{1} is low.
Claim 2.16. If a_{1}^{\prime} is low then each $v \in V \backslash e_{1}$ is high.

Proof. Suppose $v \in V-e_{1}$ is low. Since a_{1} is low, all vertices in $R-e_{1}$ are high, so $v \in C$ for some $C \in \mathcal{C}$. Then $C^{\prime}:=v e_{1} v$ is a cycle and so by $(\mathrm{O} 2),|C|=3$. Since a_{2} is high, $\left\|a_{2}, C\right\| \geq 1$. As v is low, $v a_{2} \notin E$. Since a_{1}^{\prime} is low, it is adjacent to the low vertex v, and $\left\|a_{1}^{\prime}, C-v\right\| \leq 1$. Then $C^{\prime}, a_{2}^{\prime} a_{2}(C-v)$ beats C, R by (P 1).

Claim 2.17. If $|C|=3$ and $\left\|e_{1}, C\right\|,\left\|e_{2}, C\right\| \geq 3$, then either
(a) $\left\|c, e_{1}\right\|=1=\left\|c, e_{2}\right\|$ for all $c \in V(C)$ or
(b) a_{1}^{\prime} is high and there is $c \in V(C)$ with $\|c, R\|=4$ and $C-c$ has a low vertex.

Proof. If (a) fails then $\left\|c, e_{i}\right\|=2$ for some $i \in[2]$ and $c \in C$. If $\left\|e_{3-i}, C-c\right\| \geq 2$ then there is a cycle $C^{\prime} \subseteq C \cup e_{3-i}-c$, and $R \cup C$ contains disjoint cycles $c e_{i} c$ and C^{\prime}. Else,

$$
\|c, R\|=\left\|c, e_{i}\right\|+\left(\left\|C, e_{3-i}\right\|-\left\|C-c, e_{3-i}\right\|\right) \geq 2+(3-1)=4=|R|
$$

If $C-c$ has no low vertices then $c e_{1} c, e_{2}(C-c)$ beats C, R by (P 1). Then $C-c$ contains a low vertex c^{\prime}. If a_{1}^{\prime} is low then $c^{\prime} a_{1}^{\prime} a_{1} c^{\prime}$ and $c a_{2} a_{2}^{\prime} c$ are disjoint cycles. Thus, (b) holds.

CASE 2.1: $|D|=4$. By $(\mathrm{O} 2), G[R \cup D]$ does not contain a 3 -cycle. Then $5 \leq d\left(a_{2}\right) \leq$ $3+\left\|a_{2}, C\right\| \leq 6$. Thus $d\left(a_{1}\right), d\left(a_{1}^{\prime}\right) \geq 3$.

Suppose $\left\|e_{1}, D\right\| \geq 3$. Pick $v \in N\left(a_{1}\right) \cap D$ with minimum degree, and $v^{\prime} \in N\left(a_{1}^{\prime}\right) \cap D$. Since $N\left(a_{1}\right) \cap D$ and $N\left(a_{1}^{\prime}\right) \cap D$ are nonempty, disjoint and independent, we see $v v^{\prime} \in E$. Say $D=v v^{\prime} w w^{\prime} v$. As $D=K_{2,2}$ and low vertices are adjacent, $D^{\prime}:=a_{1} a_{1}^{\prime} v^{\prime} v a_{1}$ is a 4-cycle and v is the only possible low vertex in D. Note $a_{1} w \notin E$: else $a_{1} w w^{\prime} v a_{1}$, $v^{\prime} a_{1}^{\prime} a_{2}^{\prime} a_{2}$ beats D, R by (P1). As $\left\|e_{1}, D\right\| \geq 3, a_{1}^{\prime} w^{\prime} \in E$. Also note $\left\|e_{2}, w w^{\prime}\right\|=0$: else $G\left[a_{2}, a_{2}^{\prime}, w, w^{\prime}\right]$ contains a 4 -path R^{\prime}, and D^{\prime}, R^{\prime} beats D, R by (P1). Similarly, replacing D^{\prime} by $D^{\prime \prime}:=a_{1} a_{1}^{\prime} w^{\prime} v a_{1}$ yields $\left\|e_{2}, v^{\prime}\right\|=0$. Then $\left\|e_{1} \cup e_{2}, D\right\| \leq 3+1=4$, a contradiction. Thus

$$
\begin{equation*}
\left\|e_{1}, D\right\| \leq 2 \quad \text { and so } \quad\|R, D\| \leq 6 \tag{2.6}
\end{equation*}
$$

Suppose $d\left(a_{1}^{\prime}\right)=3$. Then $\left\|a_{1}^{\prime}, D\right\| \leq 1$. Then there is $u v \in E(D)$ with $\left\|a_{1}^{\prime}, u v\right\|=0$. Thus $d(u), d(v), d\left(a_{2}\right) \geq 6$, and $\left\|a_{2}, C\right\|=3$. Now $|C|=3,|G|=11$, and there is $w \in N(u) \cap N(v)$. If $w \in C$ put $C^{\prime}=a_{2}(C-w) a_{2}$; else $C^{\prime}=C$. In both cases, $\left|C^{\prime}\right|=|C|$ and $|w u v w|=3<|D|$, so C^{\prime}, wuvw beats C, D by (O2). Thus $d\left(a_{1}^{\prime}\right) \geq 4$. If $d\left(a_{1}\right)=3$ then $d\left(a_{2}\right), d\left(a_{2}^{\prime}\right) \geq 9-3=6$, and $\left\|a_{2}, C\right\| \geq 3$. By (2.6),

$$
\|R, C\| \geq 3+4+6+6-\|R, R\|-\|R, D\| \geq 19-6-6=7
$$

contradicting Claim 2.13. Then $d\left(a_{1}\right)=4 \leq d\left(a_{1}^{\prime}\right)$ and by (2.6), $\left\|e_{1}, C\right\| \geq 3$. Thus (2.6) fails for C in place of D; so $|C|=3$. As $\left\|a_{2}, C\right\| \geq 2$ and $\left\|a_{2}^{\prime}, C\right\| \geq 1$, Claim 2.17 implies either (a) or (b) of Claim 2.17 holds. If (a) holds then (a) and (d) of Claim 2.12 both hold, and so $G[C \cup R]$ has two disjoint cycles. Else, Claim 2.17 gives a_{1}^{\prime} is high and there is $c \in \mathcal{C}$ with $\|c, R\|=4$. As a_{1}^{\prime} is high, $\|R, C\| \geq 7$. Now $\|c, R\|=4$ contradicts Lemma 2.13.

CASE 2.2: $|C|=|D|=3$ and $\|R, V\|=18$. Then $d\left(a_{1}\right)+d\left(a_{2}^{\prime}\right)=9=d\left(a_{1}^{\prime}\right)+d\left(a_{2}\right), a_{1}$ and a_{1}^{\prime} are low, and by Claim 2.16 all other vertices are high. Moreover, $d\left(a_{1}^{\prime}\right) \leq d\left(a_{1}\right)$, since

$$
18=\|R, V\|=d\left(a_{1}^{\prime}\right)-d\left(a_{1}\right)+2 d\left(a_{1}\right)+d\left(a_{2}^{\prime}\right)+d\left(a_{2}\right) \geq d\left(a_{1}^{\prime}\right)-d\left(a_{1}\right)+9+9
$$

Suppose $d\left(a_{1}^{\prime}\right)=2$. Then $d(v) \geq 7$ for all $v \in V-a_{1} a_{1}^{\prime} a_{2}^{\prime}$. In particular, $C \cup D \subseteq N\left(a_{2}\right)$. If $d\left(a_{1}\right)=2$ then $d\left(a_{2}^{\prime}\right) \geq 7$, and $G=\mathbf{Y}_{\mathbf{1}}$. Else $\left\|a_{1}, C \cup D\right\| \geq 2$. If there is $c \in C$ with $V(C)-c \subseteq N\left(a_{1}\right)$, then $a_{1}(C-c) a_{1}, a_{1}^{\prime} a_{2}^{\prime} a_{2} c$ beats C, R by (P1). Else $d\left(a_{1}\right)=3$, $d\left(a_{2}^{\prime}\right)=6$, and there are $c \in C$ and $d \in D$ with $c, d \in N\left(a_{1}\right)$. If $c a_{2}^{\prime} \in E$ then $C \cup R$ contains disjoint cycles $a_{1} c a_{2}^{\prime} a_{1}^{\prime} a_{1}$ and $a_{2}(C-c) a_{2}$, so assume not. Similarly, assume
$d a_{2}^{\prime} \notin E$. Since $d(d) \geq 7$ and $a_{1}^{\prime}, a_{2}^{\prime} \notin N(d)$, we see $c d \in E(G)$. Then there are three disjoint cycles $a_{2}^{\prime}(C-c) a_{2}^{\prime}, a_{2}(D-d) a_{2}$, and $a_{1} c d a_{1}$. Thus $d\left(a_{1}^{\prime}\right) \geq 3$.

Suppose $d\left(a_{1}^{\prime}\right)=3$. Say $a_{1}^{\prime} v \in E$ for some $v \in D$. As $d\left(a_{2}\right) \geq 6,\left\|a_{2}, D\right\| \geq 2$. Then $e_{2}+D-v$ contains a 4-path R^{\prime}. Thus $a_{1} v \notin E$: else $v e_{1} v, R^{\prime}$ beats D, R by (P1). Also $\left\|a_{1}, D-v\right\| \leq 1$: else $a_{1}(D-v) a_{1}, v a_{1}^{\prime} a_{2}^{\prime} a_{2}$ beats D, R by (P1). Then $\left\|a_{1}, D\right\| \leq 1$.

Suppose $\left\|a_{1}, C\right\| \geq 2$. Pick $c \in C$ with $C-c \subseteq N\left(a_{1}\right)$. Then

$$
\begin{equation*}
a_{2} c \notin E: \tag{2.7}
\end{equation*}
$$

else $a_{1}(C-c) a_{1}, a_{1}^{\prime} a_{2}^{\prime} a_{2} c$ beats C, R by (P1). Then $\left\|a_{2}, C\right\|=2$ and $\left\|a_{2}, D\right\|=3$. Also $a_{1} c \notin E$: else picking a different c violates (2.7). As $a_{1}^{\prime} c \notin E,\|c, D\|=3$ and $a_{2}^{\prime} c \in E(G)$. Then $a_{1}(C-c) a_{1}, a_{2}(D-v) a_{2}$ and $c v a_{1}^{\prime} a_{2}^{\prime} c$ are disjoint cycles. Otherwise, $\left\|a_{1}, C\right\| \leq 1$ and $d\left(a_{1}\right) \leq 3$. Then $d\left(a_{1}\right)=3$ since $d\left(a_{1}\right) \geq d\left(a_{1}^{\prime}\right)$.

Now $d\left(a_{2}^{\prime}\right)=6$. Say $D=v b b^{\prime} v$ and $a_{1} b \in E$. As $b^{\prime} a_{1}^{\prime} \notin E, d\left(b^{\prime}\right) \geq 9-3=6$. Since $\left\|e_{2}, V\right\|=12$, we see that a_{2} and a_{2}^{\prime} have three common neighbors. If one is b^{\prime} then $D^{\prime}:=a_{1} a_{1}^{\prime} v b a_{1}, b^{\prime} e_{2} b^{\prime}$, and C are disjoint cycles; else $\left\|b^{\prime}, C\right\|=3$ and there is $c^{\prime} \in C$ with $\left\|c^{\prime}, e_{2}\right\|=2$. Then $D^{\prime}, c^{\prime} e_{2} c^{\prime}$ and $b^{\prime}\left(C-c^{\prime}\right) b^{\prime}$ are disjoint cycles. Thus, $d\left(a_{1}^{\prime}\right)=4$.

Since a_{1} is low and $d\left(a_{1}\right) \geq d\left(a_{1}^{\prime}\right)$, we see $d\left(a_{1}\right)=d\left(a_{1}^{\prime}\right)=4$ and $\left\|\left\{a_{1}, a_{1}^{\prime}\right\}, C \cup D\right\|=5$, so we may assume $\left\|e_{1}, C\right\| \geq 3$. If $\left\|e_{2}, C\right\| \geq 3$, then because a_{1}^{\prime} is low, Claim 2.17(a) holds. Now, $V(C) \subseteq N\left(e_{1}\right)$ and there is $x \in e_{1}=x y$ with $\|x, C\| \geq 2$. First suppose $\|x, C\|=3$. As x is low, $x=a_{1}$. Pick $c \in N\left(a_{2}\right) \cap C$, which exists because $\left\|a_{2}, C \cup D\right\| \geq 4$. Then $a_{1}(C-c) a_{1}, a_{1}^{\prime} a_{2}^{\prime} a_{2} c$ beats C, R by (P1). Now suppose $\|x, C\|=2$. Let $c \in C \backslash N(x)$. Then $x(C-c) x, y^{c e} e_{2}$ beats C, R by (P1).

CASE 2.3: $|C|=|D|=3$ and $\|R, V\|=19$. Say $\|C, R\|=7$ and $\|D, R\|=6$.
CASE 2.3.1: a_{1}^{\prime} is low. Then $\left\|a_{1}^{\prime}, C \cup D\right\| \leq 4-\left\|a_{1}^{\prime}, R\right\|=2$, so by Claim 2.13, $\left\|e_{2}, C\right\|=5$ with $\left\|a_{2}, C\right\|=2$. Then $5 \leq d\left(a_{2}\right) \leq 6$.

If $d\left(a_{2}\right)=5$ then $d\left(a_{1}\right)=d\left(a_{1}^{\prime}\right)=4$ and $d\left(a_{2}^{\prime}\right)=6$. Then $\left\|a_{2}, D\right\|=2$ and $\left\|a_{2}^{\prime}, D\right\|=1$. Say $D=b_{1} b_{2} b_{3} b_{1}$, where $a_{2} b_{2}, a_{2} b_{3} \in E$. As a_{1}^{\prime} is low, (a) of Claim 2.17 holds. Then $\left\|b_{1}, a_{1} a_{1}^{\prime} a_{2}^{\prime}\right\|=2$, and there is a cycle $D^{\prime} \subseteq G\left[b_{1} a_{1} a_{1}^{\prime} a_{2}^{\prime}\right]$. Then $a_{2}\left(D-b_{1}\right) a_{2}$ and D^{\prime} are disjoint.

If $d\left(a_{2}\right)=6$ then $\left\|a_{2}, D\right\|=3$. Let $c_{1} \in C-N\left(a_{2}\right)$. By Claim 2.13, $\left\|c_{1}, R\right\|=1$, so c_{1} is high, and $\left\|c_{1}, D\right\| \geq 2$. If $\left\|a_{2}^{\prime}, D\right\| \geq 1$, then (a) and (d) hold in Claim 2.12 for $v_{1}=a_{2}$ and $v_{i}=a_{2}^{\prime}$, so $G\left[D \cup c_{1} a_{2}^{\prime} a_{2}\right]$ has two disjoint cycles, and $c_{2} e_{1} c_{3} c_{2}$ contains a third. Therefore, assume $\left\|a_{2}^{\prime}, D\right\|=0$, and so $d\left(a_{2}^{\prime}\right)=5$. Thus $d\left(a_{1}\right)=d\left(a_{1}^{\prime}\right)=4$. Again, $\left\|e_{1}, D\right\|=3=\left\|a_{2}, D\right\|$. Now there are $x \in e_{1}$ and $b \in V(D)$ with $D-b \subseteq N(x)$. As a_{1}^{\prime} is low and has two neighbors in R, if $\|x, D\|=3$ then $x=a_{1}$. Anyway, using Claim 2.17, $G[R+b-x]$ contains a 4-path R^{\prime}, and $x(D-b) x, R^{\prime}$ beats D, R by (P1).

CASE 2.3.2: a_{1}^{\prime} is high. Since $19=\|R, V\| \geq d\left(a_{1}\right)+d\left(a_{1}^{\prime}\right)+2\left(9-d\left(a_{1}\right)\right) \geq 23-d\left(a_{1}\right)$, we get $d\left(a_{1}\right)=4$ and $d\left(a_{1}^{\prime}\right)=d\left(a_{2}^{\prime}\right)=d\left(a_{2}\right)=5$. Choose notation so that $C=c_{1} c_{2} c_{3} c_{1}$, $D=b_{1} b_{2} b_{3} b_{1}$, and $\left\|c_{1}, R\right\|=1$. By Claim 2.13, there is $i \in[2]$ with $\left\|a_{i}, C\right\|=2$, $\left\|a_{i}^{\prime}, C\right\|=3$, and $a_{i} c_{1} \notin E$. If $i=1$ then every low vertex is in $N\left(a_{1}\right)-a_{1}^{\prime} \subseteq D \cup C^{\prime}$,
where $C^{\prime}=a_{1} c_{2} c_{3} a_{1}$. Then $C^{\prime}, c_{1} a_{1}^{\prime} a_{2}^{\prime} a_{2}$ beats C, R by (P1). Thus let $i=2$. Now $\left\|a_{2}, C\right\|=2=\left\|a_{2}, D\right\|$.

Say $a_{2} b_{2}, a_{2} b_{3} \in E$. Also $\left\|a_{2}^{\prime}, D\right\|=0$ and $\left\|e_{1}, D\right\|=4$. Then $\left\|b_{j}, e_{1}\right\|=2$ for some $j \in[3]$. If $j=1$ then $b_{1} e_{1} b_{1}$ and $a_{2} b_{2} b_{3} a_{2}$ are disjoint cycles. Else, say $j=2$. By inspection, all low vertices are contained in $\left\{a_{1}, b_{1}, b_{3}\right\}$. If b_{1} and b_{3} are high then $b_{2} e_{1} b_{2}$, $b_{1} b_{3} e_{2}$ beats D, R by (P1). Else there is a 3-cycle $D^{\prime} \subseteq G\left[D+a_{1}\right]$ that contains every low vertex of G. Pick D^{\prime} with $b_{1} \in D^{\prime}$ if possible. If $b_{2} \notin D^{\prime}$ then D^{\prime} and $b_{2} a_{1}^{\prime} a_{2}^{\prime} a_{2} b_{2}$ are disjoint cycles. If $b_{3} \notin D^{\prime}$ then $D^{\prime}, b_{3} a_{2} a_{2}^{\prime} a_{1}^{\prime}$ beats D, R by (P1). Else $b_{1} \notin D^{\prime}, a_{1} b_{1} \notin E$, and b_{1} is high. If $b_{1} a_{1}^{\prime} \in E$ then $D^{\prime}, b_{1} a_{1}^{\prime} a_{2}^{\prime} a_{2}$ beats D, R by (P1). Else, $\left\|b_{1}, C\right\|=3$. Then $D^{\prime}, b_{1} c_{1} c_{2} b_{1}$, and $c_{3} e_{2} c_{3}$ are disjoint cycles.

2.3. Key lemma

Now $|R|=3$; say $R=a_{1} a^{\prime} a_{2}$. By Lemma 2.14 the maximum length of a cycle in \mathcal{C} is 4. Fix $C=w_{1} \ldots w_{4} w_{1} \in \mathcal{C}$.

Lemma 2.18. If $D \in \mathcal{C}$ with $\|R, D\| \geq 7$ then $|D|=3,\|R, D\|=7$ and $G[R \cup D]=$ $K_{6}-E\left(K_{3}\right)$.

Proof. Since $\|R, D\| \geq 7$, there exists $a \in R$ with $\|a, D\| \geq 3$. By Claim 2.1, $|D|=3$. If $\left\|a_{i}, D\right\|=3$ for any $i \in[2]$, then (a) and (c) in Claim 2.12 hold, violating (O1). Then $\left\|a_{1}, D\right\|=\left\|a_{2}, D\right\|=2$ and $\left\|a^{\prime}, D\right\|=3$. If $G[R \cup D] \neq K_{6}-K_{3}$ then $N\left(a_{1}\right) \cap D \neq$ $N\left(a_{2}\right) \cap D$. Then there is $w \in N\left(a_{1}\right) \cap D$ with $\left\|a_{2}, D-w\right\|=2$. Then $w a_{1} a^{\prime} w$ and $a_{2}(D-w) a_{2}$ are disjoint cycles.

Lemma 2.19. Let $D \in \mathcal{C}$ with $D=z_{1} \ldots z_{t} z_{1}$. If $\|C, D\| \geq 8$ then $\|C, D\|=8$ and

$$
W:=G[C \cup D] \in\left\{K_{4,4}, \quad K_{1} \vee K_{3,3}, \quad \bar{K}_{3} \vee\left(K_{1}+K_{3}\right)\right\}
$$

Proof. First suppose $|D|=4$. Suppose

$$
\begin{equation*}
W \text { contains two disjoint cycles } T \text { and } C^{\prime} \text { with }|T|=3 \tag{2.8}
\end{equation*}
$$

Then $\mathcal{C}^{\prime}:=\mathcal{C}-C-D+T+C^{\prime}$ is an optimal choice of $k-1$ disjoint cycles, since \mathcal{C} is optimal. By Lemma 2.14, $\left|C^{\prime}\right| \leq 4$. Thus \mathcal{C}^{\prime} beats \mathcal{C} by (O2).

CASE 1: $\Delta(W)=6$. By symmetry, assume $d_{W}\left(w_{4}\right)=6$. Then $\left\|\left\{z_{i}, z_{i+1}\right\}, C-w_{4}\right\| \geq$ 2 for some $i \in\{1,3\}$. Then (2.8) holds with $T=w_{4} z_{4-i} z_{5-i} w_{4}$.

CASE 2: $\Delta(W)=5$. Say $z_{1}, z_{2}, z_{3} \in N\left(w_{1}\right)$. Then $\left\|\left\{z_{i}, z_{4}\right\}, C-w_{1}\right\| \geq 2$ for some $i \in\{1,3\}$. Then (2.8) holds with $T=w_{1} z_{4-i} z_{2} w_{1}$.

CASE 3: $\Delta(W)=4$. Then W is regular. If W has a triangle then (2.8) holds. Else, say $w_{1} z_{1}, w_{1} z_{3} \in E$. Then $z_{1}, z_{3} \notin N\left(w_{2}\right) \cup N\left(w_{4}\right)$, so $z_{2}, z_{4} \in N\left(w_{2}\right) \cup N\left(w_{4}\right)$, and $z_{1}, z_{3} \in N\left(w_{3}\right)$.

Now, suppose $|D|=3$.

CASE 1: $d_{W}\left(z_{h}\right)=6$ for some $h \in[3]$. Say $h=3$. If $w_{i}, w_{i+1} \in N\left(z_{j}\right)$ for some $i \in[4]$ and $j \in[2]$, then $z_{3} w_{i+2} w_{i+3} z_{3}, z_{j} w_{i} w_{i+1} z_{j}$ beats C, D by (O2). Else for all $j \in[2]$, $\left\|z_{j}, C\right\|=2$, and the neighbors of z_{j} in C are nonadjacent. If $w_{i} \in N\left(z_{1}\right) \cap N\left(z_{2}\right) \cap C$, then $z_{3} w_{i+1} w_{i+2} z_{3}, z_{1} z_{2} w_{i} z_{1}$ are preferable to C, D by (O 2). Whence $W=K_{1} \vee K_{3,3}$.

CASE 2: $d_{W}\left(z_{h}\right) \leq 5$ for every $h \in[3]$. Say $d\left(z_{1}\right)=5=d\left(z_{2}\right), d\left(z_{3}\right)=4$, and $w_{1}, w_{2}, w_{3} \in N\left(z_{1}\right)$. If $N\left(z_{1}\right) \cap C \neq N\left(z_{2}\right) \cap C$ then $W-z_{3}$ contains two disjoint cycles, preferable to C, D by (O2); if $w_{i} \in N\left(z_{3}\right)$ for some $i \in\{1,3\}$ then $W-w_{4}$ contains two disjoint cycles. Then $N\left(z_{3}\right)=\left\{w_{2}, w_{4}\right\}$, and so $W=\bar{K}_{3} \vee\left(K_{1}+K_{3}\right)$, where $V\left(K_{1}\right)=\left\{w_{4}\right\}, w_{2} z_{1} z_{2} w_{2}=K_{3}$, and $V\left(K_{3}\right)=\left\{w_{1}, w_{3}, z_{3}\right\}$.

Claim 2.20. For $D \in \mathcal{C}$, if $\left\|\left\{w_{1}, w_{3}\right\}, D\right\| \geq 5$ then $\|C, D\| \leq 6$. If also $|D|=3$ then $\left\|\left\{w_{2}, w_{4}\right\}, D\right\|=0$.

Proof. Assume not. Let $D=z_{1} \ldots z_{t} z_{1}$. Then $\left\|\left\{w_{1}, w_{3}\right\}, D\right\| \geq 5$ and $\|C, D\| \geq 7$. Say $\left\|w_{1}, D\right\| \geq\left\|w_{3}, D\right\|,\left\{z_{1}, z_{2}, z_{3}\right\} \subseteq N\left(w_{1}\right)$, and $z_{l} \in N\left(w_{3}\right)$.

Suppose $\left\|w_{1}, D\right\|=4$. Then $|D|=4$. If $\left\|z_{h}, C\right\| \geq 3$ for some $h \in[4]$ then there is a cycle $B \subseteq G\left[w_{2}, w_{3}, w_{4}, z_{h}\right]$; so $B, w_{1} z_{h+1} z_{h+2} w_{1}$ beats C, D by (O 2). Else there are $j \in\{l-1, l+1\}$ and $i \in\{2,3,4\}$ with $z_{i} w_{j} \in E$. Then $z_{l} z_{j}\left[w_{i} w_{3}\right] z_{l}, w_{1}\left(D-z_{l}-z_{j}\right) w_{1}$ beats C, D by (O2), where $\left[w_{i} w_{3}\right]=w_{3}$ if $i=3$.

Else, $\left\|w_{1}, D\right\|=3$. By assumption, there is $i \in\{2,4\}$ with $\left\|w_{i}, D\right\| \geq 1$. If $|D|=3$, applying Claim 2.12 with $P:=w_{1} w_{i} w_{3}$ and cycle D yields two disjoint cycles in $(D \cup C)-$ w_{6-i}, contradicting (O2). Therefore, suppose $|D|=4$. Because $w_{1} z_{1} z_{2} w_{1}$ and $w_{1} z_{2} z_{3} w_{1}$ are triangles, there do not exist cycles in $G\left[\left\{w_{i}, w_{3}, z_{3}, z_{4}\right\}\right]$ or $G\left[\left\{w_{i}, w_{3}, z_{1}, z_{4}\right\}\right]$ by (O2). Then $\left\|\left\{w_{i}, w_{3}\right\},\left\{z_{3}, z_{4}\right\}\right\|,\left\|\left\{w_{i}, w_{3}\right\},\left\{z_{1}, z_{4}\right\}\right\| \leq 1$. Since $\left\|\left\{w_{i}, w_{3}\right\}, D\right\| \geq 3$, one has a neighbor in z_{2}. If both are adjacent to z_{2}, then $w_{i} w_{3} z_{2} w_{i}, w_{1} z_{1} z_{4} z_{3} w_{1}$ beat C, D by (O2). Then $\left\|\left\{w_{i}, w_{3}\right\}, z_{2}\right\|=1=\left\|\left\{w_{i}, w_{3}\right\}, z_{1}\right\|=\left\|\left\{w_{i}, w_{3}\right\}, z_{3}\right\|$. Let z_{m} be the neighbor of w_{i}. Then $w_{i} w_{1} z_{m} w_{i}, w_{3}\left(D-z_{m}\right) w_{3}$ beat C, D by (O2).

Suppose $|D|=3$ and $\left\|\left\{w_{1}, w_{3}\right\}, D\right\| \geq 5$. If $\left\|\left\{w_{2}, w_{4}\right\}, D\right\| \geq 1$, then $C \cup D$ contains two triangles, and these are preferable to C, D by (O2).

For $v \in N(C)$, set type $(v)=i \in[2]$ if $N(v) \cap C \subseteq\left\{w_{i}, w_{i+2}\right\}$. Call v light if $\|v, C\|=1$; else v is heavy. For $D=z_{1} \ldots z_{t} z_{1} \in \mathcal{C}$, put $H:=H(D):=G[R \cup D]$.

Claim 2.21. If $\left\|\left\{a_{1}, a_{2}\right\}, D\right\| \geq 5$ then there exists $i \in[2]$ such that
(a) $\|C, H\| \leq 12$ and $\left\|\left\{w_{i}, w_{i+2}\right\}, H\right\| \leq 4$;
(b) $\|C, H\|=12$;
(c) $N\left(w_{i}\right) \cap H=N\left(w_{i+2}\right) \cap H=\left\{a_{1}, a_{2}\right\}$ and $N\left(w_{3-i}\right) \cap H=N\left(w_{5-i}\right) \cap H=V(D) \cup\left\{a^{\prime}\right\}$.

Proof. By Claim 2.1, $|D|=3$. Choose notation so that $\left\|a_{1}, D\right\|=3$ and $z_{2}, z_{3} \in N\left(a_{2}\right)$. (a) Using that $\left\{w_{1}, w_{3}\right\}$ and $\left\{w_{2}, w_{4}\right\}$ are independent and Lemma 2.19:

$$
\begin{equation*}
\|C, H\|=\|C, V-(V-H)\| \geq 2(4 k-3)-8(k-2)=10 \tag{2.9}
\end{equation*}
$$

Let $v \in V(H)$. As $K_{4} \subseteq H, H-v$ contains a 3 -cycle. If $C+v$ contains another 3 -cycle then these 3 -cycles beat C, D by (O2). Thus, type (v) is defined for all $v \in N(C) \cap H$, and $\|C, H\| \leq 12$. If only five vertices of H have neighbors in C then there is $i \in[2]$ such that at most two vertices in H have type i. Then $\left\|\left\{w_{i}, w_{i+2}\right\}, H\right\| \leq 4$. Else every vertex in H has a neighbor in C. By (2.9), H has at least four heavy vertices.

Let H^{\prime} be the spanning subgraph of H with $x y \in E\left(H^{\prime}\right)$ iff $x y \in E(H)$ and $H-\{x, y\}$ contains a 3 -cycle. If $x y \in E\left(H^{\prime}\right)$ then $N(x) \cap N(y) \cap C=\emptyset$ by (O2). Now, if x and y have the same type, then they are both light. By inspection, $H^{\prime} \supseteq z_{1} a_{1} a^{\prime} a_{2} z_{2}+a_{2} z_{3}$.

Let type $\left(a_{2}\right)=i$. If a_{2} is heavy then its neighbors a^{\prime}, z_{2}, z_{3} have type $3-i$. Either z_{1}, a_{1} are both light or they have different types. Anyway, $\left\|\left\{w_{i}, w_{i+2}\right\}, H\right\| \leq 4$. Else a_{2} is light. Then because there are at least four heavy vertices in H, at least one of z_{1}, a_{1} is heavy and so they have different types. Also any type- i vertex in a^{\prime}, z_{2}, z_{3} is light, but at most one vertex of a, z_{2}, z_{3} is light because there are at most two light vertices in H. Then $\left\|\left\{w_{i}, w_{i+2}\right\}, H\right\| \leq 4$.
(b) By (a), there is i with $\left\|\left\{w_{i}, w_{i+2}\right\}, H\right\| \leq 4$; thus

$$
\left\|\left\{w_{i}, w_{i+2}\right\}, V-H\right\| \geq(4 k-3)-4=4(k-2)+1
$$

Now $\left\|\left\{w_{i}, w_{i+2}\right\}, D^{\prime}\right\| \geq 5$ for some $D^{\prime} \in \mathcal{C}-C-D$. By (a), Claim 2.20, and Lemma 2.19,

$$
12 \geq\|C, H\|=\left\|C, V-D^{\prime}-\left(V-H-D^{\prime}\right)\right\| \geq 2(4 k-3)-6-8(k-3)=12 .
$$

(c) By (b), $\|C, H\|=12$, so each vertex in H is heavy. Thus type (v) is the unique proper 2-coloring of H^{\prime}, and (c) follows.

Lemma 2.22. There exists $C^{*} \in \mathcal{C}$ such that $3 \leq\left\|\left\{a_{1}, a_{2}\right\}, C^{*}\right\| \leq 4$ and $\left\|\left\{a_{1}, a_{2}\right\}, D\right\|=4$ for all $D \in \mathcal{C}-C^{*}$. If $\left\|\left\{a_{1}, a_{2}\right\}, C^{*}\right\|=3$ then one of a_{1}, a_{2} is low.

Proof. Suppose $\left\|\left\{a_{1}, a_{2}\right\}, D\right\| \geq 5$ for some $D \in \mathcal{C}$; set $H:=H(D)$. Using Claim 2.21, choose notation so that $\left\|\left\{w_{1}, w_{3}\right\}, H\right\| \leq 4$. Now

$$
\left\|\left\{w_{1}, w_{3}\right\}, V-H\right\| \geq 4 k-3-4=4(k-2)+1
$$

Thus there is a cycle $B \in \mathcal{C}-D$ with $\left\|\left\{w_{1}, w_{3}\right\}, B\right\| \geq 5$; say $\left\|\left\{w_{1}, B\right\}\right\|=3$. By Claim 2.20, $\|C, B\| \leq 6$. Note by Claim 2.21, if $|B|=4$ then for an edge $z_{1} z_{2} \in N\left(w_{1}\right)$, $w_{1} z_{1} z_{2} w_{1}$ and $w_{2} w_{3} a_{2} a^{\prime} w_{2}$ beat B, C by (O 2). Then $|B|=3$. Using Claim 2.21(b) and Lemma 2.19,

$$
2(4 k-3) \leq\|C, V\|=\|C, H \cup B \cup(V-H-B)\| \leq 12+6+8(k-3)=2(4 k-3) .
$$

Thus, $\left\|C, D^{\prime}\right\|=8$ for all $D^{\prime} \in \mathcal{C}-C-D$. By Lemma 2.19, $\left\|\left\{w_{1}, w_{3}\right\}, D^{\prime}\right\|=$ $\left\|\left\{w_{2}, w_{4}\right\}, D^{\prime}\right\|=4$. By Claim 2.21(c) and Claim 2.20,

Fig. 6. Claim 2.24.

$$
4 k-3 \leq\left\|\left\{w_{2}, w_{4}\right\}, H \cup B \cup(V-H-B)\right\| \leq 8+1+4(k-3)=4 k-3
$$

and so $\left\|\left\{w_{2}, w_{4}\right\}, B\right\|=1$. Say $\left\|w_{2}, B\right\|=1$. Since $|B|=3$, by Claim 2.12, $G\left[B \cup C-w_{4}\right]$ has two disjoint cycles that are preferable to C, B by (O2). This contradiction implies $\left\|\left\{a_{1}, a_{2}\right\}, D\right\| \leq 4$ for all $D \in \mathcal{C}$. Since $\left\|\left\{a_{1}, a_{2}\right\}, V\right\| \geq 4 k-3$ and $\left\|\left\{a_{1}, a_{2}\right\}, R\right\|=2$, we get $\left\|\left\{a_{1}, a_{2}\right\}, D\right\| \geq 3$, and equality holds for at most one $D \in \mathcal{C}$, and only if one of a_{1} and a_{2} is low.

2.4. Completion of the proof of Theorem 1.7

For an optimal \mathcal{C}, let $\mathcal{C}_{i}:=\{D \in \mathcal{C}:|D|=i\}$ and $t_{i}:=\left|\mathcal{C}_{i}\right|$. For $C \in \mathcal{C}_{4}$, let $Q_{C}:=Q_{C}(\mathcal{C}):=G[R(\mathcal{C}) \cup C]$. A 3-path R^{\prime} is \mathcal{D}-useful if $R^{\prime}=R\left(\mathcal{C}^{\prime}\right)$ for an optimal set \mathcal{C}^{\prime} with $\mathcal{D} \subseteq \mathcal{C}^{\prime}$; we write D-useful for $\{D\}$-useful.

Lemma 2.23. Let \mathcal{C} be an optimal set and $C \in \mathcal{C}_{4}$. Then $Q=Q_{C} \in\left\{K_{3,4}, K_{3,4}-e\right\}$.

Proof. Since \mathcal{C} is optimal, Q does not contain a 3-cycle. Then for all $v \in V(C), N(v) \cap R$ is independent and $\left\|a_{1}, C\right\|,\left\|a_{2}, C\right\| \leq 2$. By Lemma 2.22, $\left\|\left\{a_{1}, a_{2}\right\}, C\right\| \geq 3$. Say $a_{1} w_{1}, a_{1} w_{3} \in E$ and $\left\|a_{2}, C\right\| \geq 1$. Then type $\left(a_{1}\right)$ and type $\left(a_{2}\right)$ are defined.

Claim 2.24. type $\left(a_{1}\right)=\operatorname{type}\left(a_{2}\right)$.
Proof. Suppose not. Then $\left\|w_{i}, R\right\| \leq 1$ for all $i \in[4]$. Say $a_{2} w_{2} \in E$. If $w_{i} a_{j} \in E$ and $\left\|a_{3-j}, C\right\|=2$, let $R_{i}=w_{i} a_{j} a^{\prime}$ and $C_{i}=a_{3-j}\left(C-w_{i}\right) a_{3-j}$ (see Fig. 6). Then R_{i} is $\left(\mathcal{C}-C+C_{i}\right)$-useful. Let $\lambda(X)$ be the number of low vertices in $X \subseteq V$. As Q does not contain a 3 -cycle, $\lambda(R)+\lambda(C) \leq 2$. We claim:

$$
\begin{equation*}
\forall D \in \mathcal{C}-C, \quad\left\|a^{\prime}, D\right\| \leq 2 \tag{2.10}
\end{equation*}
$$

Fix $D \in \mathcal{C}-C$, and suppose $\left\|a^{\prime}, D\right\| \geq 3$. By Claim 2.1, $|D|=3$. Since

$$
\begin{align*}
\|C, D\| & =\|C, \mathcal{C}\|-\|C, \mathcal{C}-D\| \\
& \geq 4(2 k-1)-\lambda(C)-\|C, R\|-8(k-2) \\
& =12-\|C, R\|-\lambda(C) \geq 6+\lambda(R), \tag{2.11}
\end{align*}
$$

we get that $\left\|w_{i}, D\right\| \geq 2$ for some $i \in$ [4]. If R_{i} is defined, R_{i} is $\left\{C_{i}, D\right\}$-useful. By Lemma 2.22, $\left\|\left\{w_{i}, a^{\prime}\right\}, D\right\| \leq 4$. As $\left\|w_{i}, D\right\| \geq 2,\left\|a^{\prime}, D\right\| \leq 2$, proving (2.10). Then R_{i} is not defined, so a_{2} is low with $N\left(a_{2}\right) \cap C=\left\{w_{2}\right\}$ and $\left\|w_{2}, D\right\| \leq 1$. Then by (2.11), $\left\|C-w_{2}, D\right\| \geq 6$. Note $G\left[a^{\prime}+D\right]=K_{4}$, so for any $z \in D, D-z+a^{\prime}$ is a triangle, so by (O2) the neighbors of z in C are independent. Then $\left\|C-w_{2}, D\right\|=6$ with $N(z) \cap C=\left\{w_{1}, w_{3}\right\}$ for every $z \in D$. Then $\left\|w_{2}, D\right\|=1$, say $z w_{2} \in E(G)$, and now $w_{2} w_{3} z w_{2}, w_{1}(D-z) w_{1}$ beat C, D by (O2).

If $\left\|a^{\prime}, C\right\| \geq 1$ then $a^{\prime} w_{4} \in E$ and $N\left(a_{2}\right) \cap C=\left\{w_{2}\right\}$. Now R_{2} is C_{2}-useful, type $\left(a^{\prime}\right) \neq$ type $\left(w_{2}\right)$ with respect to C_{2}, and the middle vertex a_{2} of R_{2} has no neighbors in C_{2}. Thus we may assume $\left\|a^{\prime}, C\right\|=0$. Then a^{\prime} is low:

$$
\begin{equation*}
d\left(a^{\prime}\right)=\left\|a^{\prime}, C \cup R\right\|+\left\|a^{\prime}, \mathcal{C}-C\right\| \leq 0+2+2(k-2)=2 k-2 \tag{2.12}
\end{equation*}
$$

Thus all vertices of C are high. Using Lemma 2.19, this yields:

$$
\begin{equation*}
4 \geq\|C, R\|=\|C, V-(V-R)\| \geq 4(2 k-1)-8(k-1)=4 \tag{2.13}
\end{equation*}
$$

As this calculation is tight, $d(w)=2 k-1$ for every $w \in C$. Thus $d\left(a^{\prime}\right) \geq 2 k-2$, so (2.12) is tight. Hence $\left\|a^{\prime}, D\right\|=2$ for all $D \in \mathcal{C}-C$.

Pick $D=z_{1} \ldots z_{t} z_{1} \in \mathcal{C}-C$ with $\left\|\left\{a_{1}, a_{2}\right\}, D\right\|$ maximum. By Lemma 2.22, $3 \leq$ $\left\|\left\{a_{1}, a_{2}\right\}, D\right\| \leq 4$. Say $\left\|a_{i}, D\right\| \geq 2$. By (2.13), $\|C, D\|=8$. By Lemma 2.19,

$$
W:=G[C \cup D] \in\left\{K_{4,4}, \bar{K}_{3} \vee\left(K_{3}+K_{1}\right), K_{1} \vee K_{3,3}\right\}
$$

CASE 1: $W=K_{4,4}$. Then $\|D, R\| \geq 5>|D|=4$, so $\|z, R\| \geq 2$ for some $z \in$ $V(D)$. Let $w \in N(z) \cap C$. Either w and z have a common neighbor in $\left\{a_{1}, a_{2}\right\}$ or z has two consecutive neighbors in R. Regardless, $G[R+w+z]$ contains a 3 -cycle D^{\prime} and $G[W-w-z]$ contains a 4 -cycle C^{\prime}. Thus C^{\prime}, D^{\prime} beats C, D by (O2).

CASE 2: $W=\bar{K}_{3} \vee\left(K_{3}+K_{1}\right)$. As $\left\|\left\{a^{\prime}, a_{i}\right\}, D\right\| \geq 4>|D|$, there is $z \in V(D)$ with $D^{\prime}:=z a^{\prime} a_{i} z \subseteq G$. Also $W-z$ contains a 3 -cycle C^{\prime}, so C^{\prime}, D^{\prime} beats C, D by (O2).

CASE 3: $W=K_{1} \vee K_{3,3}$. Some $v \in V(D)$ satisfies $\|v, W\|=6$. There is no $w \in W-v$ such that w has two adjacent neighbors in R : else a and v would be contained in disjoint 3 -cycles, contradicting the choice of C, D. Then $\|w, R\| \leq 1$ for all $w \in W-v$, because type $\left(a_{1}\right) \neq$ type $\left(a_{2}\right)$. Similarly, no $z \in D-v$ has two adjacent neighbors in R. Thus

$$
2+3 \leq\left\|a^{\prime}, D\right\|+\left\|\left\{a_{1}, a_{2}\right\}, D\right\|=\|R, D\|=\|R, D-v\|+\|R, v\| \leq 2+3
$$

so $\left\|\left\{a_{1}, a_{2}\right\}, D\right\|=3, R \subseteq N(v)$, and $N\left(a_{i}\right) \cap K_{3,3}$ is independent. By Lemma 2.22 and the maximality of $\left\|\left\{a_{1}, a_{2}\right\}, D\right\|=3, k=3$. Thus $G=\mathbf{Y}_{2}$, a contradiction.

Returning to the proof of Lemma 2.23, we have type $\left(a_{1}\right)=\operatorname{type}\left(a_{2}\right)$. Using Lemma 2.22 , choose notation so that $a_{1} w_{1}, a_{1} w_{3}, a_{2} w_{1} \in E$. Then Q has bipartition $\{X, Y\}$ with $X:=\left\{a^{\prime}, w_{1}, w_{3}\right\}$ and $Y:=\left\{a_{1}, a_{2}, w_{2}, w_{4}\right\}$. The only possible nonedges
between X and Y are $a^{\prime} w_{2}, a^{\prime} w_{4}$ and $a_{2} w_{3}$. Let $C^{\prime}:=w_{1} R w_{1}$. Then $R^{\prime}:=w_{2} w_{3} w_{4}$ is C^{\prime}-useful. By Lemma 2.22, $\left\|\left\{w_{2}, w_{4}\right\}, C^{\prime}\right\| \geq 3$. It is already true that $w_{2}, w_{4} \in N\left(w_{1}\right)$; so because Q has no C_{3}, (say) $a^{\prime} w_{2} \in E$. Now, let $C^{\prime \prime}:=a_{1} a^{\prime} w_{2} w_{3} a_{1}$. Then $R^{\prime \prime}:=a_{2} w_{1} w_{4}$ is $C^{\prime \prime}$-useful; so $\left\|\left\{a_{2}, w_{4}\right\}, C^{\prime \prime}\right\| \geq 3$. Again, Q contains no C_{3}, so $a^{\prime} w_{4}$ or $a_{2} w_{3}$ is an edge of G. Thus $Q \in\left\{K_{3,4}, K_{3,4}-e\right\}$.

Proof of Theorem 1.7. Using Lemma 2.23, one of two cases holds:
(C1) For some optimal set \mathcal{C} and $C^{\prime} \in \mathcal{C}_{4}, Q_{C^{\prime}}=K_{3,4}-x_{0} y_{0}$;
(C2) for all optimal sets \mathcal{C} and $C \in \mathcal{C}_{4}, G[R \cup C]=K_{3,4}$.
Fix an optimal set \mathcal{C} and $C^{\prime} \in \mathcal{C}_{4}$, where $R=y_{0} x^{\prime} y$ with $d\left(y_{0}\right) \leq d(y)$, such that in (C1), $Q_{C^{\prime}}=K_{3,4}-x_{0} y_{0}$. By Lemmas 2.22 and 2.23 , for all $C \in \mathcal{C}_{4}, 1 \leq\left\|y_{0}, C\right\| \leq\|y, C\| \leq 2$ and $\left\|y_{0}, C\right\|=1$ only in Case (C1) when $C=C^{\prime}$. Put $H:=R \cup \bigcup \mathcal{C}_{4}, S=S(\mathcal{C}):=$ $N(y) \cap H$, and $T=T(\mathcal{C}):=V(H) \backslash S$. As $\|y, R\|=1$ and $\|y, C\|=2$ for each $C \in \mathcal{C}_{4}$, $|S|=1+2 t_{4}=|T|-1$.

Claim 2.25. H is a bipartite graph with parts S and T. In case (C1), $H=K_{2 t_{4}+1,2 t_{4}+2}-$ $x_{0} y_{0}$; else $H=K_{2 t_{4}+1,2 t_{4}+2}$.

Proof. By Lemma 2.23, $\left\|x^{\prime}, S\right\|=\|y, T\|=\left\|y_{0}, T\right\|=0$.
By Lemmas 2.22 and $2.23,\left\|y_{0}, S\right\|=|S|-1$ in (C1) and $\left\|y_{0}, S\right\|=|S|$ otherwise. We claim that for every $t \in T-y_{0},\|t, S\|=|S|$. This clearly holds for y, so take $t \in H-\left\{y, y_{0}\right\}$. Then $t \in C$ for some $C \in \mathcal{C}_{4}$. Let $\mathcal{R}^{*}:=t x^{\prime} y_{0}$ and $\mathcal{C}^{*}:=y(C-t) y$. (Note R^{*} is a path and C^{*} is a cycle by Lemma 2.23 and the choice of y_{0}.) Since R^{*} is C^{*}-useful, by Lemmas 2.22 and 2.23, and by choice of $y_{0},\|t, S\|=\|y, S\|=|S|$. Then in (C1), $H \supseteq K_{2 t_{4}+1,2 t_{4}+2}-x_{0} y_{0}$ and $x_{0} y_{0} \notin E(H)$; else $H \supseteq K_{2 t_{4}+1,2 t_{4}+2}$.

Now we easily see that if any edge exists inside S or T, then $C_{3}+\left(t_{4}-1\right) C_{4} \subseteq H$, and these cycles beat \mathcal{C}_{4} by (O2).

By Claim 2.25 all pairs of vertices of T are the ends of a \mathcal{C}_{3}-useful path. Now we use Lemma 2.22 to show that they have essentially the same degree to each cycle in \mathcal{C}_{3}.

Claim 2.26. If $v \in T$ and $D \in \mathcal{C}_{3}$ then $1 \leq\|v, D\| \leq 2$; if $\|v, D\|=1$ then v is low and for all $C \in \mathcal{C}_{3}-D,\|v, C\|=2$.

Proof. By Claim 2.25, $H+x_{0} y_{0}$ is a complete bipartite graph. Let $y_{1}, y_{2} \in T-v$ and $u \in S-x_{0}$. Then $R^{\prime}=y_{1} u v, R^{\prime \prime}=y_{2} u v$, and $R^{\prime \prime \prime}=y_{1} u y_{2}$ are \mathcal{C}_{3}-useful. By Lemma 2.22,

$$
3 \leq\left\|\left\{v, y_{1}\right\}, D\right\|,\left\|\left\{v, y_{2}\right\}, D\right\|,\left\|\left\{y_{1}, y_{2}\right\}, D\right\| \leq 4
$$

Say $\left\|y_{1}, D\right\| \leq 2 \leq\left\|y_{2}, D\right\|$. Thus

$$
1 \leq\left\|\left\{v, y_{1}\right\}, D\right\|-\left\|y_{1}, D\right\|=\|v, D\|=\left\|\left\{v, y_{2}\right\}, D\right\|-\left\|y_{2}, D\right\| \leq 2
$$

Suppose $\|v, D\|=1$. By Claim 2.25 and Lemma 2.22, for any $v^{\prime} \in T-v$,

$$
4 k-3 \leq\left\|\left\{v, v^{\prime}\right\}, H \cup\left(\mathcal{C}_{3}-D\right) \cup D\right\| \leq 2\left(2 t_{4}+1\right)+4\left(t_{3}-1\right)+3=4 k-3 .
$$

Thus for all $C \in \mathcal{C}_{3}-D_{0},\left\|\left\{v, v^{\prime}\right\}, C\right\|=4$, and so $\|v, C\|=2$. Hence v is low.
Next we show that all vertices in T have essentially the same neighborhood in each $C \in \mathcal{\mathcal { C } _ { 3 }}$.

Claim 2.27. Let $z \in D \in \mathcal{C}_{3}$ and $v, w \in T$ with w high.
(1) If $z v \in E$ and $z w \notin E$ then $T-w \subseteq N(z)$.
(2) $N(v) \cap D \subseteq N(w) \cap D$.

Proof. (1) Since w is high, Claim 2.26 implies $\|w, D\|=2$. Since $z w \notin E$, we see $D^{\prime}:=w(D-z) w$ is a 3 -cycle. Let $u \in S-x_{0}$. Then $z v u=R\left(\mathcal{C}^{\prime}\right)$ for some optimal set \mathcal{C}^{\prime} with $\mathcal{C}_{3}-D+D^{\prime} \subseteq \mathcal{C}^{\prime}$. By Claim 2.25, $T\left(\mathcal{C}^{\prime}\right)=S+z$ and $S\left(\mathcal{C}^{\prime}\right)=T-w$. If (C2) holds, then $T-w=S\left(\mathcal{C}^{\prime}\right) \subseteq N(z)$, as desired. Suppose (C1) holds, so there are $x_{0} \in S$ and $y_{0} \in T$ with $x_{0} y_{0} \notin E$. By Claims 2.25 and $2.26, d\left(y_{0}\right) \leq(|S|-1)+2 t_{3}=2 k-2$, so y_{0} is low. Since w is high, we see $y_{0} \in T-w$. But now apply Claims 2.25 and 2.26 to $T\left(\mathcal{C}^{\prime}\right)$: $d\left(x_{0}\right) \leq\left|S\left(\mathcal{C}^{\prime}\right)\right|-1+2 t_{3}=2 k-2$, and x_{0} is low. As $x_{0} y_{0} \notin E$, this is a contradiction. Now $T-w=S\left(\mathcal{C}^{\prime}\right) \subseteq N(z)$.
(2) Suppose there exists $z \in N(v) \cap D \backslash N(w)$. By (1), $T-w \subseteq N(z)$. Let $w^{\prime} \in T-w$ be high. By Claim 2.26, $\left\|w^{\prime}, D\right\|=2$. Now there exists $z^{\prime} \in N(w) \cap D \backslash N\left(w^{\prime}\right)$ and $z \neq z^{\prime}$. By (1), $T-w^{\prime} \subseteq N\left(z^{\prime}\right)$. As $|T| \geq 4$ and at least three of its vertices are high, there exists a high $w^{\prime \prime} \in T-w-w^{\prime}$. Since $w^{\prime \prime} z, w^{\prime \prime} z^{\prime} \in E$, there exists $z^{\prime \prime} \in N(w) \cap D \backslash N\left(w^{\prime \prime}\right)$ with $\left\{z, z^{\prime}, z^{\prime \prime}\right\}=V(D)$. By (1), $T-w^{\prime \prime} \subseteq N\left(z^{\prime \prime}\right)$. Since $|T| \geq 4$, there exists $x \in$ $T \backslash\left\{w, w^{\prime}, w^{\prime \prime}\right\}$. Now $\|x, D\|=3$, contradicting Claim 2.26.

Let $y_{1}, y_{2} \in T-y_{0}$ and let $x \in S$ with $x=x_{0}$ if $x_{0} y_{0} \notin E$. By Claim 2.25, $y_{1} x y_{2}$ is a path, and $G-\left\{y_{1}, y_{2}, x\right\}$ contains an optimal set \mathcal{C}^{\prime}. Recall y_{0} was chosen in T with minimum degree, so y_{1} and y_{2} are high and by Claim $2.26\left\|y_{i}, D\right\|=2$ for each $i \in[2]$ and each $D \in \mathcal{C}_{3}$. Let $N=N\left(y_{1}\right) \cap \bigcup \mathcal{C}_{3}$ and $M=\bigcup \mathcal{C}_{3} \backslash N$ (see Fig. 7). By Claim 2.25, T is independent. By Claim 2.27, for every $y \in T, N(y) \cap \bigcup \mathcal{C}_{3} \subseteq N$, so $E(M, T)=\emptyset$. Since $y_{2} \neq y_{0}$, also $N\left(y_{2}\right) \cap \bigcup \mathcal{C}_{3}=N$.

Claim 2.28. M is independent.

Proof. First, we show

$$
\begin{equation*}
\|z, S\|>t_{4} \text { for all } z \in M \tag{2.14}
\end{equation*}
$$

Fig. 7. Configuration of G, showing sets M, N, S, and T.

If not then there exists $z \in D \in \mathcal{C}_{3}$ with $\|z, S\| \leq t_{4}$. Since $\|M, T\|=\|T, T\|=0$,

$$
\begin{aligned}
\left\|\left\{y_{1}, z\right\}, \mathcal{C}_{3}\right\| & \geq 4 k-3-\left\|\left\{z, y_{1}\right\}, S\right\| \geq 4\left(t_{4}+t_{3}+1\right)-3-\left(2 t_{4}+1+t_{4}\right) \\
& =t_{4}+4 t_{3}>4 t_{3} .
\end{aligned}
$$

Then there is $D^{\prime}=z^{\prime} z_{1}^{\prime} z_{2}^{\prime} z^{\prime} \in \mathcal{C}_{3}$ with $\left\|\left\{z, y_{1}\right\}, D^{\prime}\right\| \geq 5$ and $z^{\prime} \in M$. As $\left\|y_{1}, D\right\|=2$, $\left\|z, D^{\prime}\right\|=3$. Since $D^{*}:=z z^{\prime} z_{2}^{\prime} z$ is a cycle, $x y_{2} z_{1}^{\prime}$ is D^{*}-useful. As $\left\|z_{1}^{\prime}, D^{*}\right\|=3$, this contradicts Claim 2.26, proving (2.14).

Suppose $z z^{\prime} \in E(M)$; say $z \in D \in \mathcal{C}_{3}$ and $z^{\prime} \in D^{\prime} \in \mathcal{C}_{3}$. By (2.14), there is $u \in$ $N(z) \cap N\left(z^{\prime}\right) \cap S$. Then $z z^{\prime} u z, y_{1}(D-z) y_{1}$ and $y_{2}\left(D^{\prime}-z^{\prime}\right) y_{2}$ are disjoint cycles, contrary to (O1).

By Claims 2.25 and 2.28, M and T are independent; as remarked above $E(M, T)=\emptyset$. Then $M \cup T$ is independent. This contradicts (H3), since

$$
|G|-2 k+1=3 t_{3}+4 t_{4}+3-2\left(t_{3}+t_{4}+1\right)+1=t_{3}+2 t_{4}+2=|M \cup T| \leq \alpha(G) .
$$

The proof of Theorem 1.7 is now complete.

3. The case $k=2$

Lovász [20] observed that any (simple or multi-) graph can be transformed into a multigraph with minimum degree at least 3 , without affecting the maximum number of disjoint cycles in the graph, by using a sequence of operations of the following three types: (i) deleting a bud; (ii) suppressing a vertex v of degree 2 that has two neighbors x and y, i.e., deleting v and adding a new (possibly parallel) edge between x and y; and (iii) increasing the multiplicity of a loop or edge with multiplicity 2 . Here loops and two parallel edges are considered cycles, so forests have neither. Also K_{s} and $K_{s, t}$ denote simple graphs. Let W_{s}^{*} denote a wheel on s vertices whose spokes, but not outer cycle edges, may be multiple. The following theorem characterizes those multigraphs that do not have two disjoint cycles.

Theorem 3.1 (Lovász [20]). Let G be a multigraph with $\delta(G) \geq 3$ and no two disjoint cycles. Then G is one of the following: (1) K_{5}, (2) W_{s}^{*}, (3) $K_{3,|G|-3}$ together with a multigraph on the vertices of the (first) 3-class, and (4) a forest F and a vertex x with possibly some loops at x and some edges linking x to F.

Fig. 8. Theorem 3.2.

Let \mathcal{G} be the class of simple graphs G with $|G| \geq 6$ and $\sigma_{2}(G) \geq 5$ that do not have two disjoint cycles. Fix $G \in \mathcal{G}$. A vertex in G is low if its degree is at most 2. The low vertices form a clique Q of size at most 2 -if $|Q|=3$, then Q is a component-cycle, and $G-Q$ has another cycle. By Lovász's observation, G can be reduced to a graph H of type (1-4). Reversing this reduction, G can be obtained from H by adding buds and subdividing edges. Let $Q^{\prime}:=V(G) \backslash V(H)$. It follows that $Q \subseteq Q^{\prime}$. If $Q^{\prime} \neq Q$, then Q consists of a single leaf in G with a neighbor of degree 3 , so G is obtained from H by subdividing an edge and adding a leaf to the degree- 2 vertex. If $Q^{\prime}=Q$, then Q is a component of G, or $G=H+Q+e$ for some edge $e \in E(H, Q)$, or at least one vertex of Q subdivides an edge $e \in E(H)$. In the last case, when $|Q|=2, e$ is subdivided twice by Q. As G is simple, H has at most one multiple edge, and its multiplicity is at most 2 .

In case (4), because $\delta(H) \geq 3$, either F has at least two buds, each linked to x by multiple edges, or F has one bud linked to x by an edge of multiplicity at least 3 . This case cannot arise from G. Also, $\delta(H)=3$, unless $H=K_{5}$, in which case $\delta(H)=4$. Then Q is not an isolated vertex, lest deleting Q leave H with $\delta(H) \geq 5>4$; and if Q has a vertex of degree 1 then $H=K_{5}$. Else all vertices of Q have degree 2 , and Q consists of the subdivision vertices of one edge of H. We have the following lemma.

Lemma 3.2. Let G be a graph with $|G| \geq 6$ and $\sigma_{2}(G) \geq 5$ that does not have two disjoint cycles. Then G is one of the following (see Fig. 8):
(a) $K_{5}+K_{2}$;
(b) K_{5} with a pendant edge, possibly subdivided;
(c) K_{5} with one edge subdivided and then a leaf added adjacent to the degree-2 vertex;
(d) a graph H of type (1-3) with no multiple edge, and possibly one edge subdivided once or twice, and if $|H|=6-i$ with $i \geq 1$ then some edge is subdivided at least i times;
(e) a graph H of type (2) or (3) with one edge of multiplicity two, and one of its parallel parts is subdivided once or twice-twice if $|H|=4$.

4. Connections to equitable coloring

A proper vertex coloring of a graph G is equitable if any two color classes differ in size by at most one. In 1970 Hajnal and Szemerédi proved:

Theorem 4.1 ([9]). Every graph G with $\Delta(G)+1 \leq k$ has an equitable k-coloring.
For a shorter proof of Theorem 4.1, see [17]; for an $O\left(k|G|^{2}\right)$-time algorithm see [16].
Motivated by Brooks' Theorem, it is natural to ask which graphs G with $\Delta(G)=k$ have equitable k-colorings. Certainly such graphs are k-colorable. Also, if k is odd then $K_{k, k}$ has no equitable k-coloring. Chen, Lih, and Wu [2] conjectured (in a different form) that these are the only obstructions to an equitable version of Brooks' Theorem:

Conjecture 4.2 ([2]). If G is a graph with $\chi(G), \Delta(G) \leq k$ and no equitable k-coloring then k is odd and $K_{k, k} \subseteq G$.

In [2], Chen, Lih, and Wu proved Conjecture 4.2 holds for $k=3$. By a simple trick, it suffices to prove the conjecture for graphs G with $|G|=k s$. Combining the results of the two papers [13] and [14], we have:

Theorem 4.3. Suppose G is a graph with $|G|=k s$. If $\chi(G), \Delta(G) \leq k$ and G has no equitable k-coloring, then k is odd and $K_{k, k} \subseteq G$ or both $k \geq 5$ [13] and $s \geq 5$ [14].

A graph G is k-equitable if $|G|=k s, \chi(G) \leq k$ and every proper k-coloring of G has s vertices in each color class. The following strengthening of Conjecture 4.2, if true, provides a characterization of graphs G with $\chi(G), \Delta(G) \leq k$ that have an equitable k-coloring.

Conjecture 4.4 ([12]). Every graph G with $\chi(G), \Delta(G) \leq k$ has no equitable k-coloring if and only if k is odd and $G=H+K_{k, k}$ for some k-equitable graph H.

The next theorem collects results from [12]. Together with Theorem 4.3 it yields Corollary 4.6.

Theorem 4.5 ([12]). Conjecture 4.2 is equivalent to Conjecture 4.4. Indeed, for any k_{0} and n_{0}, Conjecture 4.2 holds for $k \leq k_{0}$ and $|G| \leq n_{0}$ if and only if Conjecture 4.4 holds for $k \leq k_{0}$ and $|G| \leq n_{0}$.

Corollary 4.6. A graph G with $|G|=3 k$ and $\chi(G), \Delta(G) \leq k$ has no equitable k-coloring if and only if k is odd and $G=K_{k, k}+K_{k}$.

We are now ready to complete our answer to Dirac's question for simple graphs.
Proof of Theorem 1.3. Assume $k \geq 2$ and $\delta(G) \geq 2 k-1$. It is apparent that if any of (i), (H3), or (H4) in Theorem 1.3 fail, then G does not have k disjoint cycles. Now suppose G satisfies (i), (H3), and (H4). If $k=2$ then $|G| \geq 6$ and $\delta(G) \geq 3$. Thus G has no subdivided edge, and only (d) of Lemma 3.2 is possible. By (i), $G \neq K_{5}$; by (H4), G is not a wheel; and by (H3), G is not type (3) of Theorem 3.1. Then G has 2 disjoint cycles. Finally, suppose $k \geq 3$. Since G satisfies (ii), we see $G \notin\left\{\mathbf{Y}_{1}, \mathbf{Y}_{2}\right\}$ and G satisfies (H2). If $|G| \geq 3 k+1$, then G has k disjoint cycles by Theorem 1.7. Otherwise, $|G|=3 k$ and G has k disjoint cycles if and only if its vertices can be partitioned into disjoint K_{3} 's. This is equivalent to \bar{G} having an equitable k-coloring. By (ii), $\Delta(\bar{G}) \leq k$, and by (H3), $\omega(\bar{G}) \leq k$. Then by Brooks' Theorem, $\chi(\bar{G}) \leq k$. By (H4) and Corollary 4.6, \bar{G} has an equitable k-coloring.

Next we turn to Ore-type results on equitable coloring. To complement Theorem 1.7, we need a theorem that characterizes when a graph G with $|G|=3 k$ that satisfies (H2) and (H3) has k disjoint cycles, or equivalently, when its complement \bar{G} has an equitable coloring. The complementary version of $\sigma_{2}(G)$ is the maximum Ore-degree $\theta(H):=\max _{x y \in E(H)}(d(x)+d(y))$. Then $\theta(\bar{G})=2|G|-\sigma_{2}(G)-2$, and if $|G|=3 k$ and $\sigma_{2}(G) \geq 4 k-3$ then $\theta(\bar{G}) \leq 2 k+1$. Also, if G satisfies (H3) then $\omega(\bar{G}) \leq k$. This would correspond to an Ore-Brooks-type theorem on equitable coloring.

Several papers, including $[10,11,19]$, address equitable colorings of graphs G with $\theta(G)$ bounded from above. For instance, the following is a natural Ore-type version of Theorem 4.1.

Theorem 4.7 ([10]). Every graph G with $\theta(G) \leq 2 k-1$ has an equitable k-coloring.
Even for proper (not necessarily equitable) coloring, an Ore-Brooks-type theorem requires forbidding some extra subgraphs when θ is 3 or 4 . It was observed in [11] that for $k=3,4$ there are graphs for which $\theta(G) \leq 2 k+1$ and $\omega(G) \leq k$, but $\chi(G) \geq k+1$. The following theorem was proved for $k \geq 6$ in [11] and then for $k \geq 5$ in [19].

Theorem 4.8. Let $k \geq 5$. If $\omega(G) \leq k$ and $\theta(G) \leq 2 k+1$, then $\chi(G) \leq k$.
In the subsequent paper [15] we prove an analog of Theorem 1.7 for $3 k$-vertex graphs.

Acknowledgment

We thank the referees for the helpful comments.

References

[1] A. Bialostocki, D. Finkel, A. Gyárfás, Disjoint chorded cycles in graphs, Discrete Math. 308 (2008) 5886-5890.
[2] B.-L. Chen, K.-W. Lih, P.-L. Wu, Equitable coloring and the maximum degree, European J. Combin. 15 (1994) 443-447.
[3] S. Chiba, S. Fujita, Y. Gao, G. Li, On a sharp degree sum condition for disjoint chorded cycles in graphs, Graphs Combin. 26 (2010) 173-186.
[4] S. Chiba, S. Fujita, K. Kawarabayashi, T. Sakuma, Minimum degree conditions for vertex-disjoint even cycles in large graphs, Adv. in Appl. Math. 54 (2014) 105-120.
[5] K. Corrádi, A. Hajnal, On the maximal number of independent circuits in a graph, Acta Math. Acad. Sci. Hungar. 14 (1963) 423-439.
[6] G. Dirac, Some results concerning the structure of graphs, Canad. Math. Bull. 6 (1963) 183-210.
[7] G. Dirac, P. Erdős, On the maximal number of independent circuits in a graph, Acta Math. Acad. Sci. Hungar. 14 (1963) 79-94.
[8] H. Enomoto, On the existence of disjoint cycles in a graph, Combinatorica 18 (4) (1998) 487-492.
[9] A. Hajnal, E. Szemerédi, Proof of a conjecture of P. Erdős, in: P. Erdős, A. Rényi, V.T. Sós (Eds.), Combinatorial Theory and Its Application, North-Holland, London, 1970, pp. 601-623.
[10] H.A. Kierstead, A.V. Kostochka, An Ore-type theorem on equitable coloring, J. Combin. Theory Ser. B 98 (2008) 226-234.
[11] H.A. Kierstead, A.V. Kostochka, Ore-type versions of Brooks' theorem, J. Combin. Theory Ser. B 99 (2009) 298-305.
[12] H.A. Kierstead, A.V. Kostochka, Equitable versus nearly equitable coloring and the Chen-Lih-Wu conjecture, Combinatorica 30 (2010) 201-216.
[13] H.A. Kierstead, A.V. Kostochka, Every 4-colorable graph with maximum degree 4 has an equitable 4-coloring, J. Graph Theory 71 (2012) 31-48.
[14] H.A. Kierstead, A.V. Kostochka, A refinement of a result of Corrádi and Hajnal, Combinatorica 35 (4) (2015) 497-512.
[15] H.A. Kierstead, A.V. Kostochka, T. Molla, E.C. Yeager, Sharpening an Ore-type version of the Corrádi-Hajnal bound, submitted.
[16] H.A. Kierstead, A.V. Kostochka, M. Mydlarz, E. Szemerédi, A fast algorithm for equitable coloring, Combinatorica 30 (2010) 217-224.
[17] H.A. Kierstead, A.V. Kostochka, Gexin Yu, Extremal graph packing problems: Ore-type versus Dirac-type, in: S. Huczynska, J. Mitchell, C. Roney-Dougal (Eds.), Surveys in Combinatorics 2009, in: London Math. Soc. Lecture Note Ser., vol. 365, Cambridge University Press, Cambridge, 2009, pp. 113-136.
[18] H.A. Kierstead, A.V. Kostochka, E.C. Yeager, The $(2 k-1)$-connected multigraphs with at most $k-1$ disjoint cycles, Combinatorica (2015), http://dx.doi.org/10.1007/s00493-015-3291-8, in press.
[19] A.V. Kostochka, L. Rabern, M. Stiebitz, Graphs with chromatic number close to maximum degree, Discrete Math. 312 (2012) 1273-1281.
[20] L. Lovász, On graphs not containing independent circuits, Mat. Lapok (N.S.) 16 (1965) 289-299 (in Hungarian, English summary).
[21] H. Wang, On the maximum number of disjoint cycles in a graph, Discrete Math. 205 (1999) 183-190.

[^0]: π^{4} The first two authors thank Institut Mittag-Leffler (Djursholm, Sweden) for the hospitality and creative environment.

 E-mail addresses: kostochk@math.uiuc.edu (A.V. Kostochka), Elyse@math.ubc.ca (E.C. Yeager).
 ${ }^{1}$ Research of this author is supported in part by NSA grant H98230-12-1-0212.
 ${ }^{2}$ Research of this author is supported in part by NSF grants DMS-1266016 and DMS-1600592 and by grant 12-01-00448 of the Russian Foundation for Basic Research.
 ${ }^{3}$ Research of this author is supported in part by NSF grant DMS-1266016.

