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Abstract: A graph G is (/J, k)-colorable if V(G) can be partitioned into
two sets V; and V4 so that the maximum degree of G[V/] is at most j and
of G[V,] is at most k. While the problem of verifying whether a graph is
(0, 0)-colorable is easy, the similar problem with (j, k) in place of (0, 0) is
NP-complete for all nonnegative j and k with j 4+ k > 1. Let F; «(g) denote
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the supremum of all x such that for some constant ¢, every graph G with
girth gand |E(H)| < x|V (H)| + ¢4 forevery H C Gis (J, k)-colorable. It was
proved recently that /1 (3) = 1.2. In a companion paper, we find the exact
value Fp1(4) = 1 (B) = %. In this article, we show that increasing g from
5 further on does not increase Ry 1(g) much. Our constructions show that
for every g, fo.1(9) < 1.25. We also find exact values of F; «(g) for all gand
all k > 2] 4+ 2. © 2015 Wiley Periodicals, Inc. J. Graph Theory 81: 403-413, 2016

Keywords: improper coloring; defective coloring; sparse graph; girth
1. INTRODUCTION

A proper k-coloring of a graph G is a partition of V (G) into k independent sets Vi, . .., V;.
A (dy,d>, ..., dy)-coloring of a graph G is a partition of V(G) into sets V|, V5, ..., Vi
such that for every 1 <i <k, the subgraph G[V;] of G induced by V; has maximum
degree at most d;. If dy =--- =d; =0, then a (d,,d>, ..., dy)-coloring is simply a
proper k-coloring. If at least one of the d; is positive, then a (d, da, . . ., di)-coloring is
called improper or defective. Several papers on improper colorings of planar graphs with
restrictions on girth and of sparse graphs have appeared.

In [10] and this article, we consider improper colorings with just two colors, the (j, k)-
colorings. Even such colorings are not simple if (j, k) # (0, 0). In particular, Esperet,
Montassier, Ochem, and Pinlou [7] proved that the problem of verifying whether a given
planar graph of girth 9 has a (0,1)-coloring is NP-complete. Since the problem is hard, it
is natural to consider related extremal problems.

The maximum average degree, mad(G), of a graph G is the maximum of 2|‘\f ((:))I‘ over
all subgraphs H of G. It measures sparseness of G. Kurek and Rucinski [11] called graphs
with low maximum average degree globally sparse. In particular,

2
if G is a planar graph of girth g, then mad(G) < _g2 (1)
g —_—

We will use the following slight refinement of the notion of mad(G). Fora, b € R, a graph
G is (a, b)-sparse if |[E(H)| < alV(H)| + b for all H C G. For example, every forest is
(1, 0)-sparse, and every graph G with mad(G) < a is (a/2, 0)-sparse. We also say that
G is almost (a, b)-sparse if |[E(G)| = a|V(G)|+ b and |E(H)| < a|V(H)| + b for all
H C G. For example, every k-regular connected graph G is almost (k/2, 0)-sparse. Note
that every almost (a, b)-sparse graph is (a, ')-sparse for all ¥’ > b. Almost (a, b)-sparse
graphs could be considered as critical: they become (a, b)-sparse after deleting any edge.

Glebov and Zambalaeva [8] proved that every planar graph G with girth at least
16 is (0, 1)-colorable. Then, Borodin and Ivanova [1] proved that every graph G with
mad(G) < % is (0, I)-colorable. By (1), this implies that every planar graph G with
girth at least 14 is (0, 1)-colorable. Borodin and Kostochka [2] proved that every graph
G with mad(G) < % is (0, 1)-colorable, and this is sharp. This implies that every planar
graph G with girth at least 12 is (0, 1)-colorable. As mentioned above, Esperet et al. [7]
proved that the problem of verifying whether a given planar graph of girth 9 has a
(0, 1)-coloring is NP-complete. Dorbec, Kaiser, Montassier, and Raspaud [5] mention
that because of these results, the remaining open question is whether all planar graphs
with girth 10 or 11 are (0, 1)-colorable. Our results in [10] yield the positive answer for
planar graphs with girth 11.
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In [10] and this article, instead of considering planar graphs with given girth, we con-
sider graphs with given girth that are (a, b)-sparse for small a. A recent result by Borodin
and Kostochka [3] can be stated in the language of (a, b)-sparse graphs as follows.

Theorem 1.1 ([3]). Let k> 2j+2 and G be a graph. If G is (2 — % a7)-

sparse, then it is (j, k)-colorable. Moreover the result is sharp in the sense that there are

infinitely many almost (2 — % o1 )-sparse graphs that are not (j, k)-colorable.

Our first result gives triangle-free sharpness examples for Theorem 1.1.

Theorem 1.2. Let j > 0 and k > j+ 1. Then there are infinitely many triangle-free

k+2
almost (2 — T ¥ +1) sparse graphs that are not (j, k) colorable. Furthermore,
_k+2

forevery k > 1, there are infinitely many almost (2 — ITEnNE k+l
5 that are not (0, k)-colorable.

——)-sparse graphs of girth

When k > 2j 4 2, the graphs we construct in Theorem 1.2 are (j, k)-critical in the
sense that each proper subgraph of every such graph is (j, k)-colorable by Theorem 1.1,
but the graphs themselves are not.

Let Fj(g) denote the supremum of all positive a such that there is some (possibly
negative) b with the property that every (a, b)-sparse graph G with girth g is (j, k)-
colorable. The above-mentioned result in [2] 1mphes Fo.13) = 12 = 1.2. In [10], we
prove the exact result that Fy 1 (4) = Fo1(5) = and also find the best possible value
of b. In this article, we extend this result in two dlrectlons to large girth and to (j, k)-
colorings instead of (0, 1)-colorings.

Since Fp o(4) and Fp | (4) are already known, with Theorem 1.2 we have the values of
Fo.x(4) for all k > 0.

Our second result concerns graphs with large girth.

Theorem 1.3.  Forallk > j > 0and g > 3, Fj;(g) < (k+2)

T GG+
So, we have Fp1(3) = 1.2, Fp1(4) = Fo1(5) = 1— =1.222...,F1(g) < 1.25forall
g andif k > 2j + 2 then Fj;(g) =2 — % fora]l g

Remark. The case j = k seems to be quite different. Apart from the trivial equality
Fo.0(g) = 1, the only known to us exact result is 1 ;(3) = u < [4]. The value does not fit
the formula in Theorem 1.1 and differs from the lower bound by Havet and Serem in [9].
Even F, > (3) is not known.

2. ON (j, k)-COLORING OF TRIANGLE-FREE GRAPHS

For a graph G and W C V(G), 0 < j <k, let the (j, k)-potential of W in G be defined
as
k+2
(G+2)(k+1)
(We will drop the subscripts j, k and G if they are clear from the context.)
Note that for a graph G, the condition

¢W.G) =¢jx(W,G) = (2 - ) W[ — E(GIWDI.

1
oW, G) > i forall W C V(G) 2)
is equivalent to the statement that G is (2 — % 1 )-sparse.

Journal of Graph Theory DOI 10.1002/jgt
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FIGURE 1. Graph L(1, 3).

In this section, we prove Theorem 1.2, that is, we show that for all k > j + 1, there are
infinitely many triangle-free graphs G with ¢; (W, G) > —ﬁ for all W € V(G), but
not (j, k)-colorable. We also show that for all kK > 2, there are infinitely many graphs G
of girth 5 with ¢ (W, G) > —k%l forall W C V(G), and not (0, k)-colorable. Together
with Theorem 1.1, this means that for all k > 2j + 2, F; 1 (4) = F;x(3). Recall that this
is not the case for (j, k) = (0, 1) by our result in [10].

For j # k, we consider a (j, k)-coloring of a graph G as a 2-coloring of V (G) with
color j and color k such that the vertices of color j (respectively, k) induce a subgraph
with maximum degree at most j (respectively, k). We remark that this convention does
not apply to the case j = k.

Let graph L(j, k) be defined as follows. Let

k+1
V(LG k) = e wh U {un, oy U i i
i=1
Vertex x is adjacent to all vertices in {uy, ..., ujp1} U {y1, ..., yrt1), vertex w is adjacent
to all vertices in {uy, ..., ujp 1} U Uf-jll {yi1s ..., yij+1}, forevery i € [1, k + 1], vertex
i is adjacent to all vertices in {y; 1, ..., yi j+1}, and there are no other edges (see Fig. 1).

We will call x the base and w the top of L(j, k).
By construction, L(j, k) is triangle-free and L(0, k) has girth 5. We need the following
simple property of L(j, k).

Claim 2.1.  In every (j, k)-coloring f of L(j, k), x has a neighbor of color k.

Proof.  Suppose f(yi) == fQu+1) = f(w) =---= f(uj1) = j. Then, for
every 1 <i<k+1 at least one of y; 1, ...,y 41 must be colored with k. So, w has
at least k + 1 neighbors of color k and j + 1 neighbors uy, ..., u;; of color j, a contra-
diction to the definition of (j, k)-coloring. |

A (J, k)-flag in a graph G is a pendant block isomorphic to L(j, k) whose unique cut
vertex is the base vertex x in L(j, k). Claim 2.1 immediately implies the following.

Claim 2.2. In every (j, k)-coloring f of a graph G, for any x € V(G),

(a) if x is the base of k + 1 distinct (j, k)-flags, then f(x) = j;
(b) if x is the base of k distinct (j, k)-flags and f(x) = k, then x has no neighbors of
color k outside of these k blocks.

Another helpful property of (j, k)-flags is that they are sparse.

Journal of Graph Theory DOI 10.1002/jgt
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Claim 2.3. Let graph G consist of q distinct (j, k)-flags, Wi, Wa, ..., W,, with a
common base x, and fori =1, ..., q, let w; be the top of W..

@ IfO#W C W, then p(W) > ¢p({x}) — kl—l, and equality holds only for W = W,.
®) If@£W CV(G), then (W) > ¢ ({x}) — k% and equality holds only for W =
V(G).

Proof. To prove (a), choose among the nonempty subsets of W; a set W of the smallest
potential ¢(W). Since deleting an isolated or pendant vertex from a set decreases the
potential and the claim holds for a 1-element W, we may assume

s(GIW)) = 2. 3)

If0 #£W C W, and w; ¢ W, then W induces a forest, a contradiction to (3). Sow; € W.
Since adding to a set U of vertices, a vertex with at least two neighbors in U decreases
the potential by (3),

foralll <h<j+landl <h <k+1,u, € Wifand only if x € W

and y, , € Wif and only if y,, € W. @)

Suppose x ¢ W. Then by (4), W N {uy, ..., ujp1} = 0. Also, if in this case y, € W

then by (4), all y, 1, ..., yp j+1 are in W and
PW) =W — (i1, Vg1, va}) = (2— ﬁ) (j+2)=@2j+2)
' ' (G+2)k+1)
k

=i
a contradiction to the choice of W. Thus, x € W. Then by (4), {u;, ..., u;j41} C W. Also
adding each yj together with y, 1, ..., ys j+1 decreases the potential by exactly /<4+1 So,
the unique subset of W; with the minimum possible potential is W; itself and

k+2

dW) — o ({x}) = <2 > (Wil = 1) = [E(GIW,D

T G+2k+ D)

k+2 1
=|2-— i +2)k+2)—(2j+3)k+2)—1) = ——+,
( (j+2)(k+1)>(J )( ) — ((2) +3)( )—1) i
as claimed. This proves (a).
To prove (b), suppose that W intersects exactly r > 0 of Wy, ..., W,. If x ¢ W, then

r

b0 =3 W W) > r (¢({x}> - #> > p({x)) —
‘ - k+1

k+1

i=1

If x € W, then r = g and

9

q
PW) =" dWNW) — (qg— D)) = $({x}) — 1

i=1

By (a), equality in (5) holds only when W N W; = W, for all i, which means W = V(G).l

&)

Basic construction. We construct a graph Hy = Hy(j, k) from a star K; j;; with the
center xo and leaves xi, ..., x4 byaddingk + 1  (j, k)-flagstoeachof xo, xi, ..., xj41.

Journal of Graph Theory DOI 10.1002/jgt



408 JOURNAL OF GRAPH THEORY

(When we say “add (j, k)-flags to a vertex x,” we mean that x will be the base of the
added flags.)
By construction, Hy(j, k) is triangle-free and Hy (0, k) has girth 5. If Hy has a (j, k)-

coloring f, then by Claim 2.2(a), f(xo) = ... = f(x;41) = j, and vertex x, of color j
has j + 1 neighbors x;, - - -, x4 of color j, a contradiction. Thus,
Hy is not (j, k) — colorable. (6)

Now we want to prove that Hj satisfies (2).

Claim 24. If W C V(H,), then ¢(W) >
V (Hp).

—ﬁ, and equality holds only for W =

Proof. Choose a largest W C V (Hj) among the sets with minimum ¢(W). As in
the proof of Claim 2.3, § (Hy[W]) > 2. By Claim 2.3(a), if L is any (j, k)-flag in Hy and
WNL#@,then L C W otherwise p(W UL) < ¢p(W).

It follows that if we know which vertices in X = {xo, ..., x;11} are in W, then we
know W. Similarly, if xo € W and x; ¢ W for some i, then by Claim 2.3(b), adding to W
vertex x; and all the k + 1 (j, k)-flags containing x; we get a set W’ with

k+1

PW) < oW) + ¢ ({xi}) — 1 I <oW),

a contradiction to the minimality of ¢(W). So, W = V (H,) is the unique set of minimum
potential among the sets containing xy.

If xo ¢ W, then every component of Hy[W] is a subgraph of a graph G described in
Claim 2.3 and so has a nonnegative potential. So, in this case ¢ (W) > 0. |

Thus, Hy is the first in the series of examples proving Theorem 1.2.

In order to generalize Hj, we need one more notion. A vertex v in a graph G is a remote
(J, k)-base if it is the base of k + 1 (j, k)-flags Wy, ..., Wi in G and has exactly one
neighbor outside of W) U ... U W_;. This unique neighbor of v will be called the main
neighbor of v.

Claim 2.5. Suppose a graph H has no (j, k)-colorings, and v € V(H) is a remote
(J, k)-base contained in (j, k)-flags Wi, ..., Wiy with the main neighbor x.

(a) Forany (j, k)-coloring f' of H = H — (W) —v) (if it exists), f'(v) = k and v has
k neighbors of color k in H'.

(b) For any (j, k)-coloring f” of H' = H — Uf:ll W; (if it exists), f"'(x) = j and x
has j neighbors of color jin H".

Proof. 1If H' has a (j, k)-coloring f” with f'(v) = j, then f’ can be extended to W,
by coloring all neighbors of v in W; and the top vertex of W, with k and the remaining
vertices with j. But H has no (j, k)-colorings. Thus, if a (j, k)-coloring f’ of H' exists,
then f'(v) = k, and by Claim 2.1 each of W,, ..., Wi, contains a neighbor of v of color
k. This proves (a).

Similarly, if H” has a (j, k)-coloring f” with either f”(x) = k or with f”(x) = j and
at most j — 1 neighbors of color j, then we can extend f” to the whole H by letting
f"(v) = j, coloring all its neighbors in Wy U ... U W, and the tops of Wy, ..., Wiy,
with k, and the remaining vertices in W) U ... U W, with j. |

Journal of Graph Theory DOI 10.1002/jgt
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General construction. Recall that H = Hj has the following properties:

(P1) H is not (j, k)-colorable;

(P2) H has no triangles and if j = 0, then H has girth 5;

P3) (W) > —k%l for each W C V(H), and equality holds only for W =V (H);
(P4) H has at least two remote bases (if j = 0, then x; also is a remote base in Hy (0, k)).

We now show how to use a graph H satisfying (P1)—(P4) to construct a larger graph
satisfying (P1)—(P4). Take two copies, H; and H, of H. For h = 1, 2, choose in H;, a
remote base v, contained in (j, k)-flags W), 1, ..., Wy, x+1 with the main neighbor x;,. Let
H =H — W —v)and H =H, — Uf:ll W,.;. We get the new graph H by adding
to H' U H” a new vertex z adjacent to vy in V(H') and to x in V(H").

Property (P2) for H directly follows from (P2) for H, and H,. Since H; U H, had at
least four remote bases and we destroyed only two of them when creating H" and H",
(P4) holds for H.

Suppose H has a (j, k)-coloring f. Then by Claim 2.5(a), f(v;) =k and v; has k
neighbors of color k in V(H'). Thus, we need f(z) = j. But by Claim 2.5(b), f(x2) = j
and x, has j neighbors of color j in V (H"). This contradiction proves (P1) for H.

To prove (P3), consider a set W of minimum potential in H. If z ¢ W, then by (P3)
forH,p(W) =dpWNVH")) +dWNV(H")) >0+ 0 = 0sinceeachof W NV (H")
andW NV (H") is proper subsetof V(H') and V (H"), respectively. Suppose z € W. Then,
similarly to (3), vi,xo e W. Let W =W NV(H') and W' =W NV (H"). Since adding
to W’ vertex v, together with all k + 1 (J, k)-flags containing v, would decrease the
potential of W” by %, we conclude that ¢(W") > % — ﬁ with equality
only when W” = V(H”). Similarly, ¢ (W’) > 0 with equality only when W' =V (H').
Thus,

k+2 !
/ 1 _2 -
PWV) 2 ¢ + ¢W") +¢({eh —22 0+ s =

k+2 -1
— ) 2> —,
G+2)k+ 1) k+1

with equality only when W = V ().
This construction yields Theorem 1.2.

+(2

3. ON (j, k)-COLORING OF GRAPHS WITH LARGE GIRTH

In this section, we prove Theorem 1.3. First, we inductively define the tree T),(j, k) that
will be a gadget to construct graphs we want. Fori =0, 1, ..., k, let §; be a copy of the
star Ky j+1 with the center ¢;. We subdivide each of the j + 1 edges of each star S; once
and add edges coc; fori = 1, 2, 3, ..., k. The resulting tree is 7 (j, k) and ¢ is called the
center of T\ (j, k). Note that T (j, k) has (k+ 1)(j 4+ 1) leaves. Assume we already have
defined the tree T;_;(j, k) and it has (k + 1)?~'(j 4+ 1)?~! leaves. Let T° be a copy of
T\ (j, k) with the center cpand T, ..., T*+DUFD be disjoint copies of T;_; (j, k) with the
centers ci, ..., Ci+1)(j+1)- Let X1, ..., X@k+1)(j+1) be the leaves of T°. The tree T,(j, k)
with the center c( is obtained by gluing ¢; with x; for all i=1,..., (k+ 1)(j+ 1).
Finally, the tree 7} (j, k) is obtained from two disjoint copies of 7;(j, k) by adding an
edge connecting their centers. The example of 7/ (2, 3) is in Figure 2.

Journal of Graph Theory DOI 10.1002/jgt



410 JOURNAL OF GRAPH THEORY

i \V\

FIGURE 2. T/(2,3).

Claim 3.1. Ford > 1, let f be a (j, k)-coloring of T;(j, k) with the center cy such that
every neighbor of a leaf has color j. Then, f(co) = k and cq has k neighbors of color k.

Proof. We use induction on d.

Let L be the set of all leaves of T (j, k). If all the neighbors of L are colored with the
color j, then each of the remaining nonleaf vertices is adjacent to j + 1 vertices of color
J» and thus has color k. These vertices form a star K; ; with the center ¢y, which yields
the claim for d = 1.

Assume the statement holds ford — 1. Let 7°, T, ..., T®*+DU+D pe the trees from the
definition of 7;(j, k) and ¢y, c1, . . ., ck+1)(j+1) be their centers. Let f be a (j, k)-coloring
of T;(j, k) such that every neighbor of a leaf has color j. By the induction assumption,
foreachi=1,..., (k+1)(j+ 1), f(c;) = k, and c; has k neighbors of color k in T". It
follows that the neighbor of ¢; in 7° has color j. Again by the induction assumption, the
conclusion holds for cg. ]

Claim 3.2. Fork > jandd > 1, in every (j, k)-coloring of T;(j, k), some neighbor of
a leaf has color k.

Proof.  Tree T(j, k) contains two disjoint copies T} and 7> of T;(j, k) with centers
c1, ¢ connected by edge cj¢,. If fis a (j, k)-coloring of T;(j, k) such that every neighbor
of a leaf has color j, then by the Claim 3.1, for i = 1, 2, the center ¢; of T has color k
and has k neighbors of color k in T!. Since ¢; and ¢, are adjacent, each of them has k£ + 1
neighbors of the color &, a contradiction. |

Claim 3.3. Let k > j. Let L be the set of leaves in T;(j, k) and B =V (T;(j, k)) — L.
Then for every subgraph T of Ty(j, k),

___k+2D
G+2k+1)

Proof.  First, suppose that d = 1. Recall that in this case, B = C U D, where D is the
set of vertices of degree 2 adjacentto L, |[D| = |L| = (j+ 1)(k+ 1),C ={c1, ..., cit+1}
is the set of centers of the original stars, each ¢; is adjacent to j + 1 vertices in D, and in
addition c; is adjacent to each vertex in C — c;. Thus, there are three types of edges: Type
1—the edges connecting D with L, Type 2—the edges connecting D with C, and Type
3—the edges connecting ¢; with C — ¢;. We will prove (7) using discharging. Let every
e € E(T) have charge ch(e) = 1 so that ZeEE(T) ch(e) = |[E(T)|. Now each e € E(T)
distributes its charge to its endvertices according to the following rules.

Rule 1: Each edge d¢ of Type 1 gives all its charge to the end d € D.

Rule 2: Each edge c;d of Type 2 gives charge 1 — —2 _ ¢ the end d € D and

|E(T)| = (2 ) |BNOV(T)]. )

(k42 (j+2)(k+1)
_ (k+2) .
charge Gk © theend ¢; € C.
Rule 3: Each edge c;c; of Type 3 gives charge ki—l to ¢; € C — c; and charge k]? tocy.

Journal of Graph Theory DOI 10.1002/jgt
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By the rules, only vertices of V(7') N B may receive a positive charge and total charge
on them will be exactly |E(T)|. Thus, it is enough to prove that forevery v € V(T') N B,

(k+2)

T ES)
If v € D, then it gets at most 1 by Rule 1 and at most 1 — % by Rule 2, so (8)

holds for v. If v = ¢; for some 2 < i < k+ 1, then it gets at most (j + l)% by

ch(v) <2 (8)

Rule 2 and at most % by Rule 3, so

(k+2) ko (k+2)
G+2)*k+1)  k+1 G+2)k+1)
Finally, if v = ¢, then it again gets at most (j + 1)%
by Rule 3, so again (8) holds for v. This proves Case d = 1.

Suppose now that d > 2. Then, T;(j, k) is obtained from several copies of T; (j, k) by
gluing leaves of some copies with the centers of some others. So, if we do the discharging
from E(T) to V(T') N Bin each copy of T (j, k) forming T, (j, k) by the Rules 1-3 above,
then again only vertices of V (T') N B may receive a positive charge and the total charge
on them will be exactly |E(T)|. Moreover, since by Rule 1 the leaves of each copy of
T (J, k) will get zero charge from this copy, as we have checked above, (8) will hold for
every v € V(T') N B. This proves the claim.

ch(v) = (j+1)

by Rule 2 and at most kler_l

Proof of Theorem 1.3.  Our goal is to show that forany € > 0, ¢ > 3andk > j > 0,

(k+2)

there is a (2 -
G+2k+1)

+ €, 0) — sparse non — (J, k)
— colorable graph G of girth g.  (9)
Recall that G is (2 — % + €, 0)-sparse if and only if mad(G) <4 —
2(k+2 . - . .
(j+<2)—J(rk+)l) + 2¢e. We use induction on j + k. If j = k = 0, then any odd cycle of length
at least g is almost (1, 0)-sparse and not (0, 0)-colorable. Assume that k¥ > 1 and (9) is
proved for all pairs (j/, k') with j/ +k < j+kand j < k.
CASE 1: j < k. Then there is a graph G, with girth g, which is not (j, k — 1)-colorable
and with

2(k+1) 2(k +2)
mad(Gy) <4 — —+2¢ <4 — ———— 4 2e¢. 10
(Go) G+ 2)k G+2k+1) (10)
Let V(Gy) = {vi, v2, ..., v,}. Fix an integer d > % Let M be the number of leaves in

T;(j. k). By an old result of Erdés and Hajnal [6], there exists a non-n-colorable nM-
uniform hypergraph H with girth g. We construct our graph G using H and many copies
of Gy and T (j, k) as follows:

(i) Partition each e € E(H) into n subsets ey, ..., e, of size M,
(i1) Replace each vertex x in H with a copy Gy (x) of Gy;
(iii) For each e € H and 1 <i <n, if ¢; = {x1, ..., xy}, we take a copy T (e, i) of
Td’(j, k) with the set of leaves, say, L(e,i) ={€;,...,¢y}andforh=1,... .M,

glue ¢, with the vertex v; in the copy Go(x;) of Gy. We will say that
T(e,1),...,T(e, n) belong to e and denote B(e,i) = V(T (e, i)) — L(e, i).
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Let us check that the obtained graph G has the properties we need: (a) the girth of G
is at least g, (b) G is not (j, k)-colorable, and (c) mad(G) < 4 — % + 2e.

Foranedge e € E(H), let G(e) denote the subgraph of G formed by the copies Gy (x) of
G, for all nM vertices x € e plus all the copies T (e, i) of Tt;(j, kyfori=1,...,n.If Ghas
a cycle C of length less than g, then C is not contained in a copy of Gy since Gy has girth
g. Moreover, then C is not contained in any G(e), since all edges of G(e) in U;’zl T (e, i)
are cut-edges in G(e). Since H is a linear hypergraph, C yields a (hypergraph) cycle
in H, and any such cycle has at least g edges, a contradiction to the choice of C. This
proves (a).

Suppose we have a (j, k)-coloring f of G. Since Gy is not (j, k — 1)-colorable, each
graph Gy (x) has a vertex v; of color k with k neighbors in Gy(x) of color k in f. Let
i(x) be the minimum i such that Gy(x) has a vertex v; of color k with k neighbors in
Go(x) of color k in f. We define a coloring ¢ of H as follows: for each x € V(H), let
¢(x) = i(x). Then ¢ is an n-coloring of H, and H has no proper n-colorings. Thus, there
is a monochromatic e € E(H). Suppose f(x) = i for each x € e. By construction, all the
leaves of the copy T (e, i) of T(j, k) are in e;; each of these leaves is of color k and has
k neighbors of color k in [ J,, Go(x). Thus, none of these leaves has a neighbor of color
kin T (e, i). This contradicts Claim 3.2. Thus, (b) holds.

In order to prove (c), consider some W C V(G) with the largest % If this
ratio is at most 1, then (c) holds; otherwise by the maximality of the average degree,
G[WT] has no isolated vertices and no leaves. Let W' = Uer(H) W NV(Gy(x))). Then,
W—-Ww = UeeE(H) UL, (W N B(e, i)). Since each component of G[W'] is contained in

some Gy(x), by (10), the average degree of G[W’] is less than 4 — % + 2¢. We
can obtain W from W’ by a sequence of adding the sets W N B(e, i), one by one. We will

show that after every such step,

2(k +2)
G+2)(k+1)
(11)

the average degree of the obtained subgraph remains less than 4 —

Indeed, suppose it is the turn to add to a current set W” the set W N B(e, i). Let cc]
be the edge in T (e, i) connecting the centers ¢; and ¢} of the two disjoint copies of
T;(j, k). If {ci, |} ¢ W, then by Claim 3.3, adding W N B(e, i) to W” adds at most

2 - %NW N B(e, i)| edges, as claimed. So let {c;, ¢|} C W. Since G[W] has

no leaves, W contains the vertices of disjoint paths from c; and ¢/ to L(e, i) and thus
[W N B(e, i)| > 6d. Again by Claim 3.3, adding W N B(e, i) to W” adds at most 1 + (2 —

(H“;j%nw N B(e, )| edges. Sinced > 1/e and |W N B(e, i)| > 6d, the last expression

is less than (2 — % + €)|W N B(e, i)|, as claimed. This proves (c).
CASE 2: 0 < j = k. Then there is a graph Gy with girth g, which is not (k — 1, k)-

colorable and with

_2(1<+2)Jr2€<4 2(k+2)
(k+1)2

mad(Gy) < 4 <4 - —(j TOGED

+ 2e. (12)

Now, we simply repeat the proof of Case 1 with the only twist that using j = k, we
consider Gy as not (k, kK — 1)-colorable instead of not (k — 1, k)-colorable. |
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Concluding remark. Studying improper colorings with more colors, one can consider
the function Fy, 4, . 4 (g) generalizing Fj(g). Using similar techniques, we can prove
the following extension of Theorem 1.3.

Theorem 34. Let ay <ay <---<a, t>2and g=>3. Then, Fy 4, .4 (8 <t —

(ar+2)
(a142)(ar+1)"

Since we do not know how sharp is this bound, we do not supply a proof of Theorem 3.4.
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