Improper Coloring of Sparse Graphs with a Given Girth, II: Constructions

\author{

- Jaehoon Kim, ${ }^{1,3}$ Alexandr Kostochka, ${ }^{\mathbf{1}, \mathbf{2}}$ and Xuding Zhu ${ }^{\mathbf{2}}$
}
${ }^{1}$ DEPARTMENT OF MATHEMATICS
UNIVERSITY OF ILLINOIS URBANA, IL, 61801
E-mail: kim805@illinois.edu; kostochk@math.uiuc.edu
${ }^{2}$ ZHEJIANG NORMAL UNIVERSITY
JINHUA, CHINA
E-mail: xdzhu@zjnu.edu.cn
${ }^{3}$ SCHOOL OF MATHEMATICS UNIVERSITY OF BIRMINGHAM EDGBASTON, BIRMINGHAM,, B15 2TT, UK

E-mail: KimJS@bham.ac.uk

Received February 18, 2014; Revised March 29, 2015

Published online 15 May 2015 in Wiley Online Library (wileyonlinelibrary.com).
DOI 10.1002/jgt. 21886

Abstract

A graph G is (j, k)-colorable if $V(G)$ can be partitioned into two sets V_{j} and V_{k} so that the maximum degree of $G\left[V_{j}\right]$ is at most j and of $G\left[V_{k}\right]$ is at most k. While the problem of verifying whether a graph is $(0,0)$-colorable is easy, the similar problem with (j, k) in place of $(0,0)$ is NP-complete for all nonnegative j and k with $j+k \geq 1$. Let $F_{j, k}(g)$ denote

[^0]the supremum of all x such that for some constant c_{g} every graph G with girth g and $|E(H)| \leq x|V(H)|+c_{g}$ for every $H \subseteq G$ is (j, k)-colorable. It was proved recently that $F_{0,1}(3)=1.2$. In a companion paper, we find the exact value $F_{0,1}(4)=F_{0,1}(5)=\frac{11}{9}$. In this article, we show that increasing g from 5 further on does not increase $F_{0,1}(g)$ much. Our constructions show that for every $g, F_{0,1}(g) \leq 1.25$. We also find exact values of $F_{j, k}(g)$ for all g and all $k \geq 2 j+2$. © 2015 Wiley Periodicals, Inc. J. Graph Theory 81: 403-413, 2016

Keywords: improper coloring; defective coloring; sparse graph; girth

1. INTRODUCTION

A proper k-coloring of a graph G is a partition of $V(G)$ into k independent sets V_{1}, \ldots, V_{k}. A $\left(d_{1}, d_{2}, \ldots, d_{k}\right)$-coloring of a graph G is a partition of $V(G)$ into sets $V_{1}, V_{2}, \ldots, V_{k}$ such that for every $1 \leq i \leq k$, the subgraph $G\left[V_{i}\right]$ of G induced by V_{i} has maximum degree at most d_{i}. If $d_{1}=\cdots=d_{k}=0$, then a ($d_{1}, d_{2}, \ldots, d_{k}$)-coloring is simply a proper k-coloring. If at least one of the d_{i} is positive, then a $\left(d_{1}, d_{2}, \ldots, d_{k}\right)$-coloring is called improper or defective. Several papers on improper colorings of planar graphs with restrictions on girth and of sparse graphs have appeared.

In [10] and this article, we consider improper colorings with just two colors, the (j, k)colorings. Even such colorings are not simple if $(j, k) \neq(0,0)$. In particular, Esperet, Montassier, Ochem, and Pinlou [7] proved that the problem of verifying whether a given planar graph of girth 9 has a (0,1)-coloring is NP-complete. Since the problem is hard, it is natural to consider related extremal problems.

The maximum average degree, $\operatorname{mad}(G)$, of a graph G is the maximum of $\frac{2|E(H)|}{|V(H)|}$ over all subgraphs H of G. It measures sparseness of G. Kurek and Ruciński [11] called graphs with low maximum average degree globally sparse. In particular,

$$
\begin{equation*}
\text { if } G \text { is a planar graph of girth } g, \text { then } \operatorname{mad}(G)<\frac{2 g}{g-2} \text {. } \tag{1}
\end{equation*}
$$

We will use the following slight refinement of the notion of $\operatorname{mad}(G)$. For $a, b \in \mathbf{R}$, a graph G is (a, b)-sparse if $|E(H)|<a|V(H)|+b$ for all $H \subseteq G$. For example, every forest is $(1,0)$-sparse, and every graph G with $\operatorname{mad}(G)<a$ is $(a / 2,0)$-sparse. We also say that G is almost (a, b)-sparse if $|E(G)|=a|V(G)|+b$ and $|E(H)|<a|V(H)|+b$ for all $H \subsetneq G$. For example, every k-regular connected graph G is almost $(k / 2,0)$-sparse. Note that every almost (a, b)-sparse graph is $\left(a, b^{\prime}\right)$-sparse for all $b^{\prime}>b$. Almost (a, b)-sparse graphs could be considered as critical: they become (a, b)-sparse after deleting any edge.

Glebov and Zambalaeva [8] proved that every planar graph G with girth at least 16 is $(0,1)$-colorable. Then, Borodin and Ivanova [1] proved that every graph G with $\operatorname{mad}(G)<\frac{7}{3}$ is $(0,1)$-colorable. By (1), this implies that every planar graph G with girth at least 14 is $(0,1)$-colorable. Borodin and Kostochka [2] proved that every graph G with $\operatorname{mad}(G)<\frac{12}{5}$ is $(0,1)$-colorable, and this is sharp. This implies that every planar graph G with girth at least 12 is $(0,1)$-colorable. As mentioned above, Esperet et al. [7] proved that the problem of verifying whether a given planar graph of girth 9 has a (0,1)-coloring is NP-complete. Dorbec, Kaiser, Montassier, and Raspaud [5] mention that because of these results, the remaining open question is whether all planar graphs with girth 10 or 11 are $(0,1)$-colorable. Our results in [10] yield the positive answer for planar graphs with girth 11.

In [10] and this article, instead of considering planar graphs with given girth, we consider graphs with given girth that are (a, b)-sparse for small a. A recent result by Borodin and Kostochka [3] can be stated in the language of (a, b)-sparse graphs as follows.
Theorem 1.1 ([3]). Let $k \geq 2 j+2$ and G be a graph. If G is $\left(2-\frac{k+2}{(j+2)(k+1)}, \frac{1}{k+1}\right)$ sparse, then it is (j, k)-colorable. Moreover, the result is sharp in the sense that there are infinitely many almost $\left(2-\frac{k+2}{(j+2)(k+1)}, \frac{1}{k+1}\right)$-sparse graphs that are not (j, k)-colorable.

Our first result gives triangle-free sharpness examples for Theorem 1.1.
Theorem 1.2. Let $j \geq 0$ and $k \geq j+1$. Then there are infinitely many triangle-free almost $\left(2-\frac{k+2}{(j+2)(k+1)}, \frac{1}{k+1}\right)$-sparse graphs that are not (j, k)-colorable. Furthermore, for every $k \geq 1$, there are infinitely many almost $\left(2-\frac{k+2}{2(k+1)}, \frac{1}{k+1}\right)$-sparse graphs of girth 5 that are not $(0, k)$-colorable.

When $k \geq 2 j+2$, the graphs we construct in Theorem 1.2 are (j, k)-critical in the sense that each proper subgraph of every such graph is (j, k)-colorable by Theorem 1.1, but the graphs themselves are not.

Let $F_{j, k}(g)$ denote the supremum of all positive a such that there is some (possibly negative) b with the property that every (a, b)-sparse graph G with girth g is (j, k) colorable. The above-mentioned result in [2] implies $F_{0,1}(3)=\frac{12}{5}=1.2$. In [10], we prove the exact result that $F_{0,1}(4)=F_{0,1}(5)=\frac{11}{9}$ and also find the best possible value of b. In this article, we extend this result in two directions: to large girth and to (j, k) colorings instead of $(0,1)$-colorings.

Since $F_{0,0}(4)$ and $F_{0,1}(4)$ are already known, with Theorem 1.2 we have the values of $F_{0, k}(4)$ for all $k \geq 0$.

Our second result concerns graphs with large girth.
Theorem 1.3. For all $k \geq j \geq 0$ and $g \geq 3, F_{j, k}(g) \leq 2-\frac{(k+2)}{(j+2)(k+1)}$.
So, we have $F_{0,1}(3)=1.2, F_{0,1}(4)=F_{0,1}(5)=\frac{11}{9}=1.222 \ldots, F_{0,1}(g) \leq 1.25$ for all g, and if $k \geq 2 j+2$ then $F_{j, k}(g)=2-\frac{(k+2)}{(j+2)(k+1)}$ for all g.

Remark. The case $j=k$ seems to be quite different. Apart from the trivial equality $F_{0,0}(g)=1$, the only known to us exact result is $F_{1,1}(3)=\frac{7}{5}$ [4]. The value $\frac{7}{5}$ does not fit the formula in Theorem 1.1 and differs from the lower bound by Havet and Sereni in [9]. Even $F_{2,2}(3)$ is not known.

2. ON ($\boldsymbol{j}, \boldsymbol{k})$-COLORING OF TRIANGLE-FREE GRAPHS

For a graph G and $W \subseteq V(G), 0 \leq j \leq k$, let the (j, k)-potential of W in G be defined as

$$
\phi(W, G)=\phi_{j, k}(W, G)=\left(2-\frac{k+2}{(j+2)(k+1)}\right)|W|-|E(G[W])| .
$$

(We will drop the subscripts j, k and G if they are clear from the context.)
Note that for a graph G, the condition

$$
\begin{equation*}
\phi_{j, k}(W, G)>-\frac{1}{k+1} \text { for all } W \subseteq V(G) \tag{2}
\end{equation*}
$$

is equivalent to the statement that G is $\left(2-\frac{k+2}{(j+2)(k+1)}, \frac{1}{k+1}\right)$-sparse.

FIGURE 1. Graph $L(1,3)$.

In this section, we prove Theorem 1.2, that is, we show that for all $k \geq j+1$, there are infinitely many triangle-free graphs G with $\phi_{j, k}(W, G) \geq-\frac{1}{k+1}$ for all $W \subseteq V(G)$, but not (j, k)-colorable. We also show that for all $k \geq 2$, there are infinitely many graphs G of girth 5 with $\phi_{0, k}(W, G) \geq-\frac{1}{k+1}$ for all $W \subseteq V(G)$, and not $(0, k)$-colorable. Together with Theorem 1.1, this means that for all $k \geq 2 j+2, F_{j, k}(4)=F_{j, k}(3)$. Recall that this is not the case for $(j, k)=(0,1)$ by our result in [10].

For $j \neq k$, we consider a (j, k)-coloring of a graph G as a 2-coloring of $V(G)$ with color j and color k such that the vertices of color j (respectively, k) induce a subgraph with maximum degree at most j (respectively, k). We remark that this convention does not apply to the case $j=k$.

Let graph $L(j, k)$ be defined as follows. Let

$$
V(L(j, k))=\{x, w\} \cup\left\{u_{1}, \ldots, u_{j+1}\right\} \cup \bigcup_{i=1}^{k+1}\left\{y_{i, 1}, \ldots, y_{i, j+1}, y_{i}\right\} .
$$

Vertex x is adjacent to all vertices in $\left\{u_{1}, \ldots, u_{j+1}\right\} \cup\left\{y_{1}, \ldots, y_{k+1}\right\}$, vertex w is adjacent to all vertices in $\left\{u_{1}, \ldots, u_{j+1}\right\} \cup \bigcup_{i=1}^{k+1}\left\{y_{i, 1}, \ldots, y_{i, j+1}\right\}$, for every $i \in[1, k+1]$, vertex y_{i} is adjacent to all vertices in $\left\{y_{i, 1}, \ldots, y_{i, j+1}\right\}$, and there are no other edges (see Fig. 1). We will call x the base and w the top of $L(j, k)$.

By construction, $L(j, k)$ is triangle-free and $L(0, k)$ has girth 5 . We need the following simple property of $L(j, k)$.

Claim 2.1. In every (j, k)-coloring f of $L(j, k)$, x has a neighbor of color k.
Proof. Suppose $f\left(y_{1}\right)=\cdots=f\left(y_{k+1}\right)=f\left(u_{1}\right)=\cdots=f\left(u_{j+1}\right)=j$. Then, for every $1 \leq i \leq k+1$ at least one of $y_{i, 1}, \ldots, y_{i, j+1}$ must be colored with k. So, w has at least $k+1$ neighbors of color k and $j+1$ neighbors u_{1}, \ldots, u_{j+1} of color j, a contradiction to the definition of (j, k)-coloring.

A (j, k)-flag in a graph G is a pendant block isomorphic to $L(j, k)$ whose unique cut vertex is the base vertex x in $L(j, k)$. Claim 2.1 immediately implies the following.

Claim 2.2. In every (j, k)-coloring f of a graph G, for any $x \in V(G)$,
(a) if x is the base of $k+1 \operatorname{distinct}(j, k)$-flags, then $f(x)=j$;
(b) if x is the base of k distinct (j, k)-flags and $f(x)=k$, then x has no neighbors of color k outside of these k blocks.

Another helpful property of (j, k)-flags is that they are sparse.

Claim 2.3. Let graph G consist of q distinct (j, k)-flags, $W_{1}, W_{2}, \ldots, W_{q}$, with a common base x, and for $i=1, \ldots, q$, let w_{i} be the top of W_{i}.
(a) If $\emptyset \neq W \subseteq W_{i}$, then $\phi(W) \geq \phi(\{x\})-\frac{1}{k+1}$, and equality holds only for $W=W_{i}$.
(b) If $\emptyset \neq W \subseteq V(G)$, then $\phi(W) \geq \phi(\{x\})-\frac{q}{k+1}$ and equality holds only for $W=$ $V(G)$.

Proof. To prove (a), choose among the nonempty subsets of W_{i} a set W of the smallest potential $\phi(W)$. Since deleting an isolated or pendant vertex from a set decreases the potential and the claim holds for a 1 -element W, we may assume

$$
\begin{equation*}
\delta(G[W]) \geq 2 \tag{3}
\end{equation*}
$$

If $\emptyset \neq W \subset W_{i}$ and $w_{i} \notin W$, then W induces a forest, a contradiction to (3). So $w_{i} \in W$.
Since adding to a set U of vertices, a vertex with at least two neighbors in U decreases the potential by (3),

$$
\begin{gather*}
\text { for all } 1 \leq h \leq j+1 \text { and } 1 \leq h^{\prime} \leq k+1, u_{h} \in W \text { if and only if } x \in W \\
\text { and } y_{h^{\prime}, h} \in W \text { if and only if } y_{h^{\prime}} \in W . \tag{4}
\end{gather*}
$$

Suppose $x \notin W$. Then by (4), $W \cap\left\{u_{1}, \ldots, u_{j+1}\right\}=\emptyset$. Also, if in this case $y_{h} \in W$ then by (4), all $y_{h, 1}, \ldots, y_{h, j+1}$ are in W and

$$
\begin{aligned}
\phi(W)-\phi\left(W-\left\{y_{h, 1}, \ldots, y_{h, j+1}, y_{h}\right\}\right) & \geq\left(2-\frac{k+2}{(j+2)(k+1)}\right)(j+2)-(2 j+2) \\
& =\frac{k}{k+1}
\end{aligned}
$$

a contradiction to the choice of W. Thus, $x \in W$. Then by (4), $\left\{u_{1}, \ldots, u_{j+1}\right\} \subset W$. Also adding each y_{h} together with $y_{h, 1}, \ldots, y_{h, j+1}$ decreases the potential by exactly $\frac{1}{k+1}$. So, the unique subset of W_{i} with the minimum possible potential is W_{i} itself and

$$
\begin{gathered}
\phi\left(W_{i}\right)-\phi(\{x\})=\left(2-\frac{k+2}{(j+2)(k+1)}\right)\left(\left|W_{i}\right|-1\right)-\left|E\left(G\left[W_{i}\right]\right)\right| \\
=\left(2-\frac{k+2}{(j+2)(k+1)}\right)(j+2)(k+2)-((2 j+3)(k+2)-1)=-\frac{1}{k+1},
\end{gathered}
$$

as claimed. This proves (a).
To prove (b), suppose that W intersects exactly $r>0$ of W_{1}, \ldots, W_{q}. If $x \notin W$, then

$$
\phi(W)=\sum_{i=1}^{q} \phi\left(W \cap W_{i}\right)>r\left(\phi(\{x\})-\frac{1}{k+1}\right) \geq \phi(\{x\})-\frac{r}{k+1} .
$$

If $x \in W$, then $r=q$ and

$$
\begin{equation*}
\phi(W)=\sum_{i=1}^{q} \phi\left(W \cap W_{i}\right)-(q-1) \phi(\{x\}) \geq \phi(\{x\})-\frac{q}{k+1} . \tag{5}
\end{equation*}
$$

By (a), equality in (5) holds only when $W \cap W_{i}=W_{i}$ for all i, which means $W=V(G)$.
Basic construction. We construct a graph $H_{0}=H_{0}(j, k)$ from a star $K_{1, j+1}$ with the center x_{0} and leaves x_{1}, \ldots, x_{j+1} by adding $k+1 \quad(j, k)$-flags to each of $x_{0}, x_{1}, \ldots, x_{j+1}$.
(When we say "add (j, k)-flags to a vertex x," we mean that x will be the base of the added flags.)

By construction, $H_{0}(j, k)$ is triangle-free and $H_{0}(0, k)$ has girth 5. If H_{0} has a $(j, k)-$ coloring f, then by Claim 2.2(a), $f\left(x_{0}\right)=\ldots=f\left(x_{j+1}\right)=j$, and vertex x_{0} of color j has $j+1$ neighbors x_{1}, \cdots, x_{j+1} of color j, a contradiction. Thus,

$$
\begin{equation*}
H_{0} \text { is not }(j, k)-\text { colorable. } \tag{6}
\end{equation*}
$$

Now we want to prove that H_{0} satisfies (2).
Claim 2.4. If $W \subseteq V\left(H_{0}\right)$, then $\phi(W) \geq-\frac{1}{k+1}$, and equality holds only for $W=$ $V\left(H_{0}\right)$.

Proof. Choose a largest $W \subset V\left(H_{0}\right)$ among the sets with minimum $\phi(W)$. As in the proof of Claim 2.3, $\delta\left(H_{0}[W]\right) \geq 2$. By Claim 2.3(a), if L is any (j, k)-flag in H_{0} and $W \cap L \neq \emptyset$, then $L \subseteq W$ otherwise $\phi(W \cup L)<\phi(W)$.

It follows that if we know which vertices in $X=\left\{x_{0}, \ldots, x_{j+1}\right\}$ are in W, then we know W. Similarly, if $x_{0} \in W$ and $x_{i} \notin W$ for some i, then by Claim 2.3(b), adding to W vertex x_{i} and all the $k+1(j, k)$-flags containing x_{i} we get a set W^{\prime} with

$$
\phi\left(W^{\prime}\right) \leq \phi(W)+\phi\left(\left\{x_{i}\right\}\right)-\frac{k+1}{k+1}-1<\phi(W),
$$

a contradiction to the minimality of $\phi(W)$. So, $W=V\left(H_{0}\right)$ is the unique set of minimum potential among the sets containing x_{0}.

If $x_{0} \notin W$, then every component of $H_{0}[W]$ is a subgraph of a graph G described in Claim 2.3 and so has a nonnegative potential. So, in this case $\phi(W) \geq 0$.

Thus, H_{0} is the first in the series of examples proving Theorem 1.2.
In order to generalize H_{0}, we need one more notion. A vertex v in a graph G is a remote (j, k)-base if it is the base of $k+1(j, k)$-flags W_{1}, \ldots, W_{k+1} in G and has exactly one neighbor outside of $W_{1} \cup \ldots \cup W_{k+1}$. This unique neighbor of v will be called the main neighbor of v.
Claim 2.5. Suppose a graph H has no (j, k)-colorings, and $v \in V(H)$ is a remote (j, k)-base contained in (j, k)-flags W_{1}, \ldots, W_{k+1} with the main neighbor x.
(a) For any (j, k)-coloring f^{\prime} of $H^{\prime}=H-\left(W_{1}-v\right)$ (if it exists), $f^{\prime}(v)=k$ and v has k neighbors of color k in H^{\prime}.
(b) For any (j, k)-coloring $f^{\prime \prime}$ of $H^{\prime \prime}=H-\bigcup_{i=1}^{k+1} W_{i}$ (if it exists), $f^{\prime \prime}(x)=j$ and x has j neighbors of color j in $H^{\prime \prime}$.
Proof. If H^{\prime} has a (j, k)-coloring f^{\prime} with $f^{\prime}(v)=j$, then f^{\prime} can be extended to W_{1} by coloring all neighbors of v in W_{1} and the top vertex of W_{1} with k and the remaining vertices with j. But H has no (j, k)-colorings. Thus, if a (j, k)-coloring f^{\prime} of H^{\prime} exists, then $f^{\prime}(v)=k$, and by Claim 2.1 each of W_{2}, \ldots, W_{k+1} contains a neighbor of v of color k. This proves (a).

Similarly, if $H^{\prime \prime}$ has a (j, k)-coloring $f^{\prime \prime}$ with either $f^{\prime \prime}(x)=k$ or with $f^{\prime \prime}(x)=j$ and at most $j-1$ neighbors of color j, then we can extend $f^{\prime \prime}$ to the whole H by letting $f^{\prime \prime}(v)=j$, coloring all its neighbors in $W_{1} \cup \ldots \cup W_{k+1}$ and the tops of W_{1}, \ldots, W_{k+1} with k, and the remaining vertices in $W_{1} \cup \ldots \cup W_{k+1}$ with j.

General construction. Recall that $H=H_{0}$ has the following properties:
(P1) H is not (j, k)-colorable;
(P2) H has no triangles and if $j=0$, then H has girth 5;
(P3) $\phi(W) \geq-\frac{1}{k+1}$ for each $W \subseteq V(H)$, and equality holds only for $W=V(H)$;
(P4) H has at least two remote bases (if $j=0$, then x_{0} also is a remote base in $H_{0}(0, k)$).
We now show how to use a graph H satisfying (P1)-(P4) to construct a larger graph satisfying (P1)-(P4). Take two copies, H_{1} and H_{2} of H. For $h=1,2$, choose in H_{h} a remote base v_{h} contained in (j, k)-flags $W_{h, 1}, \ldots, W_{h, k+1}$ with the main neighbor x_{h}. Let $H^{\prime}=H_{1}-\left(W_{1,1}-v_{1}\right)$ and $H^{\prime \prime}=H_{2}-\bigcup_{i=1}^{k+1} W_{2, i}$. We get the new graph \widetilde{H} by adding to $H^{\prime} \cup H^{\prime \prime}$ a new vertex z adjacent to v_{1} in $V\left(H^{\prime}\right)$ and to x_{2} in $V\left(H^{\prime \prime}\right)$.

Property (P2) for \widetilde{H} directly follows from (P2) for H_{1} and H_{2}. Since $H_{1} \cup H_{2}$ had at least four remote bases and we destroyed only two of them when creating H^{\prime} and $H^{\prime \prime}$, (P4) holds for \widetilde{H}.

Suppose \widetilde{H} has a (j, k)-coloring f. Then by Claim 2.5(a), $f\left(v_{1}\right)=k$ and v_{1} has k neighbors of color k in $V\left(H^{\prime}\right)$. Thus, we need $f(z)=j$. But by Claim 2.5(b), $f\left(x_{2}\right)=j$ and x_{2} has j neighbors of color j in $V\left(H^{\prime \prime}\right)$. This contradiction proves (P1) for \widetilde{H}.

To prove (P3), consider a set W of minimum potential in \widetilde{H}. If $z \notin W$, then by (P3) for $H, \phi(W)=\phi\left(W \cap V\left(H^{\prime}\right)\right)+\phi\left(W \cap V\left(H^{\prime \prime}\right)\right) \geq 0+0=0$ since each of $W \cap V\left(H^{\prime}\right)$ and $W \cap V\left(H^{\prime \prime}\right)$ is proper subset of $V\left(H^{\prime}\right)$ and $V\left(H^{\prime \prime}\right)$, respectively. Suppose $z \in W$. Then, similarly to (3), $v_{1}, x_{2} \in W$. Let $W^{\prime}=W \cap V\left(H^{\prime}\right)$ and $W^{\prime \prime}=W \cap V\left(H^{\prime \prime}\right)$. Since adding to $W^{\prime \prime}$ vertex v_{2} together with all $k+1(j, k)$-flags containing v_{2} would decrease the potential of $W^{\prime \prime}$ by $\frac{k+2}{(j+2)(k+1)}$, we conclude that $\phi\left(W^{\prime \prime}\right) \geq \frac{k+2}{(j+2)(k+1)}-\frac{1}{k+1}$ with equality only when $W^{\prime \prime}=V\left(H^{\prime \prime}\right)$. Similarly, $\phi\left(W^{\prime}\right) \geq 0$ with equality only when $W^{\prime}=V\left(H^{\prime}\right)$. Thus,

$$
\begin{aligned}
\phi(W) \geq \phi\left(W^{\prime}\right)+ & \phi\left(W^{\prime \prime}\right)+\phi(\{z\})-2 \geq 0+\frac{k+2}{(j+2)(k+1)}-\frac{1}{k+1} \\
+ & \left(2-\frac{k+2}{(j+2)(k+1)}\right)-2 \geq \frac{-1}{k+1},
\end{aligned}
$$

with equality only when $W=V(\widetilde{H})$.
This construction yields Theorem 1.2.

3. ON ($\boldsymbol{j}, \boldsymbol{k}$)-COLORING OF GRAPHS WITH LARGE GIRTH

In this section, we prove Theorem 1.3. First, we inductively define the tree $T_{d}^{\prime}(j, k)$ that will be a gadget to construct graphs we want. For $i=0,1, \ldots, k$, let S_{i} be a copy of the star $K_{1, j+1}$ with the center c_{i}. We subdivide each of the $j+1$ edges of each star S_{i} once and add edges $c_{0} c_{i}$ for $i=1,2,3, \ldots, k$. The resulting tree is $T_{1}(j, k)$ and c_{0} is called the center of $T_{1}(j, k)$. Note that $T_{1}(j, k)$ has $(k+1)(j+1)$ leaves. Assume we already have defined the tree $T_{d-1}(j, k)$ and it has $(k+1)^{d-1}(j+1)^{d-1}$ leaves. Let T^{0} be a copy of $T_{1}(j, k)$ with the center c_{0} and $T^{1}, \ldots, T^{(k+1)(j+1)}$ be disjoint copies of $T_{d-1}(j, k)$ with the centers $c_{1}, \ldots, c_{(k+1)(j+1)}$. Let $x_{1}, \ldots, x_{(k+1)(j+1)}$ be the leaves of T^{0}. The tree $T_{d}(j, k)$ with the center c_{0} is obtained by gluing c_{i} with x_{i} for all $i=1, \ldots,(k+1)(j+1)$. Finally, the tree $T_{d}^{\prime}(j, k)$ is obtained from two disjoint copies of $T_{d}(j, k)$ by adding an edge connecting their centers. The example of $T_{1}^{\prime}(2,3)$ is in Figure 2.

FIGURE 2. $T_{1}^{\prime}(2,3)$.

Claim 3.1. For $d \geq 1$, let f be a (j, k)-coloring of $T_{d}(j, k)$ with the center c_{0} such that every neighbor of a leaf has color j. Then, $f\left(c_{0}\right)=k$ and c_{0} has k neighbors of color k.

Proof. We use induction on d.
Let L be the set of all leaves of $T_{1}(j, k)$. If all the neighbors of L are colored with the color j, then each of the remaining nonleaf vertices is adjacent to $j+1$ vertices of color j, and thus has color k. These vertices form a star $K_{1, k}$ with the center c_{0}, which yields the claim for $d=1$.

Assume the statement holds for $d-1$. Let $T^{0}, T^{1}, \ldots, T^{(k+1)(j+1)}$ be the trees from the definition of $T_{d}(j, k)$ and $c_{0}, c_{1}, \ldots, c_{(k+1)(j+1)}$ be their centers. Let f be a (j, k)-coloring of $T_{d}(j, k)$ such that every neighbor of a leaf has color j. By the induction assumption, for each $i=1, \ldots,(k+1)(j+1), f\left(c_{i}\right)=k$, and c_{i} has k neighbors of color k in T^{i}. It follows that the neighbor of c_{i} in T^{0} has color j. Again by the induction assumption, the conclusion holds for c_{0}.

Claim 3.2. For $k \geq j$ and $d \geq 1$, in every (j, k)-coloring of $T_{d}^{\prime}(j, k)$, some neighbor of a leaf has color k.

Proof. Tree $T_{d}^{\prime}(j, k)$ contains two disjoint copies T_{1} and T_{2} of $T_{d}(j, k)$ with centers c_{1}, c_{2} connected by edge $c_{1} c_{2}$. If f is a (j, k)-coloring of $T_{d}^{\prime}(j, k)$ such that every neighbor of a leaf has color j, then by the Claim 3.1, for $i=1,2$, the center c_{i} of T^{i} has color k and has k neighbors of color k in T^{i}. Since c_{1} and c_{2} are adjacent, each of them has $k+1$ neighbors of the color k, a contradiction.

Claim 3.3. Let $k \geq j$. Let L be the set of leaves in $T_{d}(j, k)$ and $B=V\left(T_{d}(j, k)\right)-L$. Then for every subgraph T of $T_{d}(j, k)$,

$$
\begin{equation*}
|E(T)| \leq\left(2-\frac{(k+2)}{(j+2)(k+1)}\right)|B \cap V(T)| . \tag{7}
\end{equation*}
$$

Proof. First, suppose that $d=1$. Recall that in this case, $B=C \cup D$, where D is the set of vertices of degree 2 adjacent to $L,|D|=|L|=(j+1)(k+1), C=\left\{c_{1}, \ldots, c_{k+1}\right\}$ is the set of centers of the original stars, each c_{i} is adjacent to $j+1$ vertices in D, and in addition c_{1} is adjacent to each vertex in $C-c_{1}$. Thus, there are three types of edges: Type 1 -the edges connecting D with L, Type 2 -the edges connecting D with C, and Type 3 -the edges connecting c_{1} with $C-c_{1}$. We will prove (7) using discharging. Let every $e \in E(T)$ have charge $\operatorname{ch}(e)=1$ so that $\sum_{e \in E(T)} \operatorname{ch}(e)=|E(T)|$. Now each $e \in E(T)$ distributes its charge to its endvertices according to the following rules.

Rule 1: Each edge $d \ell$ of Type 1 gives all its charge to the end $d \in D$.
Rule 2: Each edge $c_{i} d$ of Type 2 gives charge $1-\frac{(k+2)}{(j+2)(k+1)}$ to the end $d \in D$ and charge $\frac{(k+2)}{(j+2)(k+1)}$ to the end $c_{i} \in C$.

Rule 3: Each edge $c_{1} c_{i}$ of Type 3 gives charge $\frac{k}{k+1}$ to $c_{i} \in C-c_{1}$ and charge $\frac{1}{k+1}$ to c_{1}.

By the rules, only vertices of $V(T) \cap B$ may receive a positive charge and total charge on them will be exactly $|E(T)|$. Thus, it is enough to prove that for every $v \in V(T) \cap B$,

$$
\begin{equation*}
\operatorname{ch}(v) \leq 2-\frac{(k+2)}{(j+2)(k+1)} . \tag{8}
\end{equation*}
$$

If $v \in D$, then it gets at most 1 by Rule 1 and at most $1-\frac{(k+2)}{(j+2)(k+1)}$ by Rule 2 , so (8) holds for v. If $v=c_{i}$ for some $2 \leq i \leq k+1$, then it gets at most $(j+1) \frac{(k+2)}{(j+2)(k+1)}$ by Rule 2 and at most $\frac{k}{k+1}$ by Rule 3, so

$$
\operatorname{ch}(v) \leq(j+1) \frac{(k+2)}{(j+2)(k+1)}+\frac{k}{k+1}=2-\frac{(k+2)}{(j+2)(k+1)} .
$$

Finally, if $v=c_{1}$, then it again gets at most $(j+1) \frac{(k+2)}{(j+2)(k+1)}$ by Rule 2 and at most $k \frac{1}{k+1}$ by Rule 3, so again (8) holds for v. This proves Case $d=1$.

Suppose now that $d \geq 2$. Then, $T_{d}(j, k)$ is obtained from several copies of $T_{1}(j, k)$ by gluing leaves of some copies with the centers of some others. So, if we do the discharging from $E(T)$ to $V(T) \cap B$ in each copy of $T_{1}(j, k)$ forming $T_{d}(j, k)$ by the Rules 1-3 above, then again only vertices of $V(T) \cap B$ may receive a positive charge and the total charge on them will be exactly $|E(T)|$. Moreover, since by Rule 1 the leaves of each copy of $T_{1}(j, k)$ will get zero charge from this copy, as we have checked above, (8) will hold for every $v \in V(T) \cap B$. This proves the claim.

Proof of Theorem 1.3. Our goal is to show that for any $\epsilon>0, g \geq 3$ and $k \geq j \geq 0$,

$$
\text { there is a }\left(2-\frac{(k+2)}{(j+2)(k+1)}+\epsilon, 0\right)-\text { sparse non }-(j, k)
$$

$$
\begin{equation*}
\text { - colorable graph } G \text { of girth } g \text {. } \tag{9}
\end{equation*}
$$

Recall that G is $\left(2-\frac{(k+2)}{(j+2)(k+1)}+\epsilon, 0\right)$-sparse if and only if $\operatorname{mad}(G)<4-$ $\frac{2(k+2)}{(j+2)(k+1)}+2 \epsilon$. We use induction on $j+k$. If $j=k=0$, then any odd cycle of length at least g is almost $(1,0)$-sparse and not $(0,0)$-colorable. Assume that $k \geq 1$ and (9) is proved for all pairs (j^{\prime}, k^{\prime}) with $j^{\prime}+k^{\prime}<j+k$ and $j^{\prime} \leq k^{\prime}$.

CASE 1: $j<k$. Then there is a graph G_{0} with girth g, which is not $(j, k-1)$-colorable and with

$$
\begin{equation*}
\operatorname{mad}\left(G_{0}\right)<4-\frac{2(k+1)}{(j+2) k}+2 \epsilon \leq 4-\frac{2(k+2)}{(j+2)(k+1)}+2 \epsilon \tag{10}
\end{equation*}
$$

Let $V\left(G_{0}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. Fix an integer $d>\frac{1}{\epsilon}$. Let M be the number of leaves in $T_{d}^{\prime}(j, k)$. By an old result of Erdős and Hajnal [6], there exists a non- n-colorable $n M$ uniform hypergraph H with girth g. We construct our graph G using H and many copies of G_{0} and $T_{d}^{\prime}(j, k)$ as follows:
(i) Partition each $e \in E(H)$ into n subsets e_{1}, \ldots, e_{n} of size M;
(ii) Replace each vertex x in H with a copy $G_{0}(x)$ of G_{0};
(iii) For each $e \in H$ and $1 \leq i \leq n$, if $e_{i}=\left\{x_{1}, \ldots, x_{M}\right\}$, we take a copy $T(e, i)$ of $T_{d}^{\prime}(j, k)$ with the set of leaves, say, $L(e, i)=\left\{\ell_{1}, \ldots, \ell_{M}\right\}$ and for $h=1, \ldots, M$, glue ℓ_{h} with the vertex v_{i} in the copy $G_{0}\left(x_{h}\right)$ of G_{0}. We will say that $T(e, 1), \ldots, T(e, n)$ belong to e and denote $B(e, i)=V(T(e, i))-L(e, i)$.

Let us check that the obtained graph G has the properties we need: (a) the girth of G is at least g, (b) G is not (j, k)-colorable, and (c) $\operatorname{mad}(G)<4-\frac{2(k+2)}{(j+2)(k+1)}+2 \epsilon$.

For an edge $e \in E(H)$, let $G(e)$ denote the subgraph of G formed by the copies $G_{0}(x)$ of G_{0} for all $n M$ vertices $x \in e$ plus all the copies $T(e, i)$ of $T_{d}^{\prime}(j, k)$ for $i=1, \ldots, n$. If G has a cycle C of length less than g, then C is not contained in a copy of G_{0} since G_{0} has girth g. Moreover, then C is not contained in any $G(e)$, since all edges of $G(e)$ in $\bigcup_{i=1}^{n} T(e, i)$ are cut-edges in $G(e)$. Since H is a linear hypergraph, C yields a (hypergraph) cycle in H, and any such cycle has at least g edges, a contradiction to the choice of C. This proves (a).

Suppose we have a (j, k)-coloring f of G. Since G_{0} is not $(j, k-1)$-colorable, each graph $G_{0}(x)$ has a vertex v_{i} of color k with k neighbors in $G_{0}(x)$ of color k in f. Let $i(x)$ be the minimum i such that $G_{0}(x)$ has a vertex v_{i} of color k with k neighbors in $G_{0}(x)$ of color k in f. We define a coloring ϕ of H as follows: for each $x \in V(H)$, let $\phi(x)=i(x)$. Then ϕ is an n-coloring of H, and H has no proper n-colorings. Thus, there is a monochromatic $e \in E(H)$. Suppose $f(x)=i$ for each $x \in e$. By construction, all the leaves of the copy $T(e, i)$ of $T_{d}^{\prime}(j, k)$ are in e_{i}; each of these leaves is of color k and has k neighbors of color k in $\bigcup_{x \in e_{i}} G_{0}(x)$. Thus, none of these leaves has a neighbor of color k in $T(e, i)$. This contradicts Claim 3.2. Thus, (b) holds.

In order to prove (c), consider some $W \subseteq V(G)$ with the largest $\frac{|E(G[W])|}{|W|}$. If this ratio is at most 1 , then (c) holds; otherwise by the maximality of the average degree, $G[W]$ has no isolated vertices and no leaves. Let $W^{\prime}=\bigcup_{x \in V(H)}\left(W \cap V\left(G_{0}(x)\right)\right)$. Then, $W-W^{\prime}=\bigcup_{e \in E(H)} \bigcup_{i=1}^{n}(W \cap B(e, i))$. Since each component of $G\left[W^{\prime}\right]$ is contained in some $G_{0}(x)$, by (10), the average degree of $G\left[W^{\prime}\right]$ is less than $4-\frac{2(k+2)}{(j+2)(k+1)}+2 \epsilon$. We can obtain W from W^{\prime} by a sequence of adding the sets $W \cap B(e, i)$, one by one. We will show that after every such step,
the average degree of the obtained subgraph remains less than $4-\frac{2(k+2)}{(j+2)(k+1)}+2 \epsilon$.

Indeed, suppose it is the turn to add to a current set $W^{\prime \prime}$ the set $W \cap B(e, i)$. Let $c_{1} c_{1}^{\prime}$ be the edge in $T(e, i)$ connecting the centers c_{1} and c_{1}^{\prime} of the two disjoint copies of $T_{d}(j, k)$. If $\left\{c_{1}, c_{1}^{\prime}\right\} \not \subset W$, then by Claim 3.3 , adding $W \cap B(e, i)$ to $W^{\prime \prime}$ adds at most $\left(2-\frac{(k+2)}{(j+2)(k+1)}\right)|W \cap B(e, i)|$ edges, as claimed. So let $\left\{c_{1}, c_{1}^{\prime}\right\} \subset W$. Since $G[W]$ has no leaves, W contains the vertices of disjoint paths from c_{1} and c_{1}^{\prime} to $L(e, i)$ and thus $|W \cap B(e, i)| \geq 6 d$. Again by Claim 3.3, adding $W \cap B(e, i)$ to $W^{\prime \prime}$ adds at most $1+(2-$ $\left.\frac{(k+2)}{(j+2)(k+1)}\right)|W \cap B(e, i)|$ edges. Since $d>1 / \epsilon$ and $|W \cap B(e, i)| \geq 6 d$, the last expression is less than $\left(2-\frac{(k+2)}{(j+2)(k+1)}+\epsilon\right)|W \cap B(e, i)|$, as claimed. This proves (c).

CASE 2: $0<j=k$. Then there is a graph G_{0} with girth g, which is not $(k-1, k)$ colorable and with

$$
\begin{equation*}
\operatorname{mad}\left(G_{0}\right)<4-\frac{2(k+2)}{(k+1)^{2}}+2 \epsilon \leq 4-\frac{2(k+2)}{(j+2)(k+1)}+2 \epsilon \tag{12}
\end{equation*}
$$

Now, we simply repeat the proof of Case 1 with the only twist that using $j=k$, we consider G_{0} as not $(k, k-1)$-colorable instead of not $(k-1, k)$-colorable.

Concluding remark. Studying improper colorings with more colors, one can consider the function $F_{a_{1}, a_{2}, \ldots, a_{t}}(g)$ generalizing $F_{j, k}(g)$. Using similar techniques, we can prove the following extension of Theorem 1.3.

Theorem 3.4. Let $a_{1} \leq a_{2} \leq \cdots \leq a_{t}, t \geq 2$ and $g \geq 3$. Then, $F_{a_{1}, a_{2}, \ldots, a_{t}}(g) \leq t-$ $\frac{\left(a_{2}+2\right)}{\left(a_{1}+2\right)\left(a_{2}+1\right)}$.

Since we do not know how sharp is this bound, we do not supply a proof of Theorem 3.4.

ACKNOWLEDGMENTS

We thank the referees for helpful comments.

REFERENCES

[1] O. V. Borodin and A. O. Ivanova, Near-proper vertex 2-colorings of sparse graphs, Diskretn Anal Issled Oper 16(2) (2009), 16-20 (in Russian). Translated in: J Appl Industr Math. 4(1) (2010), 21-23.
[2] O. V. Borodin and A. V. Kostochka, Vertex partitions of sparse graphs into an independent vertex set and subgraph of maximum degree at most one, Sibirsk Mat Zh 52(5) (2011) 1004-1010 (in Russian). Translation in: Sib Math J 52(5) (2011), 796-801.
[3] O. V. Borodin, A. V. Kostochka, Defective 2-colorings of sparse graphs, J Combin Theory B 104 (2014), 72-80.
[4] O. V. Borodin, A. V. Kostochka, and M. Yancey, On 1-improper 2-coloring of sparse graphs, Discrete Math 313 (2013), 2638-2649.
[5] P. Dorbec, T. Kaiser, M. Montassier, and A. Raspaud, Limits of near-coloring of sparse graphs, J Graph Theory 75 (2014), 191-202.
[6] P. Erdős and A. Hajnal, On chromatic number of graphs and set-systems, Acta Math Acad Sci Hungar 17 (1966), 61-99.
[7] L. Esperet, M. Montassier, P. Ochem, and A. Pinlou, A complexity dichotomy for the coloring of sparse graphs, J Graph Theory 73 (2013), 85-102.
[8] A. N. Glebov and D. Zh. Zambalaeva, Path partitions of planar graphs, Sib Elektron Mat Izv 4 (2007), 450-459 (in Russian).
[9] F. Havet and J.-S. Sereni, Improper choosability of graphs and maximum average degree, J Graph Theory 52 (2006) 181-199.
[10] J. Kim, A. V. Kostochka, and X. Zhu, Improper coloring of sparse graphs with a given girth, I: (0,1)-colorings of triangle-free graphs, European J of Combin 42 (2014), 26-48.
[11] A. Kurek and A. Rucin'ski, Globally sparse vertex-Ramsey graphs, J Graph Theory 18 (1994), 73-81.

[^0]: Contract grant sponsor: Arnold O. Beckman Research Award; Contract grant sponsor: NSF; Contract grant number: DMS-1266016; Contract grant sponsor: NSFC; Contract grant number: 11171310; Contract grant sponsor: ZJNSF; Contract grant number: Z6110786.

 Journal of Graph Theory
 © 2015 Wiley Periodicals, Inc.

