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Abstract: A graph G is ( j, k )-colorable if V (G) can be partitioned into
two sets Vj and Vk so that the maximum degree of G[Vj ] is at most j and
of G[Vk ] is at most k. While the problem of verifying whether a graph is
(0, 0)-colorable is easy, the similar problem with ( j, k ) in place of (0, 0) is
NP-complete for all nonnegative j and k with j + k ≥ 1. Let Fj,k (g) denote
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the supremum of all x such that for some constant cg every graph G with
girth g and |E (H )| ≤ x|V (H )| + cg for every H ⊆ G is ( j, k )-colorable. It was
proved recently that F0,1(3) = 1.2. In a companion paper, we find the exact
value F0,1(4) = F0,1(5) = 11

9 . In this article, we show that increasing g from
5 further on does not increase F0,1(g) much. Our constructions show that
for every g, F0,1(g) ≤ 1.25. We also find exact values of Fj,k (g) for all g and
all k ≥ 2 j + 2. C© 2015 Wiley Periodicals, Inc. J. Graph Theory 81: 403–413, 2016
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1. INTRODUCTION

A proper k-coloring of a graph G is a partition of V (G) into k independent sets V1, . . . ,Vk.
A (d1, d2, . . . , dk)-coloring of a graph G is a partition of V (G) into sets V1,V2, . . . ,Vk

such that for every 1 ≤ i ≤ k, the subgraph G[Vi] of G induced by Vi has maximum
degree at most di. If d1 = · · · = dk = 0, then a (d1, d2, . . . , dk)-coloring is simply a
proper k-coloring. If at least one of the di is positive, then a (d1, d2, . . . , dk)-coloring is
called improper or defective. Several papers on improper colorings of planar graphs with
restrictions on girth and of sparse graphs have appeared.

In [10] and this article, we consider improper colorings with just two colors, the ( j, k)-
colorings. Even such colorings are not simple if ( j, k) �= (0, 0). In particular, Esperet,
Montassier, Ochem, and Pinlou [7] proved that the problem of verifying whether a given
planar graph of girth 9 has a (0,1)-coloring is NP-complete. Since the problem is hard, it
is natural to consider related extremal problems.

The maximum average degree, mad(G), of a graph G is the maximum of 2|E(H)|
|V (H)| over

all subgraphs H of G. It measures sparseness of G. Kurek and Ruciński [11] called graphs
with low maximum average degree globally sparse. In particular,

if G is a planar graph of girth g, then mad(G) <
2g

g − 2
. (1)

We will use the following slight refinement of the notion of mad(G). For a, b ∈ R, a graph
G is (a, b)-sparse if |E(H)| < a|V (H)| + b for all H ⊆ G. For example, every forest is
(1, 0)-sparse, and every graph G with mad(G) < a is (a/2, 0)-sparse. We also say that
G is almost (a, b)-sparse if |E(G)| = a|V (G)| + b and |E(H)| < a|V (H)| + b for all
H � G. For example, every k-regular connected graph G is almost (k/2, 0)-sparse. Note
that every almost (a, b)-sparse graph is (a, b′)-sparse for all b′ > b. Almost (a, b)-sparse
graphs could be considered as critical: they become (a, b)-sparse after deleting any edge.

Glebov and Zambalaeva [8] proved that every planar graph G with girth at least
16 is (0, 1)-colorable. Then, Borodin and Ivanova [1] proved that every graph G with
mad(G) < 7

3 is (0, 1)-colorable. By (1), this implies that every planar graph G with
girth at least 14 is (0, 1)-colorable. Borodin and Kostochka [2] proved that every graph
G with mad(G) < 12

5 is (0, 1)-colorable, and this is sharp. This implies that every planar
graph G with girth at least 12 is (0, 1)-colorable. As mentioned above, Esperet et al. [7]
proved that the problem of verifying whether a given planar graph of girth 9 has a
(0, 1)-coloring is NP-complete. Dorbec, Kaiser, Montassier, and Raspaud [5] mention
that because of these results, the remaining open question is whether all planar graphs
with girth 10 or 11 are (0, 1)-colorable. Our results in [10] yield the positive answer for
planar graphs with girth 11.
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In [10] and this article, instead of considering planar graphs with given girth, we con-
sider graphs with given girth that are (a, b)-sparse for small a. A recent result by Borodin
and Kostochka [3] can be stated in the language of (a, b)-sparse graphs as follows.

Theorem 1.1 ([3]). Let k ≥ 2 j + 2 and G be a graph. If G is (2 − k+2
( j+2)(k+1)

, 1
k+1 )-

sparse, then it is ( j, k)-colorable. Moreover, the result is sharp in the sense that there are
infinitely many almost (2 − k+2

( j+2)(k+1)
, 1

k+1 )-sparse graphs that are not ( j, k)-colorable.

Our first result gives triangle-free sharpness examples for Theorem 1.1.

Theorem 1.2. Let j ≥ 0 and k ≥ j + 1. Then there are infinitely many triangle-free
almost (2 − k+2

( j+2)(k+1)
, 1

k+1 )-sparse graphs that are not ( j, k)-colorable. Furthermore,

for every k ≥ 1, there are infinitely many almost (2 − k+2
2(k+1)

, 1
k+1 )-sparse graphs of girth

5 that are not (0, k)-colorable.

When k ≥ 2 j + 2, the graphs we construct in Theorem 1.2 are ( j, k)-critical in the
sense that each proper subgraph of every such graph is ( j, k)-colorable by Theorem 1.1,
but the graphs themselves are not.

Let Fj,k(g) denote the supremum of all positive a such that there is some (possibly
negative) b with the property that every (a, b)-sparse graph G with girth g is ( j, k)-
colorable. The above-mentioned result in [2] implies F0,1(3) = 12

5 = 1.2. In [10], we
prove the exact result that F0,1(4) = F0,1(5) = 11

9 and also find the best possible value
of b. In this article, we extend this result in two directions: to large girth and to ( j, k)-
colorings instead of (0, 1)-colorings.

Since F0,0(4) and F0,1(4) are already known, with Theorem 1.2 we have the values of
F0,k(4) for all k ≥ 0.

Our second result concerns graphs with large girth.

Theorem 1.3. For all k ≥ j ≥ 0 and g ≥ 3, Fj,k(g) ≤ 2 − (k+2)

( j+2)(k+1)
.

So, we have F0,1(3) = 1.2, F0,1(4) = F0,1(5) = 11
9 = 1.222 . . ., F0,1(g) ≤ 1.25 for all

g, and if k ≥ 2 j + 2 then Fj,k(g) = 2 − (k+2)

( j+2)(k+1)
for all g.

Remark. The case j = k seems to be quite different. Apart from the trivial equality
F0,0(g) = 1, the only known to us exact result is F1,1(3) = 7

5 [4]. The value 7
5 does not fit

the formula in Theorem 1.1 and differs from the lower bound by Havet and Sereni in [9].
Even F2,2(3) is not known.

2. ON ( j, k )-COLORING OF TRIANGLE-FREE GRAPHS

For a graph G and W ⊆ V (G), 0 ≤ j ≤ k, let the ( j, k)-potential of W in G be defined
as

φ(W, G) = φ j,k(W, G) =
(

2 − k + 2

( j + 2)(k + 1)

)
|W | − |E(G[W ])|.

(We will drop the subscripts j, k and G if they are clear from the context.)
Note that for a graph G, the condition

φ j,k(W, G) > − 1

k + 1
for all W ⊆ V (G) (2)

is equivalent to the statement that G is (2 − k+2
( j+2)(k+1)

, 1
k+1 )-sparse.

Journal of Graph Theory DOI 10.1002/jgt
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FIGURE 1. Graph L(1, 3).

In this section, we prove Theorem 1.2, that is, we show that for all k ≥ j + 1, there are
infinitely many triangle-free graphs G with φ j,k(W, G) ≥ − 1

k+1 for all W ⊆ V (G), but
not ( j, k)-colorable. We also show that for all k ≥ 2, there are infinitely many graphs G
of girth 5 with φ0,k(W, G) ≥ − 1

k+1 for all W ⊆ V (G), and not (0, k)-colorable. Together
with Theorem 1.1, this means that for all k ≥ 2 j + 2, Fj,k(4) = Fj,k(3). Recall that this
is not the case for ( j, k) = (0, 1) by our result in [10].

For j �= k, we consider a ( j, k)-coloring of a graph G as a 2-coloring of V (G) with
color j and color k such that the vertices of color j (respectively, k) induce a subgraph
with maximum degree at most j (respectively, k). We remark that this convention does
not apply to the case j = k.

Let graph L( j, k) be defined as follows. Let

V (L( j, k)) = {x, w} ∪ {u1, . . . , u j+1} ∪
k+1⋃
i=1

{yi,1, . . . , yi, j+1, yi}.

Vertex x is adjacent to all vertices in {u1, . . . , u j+1} ∪ {y1, . . . , yk+1}, vertex w is adjacent
to all vertices in {u1, . . . , u j+1} ∪ ⋃k+1

i=1 {yi,1, . . . , yi, j+1}, for every i ∈ [1, k + 1], vertex
yi is adjacent to all vertices in {yi,1, . . . , yi, j+1}, and there are no other edges (see Fig. 1).
We will call x the base and w the top of L( j, k).

By construction, L( j, k) is triangle-free and L(0, k) has girth 5. We need the following
simple property of L( j, k).

Claim 2.1. In every ( j, k)-coloring f of L( j, k), x has a neighbor of color k.

Proof. Suppose f (y1) = · · · = f (yk+1) = f (u1) = · · · = f (u j+1) = j. Then, for
every 1 ≤ i ≤ k + 1 at least one of yi,1, . . . , yi, j+1 must be colored with k. So, w has
at least k + 1 neighbors of color k and j + 1 neighbors u1, . . . , u j+1 of color j, a contra-
diction to the definition of ( j, k)-coloring. �

A ( j, k)-flag in a graph G is a pendant block isomorphic to L( j, k) whose unique cut
vertex is the base vertex x in L( j, k). Claim 2.1 immediately implies the following.

Claim 2.2. In every ( j, k)-coloring f of a graph G, for any x ∈ V (G),

(a) if x is the base of k + 1 distinct ( j, k)-flags, then f (x) = j;
(b) if x is the base of k distinct ( j, k)-flags and f (x) = k, then x has no neighbors of

color k outside of these k blocks.

Another helpful property of ( j, k)-flags is that they are sparse.

Journal of Graph Theory DOI 10.1002/jgt
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Claim 2.3. Let graph G consist of q distinct ( j, k)-flags, W1,W2, . . . ,Wq, with a
common base x, and for i = 1, . . . , q, let wi be the top of Wi.

(a) If ∅ �= W ⊆ Wi, then φ(W ) ≥ φ({x}) − 1
k+1 , and equality holds only for W = Wi.

(b) If ∅ �= W ⊆ V (G), then φ(W ) ≥ φ({x}) − q
k+1 and equality holds only for W =

V (G).

Proof. To prove (a), choose among the nonempty subsets ofWi a setW of the smallest
potential φ(W ). Since deleting an isolated or pendant vertex from a set decreases the
potential and the claim holds for a 1-element W , we may assume

δ(G[W ]) ≥ 2. (3)

If ∅ �= W ⊂ Wi and wi /∈ W , then W induces a forest, a contradiction to (3). So wi ∈ W .
Since adding to a set U of vertices, a vertex with at least two neighbors in U decreases

the potential by (3),

for all 1 ≤ h ≤ j + 1 and 1 ≤ h′ ≤ k + 1, uh ∈ W if and only if x ∈ W
and yh′,h ∈ W if and only if yh′ ∈ W.

(4)

Suppose x /∈ W . Then by (4), W ∩ {u1, . . . , u j+1} = ∅. Also, if in this case yh ∈ W
then by (4), all yh,1, . . . , yh, j+1 are in W and

φ(W ) − φ(W − {yh,1, . . . , yh, j+1, yh}) ≥
(

2 − k + 2

( j + 2)(k + 1)

)
( j + 2) − (2 j + 2)

= k

k + 1
,

a contradiction to the choice of W . Thus, x ∈ W . Then by (4), {u1, . . . , u j+1} ⊂ W . Also
adding each yh together with yh,1, . . . , yh, j+1 decreases the potential by exactly 1

k+1 . So,
the unique subset of Wi with the minimum possible potential is Wi itself and

φ(Wi) − φ({x}) =
(

2 − k + 2

( j + 2)(k + 1)

)
(|Wi| − 1) − |E(G[Wi])|

=
(

2 − k + 2

( j + 2)(k + 1)

)
( j + 2)(k + 2) − ((2 j + 3)(k + 2) − 1) = − 1

k + 1
,

as claimed. This proves (a).
To prove (b), suppose that W intersects exactly r > 0 of W1, . . . ,Wq. If x /∈ W , then

φ(W ) =
q∑

i=1

φ(W ∩ Wi) > r

(
φ({x}) − 1

k + 1

)
≥ φ({x}) − r

k + 1
.

If x ∈ W , then r = q and

φ(W ) =
q∑

i=1

φ(W ∩ Wi) − (q − 1)φ({x}) ≥ φ({x}) − q

k + 1
. (5)

By (a), equality in (5) holds only when W ∩ Wi = Wi for all i, which means W = V (G).�
Basic construction. We construct a graph H0 = H0( j, k) from a star K1, j+1 with the

center x0 and leaves x1, . . . , x j+1 by adding k + 1 ( j, k)-flags to each of x0, x1, . . . , x j+1.

Journal of Graph Theory DOI 10.1002/jgt
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(When we say “add ( j, k)-flags to a vertex x,” we mean that x will be the base of the
added flags.)

By construction, H0( j, k) is triangle-free and H0(0, k) has girth 5. If H0 has a ( j, k)-
coloring f , then by Claim 2.2(a), f (x0) = . . . = f (x j+1) = j, and vertex x0 of color j
has j + 1 neighbors x1, · · · , x j+1 of color j, a contradiction. Thus,

H0 is not ( j, k) − colorable. (6)

Now we want to prove that H0 satisfies (2).

Claim 2.4. If W ⊆ V (H0), then φ(W ) ≥ − 1
k+1 , and equality holds only for W =

V (H0).

Proof. Choose a largest W ⊂ V (H0) among the sets with minimum φ(W ). As in
the proof of Claim 2.3, δ(H0[W ]) ≥ 2. By Claim 2.3(a), if L is any ( j, k)-flag in H0 and
W ∩ L �= ∅, then L ⊆ W otherwise φ(W ∪ L) < φ(W ).

It follows that if we know which vertices in X = {x0, . . . , x j+1} are in W , then we
know W . Similarly, if x0 ∈ W and xi /∈ W for some i, then by Claim 2.3(b), adding to W
vertex xi and all the k + 1 ( j, k)-flags containing xi we get a set W ′ with

φ(W ′) ≤ φ(W ) + φ({xi}) − k + 1

k + 1
− 1 < φ(W ),

a contradiction to the minimality of φ(W ). So, W = V (H0) is the unique set of minimum
potential among the sets containing x0.

If x0 /∈ W , then every component of H0[W ] is a subgraph of a graph G described in
Claim 2.3 and so has a nonnegative potential. So, in this case φ(W ) ≥ 0. �

Thus, H0 is the first in the series of examples proving Theorem 1.2.
In order to generalize H0, we need one more notion. A vertex v in a graph G is a remote

( j, k)-base if it is the base of k + 1 ( j, k)-flags W1, . . . ,Wk+1 in G and has exactly one
neighbor outside of W1 ∪ . . . ∪ Wk+1. This unique neighbor of v will be called the main
neighbor of v.

Claim 2.5. Suppose a graph H has no ( j, k)-colorings, and v ∈ V (H) is a remote
( j, k)-base contained in ( j, k)-flags W1, . . . ,Wk+1 with the main neighbor x.

(a) For any ( j, k)-coloring f ′ of H ′ = H − (W1 − v) (if it exists), f ′(v) = k and v has
k neighbors of color k in H ′.

(b) For any ( j, k)-coloring f ′′ of H ′′ = H − ⋃k+1
i=1 Wi (if it exists), f ′′(x) = j and x

has j neighbors of color j in H ′′.

Proof. If H ′ has a ( j, k)-coloring f ′ with f ′(v) = j, then f ′ can be extended to W1

by coloring all neighbors of v in W1 and the top vertex of W1 with k and the remaining
vertices with j. But H has no ( j, k)-colorings. Thus, if a ( j, k)-coloring f ′ of H ′ exists,
then f ′(v) = k, and by Claim 2.1 each of W2, . . . ,Wk+1 contains a neighbor of v of color
k. This proves (a).

Similarly, if H ′′ has a ( j, k)-coloring f ′′ with either f ′′(x) = k or with f ′′(x) = j and
at most j − 1 neighbors of color j, then we can extend f ′′ to the whole H by letting
f ′′(v) = j, coloring all its neighbors in W1 ∪ . . . ∪ Wk+1 and the tops of W1, . . . ,Wk+1

with k, and the remaining vertices in W1 ∪ . . . ∪ Wk+1 with j. �
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General construction. Recall that H = H0 has the following properties:

(P1) H is not ( j, k)-colorable;
(P2) H has no triangles and if j = 0, then H has girth 5;
(P3) φ(W ) ≥ − 1

k+1 for each W ⊆ V (H), and equality holds only for W = V (H);
(P4) H has at least two remote bases (if j = 0, then x0 also is a remote base in H0(0, k)).

We now show how to use a graph H satisfying (P1)–(P4) to construct a larger graph
satisfying (P1)–(P4). Take two copies, H1 and H2 of H. For h = 1, 2, choose in Hh a
remote base vh contained in ( j, k)-flags Wh,1, . . . ,Wh,k+1 with the main neighbor xh. Let
H ′ = H1 − (W1,1 − v1) and H ′′ = H2 − ⋃k+1

i=1 W2,i. We get the new graph H̃ by adding
to H ′ ∪ H ′′ a new vertex z adjacent to v1 in V (H ′) and to x2 in V (H ′′).

Property (P2) for H̃ directly follows from (P2) for H1 and H2. Since H1 ∪ H2 had at
least four remote bases and we destroyed only two of them when creating H ′ and H ′′,
(P4) holds for H̃.

Suppose H̃ has a ( j, k)-coloring f . Then by Claim 2.5(a), f (v1) = k and v1 has k
neighbors of color k in V (H ′). Thus, we need f (z) = j. But by Claim 2.5(b), f (x2) = j
and x2 has j neighbors of color j in V (H ′′). This contradiction proves (P1) for H̃.

To prove (P3), consider a set W of minimum potential in H̃. If z /∈ W , then by (P3)
for H, φ(W ) = φ(W ∩ V (H ′)) + φ(W ∩ V (H ′′)) ≥ 0 + 0 = 0 since each of W ∩ V (H ′)
andW ∩ V (H ′′) is proper subset ofV (H ′) andV (H ′′), respectively. Suppose z ∈ W . Then,
similarly to (3), v1, x2 ∈ W . Let W ′ = W ∩ V (H ′) and W ′′ = W ∩ V (H ′′). Since adding
to W ′′ vertex v2 together with all k + 1 ( j, k)-flags containing v2 would decrease the
potential of W ′′ by k+2

( j+2)(k+1)
, we conclude that φ(W ′′) ≥ k+2

( j+2)(k+1)
− 1

k+1 with equality
only when W ′′ = V (H ′′). Similarly, φ(W ′) ≥ 0 with equality only when W ′ = V (H ′).
Thus,

φ(W ) ≥ φ(W ′) + φ(W ′′) + φ({z}) − 2 ≥ 0 + k + 2

( j + 2)(k + 1)
− 1

k + 1

+(2 − k + 2

( j + 2)(k + 1)
) − 2 ≥ −1

k + 1
,

with equality only when W = V (H̃).
This construction yields Theorem 1.2.

3. ON ( j, k )-COLORING OF GRAPHS WITH LARGE GIRTH

In this section, we prove Theorem 1.3. First, we inductively define the tree T ′
d ( j, k) that

will be a gadget to construct graphs we want. For i = 0, 1, . . . , k, let Si be a copy of the
star K1, j+1 with the center ci. We subdivide each of the j + 1 edges of each star Si once
and add edges c0ci for i = 1, 2, 3, . . . , k. The resulting tree is T1( j, k) and c0 is called the
center of T1( j, k). Note that T1( j, k) has (k + 1)( j + 1) leaves. Assume we already have
defined the tree Td−1( j, k) and it has (k + 1)d−1( j + 1)d−1 leaves. Let T 0 be a copy of
T1( j, k) with the center c0 and T 1, . . . , T (k+1)( j+1) be disjoint copies of Td−1( j, k) with the
centers c1, . . . , c(k+1)( j+1). Let x1, . . . , x(k+1)( j+1) be the leaves of T 0. The tree Td( j, k)

with the center c0 is obtained by gluing ci with xi for all i = 1, . . . , (k + 1)( j + 1).
Finally, the tree T ′

d ( j, k) is obtained from two disjoint copies of Td( j, k) by adding an
edge connecting their centers. The example of T ′

1 (2, 3) is in Figure 2.
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c0

c1 c2 c3

FIGURE 2. T ′
1 (2, 3).

Claim 3.1. For d ≥ 1, let f be a ( j, k)-coloring of Td( j, k) with the center c0 such that
every neighbor of a leaf has color j. Then, f (c0) = k and c0 has k neighbors of color k.

Proof. We use induction on d.
Let L be the set of all leaves of T1( j, k). If all the neighbors of L are colored with the

color j, then each of the remaining nonleaf vertices is adjacent to j + 1 vertices of color
j, and thus has color k. These vertices form a star K1,k with the center c0, which yields
the claim for d = 1.

Assume the statement holds for d − 1. Let T 0, T 1, . . . , T (k+1)( j+1) be the trees from the
definition of Td( j, k) and c0, c1, . . . , c(k+1)( j+1) be their centers. Let f be a ( j, k)-coloring
of Td( j, k) such that every neighbor of a leaf has color j. By the induction assumption,
for each i = 1, . . . , (k + 1)( j + 1), f (ci) = k, and ci has k neighbors of color k in T i. It
follows that the neighbor of ci in T 0 has color j. Again by the induction assumption, the
conclusion holds for c0. �

Claim 3.2. For k ≥ j and d ≥ 1, in every ( j, k)-coloring of T ′
d ( j, k), some neighbor of

a leaf has color k.

Proof. Tree T ′
d ( j, k) contains two disjoint copies T1 and T2 of Td( j, k) with centers

c1, c2 connected by edge c1c2. If f is a ( j, k)-coloring of T ′
d ( j, k) such that every neighbor

of a leaf has color j, then by the Claim 3.1, for i = 1, 2, the center ci of T i has color k
and has k neighbors of color k in T i. Since c1 and c2 are adjacent, each of them has k + 1
neighbors of the color k, a contradiction. �

Claim 3.3. Let k ≥ j. Let L be the set of leaves in Td( j, k) and B = V (Td( j, k)) − L.
Then for every subgraph T of Td( j, k),

|E(T )| ≤
(

2 − (k + 2)

( j + 2)(k + 1)

)
|B ∩ V (T )|. (7)

Proof. First, suppose that d = 1. Recall that in this case, B = C ∪ D, where D is the
set of vertices of degree 2 adjacent to L, |D| = |L| = ( j + 1)(k + 1), C = {c1, . . . , ck+1}
is the set of centers of the original stars, each ci is adjacent to j + 1 vertices in D, and in
addition c1 is adjacent to each vertex in C − c1. Thus, there are three types of edges: Type
1—the edges connecting D with L, Type 2—the edges connecting D with C, and Type
3—the edges connecting c1 with C − c1. We will prove (7) using discharging. Let every
e ∈ E(T ) have charge ch(e) = 1 so that

∑
e∈E(T ) ch(e) = |E(T )|. Now each e ∈ E(T )

distributes its charge to its endvertices according to the following rules.
Rule 1: Each edge d� of Type 1 gives all its charge to the end d ∈ D.
Rule 2: Each edge cid of Type 2 gives charge 1 − (k+2)

( j+2)(k+1)
to the end d ∈ D and

charge (k+2)

( j+2)(k+1)
to the end ci ∈ C.

Rule 3: Each edge c1ci of Type 3 gives charge k
k+1 to ci ∈ C − c1 and charge 1

k+1 to c1.
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By the rules, only vertices of V (T ) ∩ B may receive a positive charge and total charge
on them will be exactly |E(T )|. Thus, it is enough to prove that for every v ∈ V (T ) ∩ B,

ch(v) ≤ 2 − (k + 2)

( j + 2)(k + 1)
. (8)

If v ∈ D, then it gets at most 1 by Rule 1 and at most 1 − (k+2)

( j+2)(k+1)
by Rule 2, so (8)

holds for v. If v = ci for some 2 ≤ i ≤ k + 1, then it gets at most ( j + 1) (k+2)

( j+2)(k+1)
by

Rule 2 and at most k
k+1 by Rule 3, so

ch(v) ≤ ( j + 1)
(k + 2)

( j + 2)(k + 1)
+ k

k + 1
= 2 − (k + 2)

( j + 2)(k + 1)
.

Finally, if v = c1, then it again gets at most ( j + 1) (k+2)

( j+2)(k+1)
by Rule 2 and at most k 1

k+1
by Rule 3, so again (8) holds for v. This proves Case d = 1.

Suppose now that d ≥ 2. Then, Td( j, k) is obtained from several copies of T1( j, k) by
gluing leaves of some copies with the centers of some others. So, if we do the discharging
from E(T ) to V (T ) ∩ B in each copy of T1( j, k) forming Td( j, k) by the Rules 1–3 above,
then again only vertices of V (T ) ∩ B may receive a positive charge and the total charge
on them will be exactly |E(T )|. Moreover, since by Rule 1 the leaves of each copy of
T1( j, k) will get zero charge from this copy, as we have checked above, (8) will hold for
every v ∈ V (T ) ∩ B. This proves the claim.

Proof of Theorem 1.3. Our goal is to show that for any ε > 0, g ≥ 3 and k ≥ j ≥ 0,

there is a

(
2 − (k + 2)

( j + 2)(k + 1)
+ ε, 0

)
− sparse non − ( j, k)

− colorable graph G of girth g. (9)

Recall that G is (2 − (k+2)

( j+2)(k+1)
+ ε, 0)-sparse if and only if mad(G) < 4 −

2(k+2)

( j+2)(k+1)
+ 2ε. We use induction on j + k. If j = k = 0, then any odd cycle of length

at least g is almost (1, 0)-sparse and not (0, 0)-colorable. Assume that k ≥ 1 and (9) is
proved for all pairs ( j′, k′) with j′ + k′ < j + k and j′ ≤ k′.

CASE 1: j < k. Then there is a graph G0 with girth g, which is not ( j, k − 1)-colorable
and with

mad(G0) < 4 − 2(k + 1)

( j + 2)k
+ 2ε ≤ 4 − 2(k + 2)

( j + 2)(k + 1)
+ 2ε. (10)

Let V (G0) = {v1, v2, . . . , vn}. Fix an integer d > 1
ε
. Let M be the number of leaves in

T ′
d ( j, k). By an old result of Erdős and Hajnal [6], there exists a non-n-colorable nM-

uniform hypergraph H with girth g. We construct our graph G using H and many copies
of G0 and T ′

d ( j, k) as follows:

(i) Partition each e ∈ E(H) into n subsets e1, . . . , en of size M;
(ii) Replace each vertex x in H with a copy G0(x) of G0;

(iii) For each e ∈ H and 1 ≤ i ≤ n, if ei = {x1, . . . , xM}, we take a copy T (e, i) of
T ′

d ( j, k) with the set of leaves, say, L(e, i) = {�1, . . . , �M} and for h = 1, . . . , M,
glue �h with the vertex vi in the copy G0(xh) of G0. We will say that
T (e, 1), . . . , T (e, n) belong to e and denote B(e, i) = V (T (e, i)) − L(e, i).
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Let us check that the obtained graph G has the properties we need: (a) the girth of G
is at least g, (b) G is not ( j, k)-colorable, and (c) mad(G) < 4 − 2(k+2)

( j+2)(k+1)
+ 2ε.

For an edge e ∈ E(H), let G(e) denote the subgraph of G formed by the copies G0(x) of
G0 for all nM vertices x ∈ e plus all the copies T (e, i) of T ′

d ( j, k) for i = 1, . . . , n. If G has
a cycle C of length less than g, then C is not contained in a copy of G0 since G0 has girth
g. Moreover, then C is not contained in any G(e), since all edges of G(e) in

⋃n
i=1 T (e, i)

are cut-edges in G(e). Since H is a linear hypergraph, C yields a (hypergraph) cycle
in H, and any such cycle has at least g edges, a contradiction to the choice of C. This
proves (a).

Suppose we have a ( j, k)-coloring f of G. Since G0 is not ( j, k − 1)-colorable, each
graph G0(x) has a vertex vi of color k with k neighbors in G0(x) of color k in f . Let
i(x) be the minimum i such that G0(x) has a vertex vi of color k with k neighbors in
G0(x) of color k in f . We define a coloring φ of H as follows: for each x ∈ V (H), let
φ(x) = i(x). Then φ is an n-coloring of H, and H has no proper n-colorings. Thus, there
is a monochromatic e ∈ E(H). Suppose f (x) = i for each x ∈ e. By construction, all the
leaves of the copy T (e, i) of T ′

d ( j, k) are in ei; each of these leaves is of color k and has
k neighbors of color k in

⋃
x∈ei

G0(x). Thus, none of these leaves has a neighbor of color
k in T (e, i). This contradicts Claim 3.2. Thus, (b) holds.

In order to prove (c), consider some W ⊆ V (G) with the largest |E(G[W ])|
|W | . If this

ratio is at most 1, then (c) holds; otherwise by the maximality of the average degree,
G[W ] has no isolated vertices and no leaves. Let W ′ = ⋃

x∈V (H)(W ∩ V (G0(x))). Then,
W − W ′ = ⋃

e∈E(H)

⋃n
i=1(W ∩ B(e, i)). Since each component of G[W ′] is contained in

some G0(x), by (10), the average degree of G[W ′] is less than 4 − 2(k+2)

( j+2)(k+1)
+ 2ε. We

can obtain W from W ′ by a sequence of adding the sets W ∩ B(e, i), one by one. We will
show that after every such step,

the average degree of the obtained subgraph remains less than 4− 2(k + 2)

( j + 2)(k + 1)
+2ε.

(11)

Indeed, suppose it is the turn to add to a current set W ′′ the set W ∩ B(e, i). Let c1c′
1

be the edge in T (e, i) connecting the centers c1 and c′
1 of the two disjoint copies of

Td( j, k). If {c1, c′
1} �⊂ W , then by Claim 3.3, adding W ∩ B(e, i) to W ′′ adds at most

(2 − (k+2)

( j+2)(k+1)
)|W ∩ B(e, i)| edges, as claimed. So let {c1, c′

1} ⊂ W . Since G[W ] has
no leaves, W contains the vertices of disjoint paths from c1 and c′

1 to L(e, i) and thus
|W ∩ B(e, i)| ≥ 6d. Again by Claim 3.3, adding W ∩ B(e, i) to W ′′ adds at most 1 + (2 −

(k+2)

( j+2)(k+1)
)|W ∩ B(e, i)| edges. Since d > 1/ε and |W ∩ B(e, i)| ≥ 6d, the last expression

is less than (2 − (k+2)

( j+2)(k+1)
+ ε)|W ∩ B(e, i)|, as claimed. This proves (c).

CASE 2: 0 < j = k. Then there is a graph G0 with girth g, which is not (k − 1, k)-
colorable and with

mad(G0) < 4 − 2(k + 2)

(k + 1)2
+ 2ε ≤ 4 − 2(k + 2)

( j + 2)(k + 1)
+ 2ε. (12)

Now, we simply repeat the proof of Case 1 with the only twist that using j = k, we
consider G0 as not (k, k − 1)-colorable instead of not (k − 1, k)-colorable. �
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Concluding remark. Studying improper colorings with more colors, one can consider
the function Fa1,a2,...,at (g) generalizing Fj,k(g). Using similar techniques, we can prove
the following extension of Theorem 1.3.

Theorem 3.4. Let a1 ≤ a2 ≤ · · · ≤ at , t ≥ 2 and g ≥ 3. Then, Fa1,a2,...,at (g) ≤ t −
(a2+2)

(a1+2)(a2+1)
.

Since we do not know how sharp is this bound, we do not supply a proof of Theorem 3.4.
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