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Abstract: Let k ≥ 3 be an integer, Hk (G) be the set of vertices of degree
at least 2k in a graph G, and Lk (G) be the set of vertices of degree at most
2k − 2 in G. In 1963, Dirac and Erdős proved that G contains k (vertex)
disjoint cycles whenever |Hk (G)| − |Lk (G)| ≥ k2 + 2k − 4. The main result
of this article is that for k ≥ 2, every graph G with |V (G)| ≥ 3k containing
at most t disjoint triangles and with |Hk (G)| − |Lk (G)| ≥ 2k + t contains k
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STRENGTHENING THEOREMS OF DIRAC AND ERDőS ON DISJOINT CYCLES 789

disjoint cycles. This yields that if k ≥ 2 and |Hk (G)| − |Lk (G)| ≥ 3k, then
G contains k disjoint cycles. This generalizes the Corrádi–Hajnal Theorem,
which states that every graph G with Hk (G) = V (G) and |Hk (G)| ≥ 3k con-
tains k disjoint cycles. C© 2016 Wiley Periodicals, Inc. J. Graph Theory 85: 788–802, 2017

Keywords: disjoint cycles; disjoint triangles; minimum degree; planar graphs

1. INTRODUCTION

For a graph G, let |G| = |V (G)|, ‖G‖ = |E(G)|, and δ(G) be the minimum degree
of a vertex in G. The complement of G is denoted by G. The join G ∨ G′ of two
graphs is G ∪ G′ ∪ {xx′ : x ∈ V (G) and x′ ∈ V (G′)}. Let SKm denote the graph obtained
by subdividing one edge of the complete m-vertex graph Km. For a positive integer k,
define Hk(G) to be the subset of vertices with degree at least 2k and Lk(G) to be the subset
of vertices of degree at most 2k − 2 in G. When we say that two cycles are disjoint, we
mean that they are vertex-disjoint.

Resolving a conjecture of Erdős, Corrádi, and Hajnal [2] proved the following
theorem.

Theorem 1.1. [2] Let G be a graph and k a positive integer. If |G| ≥ 3k and δ(G) ≥ 2k,
then G contains k disjoint cycles.

Since each cycle has at least three vertices, the condition |G| ≥ 3k is necessary. The
condition δ(G) ≥ 2k is also sharp, as witnessed by the graph Gn,k = Kn−2k+1 ∨ K2k−1 for
n ≥ 3k. Indeed, any cycle in Gn,k must contain at least two vertices from the K2k−1 and
therefore Gn,k contains at most k − 1 disjoint cycles.

Theorem 1.1 prompted a series of refinements and extensions for both undirected
graphs (see, e.g., [5–12, 14]) and directed graphs (see, e.g., [3, 4, 13, 15]). In particular,
Dirac and Erdős [5] proved in 1963 the following theorem.

Theorem 1.2. [5] Let k ≥ 3 be an integer and G be a graph with |Hk(G)| − |Lk(G)| ≥
k2 + 2k − 4. Then G contains k disjoint cycles.

The bound k2 + 2k − 4 is not best possible. Dirac and Erdős provided the following ex-
amples of a graph G without k disjoint cycles such that |Hk(G)| − |Lk(G)| = 2k − 1. Let
n ≥ 3k be odd. Let V (G) = X ∪ Y ∪ Z with |X | = 2k − 1 and |Y | = |Z| = n−2k+1

2 . Let
the set of edges of G consist of a perfect matching connecting Y with Z, all edges
between X and Y , and all edges inside X . Then, Hk(G) = X ∪ Y and Lk(G) = Z,
but G has no k disjoint cycles, since every cycle must contain at least two vertices
of X .

Dirac and Erdős also proved that for a planar graph G weaker restrictions on the
difference |Hk(G)| − |Lk(G)| provide that G contains k cycles.

Theorem 1.3. [5] Let k ≥ 3 be an integer and G be a planar graph such that |Hk(G)| −
|Lk(G)| ≥ 5k − 7. Then G contains k disjoint cycles.

The main result of this article is the following theorem.
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Theorem 1.4. Let k ≥ 2 be an integer and G be a graph such that |G| ≥ 3k. Let t be
the maximum number of disjoint triangles contained in G. If

|Hk(G)| − |Lk(G)| ≥ 2k + t,

then G contains k disjoint cycles.

Theorem 1.4 is sharp, as witnessed by the graph SK3k−1. Let u be the newly created
vertex (of degree 2) and observe that Lk(SK3k−1) = {u}, |Hk(SK3k−1)| = 3k − 1, and G
contains k − 1 disjoint triangles. Since |SK3k−1| = 3k, any set of k disjoint cycles must
partition V (SK3k−1) into triangles, but the vertex u is not contained in any triangle. As
above, 3k vertices are necessary for the existence of k cycles. However, if the bound on
|Hk(G)| − |Lk(G)| in Theorem 1.4 is slightly strengthened, then the condition |G| ≥ 3k
holds automatically.

Corollary 1.5. Let k ≥ 2 be an integer and G be a graph. Let t be the maximum number
of disjoint triangles contained in G. If

|Hk(G)| − |Lk(G)| ≥ 2k + t + 1,

then G contains k disjoint cycles.

Corollary 1.5 is sharp since K3k−1 contains only k − 1 disjoint cycles and |Hk(K3k−1)| −
|Lk(K3k−1)| = 3k − 1. Corollary 1.5 requires a short proof that is given in Section 5.
A straightforward consequence of Corollary 1.5 is the following stronger version of
Theorem 1.2.

Corollary 1.6. Let k ≥ 2 be an integer and G be a graph with |Hk(G)| − |Lk(G)| ≥ 3k.
Then G contains k disjoint cycles.

Observe that the special case Hk(G) = V (G) of Corollary 1.6 is equivalent to Theo-
rem 1.1 for k ≥ 2. Using the techniques of Theorem 1.4, we will also prove the following
stronger version of Theorem 1.3.

Theorem 1.7. Let k ≥ 2 be an integer and G be a planar graph. If

|Hk(G)| − |Lk(G)| ≥ 2k,

then G contains k disjoint cycles.

The condition that G be planar is necessary. Indeed, consider the nonplanar graph SK5.
If u is the newly created vertex, then H2(SK5) = V (SK5) − u and L2(SK5) = {u}, but
SK5 does not have two disjoint cycles. The bound 2k in Theorem 1.7 is sharp (see, e.g.,
K5 − e for k = 2), however only for small values of k. Since the average degree of every
planar graph is less than 6, for k ≥ 5 much weaker restrictions provide existence of k
disjoint cycles in planar graphs.

Finally, we prove that the bound 2k is also sufficient if the graph G contains no two
disjoint triangles.

Theorem 1.8. Let k ≥ 3 be an integer and G be a graph such that G does not contain
two disjoint triangles. If

|Hk(G)| − |Lk(G)| ≥ 2k,

then G contains k disjoint cycles.
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Our proofs are based on the approach and ideas of Dirac and Erdős [5]. We also heavily
use an extension of Theorem 1.1 from [10] (Theorem 2.1).

The remainder of this article is organized as follows. The next section outlines the
notation that we will use throughout the article, and introduces some tools to be used in
the proof. In Section 3 we will prove several lemmas for the base case, and in Section 4
we prove the main result. In Sections 5–7, we use Theorem 1.4 to prove Corollary 1.5,
Theorem 1.7, and Theorem 1.8, respectively.

2. NOTATION AND TOOLS

For disjoint sets U,U ′ ⊆ V (G), we write ‖U,U ′‖ for the number of edges from U to U ′.
If U = {u}, then we will write ‖u,U ′‖ instead of ‖{u},U ′‖. For x ∈ V (G), NG(x) is the
set of vertices adjacent to x in G and dG(x) = |NG(x)|. When the choice of G is clear,
we simplify the notation to N(x) and d(x), respectively. For an edge xy ∈ E(G), G�xy
denotes the graph obtained from G by contracting xy, and vxy denotes the vertex resulting
from contracting xy. By α(G) we denote the independence number of G.

We say that x, y, z ∈ V (G) form a triangle T = xyz in G if G[{x, y, z}] is a triangle.
We say v ∈ T , if v ∈ {x, y, z}. A set T of triangles is a set of subgraphs of G such that
each subgraph is a triangle and all the triangles are disjoint. For a set S of graphs,
let V (S ) = ⋃{V (S) : S ∈ S}. For a graph G, we write tG for the maximum number of
disjoint triangles contained in G.

When the graph G is clear f rom context, we will use t instead of tG.

Similarly, when the integer k is also clear, we will use H and L f or Hk(G)

and Lk(G), respectively. T he sizes of H and L will be denoted by h and �,

respectively. (1)

As shown in [10], if a graph G with |G| ≥ 3k and δ(G) ≥ 2k − 1 does not contain a
large independent set, then with two exceptions, G contains k disjoint cycles:

Theorem 2.1. [10] Let k ≥ 2. Let G be a graph with |G| ≥ 3k and δ(G) ≥ 2k − 1 such
that G does not contain k disjoint cycles. Then,

(1) α(G) ≥ |G| − 2k + 1, or
(2) k is odd and G = 2Kk ∨ Kk, or
(3) k = 2 and G is a wheel.

We will use the following corollary of Theorem 2.1 throughout the article.

Corollary 2.2. Let k ≥ 2 be an integer and G be a graph with |G| ≥ 3k. If |H| ≥ 2k
and δ(G) ≥ 2k − 1 (i.e., L = ∅), then G contains k disjoint cycles.

Proof. First, if G = 2Kk ∨ Kk, then |H| = k, a contradiction. Next, if α(G) ≥ |G| −
2k + 1, then let U be an independent set of size |G| − 2k + 1. For each u ∈ U , d(u) ≤
2k − 1, so H ⊆ V (G) \ U and |Hk(G)| ≤ 2k − 1. Finally, if k = 2, then G is not a wheel,
since the wheel has only one vertex of degree at least 4. Therefore, by Theorem 2.1, G
contains k disjoint cycles. �

Call a graph G minimal if among graphs with a certain property, |G| is minimal, and
subject to this, ‖G‖ is minimal. Dirac and Erdős [5] observed the following.
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Property 2.3. Let k ≥ 2 be an integer and f : N → Z a function. Suppose G is minimal
among the graphs without k disjoint cycles satisfying |H| − |L| ≥ f (k). Then,

(1) δ(G) ≥ 2, and
(2) if uv ∈ E(G), then d(u) ∈ {2k − 1, 2k} or d(v) ∈ {2k − 1, 2k}.
Indeed, if such a graph G contained a vertex v with d(v) ≤ 1, then G − v is a smaller

counterexample. Similarly, if (2) does not hold, then G − uv is a smaller counterexample.

3. GRAPHS WITH TWO DISJOINT CYCLES

In this section we prove several lemmas that will serve as the base case k = 2 for our
various proofs. In notation, we will use convention (1) with k = 2.

Lemma 3.1. Every triangle-free graph G with h ≥ � + 4 contains two disjoint cycles.

Proof. Let G be a minimal counterexample. As G is triangle-free, and h ≥ 4, |G| ≥ 8.
By Property 2.3, δ(G) ≥ 2, and by Corollary 2.2, δ(G) = 2. Say d(x) = 2 and N(x) =
{y, z}. By Property 2.3, d(y), d(z) ∈ {3, 4}. Set G′ = G�xy. Since G is triangle-free,
dG′ (v) = dG(v) for all v ∈ V (G) \ {x, y}. As x ∈ L, this implies |H2(G′)| ≥ |L2(G′)| + 4.
Since G is minimal, G′ has a triangle, say vxyzw. Then C := yxzw is a 4-cycle in G. Let
W = V (G) \ C.

As x ∈ L, |C ∩ H| − |C ∩ L| ≤ 2. So, since h − � ≥ 4, |H ∩ W | − |L ∩ W | ≥ 2. Thus
∑
u∈W

d(u) ≥ 3|W | + |H ∩ W | − |L ∩ W | ≥ 3|W | + 2. (2)

Each v ∈ W has no two adjacent neighbors as G is triangle-free, and is not adjacent
to x as N(x) ⊂ C. Thus if ‖v,C‖ ≥ 2 then N(v) ∩ C = {y, z}. As d(y) ≤ 4, there are at
most two such v. So ‖W,C‖ ≤ |W | + 2. Hence by (2),

2‖G[W ]‖ =
∑
u∈W

d(u) − ‖W,C‖ ≥ (3|W | + 2) − (|W | + 2) = 2|W |.

Therefore ‖G[W ]‖ ≥ |W |, and so G[W ] contains a cycle (disjoint from C). �

The 2-core of a graph G is the union of all G′ ⊆ G with δ(G′) ≥ 2. It can be obtained
from G by iterative deletion of vertices of degree at most 1.

Lemma 3.2. Suppose the 2-core of G contains at least six vertices, and it is not
isomorphic to SK5. If h ≥ � + 4, then G contains two disjoint cycles.

Proof. Let G be a minimal counterexample. If there exists a vertex of degree at
most 1, then removing it yields a smaller counterexample. So G is its own 2-core and
δ(G) ≥ 2. Also |G| ≥ 6 and by Corollary 2.2, L �= ∅. Thus h ≥ 5, and |G| ≥ 7, since G
is not isomorphic to SK5. Pick x ∈ L. Let N(x) = {y, z}.

Suppose yz /∈ E(G). Set G′ = G�xy. Then |G′| = |G| − 1 ≥ 6. Since d(x) = 2, all
v ∈ V (G′) satisfy dG′ (v) = dG(v). So G′ is its own 2-core, |H2(G′)| − |L2(G′)| = h −
� + 1 ≥ 5, and G′ is not isomorphic to SK5. As |G′| < |G|, by the minimality of G, G′

has two disjoint cycles. But then so does G.
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Otherwise yz ∈ E(G). Now xyz is a triangle in G, so G′ := G − {x, y, z} is acyclic,
and ‖G′‖ < |G′|. Since h ≥ � + 4 and x ∈ L, we have |H ∩ V (G′)| − |L ∩ V (G′)| ≥ 3.
So

∑
v∈V (G′) dG(v) ≥ 3|G′| + 3. As N(x) = {y, z},

‖V (G′), {y, z}‖ = ‖V (G′),V (G) \ V (G′)‖ ≥ 3|G′| + 3 − 2(|G′| − 1) ≥ |G′| + 5.

Thus d(y), d(z) ≥ 6. Let G∗ = G − x. Then |G∗| ≥ 6, dG∗ (y), dG∗ (z) ≥ 5, and dG∗ (v) =
dG(v) for all v ∈ V (G∗) \ {y, z}. So |H2(G∗)| − |L2(G∗)| ≥ 5 and G∗ coincides with its
2-core. As |G∗| < |G|, by the minimality of G, G∗ has two disjoint cycles. But then so
does G. �
Lemma 3.3. Every graph G containing a triangle X = x1x2x3 has two disjoint cycles
provided (a) |H \ X | − |L \ X | ≥ 2 and (b) ‖v, X‖ ≤ 2 for all v ∈ V (G) \ X.

Proof. Let G be a minimal counterexample to the lemma. Then G − X is acyclic. Let
Y = V (G) \ X . By (a), there is u ∈ H \ X , and by (b), ‖u,Y‖ ≥ 2. This yields |G| ≥ 6.
First, we show:

If v ∈ Y and ‖v,Y‖ ≤ 1, then ‖v,Y‖ = 1 and ‖v, X‖ = 2. (3)

Indeed, by (b), ‖v, X‖ ≤ 2. So if ‖v,Y‖ = 0 or ‖v, X‖ ≤ 1 and ‖v,Y‖ ≤ 1, then v ∈ L \ X .
Thus G − v ⊂ G satisfies (a) and (b). Then by the minimality of G, G − v has two disjoint
cycles, and hence so does G.

By (a), there are z, z′ ∈ H \ X . If they are in the same component of G − X , then let Q
be the interior of the unique z, z′-path in G − X and put G′ = G − X − Q − zz′; otherwise
put G′ = G − X . Pick maximum paths P = y1 . . . z . . . y2 and P′ = y′

1 . . . z′ . . . y′
2 in G′.

Perhaps z = y1 or z′ = y′
1, but z, z′ ∈ H implies |P|, |P′| ≥ 2. For i ∈ {1, 2}, if yi �= z and

N(yi) ∩ Q �= ∅, then G[P ∪ Q] contains a cycle, a contradiction. Then,

either dG−X (yi) = dG′ (yi) or yi = z. (4)

So, if yi �= z, then by (3), ‖yi, X‖ = 2. Otherwise yi = y1 = z, and ‖z, X‖ ≥ dG(z) −
dG−X (z) ≥ dG(z) − dG′ (z) − 1 ≥ 2. So in any case, ‖yi, X‖ = 2 and a similar argument
shows ‖y′

i, X‖ = 2. Now y1 and y2 have a common neighbor, say x1 in X , and G[P + x1]
contains a cycle C1. If y′

1 and y′
2 have a common neighbor xi ∈ X − x1, then G[P′ + xi]

contains a cycle disjoint from C1. Otherwise, one of y′
1 and y′

2 is adjacent to x2 and the
other to x3. Then G[P′ ∪ {x2, x3}] contains a cycle disjoint from C1. �

4. PROOF OF THEOREM 1.4

Recall that we use convention (1). Let k be the smallest integer such that there exists
a graph G without k disjoint cycles satisfying |H| − |L| ≥ 2k + t and |G| ≥ 3k. By
Lemmas 3.1 and 3.2, k ≥ 3. Choose such G to be minimal.

Lemma 4.1. |G| ≥ 3k + 1.

Proof. Suppose that |G| = 3k. Create the graph G′ ⊇ G by adding edges to G
until, for each x ∈ L, NG′ (x) = V (G′) − x. Then δ(G′) ≥ 2k − 1, so by Corollary 2.2, G′

contains k disjoint cycles. As |G′| = 3k, these cycles are triangles, and at most � of them
contain edges from E(G′) \ E(G). Thus t ≥ k − � and so h ≥ � + 2k + t ≥ 3k = |G|.
Hence H = V (G) and by Theorem 1.1, G contains k disjoint cycles. �
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Lemma 4.2. Each x ∈ L is in a triangle in G.

Proof. Suppose x is not in a triangle. By Property 2.3, d(x) ≥ 2. Let y ∈ N(x)

and set G′ = G�xy. Then dG′ (vxy) ≥ d(y) and dG′ (z) = dG(z) for all z ∈ V (G′) − vxy.
Since any triangle in G′ not containing vxy is also a triangle in G, t ′ := tG′ ≤ t + 1. Thus
H ⊆ Hk(G′) and Lk(G′) + x ⊆ L. So,

|Hk(G
′)| − |Lk(G

′)| ≥ h − (� − 1) ≥ (� + 2k + t) − � + 1 = 1 + 2k + t ≥ 2k + t ′.

By Lemma 4.1, |G′| ≥ 3k. As G is minimal, G′ has k disjoint cycles and so does G. �
By Corollary 2.2, L �= ∅. Fix an x ∈ L. Let T be a set of disjoint triangles in G such

that (a) x ∈ V (T ), and (b) subject to (a), |T | is maximum. By Lemma 4.2, |T | ≥ 1. Let
T0 = T0(T ) be the triangle in T containing x; say T0 = xyz.

Define an auxiliary digraph D = D(T ) with V (D) = T and
−→
TU ∈ E(D) if and only

if T,U ∈ T and ‖v,U‖ = 3 for some v ∈ T . If v ∈ T and ‖v,U‖ = 3, we say the vertex
v witnesses the edge

−→
TU . We say a vertex T is reachable from a vertex S if there exists a

directed ST -path in D(T ). Let R = R(T ) ⊆ T be the set of triangles from which T0 is
reachable in D(T ). Let r = |R|. Since T0 ∈ R, r ≥ 1. Finally, define B = B(T ) = {v ∈
V (G) \ V (T ) : ‖v, T0‖ = 3}. By the definitions of R and B, if ‖v, T0‖ = 3 for a vertex v,
then v ∈ V (R) ∪ B.

Lemma 4.3. If |B| ≤ 1, then ‖v, T‖ = 3 for some vertex v /∈ V (R) ∪ B and triangle
T ∈ R.

Proof. Suppose |B| ≤ 1 and ‖v, T‖ ≤ 2 for every v /∈ V (R) ∪ B and T ∈ R.
Case 1: r ≤ k − 2. Let G′ = G − V (R) and observe tG′ ≤ t − r. We will find k′ := k −

r disjoint cycles in G′. For each v /∈ V (R) ∪ B, ‖v,V (R)‖ ≤ 2r, so dG′ (v) ≥ dG(v) − 2r.
Thus H \ (V (R) ∪ B) ⊆ Hk′ (G′) and Lk′ (G′) ⊆ (L \ V (R)) ∪ B. As x ∈ L ∩ V (R) and
|B| ≤ 1,

|Hk′ (G′)| ≥ h − (3r − 1) − |B| ≥ h − 3r and |Lk′ (G′)| ≤ (� − 1) + |B| ≤ �.

Combining these inequalities yields

|Hk′ (G′)| − |Lk′ (G′)| ≥ (h − 3r) − � ≥ 2(k − r) + (t − r) ≥ 2k′ + tG′ .

As k′ ≥ 2 and |G′| = |G| − 3r ≥ 3k′, G′ contains k′ disjoint cycles by the minimality of
G, and thus G has k disjoint cycles.

Case 2: r = k − 1. Let R− = R − T0 and consider G′ = G − V (R−). For each v /∈
V (R) ∪ B, since ‖v,V (R−)‖ ≤ 2(r − 1), dG′ (v) ≥ dG(v) − 2k + 4. This implies that
H \ (V (R) ∪ B) ⊆ H2(G′) \ T0 and, since each vertex in B is adjacent to three vertices
in T0 ⊆ G′, L2(G′) \ T0 ⊆ L \ V (R). Therefore, since x ∈ L ∩ V (R) and |B| ≤ 1,

|H2(G
′) \ T0| ≥ h − (3r − 1) − |B| ≥ h − 3k + 3 and |L2(G

′) \ T0| ≤ � − 1.

Since t = k − 1, these inequalities give

|H2(G
′) \ T0| − |L2(G

′) \ T0| ≥ (h − 3k + 3) − � + 1 ≥ (� + 2k + (k − 1))

− 3k + 3 − � + 1 = 3.

If ‖u, T0‖ = 3, then u is the unique vertex in B; in this case let e be an edge from u to T0

and let G′′ = G′ − e. Otherwise, let G′′ = G′. Since in both cases, dG′′ (v) = dG′ (v) for
v ∈ V (G′) \ (T0 + u), |H2(G′′) \ T0| − |L2(G′′) \ T0| ≥ 2. By Lemma 3.3, G′′ contains
two disjoint cycles, and so G contains k disjoint cycles, a contradiction. �
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Lemma 4.4. If v /∈ V (R) ∪ B and ‖v, T‖ = 3 for some T ∈ R, then there are a vertex
v′ ∈ V (T ) and a set T ′ of disjoint triangles such that xyz ∈ T ′, |T ′| = |T |, B(T ′) =
B + v′, and V (T ′) = V (T ) + v − v′.

Proof. Let T = Tj, Tj−1, . . . , T0 be a T → T0 path in D(T ) and, for each i ∈ [ j],
let vi witness the edge

−→
TiT i−1. Define the triangle T ′

j to be Tj − v j + v and the triangle
T ′

i to be Ti − vi + vi+1 for all i ∈ [ j − 1]. Then, T ′ = (T \ {T1, . . . , Tj}) ∪ {T ′
1, . . . , T ′

j }
is a set of |T | disjoint triangles in G, v′ := v1 /∈ V (T ′) ∪ B, and ‖v′, T0‖ = 3. Thus
B + v′ = B(T ′). �

Now choose T subject to (a) and (b) so that B is maximum.

Lemma 4.5. |B| = 2. Moreover, ‖v, T0 ∪ B‖ ≤ 2 for all v /∈ V (T ) ∪ B.

Proof. As B is maximum, Lemmas 4.3 and 4.4 imply |B| ≥ 2. Fix a vertex u1 ∈ B
and let T ′

0 be the triangle xyu1. Observe T ′ = T − T0 + T ′
0 is a set of |T | disjoint triangles

in G. Let R′ = R(T ′), r′ = |R′|, B′ = B′(T ′) and note z ∈ B′. If |B′| ≥ 2, let T ′′ = T ′.
Otherwise by Lemma 4.3, there are v /∈ V (R′) ∪ B′ and T ∈ R′ with ‖v, T‖ = 3. By
Lemma 4.4, there are z′ ∈ V (T ′) and a set T ′′ of triangles satisfying T ′

0 ∈ T ′′, |T ′′| = |T ′|,
and B(T ′′) = {z, z′}.

If |B| ≥ 3, then pick u2 ∈ B \ {u1, v}. As V (T ′′) \ V (T ) ⊆ {u1, v}, u2 /∈ V (T ′′).
Thus T ′′ − T ′

0 ∪ {xu1z′, yu2z} is a set of |T | + 1 disjoint triangles containing x,
contradicting (b). So |B| = 2.

Lastly, if v /∈ V (T ) ∪ B and ‖v, T0 ∪ B‖ ≥ 3, then v has neighbors w ∈ T0 and u ∈ B.
Thus vuw and (T0 − w) ∪ (B − u) are disjoint triangles in T0 ∪ (B + v), contradicting
(b). �

Let T ∗ := G[T0 ∪ B]. Define a second auxiliary digraph D∗(T ) to have vertex set
T − T0 + T ∗ and

−→
TU ∈ E(D∗(T )) if and only if ‖v,U‖ ≥ 3 for some v ∈ T . Again, we

say the vertex v witnesses the edge
−→
TU . Define the set of graphs R∗ to be T ∗ together

with the set of triangles from which T ∗ is reachable in D∗(T ). Let r∗ = |R∗|.
Lemma 4.6. If v ∈ V (G) \ V (R∗), then ‖v, T‖ ≤ 2 for each T ∈ R∗.

Proof. Suppose v ∈ V (G) \ V (R∗), T ∈ R∗, and ‖v, T‖ ≥ 3. Let T = Tj,

Tj−1, . . . , T1, T ∗ be a T → T ∗ path in D∗(T ). By Lemma 4.5, v is adjacent to at most
two vertices in T ∗, so j ≥ 1.

Let v1 witness the edge
−→
T1T

∗
and, for i ∈ {2, . . . , j}, let vi witness the edge

−→
TiT i−1.

As in the proof of Lemma 4.4, define the triangle T ′
j to be Tj − v j + v and the triangle

T ′
i to be Ti − vi + vi+1 for all i ∈ [ j − 1]. If ‖v1, T0‖ = 3, then T ′ = T \ {T1, . . . , Tj} ∪

{T ′
1, . . . , T ′

j } is a set of |T | triangles in G, but B + v1 = B(T ′), contradicting the maxi-
mality of B. Otherwise, there exist a vertex w ∈ N(v1) ∩ T0, a vertex u ∈ N(v1) ∩ B, and a
triangle T ′

0 = (T0 − w) ∪ (B − u). Then T ′ = T \ {T0, T1, . . . , Tj} ∪ {v1wu, T ′
0, . . . , T ′

j }
is a set of |T | + 1 disjoint triangles in G, contradicting the maximality of T . �

Proof of Theorem 1.4. Let G′ = G − V (R∗). Set k′ = k − r∗ and t ′ = t − r∗. Then
k′ ≥ 1. By Lemma 4.5, B has the form {w1, w2}, and by Lemma 4.6, every v ∈ V (G′)
satisfies

dG′ (v) ≥ dG(v) − 2r∗. (5)
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Thus H \ V (R∗) ⊆ Hk′ (G′) and Lk′ (G′) ⊆ (L \ V (R∗)). As x ∈ L ∩ T0, this implies

|H ∩ Hk′ (G′)| ≥ h − (3r∗ − 1) − |B| ≥ h − 3r∗ − 1 and

|Lk′ (G′)| ≤ |L ∩ V (G′)| ≤ � − 1.

Combining these inequalities yields

|Hk′ (G′)| − |Lk′ (G′)| ≥ (h − 3r∗ − 1) − (� − 1) ≥ 2(k − r∗) + (t − r∗) = 2k′ + t ′ (6)

and

|H ∩ Hk′ (G′)| − |L ∩ V (G′)| ≥ (h − 3r∗ − 1) − (� − 1) ≥ 2(k − r∗) + (t − r∗) = 2k′ + t ′. (7)

Case 1: |G′| = 3k′ − 1. As H ′
k(G

′) �= ∅, �(G′) ≥ 2k′ and 2k′ + 1 ≤ |G′| = 3k′ − 1.
So k′ ≥ 2. Let G+ = G′ ∨ K1, where V (K1) = {u}. Then |G+| = 3k′ and tG+ ≤ t ′ + 1.
So

|Hk′ (G+)| − |Lk′ (G+)| ≥ |Hk′ (G′) + u| − |Lk′ (G
′
)| ≥ 2k′ + t ′ + 1 ≥ 2k′ + tG+ .

As |G| is minimal, G+ has a set S ′ of k′ disjoint triangles. Since |G+| = 3k′, we
may assume T ′ = uu1u′

1 ∈ S ′. Let T
′′ = xyw1 and S = (S ′ − T ′) ∪ (R − T0 + T

′′
).

Thus t = k − 1, h ≥ 2k + t + � = 3k and � = 1. So H = V (G) − x. Let u2u′
2 := zw2,

U = {u1, u′
1, u2, u′

2}, and note that u1u′
1, u2u′

2 ∈ E(G − V (S )).
Since U ⊆ H, and G[U] is acyclic, ‖U,V (G) \ U‖ ≥ 8k − 6 > 8(k − 1). Thus

‖U, T‖ ≥ 9 for some T = q1q2q3 ∈ S. Say ‖q1,U‖ ≤ ‖q2,U‖ ≤ ‖q3,U‖. Then q2uiu′
i

is a triangle for some i ∈ [2]. Now ‖{q1, q3}, {u3−i, u′
3−i}‖ ≥ 2, so {q1, q3, u3−i, u′

3−i}
contains a cycle. Thus G has k disjoint cycles, a contradiction.

Case 2: |G′| ≥ 3k′. If k′ ≥ 2 then (5), (6), and the minimality of G imply G′ contains
k′ cycles and so G contains k cycles. So assume k′ = 1 and G′ is acyclic.

By (7), |H ∩ Hk′ (G′)| − |L ∩ V (G′)| ≥ 2. Thus, there is a component G0 of G′ with

|H ∩ Hk′ (G0)| − |L ∩ V (G0)| ≥ 1. (8)

By (5), |G0| ≥ 3. Let W0 = V (G0) and G′
0 = G[T ∗ ∪ W0]. By Lemma 4.5 and the fact

that G0 has no isolated vertices,

dG′
0
(v) ≥

⎧⎨
⎩

4, if v ∈ H ∩ W0;
1, if v ∈ L ∩ W0;
3, if v ∈ W0 \ (L ∪ H).

By this and (8),

‖W0, T ∗‖ =
∑
v∈W0

dG′
0
(v) − 2‖G0‖ ≥ 2.5|W0| + 1.5(|H ∩ W0| − |L ∩ W0|) − 2(|W0| − 1)

≥ 0.5|W0| + 1.5 + 2 ≥ 5.

It follows that there are w ∈ T0 and u ∈ B such that ‖{w, u},W0‖ ≥ 2. Then G[W0 ∪
{w, u}] contains a cycle, and (T0 − w) ∪ (B − u) induces a triangle. This gives k disjoint
cycles. �

5. PROOF OF COROLLARY 1.5

Suppose an integer k ≥ 2 and a graph G satisfy h − � ≥ 2k + t + 1, and G has no k
disjoint cycles. By Lemmas 3.1 and 3.2, k ≥ 3. Let |G| = 3k′ + r, where k′ = �|G|/3�
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and 0 ≤ r ≤ 2. By Theorem 1.4, 3k − 1 ≥ |G| ≥ h ≥ 2k + 1 ≥ 7, so k − 1 ≥ k′ ≥ 2.
Pick R ⊂ V (G) so that G′ := G − R has t disjoint triangles. Let r = |R|. Then tG′ = t,
and dG′ (v) ≥ dG(v) − 2 for each v ∈ V (G′). Thus

|Hk′ (G′)| − |Lk′ (G′)| ≥ |H \ R| − � ≥ 2k + t + 1 − r ≥ 2k′ + tG′ + 1.

By Theorem 1.4, G′ has k′ disjoint triangles, so tG′ = k′ and |Hk′ (G′)| ≥ 3k′ + 1 > |G′|,
a contradiction.

6. PROOF OF THEOREM 1.7

The proof will be by contradiction. Consider the smallest k such that there exists a
counterexample G, and choose such G to be minimal. If k = 2, then h ≥ 4, so G = K5 or
|G| ≥ 6. As G is planar, G contains neither K5 nor SK5. Thus by Lemma 3.2, G has two
disjoint cycles. Hence k ≥ 3.

We first show that L �= ∅. Since G is planar, ‖G‖ ≤ 3|G| − 6 and the average de-
gree is less than 6. If k ≥ 4, then L �= ∅ follows immediately. If k = 3 and δ(G) = 5,
then since h ≥ 2k = 6, ‖G‖ ≥ 1

2 (36 + 5(|G| − 6)). This implies |G| ≥ 18 = 6k, and by
Corollary 2.2, L �= ∅.

Let x ∈ L. We claim that

for every y ∈ N(x), the edge xy is contained in a triangle. (9)

Indeed, if xy is not in a triangle, then consider the graph G∗ = G�xy. The degree of every
vertex other than x or y remains unchanged and the degree of vxy is at least the degree
of y. Therefore, |Hk(G∗)| ≥ |Lk(G∗)| + 2k and by the minimality of G, G∗ contains k
disjoint cycles. Expanding the edge xy yields k-disjoint cycles in G. This proves (9).

Fix a plane drawing of G. Every triangle T separates the plane into the exterior region
R1(T ) and interior region R2(T ). Among all triangles containing x, choose T ′ so that
R2(T ′) contains the fewest vertices. Let T ′ = xyz, R1 = R1(T ′), and R2 = R2(T ′). By (9),
R2 contains no neighbors of x.

Suppose G has two vertices v1 and v2 adjacent to all three vertices of T ′. By the choice
of T ′ and R2, both v1 and v2 are in R1. The planar drawing induced by T ′ ∪ {v1, v2}
contains no edges in the interior of R2. Adding a vertex v in R2 adjacent to all three
vertices of T ′ gives a planar embedding of K3,3, a contradiction. So G has at most one
vertex v1 adjacent to all three vertices of T ′.

Let G′ = G − T ′, k′ = k − 1. Then for each u ∈ V (G) − v1, dG′ (u) ≥ dG(u) − 2 and
dG′ (v1) = dG(v1) − 3. It follows that |H ∩ {v1}| + |Lk′ (G′) ∩ {v1}| ≤ 1. Hence

|Hk′ (G′)| − |Lk′ (G′)| ≥ (h − 2 − |H ∩ {v1}|) − (� − 1 + |Lk′ (G′) ∩ {v1}|) ≥ 2k − 2 = 2k′.

By the minimality of G, G′ contains k − 1 disjoint cycles, and so G contains k disjoint
cycles.

7. PROOF OF THEOREM 1.8

Following Dirac and Erdős [5], letV≥s(G) (respectively,V≤s(G)) denote the set of vertices
of G of degree at least s (respectively, at most s). In these terms, H = Hk(G) = V≥2k(G)

and L = Lk(G) = V≤2k−2(G). The following lemma may be of interest on its own.
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Lemma 7.1. Let G be a triangle-free graph with V (G) �= ∅. If

|V≥2k+1(G)| − |V≤2k−1(G)| ≥ 2k − 2, (10)

then G has k disjoint cycles.

Proof. Suppose the lemma does not hold and consider the smallest k such that there
exists a counterexample. Among all such counterexamples, choose the graph G to be
minimal. First consider k = 1. Since |V≥3(G)| ≥ |V≤1(G)|, G contains a component with
average degree at least 2. Therefore, G contains a cycle and the claim holds. Now, let
k ≥ 2.

By (10), the sum of degrees of the vertices in V≥2k(G) is greater than the sum of degrees
of the vertices in V≤2k−1(G). Thus there are vertices u, v ∈ V≥2k(G) such that uv ∈ E(G).
Since G is triangle-free, N(v) ∩ N(u) = ∅ and so |G| ≥ 4k. Since G has no k disjoint
cycles, by Theorem 1.1, G has a vertex x ∈ V≤2k−1(G).

As in Property 2.3, if d(x) ≤ 1, then G − x is a smaller counterexample, so d(x) ≥ 2.
Let y ∈ N(x). Since G is triangle-free, contracting the edge xy does not change the degree
of any vertex distinct from x, y. By the minimality of G, G�xy contains either k disjoint
cycles or a triangle. If G�xy contains k disjoint cycles, then G does as well. Otherwise,
let vxyzw be a triangle in G�xy. Then by symmetry we may assume xyzw is a 4-cycle in
G. Every vertex in G − {w, x, y, z} is adjacent to at most two vertices in {w, x, y, z}.

Let k′ = k − 1 and G′ = G − {w, x, y, z}. Then, for each v ∈ V (G′), dG′ (v) ≥ dG(v) −
2, so |V≥2k′+1(G′)| ≥ |V≥2k+1(G)| − 3 and |V≤2k′−1(G′)| ≤ |V≤2k−1(G)| − 1. Therefore,

|V≥2k′+1(G
′)| − |V≤2k′−1(G

′)| ≥ |V≥2k+1(G)| − 3 − (|V≤2k−1(G)| − 1) ≥ 2k − 2 − 2 = 2k′ − 2.

By the minimality of G, G′ contains k′ disjoint cycles. Hence G contains k disjoint cycles.�

Suppose that Theorem 1.8 is false and let k be the smallest integer such that there exists
a counterexample. Among all counterexamples, choose G to be minimal.

Lemma 7.2. |G| ≥ 4k − 1 and L �= ∅.

Proof. Suppose |G| ≤ 4k − 2. For all u ∈ H, |N(u) ∩ H| ≥ 2 and if also w ∈ H then
|N(w) ∩ N(u)| ≥ 2. It suffices to show that G has two disjoint triangles. As h ≥ 2k ≥ 6, if
G[H] is a complete graph, then we are done, so assume there are x, y ∈ H with xy /∈ E(G).

Choose w ∈ N(x) ∩ H, z ∈ N(y) ∩ H − w, and v ∈ N(w) ∩ N(x) − z. If N(y) ∩
N(z) �= {v, w}, then there are two triangles in G; else put Q = {v, w, y, z} and P =
N(x) \ Q. Now |P| ≥ 2k − 3 ≥ k. If there is u ∈ P with d(u) ≥ 2k − 1, then there is
t ∈ N(x) ∩ N(u). Thus txu is a triangle, and Q − t contains another triangle. SoV (P) ⊆ L
and |L| ≥ k. Therefore, |G| ≥ h + � ≥ 2� + 2k ≥ 4k. �
Lemma 7.3. If x ∈ L, then x is not contained in a triangle.

Proof. Let x ∈ L and suppose T0 is a triangle in G containing x. Let B = B(T0) =
{v ∈ V (G) : ‖v, T0‖ = 3} and fix T0 = xyz so that |B| is minimized. Let k′ = k − 1, G′ =
G − T0. For each v ∈ V (G′) \ B, dG′ (v) ≥ dG(v) − 2, so |Hk′ (G′)| ≥ |H \ (B ∪ T0)| and
|Lk′ (G′)| ≤ |L \ (B ∪ T0)| ≤ � − 1.

If |B| ≤ 1, then |Hk′ (G′)| − |Lk′ (G′)| ≥ (h − 3) − (� − 1) ≥ 2k − 2 = 2k′. Since G′

is triangle-free, by Theorem 1.4, G′ contains k − 1 disjoint cycles. Then G contains k
disjoint cycles. Similarly, if |B| = 2 and B ∪ T0 contains at most three vertices in H, then
G′ contains k disjoint cycles. So we may assume that |B| ≥ 2 and B ∪ T0 contains at least
four vertices in H. We complete the proof in three cases.
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Case 1: B is an independent set. Let u1, u2 ∈ B and T1 = xyu1. If v /∈ B ∪ T0 and
‖v, T1‖ = 3, then xu1v and yzu2 are two disjoint triangles in G. Let k′ = k − 1, G′′ =
G − T1. For each v ∈ V (G′′) − z, dG′′ (v) ≥ dG(v) − 2 and dG′′ (z) = dG(z) − 3. So possi-
bly z ∈ H \ Hk′ (G′′) or z ∈ Lk′ (G′′) \ L, but not both, that is, |{z} ∩ H| + |{z} ∩ L′′| ≤ 1.
Therefore,

|Hk′ (G′′)| − |Lk′ (G′′)| ≥ (h − 2 − |{z} ∩ H|) − (� − 1 + |{z} ∩ Lk′ (G′′)|
≥ (h − �) − 1 − (|{z} ∩ H| + |{z} ∩ Lk′ (G′′)|) (11)

≥ 2k − 2 = 2k′.

By Theorem 1.4, G′′ contains k − 1 disjoint cycles. Then G contains k disjoint cycles.
Case 2: |B| ≥ 3. Let u1, u2, u3 ∈ B and, by Case 1 assume u1u2 ∈ E(G). Then xu1u2

and yzu3 are two triangles in G, a contradiction.
Case 3: |B| = 2. Let u1, u2 ∈ B and, by Case 1, assume u1u2 ∈ E(G). In particular

B ∪ T0
∼= K5 and every vertex in B ∪ T0 apart from x is in H. If v /∈ B ∪ T0 is adjacent to

two vertices in B ∪ T0, then G contains two disjoint triangles, a contradiction. Let k′ =
k − 1 and G′ = G − (B ∪ T0). For each v ∈ V (G′), dG′ (v) ≥ dG(v) − 1. In particular,
|V2k′+1(G′)| ≥ h − 4 and |V2k′−1(G′)| ≤ � − 1. Therefore,

|V2k′+1(G
′)| − |V2k′−1(G

′)| ≥ (h − 4) − (� − 1) ≥ 2k − 3 = 2k′ − 1. (12)

The graph G′ is triangle-free, so by Lemma 7.1, G′ contains k − 1 disjoint cycles. Then
G contains k disjoint cycles. �
Lemma 7.4. If x, z ∈ L, then |NG(x) ∩ NG(y)| ≤ 1.

Proof. Suppose w, y ∈ NG(x) ∩ NG(z). Then X = wxyz is a copy of C4 in G. If v /∈ X
is adjacent to at least three vertices in X , then either x or z is contained in a triangle,
contradicting Lemma 7.3. Let G′ = G − X . For each v ∈ V (G′), dG′ (v) ≥ dG(v) − 2.
Therefore,

|Hk′ (G′)| − |Lk′ (G′)| ≥ (h − 2) − (� − 2) ≥ 2k = 2k′ + 2. (13)

Since G′ contains at most one triangle, by Theorem 1.4, G′ contains k − 1 disjoint cycles.
Then G contains k disjoint cycles. �

Let L = {x1, . . . , x�} and, for each i, let yi ∈ NG(xi). Starting with the graph G = G0,
we construct a sequence of graphs by defining Gi = Gi−1�xiyi. For simplicity, if
we contract the edge xiyi, we label the contracted vertex in Gi as yi. We termi-
nate this process if Gi contains k cycles or when i = min{�, k − 1}. Suppose, after
terminating the process, we have defined graphs G0, . . . , Gr for some nonnegative
integer r.

Lemma 7.5. For the graphs G0, . . . , Gr and i ∈ {0, . . . , r}, all of the following hold:

(1) |Gi| = |G0| − i ≥ 3k;
(2) if i < r, then Gi contains i + 1 disjoint triangles;
(3) Li is an independent set;
(4) if x ∈ Lk(Gi), then NGi (x) is an independent set;
(5) if x, x′ ∈ Lk(Gi), then |NGi (x) ∩ NGi (x

′)| ≤ 1;
(6) Lk(Gi) = L0 − {x1, . . . , xi} and Hk(Gi) ⊇ Hk(G0);
(7) if i ≥ 1 and Gi contains k disjoint cycles, then Gi−1 does as well.
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Proof. For all i, (1) holds by Lemma 7.2 and (7) holds since a contraction cannot
increase the number of disjoint cycles.

The proof of (2)–(6) will be by induction on i. By assumption, G0 contains at most
one triangle. If G is triangle-free, then by Theorem 1.4, G0 contains k disjoint cycles,
so (2) holds for i = 0. Since G0 is a minimum counterexample, (3) holds for i = 0
by Property 2.3. Further, (4) and (5) hold for i = 0 by Lemma 7.3 and Lemma 7.4,
respectively. And (6) is trivial for i = 0.

Suppose that r ≥ 1 and consider i ∈ {1, . . . , r}. Assume that (2)–(6) hold for all j < i.
Recall that Gi = Gi−1�xiyi. By (4) for i − 1, dGi (yi) ≥ dGi−1 (yi) and no other vertex v is
adjacent to both xi and yi, so dGi (v) = dGi−1 (v). Thus, (6) holds.

To see that (3) holds, observe if uv /∈ E(Gi−1), then uv ∈ E(Gi) only if u, v ∈ NGi−1 (xi).
Since Li−1 is an independent set and Lk(Gi) ⊇ Lk(Gi−1) by (6), Lk(Gi) is also an inde-
pendent set.

If x ∈ Lk(Gi), then by (6), x ∈ Lk(Gi−1) also and x �= xi. Let y, y′ ∈ NGi (x) and note
that since (4) holds for Gi−1, yy′ /∈ E(Gi−1). Edges are only added to Gi between pairs
of vertices in NGi−1 (xi). Since (5) holds for i − 1, |NGi−1 (xi) ∩ NGi−1 (x)| ≤ 1, so y and y′

cannot both be in NGi−1 (xi) ∩ NGi−1 (x). Thus, yy′ /∈ E(G) and (4) holds for i.
If x, x′ ∈ Lk(Gi), then by (6), x, x′ ∈ Lk(Gi−1) and |NGi−1 (x) ∩ NGi−1 (x

′)| ≤ 1. Since
Lk(Gi−1) is an independent set, NGi (x) = NGi−1 (x) and NGi (x

′) = NGi−1 (x
′), so |NGi (x) ∩

NGi (x
′)| ≤ 1 and (5) holds.

Finally, by (2), Gi−1 contains exactly i disjoint triangles. Contracting an edge introduces
increases the number of disjoint triangles by at most 1, so Gi contains at most i + 1 disjoint
triangles. By (6),

|Hk(Gi)| − |Lk(Gi)| ≥ h − (� − i) ≥ 2k + i. (14)

Since |Gi| ≥ 3k, if Gi contains i disjoint triangles, by Theorem 1.4, Gi contains k disjoint
cycles and i = r. Therefore, if i < r then G contains exactly i + 1 disjoint triangles and
(2) holds. �

We are now ready to complete the proof. If r < min{�, k − 1}, then we stopped the
process because Gr contains k disjoint cycles. If r = k − 1 = min{�, k − 1}, then Gk−2

contains k − 1 disjoint triangles and Gk−1 contains at least this many disjoint triangles.
If Gk−1 contains only k − 1 disjoint triangles, then by Lemma 7.5 (6),

|Hk(Gk−1)| − |Lk(Gk−1)| ≥ h − (� − (k − 1)) ≥ 2k + (k − 1) = 3k − 1. (15)

Lemma 7.2 implies that Gk−1 contains 3k vertices and by Theorem 1.4, Gr = Gk−1

contains k disjoint cycles. Finally if r = � = min{�, k − 1}, then Lr = ∅ and |Hk(Gr)| ≥
2k. Corollary 2.2 implies Gr = G� contains k disjoint cycles. Therefore, in any case Gr

contains k disjoint cycles and by Lemma 7.5 (7), G contains k disjoint cycles as well.

8. CONCLUDING REMARKS

Remark 1. As mentioned earlier, there are graphs G with |G| ≥ 3k and |Hk(G)| −
|Lk(G)| ≥ 2k that have no k disjoint cycles, but all examples that we know have rather few
vertices. The largest such graph G that we can construct has 4k vertices and is obtained
as follows.

Journal of Graph Theory DOI 10.1002/jgt



STRENGTHENING THEOREMS OF DIRAC AND ERDőS ON DISJOINT CYCLES 801

Let F be a copy of K3k−1. ChooseW ⊂ V (F ) with |W | = k and delete all edges between
the vertices in W . Then add k + 1 new vertices x0, x1, . . . , xk, and make x0 adjacent to
x1, . . . , xk and all vertices in W . In other words, let (K2k−1 ∪ K1) ∨ Kk be the 2-core of
G, and complete the construction by adding k leaves adjacent to x0, where V (K1) = {x0}.

Now Lk(G) = {x1, . . . , xk}, and Hk(G) = V (G) \ Lk(G). This graph has no k disjoint
cycles, since its 2-core has 3k vertices, and x0 does not belong to any triangle.

Is it true that every graph G with |G| ≥ 4k + 1 and |Hk(G)| − |Lk(G)| ≥ 2k has k
disjoint cycles?

Remark 2. Lemma 7.1 suggests that considering |V≥2k+1(G)| − |V≤2k−1(G)| instead
of |Hk(G)| − |Lk(G)| may result in different bounds providing the existence of k disjoint
cycles. It could be that the claim of Lemma 7.1 holds not only for triangle-free graphs. That
is, it could be that for any nonempty graph G with |V≥2k+1(G)| − |V≤2k−1(G)| ≥ 2k − 2,
G contains k disjoint cycles. This is trivially true for k = 1.
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