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THE STRUCTURE OF LARGE INTERSECTING FAMILIES

ALEXANDR KOSTOCHKA AND DHRUV MUBAYI

(Communicated by Patricia L. Hersh)

Abstract. A collection of sets is intersecting if every two members have
nonempty intersection. We describe the structure of intersecting families of r-

sets of an n-set whose size is quite a bit smaller than the maximum
(n−1
r−1

)
given

by the Erdős-Ko-Rado Theorem. In particular, this extends the Hilton-Milner
theorem on nontrivial intersecting families and answers a recent question of
Han and Kohayakawa for large n. In the case r = 3 we describe the structure
of all intersecting families with more than 10 edges. We also prove a stability
result for the Erdős matching problem. Our short proofs are simple applica-
tions of the Delta-system method introduced and extensively used by Frankl
since 1977.

1. Introduction

An r-uniform hypergraph H, or simply an r-graph, is a family of r-element
subsets of a finite set. We associate an r-graph H with its edge set and call its
vertex set V (H). Say that H is intersecting if A ∩ B �= ∅ for all A,B ∈ F . A
matching in H is a collection of pairwise disjoint sets from H. A vertex cover
(henceforth cover) of H is a set of vertices intersecting every edge of H. Write
ν(H) for the size of a maximum matching and τ (H) for the size of a minimum
cover of H. Say that H is trivial or a star if τ (H) = 1, otherwise call H nontrivial.

A fundamental problem in the extremal theory of finite sets is to determine the
maximum size of an n-vertex r-graph H with ν(H) ≤ s. The case s = 1 is when
H is intersecting, and in this case the Erdős-Ko-Rado Theorem [3] states that the
maximum is

(
n−1
r−1

)
for n ≥ 2r and if n > 2r, then equality holds only if τ (H) = 1.

More generally, Erdős [2] proved the following.

Theorem 1 (Erdős [2]). For r ≥ 2, s ≥ 1 and n sufficiently large, every n-vertex
r-graph H with ν(H) ≤ s, satisfies

(1) |H| ≤ em(n, r, s) :=

(
n

r

)
−

(
n− s

r

)
∼ s

(
n

r − 1

)
,

and if equality in (1) holds, then H is the r-graph EM(n, r, s) described below.
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Construction 1. Let EM(n, r, s) be the n-vertex r-graph that has s special vertices
x1, . . . , xs and the edge set consists of all the r-sets intersecting {x1, . . . , xs}. In
particular, EM(n, r, 1) is a full star.

There has been a lot of recent activity on Theorem 1 for small n (see, e.g.,
[10, 11, 16, 17]).

Hilton and Milner [15] proved a strong stability result for the Erdős-Ko-Rado
Theorem:

Theorem 2 (Hilton-Milner [15], Proposition T ). Suppose that 2 ≤ r ≤ n/2 and
|H| is an n-vertex intersecting r-graph with τ (H) ≥ 2. Then

(2) |H| ≤ hm(n, r) :=

(
n− 1

r − 1

)
−

(
n− r − 1

r − 1

)
+ 1 ∼ r

(
n

r − 2

)
.

Moreover, if 4 ≤ r < n/2 and (2) holds with equality, then H is the r-graph
HM(n, r) described below.

Construction 2. For n ≥ 2r, let HM(n, r) be the following r-graph on n vertices:
Choose an r-set X = {x1, . . . , xr} and a special vertex x �∈ X, and let HM(n, r)
consist of the set X and all r-sets containing x and a vertex of X.

Observe that HM(n, r) is intersecting, τ (HM(n, r)) = 2, and |HM(n, r)| =
hm(n, r). Bollobás, Daykin and Erdős [1] extended Theorem 2 to r-graphs with
matching number s in the way Theorem 1 extends the Erdős-Ko-Rado Theorem.

Theorem 3 (Bollobás-Daykin-Erdős [1], Theorem 1). Suppose r ≥ 2, s ≥ 1 and
n > 2r3s. If H is an n-vertex r-graph with ν(H) ≤ s and |H| > em(n, r, s − 1) +
hm(n− s+ 1, r), then H ⊆ EM(n, r, s).

The bound of Theorem 3 is also sharp: take a copy of HM(n − s + 1, r), add
an extra set S of s − 1 vertices and all edges intersecting with S. Han and Ko-
hayakawa [14] refined Theorem 2 using the following construction.

Construction 3. For r ≥ 3, the n-vertex r-graph HM ′(n, r) has r + 2 distinct
special vertices x, x1, . . . , xr−1, y1, y2 and all edges e such that

1) {x, xi} ⊂ e for any i ∈ [r − 1], or
2) {x, y1, y2} ⊂ e, or
3) e = {x1, . . . , xr−1, y1}, or e = {x1, . . . , xr−1, y2}.
Note that HM ′(n, r) is intersecting, τ (HM ′(n, r)) = 2, and HM ′(n, r) �⊂

HM(n, r). Let hm′(n, r) = |HM ′(n, r)| so that

hm′(n, r) =

(
n− 1

r − 1

)
−

(
n− r

r − 1

)
+

(
n− r − 2

r − 3

)
+ 2 ∼ (r − 1)

(
n

r − 2

)
.

The result of [14] for r ≥ 5 is:

Theorem 4 (Han-Kohayakawa [14]). Ler r ≥ 5 and n > 2r. If H is an n-
vertex intersecting r-graph, τ (H) ≥ 2 and |H| ≥ hm′(n, r), then H ⊆ HM(n, r) or
H = HM ′(n, r).

They also resolved the cases r = 4 and r = 3, where the statements are similar
but somewhat more involved.

For large n, Frankl [8] gave an exact upper bound on the size of intersecting
n-vertex r-graphs H with τ (H) ≥ 3. He introduced the following family. We write
A+ a to mean A ∪ {a}.
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Construction 4 ([8]). The vertex set [n] of the n-vertex r-graph FP (n, r) contains
a special subset X = {x} ∪ Y ∪ Z with |X| = 2r such that |Y | = r, |Z| = r − 1,
where a subset Y0 = {y1, y2} of Y is specified. The edge set of FP (n, r) consists of
all r-subsets of [n] containing a member of the family

G = {A ⊂ X : |A| = 3, x ∈ A,A∩ Y �= ∅, A ∩Z �= ∅} ∪ {Y, Y0 + x, Z + y1, Z + y2}.

By construction, FP (n, r) is an intersecting r-graph with τ (FP (n, r)) = 3.
Frankl proved the following.

Theorem 5 (Frankl [8]). Let r ≥ 3 and n be sufficiently large. Then every inter-
secting n-vertex r-graph H with τ (H) ≥ 3 satisfies |H| ≤ |FP (n, r)|. Moreover, if
r ≥ 4, then equality is attained only if H = FP (n, r).

He used the following folklore result.

Proposition 6. Every intersecting 3-graph H with τ (H) ≥ 3 satisfies |H| ≤ 10.

Note that Erdős and Lovász [4] proved the more general result that for every
r ≥ 2 each intersecting r-graph H with τ (H) = r has at most rr edges. But their
proof gives the bound 25 for r = 3, while Proposition 6 gives 10.

In this short paper, we determine for large n, the structure of H in the situations
described above when |H| is somewhat smaller than the bounds in Theorems 4
and 2. In particular, our Theorem 7 below answers for large n the question of Han
and Kohayakawa [14] at the end of their paper. We also use Theorem 5 to describe
large dense hypergraphs H with ν(H) ≤ s and τ (H) = 2. Related results can be
found in [8, 9].

2. Results

First we characterize the nontrivial intersecting r-graphs that have a bit fewer
edges than hm′(n, r). We need to describe three constructions before we can state
our result.

Construction 5. For r ≥ 3 and t = n− r, the n-vertex r-graph HM(n, r, t) has r
distinct special vertices x, x1, . . . , xr−1 and all edges e such that

1) {x, xi} ⊂ e for any i ∈ [r − 1], or
2) {x1, . . . , xr−1} ⊂ e.
Similarly, for r ≥ 3 and 1 ≤ t ≤ r−1, the n-vertex r-graph HM(n, r, t) has r+ t

distinct special vertices x, x1, . . . , xr−1, y1, y2, . . . , yt and all edges e such that
1) {x, xi} ⊂ e for any i ∈ [r − 1], or
2) e = {x1, . . . , xr−1, yj} for all 1 ≤ j ≤ t, and
3) {x, y1, . . . , yt} ⊆ e.

Let hm(n, r, t) = |HM(n, r, t)|. Note that HM(n, r, 1) = HM(n, r), and
HM(n, r, 2) = HM ′(n, r). For n large, we have the inequalities

hm(n, r) = hm(n, r, 1) > · · · > hm(n, r, r − 1) = hm(n, r, r) < hm(n, r, n− r).

Note that HM(n, r, t) is intersecting, τ (HM(n, r, t)) = 2, and HM(n, r, t) �⊆
HM(n, r, t− 1). Also, for fixed r ≥ 4 and 2 ≤ t ≤ n− r,

hm(n, r, t) ∼ (r − 1)

(
n

r − 2

)
.
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2314 ALEXANDR KOSTOCHKA AND DHRUV MUBAYI

Construction 6. The n-vertex r-graph HM(n, r, 0) has 3 special vertices x, x1, x2

and all edges that contain at least two of these 3 vertices.

By definition,

(3) |HM(n, r, 0)| = 3

(
n− 3

r − 2

)
+

(
n− 3

r − 3

)
.

Construction 7. The n-vertex r-graph HM ′′(n, r) has r + 3 special vertices x,
x1, . . . , xr−2 and y1, y

′
1, y2, y

′
2 and all edges e such that

1) {x, xi} ⊂ e for some i ∈ [r − 2], or
2) {x, y1, y2} ⊆ e, or {x, y1, y′2} ⊆ e or {x, y′1, y2} ⊆ e or {x, y′1, y′2} ⊆ e, or
3) e = {x1, . . . , xr−2, y1, y

′
1}, or e = {x1, . . . , xr−2, y2, y

′
2}.

Note that HM ′′(n, r) is intersecting, τ (HM ′′(n, r)) = 2, and HM ′′(n, r) �⊆
HM(n, r, t) for any t. Let hm′′(n, r) = |HM ′′(n, r)| so that for r ≥ 5,

hm′′(n, r) =

(
n− 1

r − 1

)
−

(
n− r + 1

r − 1

)
+ 4

(
n− r − 3

r − 3

)

+ 4

(
n− r − 3

r − 4

)
+

(
n− r − 3

r − 5

)
+ 2

∼ (r − 2)

(
n

r − 2

)
.

(4)

Theorem 7. Fix r ≥ 4. Let n be sufficiently large. If H is an n-vertex intersecting
r-graph with τ (H) ≥ 2 and |H| > hm′′(n, r), then H ⊆ HM(n, r, t) for some
t ∈ {1, . . . , r − 1, n− r} or r = 4 and H ⊆ HM(n, 4, 0). The bound on H is sharp
due to HM ′′(n, r).

When r = 3 we are able to obtain stronger results than Theorem 7, and de-
scribe the structure of almost all intersecting 3-graphs. We will use the following
construction.

Construction 8. Let n ≥ 6.
• For i = 0, 1, 2, let

Hi(n) = HM(n, 3, i) and H(n) = EM(n, 3, 1).

• The n-vertex 3-graph H3(n) has special vertices v1, v2, y1, y2, y3 and its edges
are the n− 2 edges containing {v1, v2} and the 6 edges each of which contains one
of v1, v2 and two of y1, y2, y3.

• Each of the n-vertex 3-graphs H4(n) and H5(n) has 6 special vertices v1, v2, z1,1
z′1,1, z2,1z

′
2,1 and contains all edges containing {v1, v2}. Apart from these, H4(n)

contains edges

v1z1,1z
′
1,1, v1z2,1z

′
2,1, v2z1,1z2,1, v2z1,1z

′
2,1, v2z

′
1,1z2,1, v2z

′
1,1z

′
2,1

and H5(n) contains edges

v1z1,1z
′
1,1, v1z2,1z

′
2,1, v1z1,1z

′
2,1, v2z1,1z

′
2,1, v2z1,1z2,1, v2z

′
1,1z

′
2,1.

Theorem 8. Let H be an intersecting 3-graph and n = |V (H)| ≥ 6. If τ (H) ≤ 2,
then H is contained in one of H(n), H0(n), . . . , H5(n). This yields that

(a) if |H| ≥ 11, then H is contained in one of H(n), H0(n), . . . , H5(n);
(b) if |H| > n+ 4, then H is contained in H(n), H0(n), H1(n) or H2(n).
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The restriction |H| ≥ 11 cannot be weakened because of K3
5 and |H| > n + 4

cannot be weakened because |H3(n)| = |H4(n)| = |H5(n)| = n+ 4.
To prove an analog of Theorem 8 for r-graphs, we need an extension of Con-

struction 8:

Construction 9. Let n ≥ r + 1. For i = 0, . . . , 5, let the r-graph Hr
i (n) have the

vertex set of the 3-graph Hi(n) and the edge set of Hr
i (n) consist of all r-tuples

containing an edge of Hi(n).

By definition, Hr
0 (n) = HM(n, r, 0). Each Hr

i (n) is intersecting, since each
Hi(n) is intersecting. Using Theorem 5, we extend Theorem 8 as follows:

Theorem 9. Let r ≥ 4 be fixed and n be sufficiently large. Then there is C > 0 such
that for every intersecting n-vertex r-graph H with |H| > |FP (n, r)| = O(nr−3),
one can delete from H at most Cnr−4 edges so that the resulting r-graph H ′ is
contained in one of Hr

0 (n), . . . , H
r
5 (n), EM(n, r, 1).

The results above naturally extend to r-graphs H with ν(H) ≤ s. For example,
Theorem 7 extends to the following result which implies Theorem 3 for large n.

Theorem 10. Fix r ≥ 4 and s ≥ 1. Let n be sufficiently large. If H is an
n-vertex r-graph with ν(H) ≤ s and |H| > em(n, r, s − 1) + hm′′(n − s + 1, r),
then V (H) contains a subset Z = {z1, . . . , zs−1} such that either τ (H − Z) = 1 or
H −Z ⊆ HM(n− s+1, r, t) for some t ∈ {1, . . . , r− 1, n− s+1− r} or r = 4 and
H − Z ⊆ HM(n− s+ 1, 4, 0). The bound on |H| is sharp.

Theorems 4 and 9 can be extended in a similar way. We leave this to the reader.

3. Proof of Theorem 7

The main tool used in the proof is the Delta-system method developed by Frankl
(see, e.g. [6,8]). Recall that a k-sunflower S is a collection of distinct sets S1, . . . , Sk

such that for every 1 ≤ i < j ≤ k, we have Si ∩ Sj =
⋂k

�=1 S�. The common
intersection of the Si is the core of S. We will use the following fundamental result
of Erdős and Rado [5].

Lemma 11 (Erdős-Rado Sunflower Lemma [5]). For every k, r ≥ 2 there exists
f(k, r) < krr! such that the following holds: every r-graph H with no k-sunflower
satisfies |H| < f(k, r).

Proof of Theorem 7. Let r ≥ 4 and H be an n-vertex intersecting r-graph with
τ (H) ≥ 2 and |H| > hm′′(n, r). Define B∗(H) to be the set of T ⊂ V (H) such that

(i) 0 < |T | < r, and
(ii) T is the core of an (r + 1)|T |-sunflower in H.
Define

B′(H) = {T ∈ B∗(H) : �U ∈ B∗(H), U � T}
to be the set of all inclusion minimal elements in B∗(H). Next, let

B′′(H) = {e ∈ H : �T � e, T ∈ B∗(H)}
be the set of edges in H that contains no member of B∗(H). Finally, set

B(H) = B′(H) ∪B′′(H).

Let Bi be the family of the sets in B(H) of size i. Note that B1 = ∅ for otherwise
we have an (r + 1)-sunflower with core of size one and since H is intersecting, this
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2316 ALEXANDR KOSTOCHKA AND DHRUV MUBAYI

forces H to be trivial. Similarly, if 2 ≤ i ≤ r − 1 and T, T ′ ∈ Bi, then T ∩ T ′ �= ∅,
since otherwise H would have disjoint edges A ⊃ T and A′ ⊃ T ′. Thus for each
2 ≤ i ≤ r − 1, Bi is an intersecting family. The following crucial claim proved by
Frankl can be found in Lemma 1 in [6, 8]. �

Claim. Bi contains no (r + 1)i−1-sunflower.

Proof of Claim. Suppose for contradiction that S1, . . . , S(r+1)i−1 is an (r + 1)i−1-

sunflower in Bi with core K. By definition of Bi, there is an (r + 1)i-sunflower
S1 = S1,1, . . . , S1,(r+1)i in H with core S1. Since |S2 ∪ · · · ∪S(r+1)i−1 | < (r+1)(r+

1)i−1 = (r + 1)i, and S1 is an (r + 1)i-sunflower, there is a k = k(1) such that

(S1,k(1) − S1) ∩ (S2 ∪ S3 ∪ · · · ∪ S(r+1)i−1) = ∅.
Next, we use the same argument to define S2,k(2) such that S2,k(2) − S2 is disjoint
from S1,k(1) ∪ S3 ∪ · · · ∪ S(r+1)i−1 and then S3,k(3) such that S3,k(3) − S3 is disjoint
from S1,k(1)∪S2,k(2)∪S3∪· · ·∪S(r+1)i−1 and so on. Continuing in this way we finally

obtain edges Sj,k(j) of H for all 1 ≤ j ≤ (r+1)i−1 that form an (r+1)i−1-sunflower
with core K. This implies that K �= ∅ as H is intersecting. Since |K| ≤ i− 1, there
exists a nonempty K ′ ⊆ K such that K ′ ∈ B(H). But K ′ � Sj for all j, so this
contradicts the fact that Sj ∈ B(H). �

Applying the Claim and Lemma 11 yields |Bi| < f((r + 1)i−1, i) for all i > 1.
Every edge of H contains an element of B(H) so we can count edges of H by the
sets in B(H). So for q = |B2| we have

hm′′(n, r) <|H| ≤
∑

B∈B2

(
n− 2

r − 2

)

+

r∑
i=3

∑
B∈Bi

(
n− i

r − i

)
< q

(
n− 2

r − 2

)
+(r−2)f((r + 1)r−1, r)

(
n

r − 3

)
.

Since hm′′(n, r) ∼ (r − 2)
(

n
r−2

)
, this gives q ≥ r − 2. On the other hand, B2 is

intersecting and thus the pairs in B2 form either the star K1,q or a K3.

Case 1. B2 is a K3. Then to keep H intersecting, H ⊆ HM(n, r, 0). If r ≥ 5, then
by (3) and (4), |HM(n, r, 0)| < hm′′(n, r) < |H|, a contradiction. Thus r = 4 and
H ⊆ HM(n, 4, 0), as claimed.

Since Case 1 is proved, we may assume that B2 is a star with center x and the
set of leaves X = {x1, . . . , xq}.

Case 2 (q ≥ r − 1). If q ≥ r, then q = r and since H is nontrivial, H ⊆ HM(n, r)
and we are done. We may therefore assume that q = r − 1. Since τ (H) ≥ 2, there
exists e such that x �∈ e ∈ H, and since H is intersecting we may assume that
e = e1 = X ∪ {y1}. We may also assume that all edges of H that omit x are of the
form ei = X∪{yi}, where 1 ≤ i ≤ t. If t = 1, then H ⊆ HM(n, r) and we are done,
so assume that t ≥ 2. Any edge of H containing x that omits X must contain all
{y1, . . . , yt}. Consequently, H ⊆ HM(n, r, t) for some t ∈ {1, . . . , r − 1, n− r}.

Case 3 (q = r−2). Let F0 be the set of edges in H that contain x and intersect X,
F1 be the set of edges of H disjoint from X and F2 be the set of edges disjoint from
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THE STRUCTURE OF LARGE INTERSECTING FAMILIES 2317

x. Then H = F0 ∪ F1 ∪ F2, all edges in F1 contain x and all edges in F2 contain
X. Since |F0| ≤

(
n−1
r−1

)
−

(
n−r+1
r−1

)
, by (4),

(5) |F1∪F2| > 4

(
n− r − 3

r − 3

)
+4

(
n− r − 3

r − 4

)
+

(
n− r − 3

r − 5

)
+2 > 4

(
n− r − 2

r − 3

)
.

Let G be the graph of pairs ab such that x /∈ {a, b} and X ∪ {a, b} ∈ F2. Then
|G| = |F2| and V (G) ⊆ V (H)−X − {x}.

Case 3.1 (τ (G) = 1). Then G = K1,s for some 1 ≤ s ≤ n− r. Let the partite sets
of G be xr−1 and Y . Then every edge in F1 must contain either xr−1 or Y . Thus
H ⊆ HM(n, r, t) for some t ∈ {1, . . . , r − 1, n− r}, as claimed.

Case 3.2 (τ (G) ≥ 2 and ν(G) = 1). Then G = K3 and every edge in F1 must
contain at least two vertices of G. Then |F1| < 3

(
n−r−1
r−3

)
∼ 3

(
n

r−3

)
and thus

|F1 ∪ F2| = |F1|+ 3 ∼ 3
(

n
r−3

)
, contradicting (5).

Case 3.3 (ν(G) ≥ 3). Let f1, f2, f3 be disjoint edges in G. Then each edge in F1

has at least 4 vertices in f1 ∪ f2 ∪ f3 ∪ {x} and thus |F1| = O(nr−4). If F1 = ∅,
then H ⊆ HM(n, r, n− r), as claimed. Suppose there is e0 ∈ F1. Then each f ∈ G
meets e0 − x and thus |G| = |F2| ≤ (r− 1)(n− 2r+2)+

(
r−1
2

)
. Thus if r ≥ 5, then

|F1 ∪ F2| ≤ O(nr−4) +O(n) = o(nr−3), contradicting (5). Moreover, if r = 4, then
|F2| ≤ 3(n−6)+3 and |F1∪F2| ≤ O(nr−4)+3n < 4

(
n−6
1

)
, again contradicting (5).

Case 3.4 (ν(G) = 2). Say that a vertex v is big if dG(v) ≥ 2r. Let v1, . . . , vs be all
the big vertices in G. Since ν(G) = 2, s ≤ 2. Since H is intersecting,

(6) Every edge in F1 contains all big vertices.

Suppose first, s = 2. Then to have ν(G) = 2, all edges in F2 are incident with
v1 or v2; thus |F2| < 2n. On the other hand, in this case by (6), |F1| ≤

(
n−r−1
r−3

)
.

Together, this contradicts (5).
Suppose now, s = 1. Then to have ν(G) = 2, we need |F2| ≤ dG(v1)+2r ≤ n+2r.

On the other hand, since ν(G) = 2, G has an edge v′v′′ disjoint from v1. It
follows that each edge in F1 meets v′v′′. By this and (5), |F1| ≤ 2

(
n−r
r−3

)
and thus

|F1 ∪ F2| ≤ n+ 2r + 2
(
n−r
r−3

)
, contradicting (5).

Finally, suppose s = 0. Let edges y1y
′
1 and y2y

′
2 form a matching inG. IfG has no

other edges, then H is contained in HM ′′(n, r). So there is a third edge in G. Still,
since ν(G) = 2, each edge of G is incident with {y1, y′1, y2, y′2} which by s = 0 yields
|F2| = |G| < 8r. If an edge in G is y1y3, then each each edge in F1 contains {y1, y2}
or {y1, y′2} or {y′1, y2, y3} or {y′1, y′2, y3}; thus |F1| ≤ 2

(
n−r
r−3

)
+ 2

(
n−r
r−4

)
∼ 2

(
n−r
r−3

)
.

This together with |F2| ≤ 8r contradicts (5). If this third edge is y1y2, then we get
a similar contradiction. �

4. On 3-graphs

Lemma 12. Let n ≥ 6 and H be an intersecting 3-graph. If H has a ver-
tex x such that H − x has at most two edges, then H is contained in one of
H(n), H0(n), H1(n), H2(n), H4(n).

Proof. If H − x has no edges, then H ⊆ H(n), and if H − x has one edge, then
H ⊆ H1(n). Suppose H −x has two edges, e1 and e2. If |e1 ∩ e2| = 2, then we may
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assume e1 = {x1, x2, y1} and e2 = {x1, x2, y2}. In this case, each edge in H−e1−e2
contains x and either intersects {x1, x2} or coincides with {x, y1, y2}. This means
H ⊆ H2(n).

If |e1 ∩ e2| = 1, then we may assume e1 = {y, v1, w1} and e2 = {y, v2, w2}. In
this case, each edge in H − e1 − e2 contains x and either contains y or intersects
each of {v1, w1} and {v2, w2}. This means H ⊆ H4(n). �

Proof of of Theorem 8. Let n ≥ 6 and H be an n-vertex intersecting 3-graph with
τ (H) ≤ 2 not contained in any of H(n), H0(n), . . . , H5(n). Write Hi for Hi(n).
If τ (H) = 1, then H ⊆ H(n). So, suppose a set {v1, v2} covers all edges of H,
but H is not a star. Let E0 = {e ∈ H : {v1, v2} ⊂ e}, and for i = 1, 2, let
Ei = {e ∈ H : v3−i /∈ e}. By Lemma 12, |E1|, |E2| ≥ 3. For i = 1, 2, let Fi be the
subgraph of the link graph of vi formed by the edges in Ei. If τ (Fi) ≥ 3, then any
edge e ∈ E3−i does not cover some edge f ∈ Fi and thus is disjoint from f+v1 ∈ H,
a contradiction. Thus τ (F1) ≤ 2 and τ (F2) ≤ 2.

Case 1 (τ (F1) = 1). Suppose x1 is a dominating vertex in F1. Since |F1| = |E1| ≥ 3,
x1 is the dominating vertex in Fi and we may assume that x1x2, x1x3, x1x4 ∈ F1.
But to cover these 3 edges, each edge in F2 must contain x1. Thus H ⊆ H0(n), as
claimed.

Case 2 (τ (F1) = τ (F2) = 2). If say F1 contains a triangle T = y1y2y3, then F2

cannot contain an edge not in T and thus F2 = T and by symmetry F1 = T . Thus
H is contained in H4.

So the remaining case is that each of Fi contains a matchingMi={z1,iz′1,i, z2,iz′2,i}.
Since each edge of F1 intersects each edge of F2, we may assume z1,2 = z1,1, z

′
1,2 =

z2,1, z2,2 = z′1,1, z
′
2,2 = z′2,1. The only other edges that may have F2 are f1 = z1,1z

′
2,1

and f2 = z′1,1z2,1. Since |F2| ≥ 3, we may assume f1 ∈ F2. Then the only third
edge that F1 may contain is also f1. It follows that H is contained in H5. This
proves the main part of the theorem.

To prove part (a), assume H is an intersecting n-vertex 3-graph with |H| ≥ 11.
Since |K3

5 | = 10 < |H|, n ≥ 6. By Proposition 6, τ (H) ≤ 2. So part (a) is implied
by the main claim of the theorem. Part (b) follows from the fact that each of
H3, H4, H5 has n+ 4 edges. �

5. Proof of Theorem 9

Let H be as in the statement. By Theorem 5, τ (H) ≤ 2. So, suppose a set
{v1, v2} covers all edges of H. Let E0 = {e ∈ H : {v1, v2} ⊂ e}, and for i = 1, 2,
let Ei = {e ∈ H : v3−i /∈ e}.

For E1 ∪ E2, construct the family B(H) = B1 ∪ B2 ∪ . . . Br as in the previous
proofs. Recall that by the minimality of the sets in Bi,

(7) X �⊆ Y for all distinct X,Y ∈ B(H),

and since H is intersecting,

(8) B(H) is intersecting.
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If B1 �= ∅, say {v0} ∈ B1, then by (7) and (8), and B(H) = {{v0}}. This means
either H ⊆ H(n, r) (when v0 ∈ {v1, v2}), or H ⊆ Hr

0 (n) (when v0 /∈ {v1, v2}), and
the theorem holds. So, let B1 = ∅.

Let H ′ be obtained from H by deleting all edges not containing a member of
B′ = B2 ∪B3. Then |H −H ′| ≤ Cnr−4. Since {v1, v2} dominates H,

(9) each D ∈ B′ must contain either v1 or v2.

For i = 1, 2, let B′
i be the set of the members of B′ containing vi.

Define the auxiliary 3-graph H ′′ with vertex set V (H) as follows. The edges of
H ′′ are all members of B3 and each triple f that contains a member of B2 and is
contained in an e ∈ H ′.

By (8), H ′′ is intersecting. By (9), τ (H ′′) ≤ 2. If τ (H ′′) = 1, then H ′ is a
star. Suppose τ (H ′′) = 2. By Theorem 8, H ′′ is contained in one of H(n), H0(n),
. . . , H5(n). But then H ′ is contained in one of Hr

0 (n), . . . , H
r
5 (n), EM(n, r, 1), as

claimed. �

6. Proof of Theorem 10

Recall that r ≥ 4, s ≥ 1, n is sufficiently large and H is an n-vertex r-graph
with ν(H) ≤ s and |H| > em(n, r, s − 1) + hm′′(n − s + 1, r). We are to show
that V (H) contains a subset Z = {z1, . . . , zs−1} such that either τ (H − Z) = 1 or
H −Z ⊆ HM(n− s+ 1, r, t) for some t ∈ {1, . . . , r− 1, n− s+ 1− r} or r = 4 and
H − Z ⊆ HM(n− s+ 1, 4, 0).

Define B(H) and Bi as in the previous proofs with the slight change that T ∈
B(H) lies in an (rs)|T |+1-sunflower (instead of an (r + 1)|T |-sunflower). Then the
following claim holds (with an identical proof).

Claim. Bi contains no (rs)i-sunflower.

Using the Claim and Lemma 11 we obtain |Bi| < f((rs)i, i) for all 1 ≤ i ≤ r. As
before, setting h = |B1| we have

|H| ≤
∑

B∈B1

(
n− 1

r − 1

)
+

r∑
i=2

∑
B∈Bi

(
n− i

r − i

)
< h

(
n− 1

r − 1

)
+ (r − 1)f((rs)r, r)

(
n

r − 2

)
.

Since |H| > em(n, r, s− 1) + hm′′(n− s+ 1, r) ∼ s
(

n
r−1

)
and n is large, this imme-

diately gives h ≥ s− 1. Consider distinct vertices z1, . . . , zs−1 ∈ B1 and the set of
edges F ⊂ H omitting z1, . . . , zs−1. If F is not intersecting, then let e, e′ be two
disjoint edges in F . There exists a matching e1, . . . , es−1 in H with zi ∈ ei and
(e∪e′)∩ei = ∅ for all 1 ≤ i ≤ s−1. Note that we can produce the ei one by one since
each zi forms the core of an (rs)2-sunflower in H due to the definition of B1. We
obtain the matching e, e′, e1, . . . , es−1 contradicting ν(H) ≤ s. Consequently, we
may assume that F is intersecting. Because |H| > em(n, r, s−1)+hm′′(n−s+1, r)
we have |F | > hm′′(n− s+ 1, r). Now we apply Theorem 7 to F to conclude that
Theorem 10 holds. �

7. Concluding remarks

Say that a hypergraph H is t-irreducible, if ν(H) = t and ν(H − x) = t for
every x ∈ V (H). Frankl [10] presented a family of n-vertex t-irreducible r-graphs
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PF (n, r, t) such that

pf(n, r, t) = |PF (n, r, t)| ∼ r

(
t− 1

2

)(
n

r − 2

)
.

He also proved

Theorem 13 ([10]). Let r ≥ 4, t ≥ 1, and let n be sufficiently large. Then every
n-vertex t-irreducible r-graph H has at most pf(n, r, t) edges with equality only if
H = PF (n, r, t).

Using this result, one can prove the following.

Lemma 14. For every r ≥ 3, s ≥ t ≥ 2, if n is large, and H is an n-vertex r-graph
with ν(H) = s and

|H| > em(n, r, s− t) + pf(n− s+ t, r, t),

then there exists X ⊆ V (H) with |X| = s− t+ 1 such that ν(H −X) = t− 1. The
bound on |H| is sharp.

This in turn implies the following claim.

Theorem 15. For every r ≥ 3 and s ≥ 2 there exists c > 0 such that the following
holds. If n is large, and H is an n-vertex r-graph with ν(H) = s and

|H| > em(n, r, s− 2) + pf(n− s+ 2, r, 2),

then either
1) there exists H ′ ⊂ H with |H ′| < cnr−3 and τ (H −H ′) ≤ s or
2) there exist an X ⊂ V (H) with |X| = s− 1 and u, v, w ∈ V (H −X) such that

every edge of H −X contains at least two elements of {u, v, w}.

We leave the details of the proofs to the reader.
Most of the proofs in this paper are rather simple applications of the early version

of the Delta-system method. There has been renewed interest in stability versions
for problems in extremal set theory, so the general message of this work is that the
Delta-system method can quickly give some structural information about problems
in extremal set theory, a fact that was already shown in several papers by Frankl
and Füredi in the 1980s. For more advanced recent applications of the Delta-system
method, see the papers of Füredi [12] and Füredi-Jiang [13].
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8 (1965), 93–95. MR0260599
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[13] Zoltán Füredi and Tao Jiang, Hypergraph Turán numbers of linear cycles, J. Combin. Theory

Ser. A 123 (2014), 252–270, DOI 10.1016/j.jcta.2013.12.009. MR3157810
[14] J. Han and Y. Kohayakawa, The maximum size of a non-trivial intersecting uniform family

that is not a subfamily of the Hilton–Milner family, arXiv:1509.05464.
[15] A. J. W. Hilton and E. C. Milner, Some intersection theorems for systems of finite sets,

Quart. J. Math. Oxford Ser. (2) 18 (1967), 369–384. MR0219428
[16] Hao Huang, Po-Shen Loh, and Benny Sudakov, The size of a hypergraph and

its matching number, Combin. Probab. Comput. 21 (2012), no. 3, 442–450, DOI
10.1017/S096354831100068X. MR2912790

[17] Tomasz Luczak and Katarzyna Mieczkowska, On Erdős’ extremal problem on matchings in
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