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a b s t r a c t

The known proofs of the famous theorem of Vizing on edge coloring of (multi)graphs
are not long but sophisticated. The main goal of this note is to present an auxiliary
(multi)digraph that simplifies and facilitates proofs of it. The secondary goal is to use the
approach for proofs of Vizing’s Adjacency Lemma and the Andersen–Goldberg Theorem.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Let [k] := {1, . . . , k}. We consider only loopless multigraphs and follow the notation and definitions in [9]. An edge
k-coloring of a multigraph G is a mapping φ : E(G) → [k] such that φ(e) ≠ φ(e′) for any two edges e, e′ sharing a vertex or
two. In other words, for every 1 ≤ i ≤ k, the color class φ−1(i) is a matching. The edge chromatic number, χ ′(G), of G is the
smallest positive integer k such that G has an edge k-coloring.

For each pair {u, v} of vertices of a multigraph G, let M(u, v) denote the set of edges of G connecting u with v and let
µ(u, v) = |M(u, v)|. Let µ(G) = max{µ(u, v) : u, v ∈ V (G)}. The classical result is:

Theorem 1 (Vizing [6,8]). Let D ≥ 2 and G be a multigraph with ∆(G) ≤ D. Let µ = µ(G). Let x, y ∈ V (G) and e0 ∈ M(x, y)
be such that G − e0 has an edge-(D + µ)-coloring φ. Then G also has an edge-(D + µ)-coloring.

An immediate corollary of Theorem 1 is

Theorem 2 (Vizing [6,8]). For every multigraph G, χ ′(G) ≤ ∆(G) + µ(G). In particular, χ ′(G) ≤ ∆(G) + 1 for every simple
graph G.

There are many different proofs of Theorems 1 and 2 (see, e.g. [5,9]). The main goal of this note is to present an auxiliary
multidigraph that simplifies and facilitates proofs of it. We also use the same machinery for short proofs of two other well-
known results on edge coloring. One of them belongs to Andersen [1] and Goldberg [3,4].

Theorem 3 (Andersen [1], Goldberg [3,4]). Let G be a multigraph and S be the set of all paths (x, y, z) of length 2 in G. Then

χ ′(G) ≤ q(G) := max

∆(G), max

(x,y,z)∈S

d(x) + µ(x, y) + d(z) + µ(z, y)
2


. (1)
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For the other result, we need a definition: A (simple) graph G is critical, if χ ′(G) = ∆(G) + 1 and χ ′(G − e) < χ ′(G) for
every e ∈ E(G). Vizing’s Adjacency Lemma stated below is a useful tool for studying edge colorings of graphs.

Theorem 4 (Vizing [7]). If G is a critical graph with maximum degree D ≥ 2 and xy ∈ E(G), then y has at least max {2,
D − d(x) + 1} neighbors of degree D.

In the next three sections we present proofs of Theorems 1, 3 and 4, respectively.

2. Proof of Theorem 1

The proof follows the structure of the original proof [6] and the proof in [5], but the use of the auxiliary digraph H ′ makes
it simpler.

Let q = D + µ and φ be an edge-q-coloring of G − e0, where e0 ∈ M(x, y). For every v ∈ V (G), let O(v) = Oφ(v) denote
the set of colors in [q] not used to color the edges incident to v. Then

|O(v)| ≥ q − d(v) for each v ∈ V (G) and |O(u)| ≥ q − dG−e0(u) = q − d(u) + 1, for u ∈ {x, y}. (2)

Construct the auxiliarymultidigraphH as follows: V (H) = NG(y) and the number of edges from u to v equals the number
of edges e ∈ M(v, y) with φ(e) ∈ O(u). Let X be the set of vertices reachable in H from x and H ′ be the subdigraph H[X] of
H induced by X . By definition, x ∈ X . Since the outneighbors of a reachable from x vertex also are reachable from x,

N+

H (v) ⊆ X for every v ∈ X . (3)

Suppose G has no edge-q-coloring. Then O(x) ∩ O(y) = ∅. Let α ∈ O(y). We prove a sequence of three simple claims.

Claim 1. α ∉ O(v) for every v ∈ X.

Proof. Suppose α ∈ O(v) and (x0, x1, . . . , xs) where x0 = x and xs = v is an x, v-path in H ′. By the definition of edges in
H ′, for each i ∈ {1, . . . , s}, there is an edge ei ∈ M(y, xi) with φ(ei) ∈ O(xi−1). Then we can recolor es with α and for every
i = 1, . . . , s, (re)color ei−1 with φ(ei). This yields a coloring of G. �

Claim 1 yields that for every v ∈ X and β ∈ O(v), there is some w ∈ N(y) and e ∈ M(y, w) with φ(e) = β . Then by the
definition of H, vw ∈ E(H ′). So by (2), (3),

d+

H ′(v) ≥ q − d(v) for every v ∈ X and d+

H ′(x) ≥ q − d(x) + 1. (4)

A [β, γ ]-path in G is a path whose edges are alternately colored with β and γ . A [β, γ ](a, b)-path is a [β, γ ]-path from
a to b in G.

Claim 2. If v ∈ X and β ∈ O(v), then G contains an [α, β](v, y)-path.

Proof. If the claim is not true, choose a vertex v ∈ X at minimum distance from x in H ′ for which there is β ∈ O(v) such
that the [α, β]-path P starting at v does not end at y. Let z denote the other end of P . Let (x0, x1, . . . , xs) where x0 = x and
xs = v be a shortest x, v-path in H ′. For each i ∈ {1, . . . , s}, let ei ∈ M(y, xi) be such that φ(ei) ∈ O(xi−1). If z ∈ X , then by
Claim 1 the last edge of P has color α, and β ∈ O(z). So by the minimality of the distance of v from x, z ∉ {x0, . . . , xs}. Then
we can switch the colors α and β on the edges of P , recolor es with α and for every i = 1, . . . , s (as in the proof of Claim 1),
(re)color ei−1 with φ(ei). �

Claim 3. For all distinct v, w ∈ X,O(v) ∩ O(w) = ∅.

Proof. If v, w ∈ X and β ∈ O(v) ∩ O(w), then by Claim 2, the [β, α]-path starting at y must end at both v and w, an
impossibility. �

Claim 3 yields that

d−

H ′(v) ≤ µ(v, y) ≤ µ for every v ∈ X, and d−

H ′(x) ≤ µ(x, y) − 1. (5)

Since


v∈X d−

H ′(v) = |E(H ′)| =


v∈X d+

H ′(v) and q = D + µ, by (4) and (5),

0 =


v∈X


d+

H ′(v) − d−

H ′(v)


≥ 2 +


v∈X

(D + µ − d(v) − µ(v, y)) ≥ 2, a contradiction. � (6)

Remark. The proof for simple graphs would be even simpler logically, since in this case H has no multiple edges.
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3. Proof of Theorem 3

Let G be a counter-example to Theorem 3 with the fewest edges. By minimality, it is connected. Clearly, |V (G)| ≥ 3. For
y ∈ V (G) and v ∈ N(y), let fy(v) = d(v) + µ(y, v). In terms of f , we can redefine q(G) (see (1)) as follows:

q(G) := max

∆(G), max

y∈V (G);x,z∈N(y),x≠z

fy(x) + fy(z)
2


. (7)

Choose any y ∈ V (G) with d(y) = ∆(G). Since G is connected and |V (G)| ≥ 3, |N(y)| ≥ 2. Let x be a vertex in N(y) with the
maximum fy(x) and z ∈ N(y) have the largest fy(z) in N(y) − x.

Since q(G) may be not an integer, let q := ⌊q(G)⌋. By definition, qmay be less than fy(x) but

(a) q ≥
fy(x) + fy(z) − 1

2
and (b) q ≥ fy(v) for every v ∈ N(y) − x. (8)

Let e0 ∈ M(y, x). Since q(G) does not increase when we delete an edge, by the minimality of G, multigraph G − e0 has
an edge-q-coloring φ. Define O(v),H, X and H ′ exactly as in the previous section. Then inequalities (2)–(5) and Claims 1–3
hold with proofs repeated word by word. The only extra observation is that since q ≥ ∆(G), by (2) we have O(y) ≠ ∅ and
O(x) ≠ ∅. It follows that there is α ∈ O(y) and d+

H ′(x) ≥ 1; thus |X | ≥ 2.
By (4) and (5), similarly to (6),

0 =


v∈X


d+

H ′(v) − d−

H ′(v)


≥ 2 +


v∈X

(q − d(v) − µ(v, y)) = 2 +


v∈X

(q − fy(v)). (9)

Since |X | ≥ 2, we can choose z ′
∈ X − x. Using (9), then (8)(b), and then (8)(a), we have

0 ≥ 2 + (q − fy(x)) + (q − fy(z ′)) +


v∈X−x−z′

(q − fv(v)) ≥ 2 + (q − fy(x)) + (q − fy(z ′)) ≥ 1,

since fy(z ′) ≤ fy(z). This is a contradiction. �

4. Proof of Theorem 4

Let G be a critical graph with maximum degree D ≥ 2 and xy ∈ E(G). Define q := D. By criticality, graph G′
= G− xy has

an edge-q-coloring φ. Define O(v),H, X and H ′ exactly as in Section 1. Again inequalities (2)–(5) and Claims 1–3 hold with
proofs repeated word by word. Let X ′

= {v ∈ X : d(v) = D}. Since q = D and µ = 1, similarly to (9),

0 =


v∈X


d+

H ′(v) − d−

H ′(v)


≥ 2 +


v∈X

(q − d(v) − µ) = 2 +


v∈X

(D − 1 − d(v)). (10)

A term D − 1 − d(v) in the last sum is negative (and equals −1) iff v ∈ X ′. Thus (10) yields |X ′
| ≥ 2. Moreover, if d(x) < D

then by (10), 0 ≥ 2 + (D − 1 − d(x)) − |X ′
|, i.e. |X ′

| ≥ D − d(x) + 1, as required. �
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