
GRAPHS CONTAINING EVERY 2-FACTOR

ALEXANDR V. KOSTOCHKA† AND GEXIN YU‡

Abstract. For a graph G, let σ2(G) = min{d(u) + d(v) : uv /∈ E(G)}. We prove that

every n-vertex graph G with σ2(G) ≥ 4n/3−1 contains each 2-regular n-vertex graph. This

extends a theorem due to Aigner and Brandt and to Alon and Fisher.

1. Introduction

One of the basic results on Hamiltonian cycles in graphs, Dirac’s theorem [8], says that

every n-vertex graph G with minimum degree, δ(G), at least n/2 contains a Hamiltonian

cycle. The value n/2 is best possible. Furthermore, the condition δ(G) ≥ n/2 does not

guarantee that G contains each 2-factor. For example, if n = 3k, then the complete 3-partite

graphKk−1,k,k+1 has minimum degree 2k−1 = 2n
3 −1 and contains no triangle factor. Corrádi

and Hajnal [6] proved that a 3k-vertex graph G with δ(G) ≥ 2k contains k disjoint triangles.

The condition δ(G) ≥ 2k cannot be weakened. Aigner and Brandt [1], and independently

Alon and Fisher [2] (for n sufficiently large) extended the Corrádi-Hajnal Theorem as follows.

Theorem 1. If G is an n-vertex graph with δ(G) ≥ (2n−1)/3, then G contains each n-vertex

graph H with ∆(H) ≤ 2.

The square, P 2
n , of an n-vertex path Pn is an n-vertex graph G whose vertices can be

ordered v1, v2, . . . , vn so that vivj ∈ E(G) if and only if 1 ≤ |i − j| ≤ 2. It is easy to check

that P 2
n contains every n-vertex graph with maximum degree 2. Fan and Kierstead [10]

proved the following strengthening of Theorem 1.

Theorem 2. Every n-vertex graph G with δ(G) ≥ (2n − 1)/3 contains P 2
n .

Ore [16] gave a different sufficient condition for hamiltonicity: he proved that every n-

vertex graph G with

σ2(G) = min
xy/∈E(G)

{deg(x) + deg(y)} ≥ n

contains a Hamiltonian cycle. Justesen [11] proved an Ore- type version of the Corrádi–

Hajnal Theorem by showing that every n-vertex graph G with σ2(G) ≥ 4n/3 contains ⌊n/3⌋
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disjoint triangles. Enomoto [9], and Wang [18] sharpened this result. In particular, they

proved the following.

Theorem 3. For each positive integer k, every 3k-vertex graph G with σ2(G) ≥ 4k − 1

contains k disjoint triangles.

In [15], Theorem 3 was extended as follows.

Theorem 4. Each n-vertex graph G with σ2(G) ≥ 4n
3 − 1 contains all spanning subgraphs

whose components are isomorphic to graphs in H = {K1,K2, C3,K
−
4 , C+

5 }.

Here K−
4 denotes the graph obtained from the complete 4-vertex graph K4 by deleting an

edge, and C+
5 is the graph obtained from the 5-cycle C5 by adding an edge.

The aim of this paper is to prove the following Ore-type analogue of Theorem 1.

Theorem 5. Each n-vertex graph G with

(1) σ2(G) ≥
4n

3
− 1

contains every n-vertex graph H with ∆(H) ≤ 2.

This theorem is also a step toward an Ore-type analogue of a conjecture by Bollobás and

Eldridge [3], and Catlin [5] on packing of graphs (se Conjecture 2 below).

Two n-vertex graphs G1 and G2 pack if there exist injective mappings of their vertex

sets onto [n] such that the images of the edge sets do not intersect. Equivalently, G1 and

G2 pack if G1 is isomorphic to a subgraph of the complement of G2. This concept leads

to a natural generalization of a number of problems in extremal graph theory, such as the

existence of a fixed subgraph, equitable colorings, and Turán-type problems. In the language

of packing, some embedding problems may sound more natural. For example, let θ(G) =

max{d(u)+d(v) : uv ∈ E(G)}. Then in the language of packings, the above-mentioned Ore’s

theorem [16] says that every n-vertex graph G with θ(G) ≤ n− 2 packs with the n-cycle Cn,

and our Theorem 5 says that each n-vertex graph G with θ(G) ≤ 2n
3 − 1 packs with every n-

vertex graph H such that ∆(H) ≤ 2. Note that while σ2 relates to non-adjacent vertices, θ(G)

is a characteristic of edges in G. In [12], this parameter is called the maximum Ore-degree of

G.

The study of extremal graph packing problems started in the 1970s by Bollobás and El-

dridge [3], Sauer and Spencer [17], and Catlin [4]. They considered graph packing under

degree constrains. In particular, Bollobás and Eldridge [3], and Catlin [5] stated the follow-

ing BEC-conjecture:

Conjecture 1. If G1 and G2 are n-vertex graphs and (∆(G1)+1)(∆(G2)+1) ≤ n+1, then

G1 and G2 pack.

This is sharp, if true. Theorem 1 above is the case ∆(G2) = 2 of the BEC-conjecture.

Csaba, Shokoufandeh, and Szemerédi [7] also proved the conjecture in the case ∆(G2) ≤ 3

and n is huge, but otherwise, the BEC-conjecture is wide open.
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The following Ore-type analogue of the BEC-conjecture was posed in [13].

Conjecture 2. If G1 and G2 are n-vertex graphs and (0.5θ(G1) + 1)(∆(G2) + 1) ≤ n + 1,

then G1 and G2 pack.

Thus Theorem 5 verifies the case ∆(G2) = 2 of Conjecture 2. In fact, we will prove the

slightly stronger result than Theorem 5, which in the language of packing is as follows.

Theorem 6. Each n-vertex graph G such that

(2) θ(G) ≤
2n

3
− 1

packs with every n-vertex graph H such that θ(H) ≤ 4.

In Section 2 we outline the proof (it will have 6 stages) and give some definitions. In

Section 3, we state several lemmas that are our main tools for embedding a sequence of

graphs into G such that the last graph in the sequence is the desired one. In the same section

we also prove two of the lemmas that have shorter proofs. The longer proofs are postponed

to the last three sections. In Section 4 we show how Stages 2-4 work, and in Section 5 how

Stages 5 and 6 work. In the last three sections, we present the proofs for the lemmas from

Section 3.

2. Outline of the proof

In this section, we introduce useful notions, and describe the idea of the main proof. We

use and modify the ideas of Aigner and Brandt [1].

Every component of an n-vertex graph H with θ(H) ≤ 4, is either a path, or a cycle, or a

K1,3. We will show the following statement which is slightly stronger than Theorem 6:every

n-vertex graph G satisfying (1), contains each n-vertex graph H whose components are in

F = {K1,K2,K
−
4 } ∪ {Clj : 3 ≤ lj ≤ n}.

A double i-lasso (further, simply an i-lasso), Di, consists of a path x1, x2, · · · , xi with the

additional edges x1x3 and xi−2xi. For example, D4 = K−
4 .

The strategy of our proof is as follows. Let an n-vertex graph G satisfy (1) and let H be

an n-vertex graph whose components are in F . We will first embed into G an auxiliary graph

H1 each of whose components has at most 5 vertices, and belongs to {K1,K2,K3,K
−
4 , C+

5 }.

Then using this embedding and (1), we will step by step find embeddings of graphs that are

closer and closer to H. The first main goal will be to construct embedding into G of a graph

whose components are double lassoes which have the same orders as the corresponding cycle

components of H. Based on an embedding of this graph and Property (1), we will be able

to embed H into G. We do this in several stages.

Stage 1. First, for each component Rj of H that is a cycle of length ℓj, we represent ℓj
as the sum of small summands according to the following rules.

(A) If ℓj ≡ 0 (mod 6), then ℓj = 6 + · · ·+ 6.

(B) If ℓj ≡ 3 (mod 6) and ℓj ≥ 9, then ℓj = 6 + · · ·+ 6 + 3.
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(C) If ℓj ≡ 1 (mod 6), then ℓj = 6 + · · ·+ 6 + 3 + 4.

(D) If ℓj ≡ 2 (mod 6), then ℓj = 6 + · · ·+ 6 + 4 + 4.

(E) If ℓj ≡ 4 (mod 6) and ℓj ≥ 10, then ℓj = 6 + · · ·+ 6 + 4.

(F) If ℓj ≡ 5 (mod 6) and ℓj ≥ 11, then ℓj = 6 + · · ·+ 6 + 4 + 4 + 3.

(G) If ℓj ≤ 5, then ℓj = ℓj .

LetH1 be obtained fromH by replacing each C5-component Rj ofH with C+
5 and replacing

for each ℓj ≥ 6, the component that is the cycle Cℓj with a set Mj of disjoint K3-components

and K−
4 -components so that each summand 4 in the above representation of ℓj corresponds

to a K−
4 -component, each summand 3 corresponds to a K3, and each summand 6 corresponds

to two disjoint K3s. By construction, H1 is an n-vertex graph each of whose component is in

F1 = {K1,K2,K
−
4 ,K3, C

+
5 }. By Theorem 4, G contains a copy of H1. We call the graph H1

an initial H-approximation. (Calling a graph H ′ an H-approximation we mean that H ′ in a

sense does not much differ from H, and will embed into G H-approximations that are closer

and closer to H.)

Stage 2. Starting from an embedding into G of the H-approximation H ′ = H1 with given

sets Mj , we will embed into G an H-approximation H2 such that every summand 6 in ℓj
corresponds to a 6-lasso. We obtain this in steps: Each step starts from an H-approximation

H ′ embedded into G and finishes with an embedding into G of a graph H ′′ that is obtained

from H ′ by replacing two K3-components from the same Mj in H ′ with one 6-lasso. We will

say that H ′′ is an H-approximation H ′′ slightly better than H ′. As before, the orders of the

components in each Mj sum to ℓj.

Stage 3. Starting from the H-approximation H ′ = H2 with given sets Mj , we will embed

into G an H-approximation H3 such that each summand 3 in the representation of an ℓj ≥ 9

corresponds to a part of a 9-lasso in H2. Again, we do it in steps: Each step starts from an

H-approximation H ′ embedded into G and finishes with an embedding into G of a graph H ′′

that is obtained from H ′ by replacing a K3-component and a 6-lasso from the same Mj in

H ′ with one 9-lasso.

Stage 4. Starting from the H-approximation H ′ = H3 with given sets Mj , we will embed

into G an H-approximation H4 such that the summand 4 and the summand 3 (if both exist

in ℓj) correspond to a 7-lasso. Here, in each step, we embed into G the graph H ′′ obtained

from the starting graph H ′ by replacing a K3-component and a K−
4 -component from the

same Mj with a 7-lasso. Note that this stage is needed only if ℓj = 7.

Stage 5. Starting from the H-approximation H ′ = H4 with given sets Mj , we will embed

G an H-approximation H5 such that each cycle Cj in H with ℓj ≥ 6 corresponds to an ℓj-

lasso in H5. We start from H ′ = H4 by replacing each C+
5 -component with a C5-component.

Since H ′ ⊆ H4, we have an embedding of H ′ into G. In each step of the stage, given an

embedding into G of an H-approximation H ′, we find an embedding into G of a graph H ′′

that is obtained from H ′ by replacing two disjoint lassoes (say of orders z1 and z2) from the

same Mj with a (z1 + z2)-lasso. Recall that we view K−
4 as a 4-lasso.
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Stage 6. We start from theH-approximationH ′ = H5 and in each step from an embedding

of H ′ into G we obtain an embedding into G of a graph H ′′ that is obtained from H ′

by replacing an ℓj-lasso for some ℓj ≥ 6 with an ℓj-cycle. By construction, the last H-

approximation embedded into G will coincide with H.

Note that if ℓj ≥ 6, then before finding an embedding of H into G we had an embedding

into G of an H ′ which is obtained from H by replacing Cj with an ℓj-lasso. So, practically

repeating our proof of Theorem 5 one can derive the following slightly stronger result.

Theorem 7. Each n-vertex graph G satisfying (1) contains every n-vertex graph H such that

every component of H is either a cycle, or K1, or K2, or a double lasso Dℓ for ℓ 6= 5.

3. Basic lemmas

For two subgraphsX andX ′ of a graph F , let EF (X,X ′) denote the set of edges connecting

X with X ′ in F and eF (X,X ′) = |EF (X,X ′)|. For X ⊂ V (F ) and v ∈ V (F ), let dF (v,X) =

eF ({v},X). If the graph F is clear from the context, we will drop the subscript.

In Stages 5 and 6, an n-vertex graph H ′′ is an H-quasi-approximation, if there exists an

H-approximation H ′ such that H ′′ is obtained from H ′ by replacing a C5-component with a

D5-component. In this case, H ′ is slightly better than H ′′. A weak H-approximation is either

an H-approximation or H-quasi-approximation.

From now on, G is an n-vertex graph satisfying (1) with a fixed embedding Ψ of a weak

H-approximation H ′. When speaking of vertices and subgraphs of H ′, we usually will mean

H ′ as the subgraph of G defined by Ψ. By definition, in Stages 2–4, the notions of an

H-approximation and a weak H-approximation coincide.

Given a pair (G,H ′) a gadget is a 4-element vertex set Y = Y1 ∪ Y2 of H ′, where the

2-element sets Y1 and Y2 are chosen as follows. If H ′ is an H-quasi-approximation, then

Y1 consists of the first two vertices and Y2 consists of the last two vertices of the only D5-

component in H ′. If H ′ is an H-approximation, then each set Yi is formed either by the two

first (or the two last) vertices of a double lasso in H ′, or by the two nonadjacent vertices in a

K−
4 -component in H ′. The component of H ′ containing Yi will be called the Yi-block, i = 1, 2.

It may happen that the Y1-block and the Y2-block coincide. In this case, Y1 and Y2 contain

the ends of the same double lasso in H ′. By default, we will assume that Y1 = {y1, y
′
1} and

Y2 = {y2, y
′
2}.

For a gadget Y , a Y -connector Y ′ is a 4-element vertex set obtained from Y either (i) by

deleting some y ∈ Yi (where i ∈ {1, 2}) and adding some y0 adjacent to Yi − y and Y3−i, or

(ii) by deleting some y ∈ Y1 and y′ ∈ Y2 and adding z and z′ such that z is adjacent to Y1− y

and z′, and z′ is also adjacent to Y2−y′. The idea of a Y -connector is the following. If Y1 and

Y2 are formed by the first two and the last two vertices in the same double-lasso-component

of H ′ with vertex set D, then for each Y -connector Y ′, the graph G[(D − Y ) ∪ Y ′] contains

a cycle with |D| vertices. If the Y1-block with vertex set Vj and the Y2-block with vertex set
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Vj′ are distinct, then for each Y -connector Y ′, the graph G[(Vj ∪ Vj′ − Y ) ∪ Y ′] contains a

double lasso with |Vj |+ |Vj′ | vertices.

For a path P = (u1, . . . , uk) and a set Y ⊂ V (G) and for 2 ≤ i ≤ k − 1, let d3(ui, Y ) =

eG({ui−1, ui, ui+1}, Y ). The next lemma elaborates Proposition 3 in [1].

Lemma 1. Let H ′ be a weak H-approximation embedded into G. Let Y = Y1∪Y2 be a gadget.

Let P = (u1, . . . , uℓ+1) be a path of length ℓ in H ′ disjoint from Y . Let U = {u1, . . . , uℓ+1}.

Assume that the set Y ∪U does not contain a Y -connector Y ′ such that G[Y ∪U−Y ′] contains

a path of length ℓ from u1 to ul+1.

(c1) If ui ∈ U is adjacent to y ∈ Y1 and y′ ∈ Y2, then a vertex y′′ ∈ Y − {y, y′} cannot be

adjacent (in G) to all of the neighbors of ui in P .

(c2) If d3(ui, Y ) ≥ 9, then d(ui, Y ) ≤ 2. Furthermore, if d3(ui, Y ) ≥ 9 and d(ui, Y ) = 2,

then ui cannot have neighbors both in Y1 and Y2.

(c3) If some ui satisfies d3(ui, Y ) ≥ 9, then the possible degree sequences of (ui−1, ui, ui+1)

in Y are (4, 2, 3), (3, 2, 4), (4, 2, 4) and (4, 1, 4).

(c4) If d3(ui, Y ) + d3(ui+1, Y ) ≥ 17 for some i and d3(ui, Y ) ≥ 9, then the possible degree

sequences in Y for (ui−1, ui, ui+1, ui+2) are

(4, 2, 3, 3), (3, 2, 4, 2), (4, 1, 4, 3), (4, 2, 4, 2), (4, 2, 4, 1).

Furthermore, the subgraph of G induced by Y ∪ {ui−1, ui, ui+1, ui+2} is one of the graphs in

Figure 1 (up to isomorphism).

Proof of Lemma 1. Statement (c1) is clear, since otherwise G[U−ui+y′′] contains an ℓ-path,

and Y − y′′ + ui is a Y -connector.

To show (c2), observe that if d(ui−1, Y ) + d(ui+1, Y ) ≥ 5, then ui−1 and ui+1 have a

common neighbor in Y , and if d(ui−1, Y ) + d(ui+1, Y ) ≥ 6, then ui−1 and ui+1 have at least

two common neighbors in Y . So, if d(ui, Y ) ≥ 3, then we can always find y ∈ Y1 and y′ ∈ Y2

such that ui is adjacent to y and y′, and y′′ ∈ Y − {y, y′} is a common neighbor of ui−1 and

ui+1, a contradiction to (c1). Furthermore, if d(ui, Y ) = 2 and ui has neighbors in both Y1

and Y2, then the same argument works.

By (c2), (c3) is clear.

Now we prove (c4). By (c3), (ui−1, ui, ui+1) has one of the four possible degree sequences

in Y . In all these sequences, d(ui+1, Y ) ≥ 3 and hence d3(ui+1, Y ) ≤ 8 by (c2). On the other

hand, d3(ui+1, Y ) ≥ 17− d3(ui, Y ) ≥ 7.

Suppose first that ui and ui+2 have a common neighbor y ∈ Y . We may assume that y ∈ Y1.

Since U − ui+1 + y contains a path of length ℓ and by (c3) d(ui+1, Y ) ≥ 3, ui+1 cannot be

adjacent to the vertex in Y1 − y. It follows that d(ui+1, Y ) = 3. To have d3(ui, Y ) ≥ 9, by

(c2), we need d(ui, Y ) = 2 and d(ui−1, Y ) = 4. So, we have Case (A) in Figure 1.

Suppose now that ui and ui+2 have no common neighbor y ∈ Y . By (c2) and d3(ui, Y ) ≥ 9,

for this we need d(ui+1, Y ) = 4. If d(ui, Y ) = 1, then to have d3(ui, Y )+d3(ui+1, Y ) ≥ 17, we

need d(ui−1, Y ) = 4 and d(ui+2, Y ) = 3. This is Case (D) in Figure 1. So, let d(ui, Y ) = 2.
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Figure 1

Then by (c2), both neighbors of ui in Y are in the same Yj, say, in Y1. If d(ui+2, Y ) = 1,

then d(ui−1, Y ) = 4 and we have Case (F) in Figure 1. Finally, if d(ui+2, Y ) = 2, then since

ui and ui+2 have no common neighbor y ∈ Y , both neighbors of ui+2 in Y are in Y2 and we

have one of Cases (B), (C), or (E) in Figure 1. �

Lemma 2. Let H ′ be a weak H-approximation H ′ in Stage 5 or 6. Let Y = Y1 ∪ Y2 be a

gadget and F ⊂ V (H ′) be such that H ′[F ] = Ck with k ≥ 5 is a component of H ′ disjoint

from Y . Let eG(Y, F ) > 8k/3.

(a) If k ≥ 6, then there exists a Y -connector Y ′ ⊂ Y ∪F such that G[(Y ∪F )− Y ′] contains

a Ck.

(b) If k = 5, then there exists a Y -connector Y ′ ⊂ Y ∪ F such that G[(Y ∪ F ) − Y ′] either

contains a C5 or contains the double lasso D5.

(c) Moreover, if k = 5, and H ′ is an H-quasi-approximation (and, by definition, Y1 and Y2

belong to the only D5-component of H ′), then G[F ∪ F1] contains two disjoint 5-cycles.

Proof. Let H ′[F ] = Ck = (u1, . . . , uk). Recall that d3(ui, Y ) = d(ui−1, Y ) + d(ui, Y ) +

d(ui+1, Y ). Since eG(F, Y ) > 8k/3, there exists i such that d3(ui, Y ) + d3(ui+1, Y ) ≥ 17. By
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flipping the order of vertices in F if needed, we may assume that d3(ui, Y ) ≥ 9. Lemma 1

yields that the possible degree sequences towards Y of (ui−1, ui, ui+1, ui+2) are

(4, 2, 3, 3), (3, 2, 4, 2), (4, 1, 4, 3), (4, 2, 4, 2), (4, 2, 4, 1),

and that G[Y ∪ {ui−1, ui, ui+1, ui+2}] is one of the graphs in Figure 1 (up to isomorphism).

Recall that by default, Y1 = {y1, y
′
1} and Y2 = {y2, y

′
2}. Assume that di = d(yi, F ) ≥

d(y′i, F ) = d′i for i = 1, 2.

Proof of (a): Suppose k ≥ 6. Consider configurations (A), (C), and (E) in Figure 1. In

each of them for any choice of y1 ∈ Y1 and y2 ∈ Y2, there is a path from y′1 to y′2 via ui and

ui+1. This path will be our Y -connector. Furthermore, the graph G[F ∪{y1, y2}−{ui, ui+1}]

contains a Hamiltonian path from y1 to y2, say (y1 = z1, z2, . . . , zk = y2). Observe that

eG({y1, y2}, F − {ui, ui+1}) ≥ d1 + d2 − 3 > 4
3k − 3 ≥ k − 1. So, as in the proof of Ore’s

Theorem, there exists a j such that y1zj+1, y2zj ∈ E(G). Then G[F ∪ {y1, y2} − {ui, ui+1}]

has Hamiltonian cycle (z1, z2, . . . , zj , zk, zk−1, . . . , zj+1).

Consider now configurations (B), (D), and (F). If y1 = z (or y2 = z) in Figure 1, then we

obtain a Y -connector and Ck as above. Thus we may assume that z = y′1 (or z = y′2) and

d1 > d′1 (or d2 > d′2). Next, note that if in configuration (B), y2 were adjacent to ui+3, then

the above argument with {ui+1, ui+2} in place of {ui, ui+1} would yield a a proof again. So

we may assume that y2ui+3 /∈ E(G) and thus that d2 ≤ k − 2 in configuration (B).

We now estimate d1 = eG(Y, F )−d′1−d2−d′2 in (B), (D) and (F). If we replace {y1, y2} by

{y′1, y
′
2} in the previous argument, then to have G[F ∪{y′1, y

′
2}−{ui, ui+1}] non-Hamiltonian,

by Ore’s theorem we will have

d′1 + d′2 ≤ k− 1+ 3 and d2 ≤ k− 2 in (B) and (F),d′1 + d′2 ≤ k− 1+ 2 and d1 ≤ k− 1 in (D).

Set (i, j) equal to (1, 2) in (B) and (F) and equal to (2, 1) in (D). Then

(3) di > (
8

3
− 2)k =

2

3
k ≥

1

2
k + 1.

Now, Y ∪ {ui, ui+1} − {yi, y
′
j} contains a Hamiltonian path from y′i to yj and so G[F ∪

{y′j} − {ui, ui+1}] is Hamiltonian. It follows from (3) that yi is adjacent to two consecutive

vertices of the path F − {ui, ui+1}. So, Ck ⊆ G[F ∪ {yi, y
′
j} − {ui, ui+1}], as desired.

Proof of (b): Let k = 5. Since eG(Y,C5) ≥ 14, we have d(ui−2, Y ) ≥ 2 in graphs (A), (D)

and (E), and d(ui−2, Y ) ≥ 3 in graphs (B), (C) and (F). We see that in all cases, except (E),

the assertion (c1) of Lemma 1 is violated for some subpath of length 3 in our 5-cycle.

In the remaining Case (E), the sequence of degrees in Y for (ui−2, ui−1, ui, ui+1, ui+2) is

(2, 4, 2, 4, 2), and the configuration is as in Figure 2.

Thus we may partition G[Y ∪ F ] into a path from Y1 to Y2 (non-filled circles in Figure 2)

and the lasso D5 (filled circles in Figure 2).

Proof of (c): Suppose H ′ is an H-quasi-approximation (which means that the four vertices

of Y are the vertices of degree 2 in a D5-component F1 of H ′) and k = 5. Let the fifth

vertex of F1 (adjacent to all vertices in Y ) be z. By the proof of Case 2, it is enough to
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(4,2,4,2,2)

Figure 2. The case (4, 2, 4, 2, 2)

.

consider the sequence of degrees toward Y for (ui−2, ui−1, ui, ui+1, ui+2) equal to (2, 4, 2, 4, 2)

and the configuration depicted in Figure 2. If ui−2 has a neighbor, say, y1 in Y1, then both

G[V (F1) − y1 + ui−1] and G[F + y1 − ui−1] contain 5-cycles. Otherwise, N(ui−2, Y ) = Y2.

Then both G[{y1, y
′
1, z, ui−1, ui}] and G[{y2, y

′
2, ui+1, ui+2, ui−2}] contain 5-cycles. �

The proofs of the next three lemmas will be given in the last three sections.

Lemma 3. Let H ′ be a weak H-approximation in Stage 5 or 6. Let Y = Y1 ∪ Y2 be a gadget

and F = Dk with k ≥ 6 be a component of H ′ disjoint from Y . If eG(Y, F ) > 8k/3, then

there exists a Y -connector Y ′ ⊂ Y ∪ F such that G[(Y ∪ F )− Y ′] contains a Dk.

Lemma 4. Let H ′ be a weak H-approximation in Stage 5 or 6. Let Y = Y1 ∪ Y2 be a gadget

and F = K−
4 be a component of H ′ disjoint from Y . If eG(Y, F ) ≥ 11, then G contains an

H-approximation that is slightly better than H ′.

Before stating the last lemma, we need more notions. Let H ′ be a weak H-approximation.

A half-gadget is a set Z = {z1, z2} ⊂ V (H ′) formed either the two non-adjacent vertices

of a K−
4 -component or by the two first (or last) vertices of a 6-lasso. For a half-gadget

Z = {z1, z2}, a Z-attachment is a 5-element subset W of V (G) whose vertices can be ordered

w1, w2, . . . , w5 so that w1 ∈ Z, all the edges w2w3, w3w4, w4w5, w5w3 are in E(G), and either

w2 ∈ Z or w1w2 ∈ E(G) (see Fig. 3).

We will use such attachments in Stages 3 and 4 to find subgraphs of G that contain 7-

lassoes (when the half-gadget is a part of a K−
4 -component of H ′) and 9-lassoes (when the

half-gadget is a part of a 6-lasso in H ′).

Lemma 5. Let H ′ be an H-approximation embedded into G. Let T be the vertex set

of a K3-component of H ′, and D be the vertex set of a component of H ′ with H ′[D] ∈
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Figure 3. Three examples of Z-attachments. The white vertex on the left

does not belong to the Z-attachment.

{K1,K2,K3,K
−
4 , C+

5 ,D6,D9,D7} disjoint from T . Let Z = {z1, z2} ⊂ V (H ′) be a half-

gadget disjoint from T ∪D and

(4) 1.5eG(Z,D) + eG(T,D) > 4|D|.

Then Z ∪ T ∪D contains a Z-attachment W such that G[Z ∪ T ∪D−W ] contains a copy of

H ′[D].

4. Embedding small lassoes

Suppose that we have an embedding Ψ intoG of anH-approximationH1 whose components

are in {K1,K2,K3,K
−
4 , C+

5 }. In this section we show how Stages 2, 3, and 4 work. After

these stages, we will have an embedding into G of an H-approximation whose components

are larger: some of the components will be 6-lassoes, 9-lassoes, and 7-lassoes

Stage 2: Embedding of 6-lassoes. Each step of this stage starts from an H-approximation

H ′ embedded into G and finishes with an embedding into G of a graph H ′′ that is obtained

from H ′ by replacing two K3-components from the same Mj in H ′ with one 6-lasso.

Suppose, by way of contradiction, that at some step, we have an embedding Ψ into G of an

H-approximation H ′ whose components are K1’s, K2’s, K3’s, K
−
4 ’s, C+

5 ’s, and 6-lassoes but

cannot embed into G any slightly better H-approximation. In other words, if H ′′ is obtained

from H ′ by replacing two K3-components with a 6-lasso, then H ′′ is not embeddable into G.

Then G has no edges between any two K3-components of H ′.

Let some two K3-components of H ′ in the same set Mj have vertex sets C1 = {x1, x2, x3}

and C ′
1 = {x′1, x

′
2, x

′
3}. By (1),

eG(C1∪C ′
1, V (G)− (C1 ∪C ′

1)) =

3
∑

i=1

(d(xi)+ d(x′i))− 12 ≥ 3σ2(G)− 12 ≥ 4n− 15 > 4(n− 6).

So there is D ⊂ V (H ′) such that H ′[D] is a component of H ′ and

(5) eG(C1 ∪ C ′
1,D) > 4|D|.
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If H ′[D] = K3, then we are done. So, H ′[D] ∈ {K1,K2,K
−
4 , C+

5 }. We will show that we can

partition C1 ∪C ′
1 ∪D into two subsets W1 and W2 so that G[W1] ⊇ D6 and G[W2] ⊇ H ′[D].

That would give an embedding into G of a slightly better H-approximation.

This is easy when |D| = 1. If H ′[D] = K2, then eG(C1 ∪C ′
1,D) ≥ 9. We may assume that

eG(C1,D) ≥ 5. Then there exists x ∈ C1 adjacent to both vertices in D. Let X = C1 − x

and Z = C ′
1 ∪D + x. Since eG(C

′
1,D) ≥ 9− 6 > 0, G[Z] contains D6.

Let H ′[D] = K−
4 . Then eG(C1 ∪ C ′

1,D) ≥ 17. Suppose that a vertex z ∈ D of degree 2

in H ′[D] has at least two neighbors in C1. In this case, if D − z has a neighbor in C ′
1, then

G[C ′
1∪D−z] contains a D6 and G[C1+z] contains a K−

4 . Otherwise, eG(D−z, C1∪C ′
1) ≤ 9

and hence eG(D,C1∪C
′
1) ≤ 15, a contradiction to (5). So either of the 2-vertices in H ′[D] has

at most two neighbors in C1∪C ′
1 and thus eG(D,C1 ∪C ′

1) ≤ 2 · 2+2 · 6 = 16, a contradiction

to (5) again.

Let H ′[D] be a 6-lasso. If C1 has a neighbor in one of the triangles of H ′[D], then C ′
1

has no neighbors in the other triangle in H ′[D]. So eG(D,C1 ∪ C ′
1) ≤ 9 + 9 < 24 = 4|D|, a

contradiction to (5).

Let H ′[D] be a 5-cycle (y1, y2, y3, y4, y5) with chord y2y5. First we prove that

(6) eG(C1, {y3, y4}) ≤ 3 and eG(C
′
1, {y3, y4}) ≤ 3.

Indeed, if eG(C1, {y3, y4}) ≥ 4, then there is a matching of size two connecting C1 and {y3, y4}.

Thus G[C1 ∪{y3, y4}] contains a C+
5 , and hence there is no edge between C ′

1 and {y1, y2, y5}.

Since eG(C1 ∪C ′
1,D) ≥ 21, all other edges between D and C1∪C ′

1 are present. In particular,

G[C ′
1 + y3 + y4] contains a C+

5 and the subgraph of G on the remaining 6 vertices contain a

D6. Thus, (6) holds.

We may assume that eG(C1,D) ≥ eG(C
′
1,D). Then eG(C1,D) ≥ 11. By (6), eG(C1, {y1, y2, y5}) ≥

8. Let x ∈ C1 be either the vertex non-adjacent to y1 (if exists), or any vertex adjacent to

both, y2 and y5. Then G[C1 − x+ y1] is a K3 and G[D − y1 + x] contains a C+
5 . In order to

avoid a D6 in G[C ′
1 ∪ C1 − x+ y1], eG(y1, C

′
1) = 0 and by (6), eG(C

′
1,D) ≤ 6. On the other

hand, also by (6), eG(C1,D) ≤ 12 and hence eG(C
′
1,D) ≥ 9, a contradiction to (5).

Stage 3: Embedding of 9-lassoes. We start from theH-approximation H ′ = H2 with given

sets Mj obtained at Stage 2. We will finish with an embedding into G of an H-approximation

H3 such that each summand 3 in ℓj ≥ 9 corresponds to a part of a 9-lasso. Each step of the

stage starts from an H-approximation H ′ embedded into G and finishes with an embedding

into G of a graph H ′′ that is obtained from H ′ by replacing a K3-component and a 6-lasso

from the same Mj in H ′ with one 9-lasso. Suppose that at some step, we have an embedding

Ψ into G of an H-approximation H ′ whose components are K1’s, K2’s, K3’s, K
−
4 ’s, C

+
5 ’s,

and 6- and 9-lassoes but cannot embed into G any slightly better H-approximation. In other

words, if H ′′ is obtained from H ′ by replacing a K3-component and a 6-lasso with a 9-lasso,

then H ′′ is not embeddable into G.
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Let T be the vertex set of a K3-component in H ′ and F be the vertex set of a 6-lasso in

H ′ containing path (z1, . . . , z6) and two chords z1z3 and z4z6.

Let Z = {z1, z2}. Then E({z1, z2}, T ) = ∅. So, by (1), 1.5(d(z1) + d(z2)) +
∑

u∈T d(u) ≥

3σ2(G) ≥ 4n − 3. Vertices in T ∪ V (F ) contribute at most 6 + 6 to
∑

u∈T d(u) and at most

2 · 1.5 · 5 = 15 to 1.5(d(z1) + d(z2)). So, 1.5eG(Z, V (G − F ) − T ) + eG(T, V (G − F ) − T ) ≥

4n − 3 − 12 − 15 > 4(n − 9). Thus for some component of H ′ with vertex set, say D,

1.5eG(Z,D) + eG(T,D) > 4|D|. Then Z, T and D satisfy the conditions of Lemma 5. By

this lemma, Z ∪ T ∪ D contains a Z-attachment W such that G[Z ∪ T ∪ D − W ] contains

H ′[D]. Then G[(F − Z) ∪W ] contains a 9-lasso.

Stage 4: Embedding of 7-lassoes. We start from an embedding into G of the H-

approximation H ′ = H3 with given sets Mj constructed at Stage 3. We finish with an

embedding into G of an H-approximation H4 such that to every lj = 7 corresponds a 7-lasso.

In each step, we find an embedding into G of the graph H ′′ obtained from the starting graph

H ′ by replacing a K3-component and a K−
4 -component from the same Mj with a 7-lasso.

Suppose that at some step, we have an embedding Ψ into G of an H-approximation H ′

whose components are K1’s, K2’s, K3’s, K
−
4 ’s, C+

5 ’s, and 6-, 7-, and 9-lassoes but cannot

embed into G any slightly better H-approximation. In other words, if H ′′ is obtained from H ′

by replacing aK3-component and aK−
4 -component with a 7-lasso, thenH ′′ is not embeddable

into G.

Let T be the vertex set of aK3-component inH ′ and F be the vertex set of aK−
4 -component

in H ′. Let Z = {z1, z2} be the set of degree-2 vertices in H ′[F ]. Then E({z1, z2}, T ) = ∅.

As in Stage 3, 1.5(d(z1)+d(z2))+
∑

u∈T d(u) ≥ 4n−3. Vertices in T ∪V (D) contribute at

most 6+ 6 to
∑

u∈T d(u) and at most 2 · 1.5 · 3 = 9 to 1.5(d(z1)+ d(z2)). So, 1.5eG(Z, V (G−

D)− T )+ eG(T, V (G−D)− T ) ≥ 4n− 3− 12− 9 > 4(n− 7). Again, as in Stage 3, for some

component of H ′ with vertex set, say D, Z ∪ T ∪D contains a Z-attachment W such that

G[Z ∪ T ∪D −W ] contains H ′[D]. Then G[(F − Z) ∪W ] contains a 7-lasso.

5. Final Embeddings and Proof of Theorem 5

Recall that the components of the initial H-approximation H ′ at the beginning of Stage 5

are in the set {K1,K2,K3,K
−
4 , C5,D6,D7,D9}.

Stage 5: Embedding of ℓj-lassoes for all ℓj ≥ 6. Let k = lj. If Mj (recall that Mj is the

set of building blocks of some component Rj in H) does not consist of a Dk, then it contains

some smaller components which are lassoes. We take pairs of components of H ′ in the same

Mj and try to embed into G the graph H ′′ obtained from H ′ by replacing such a pair with

one bigger double lasso. Suppose that at some step, we cannot proceed. Then by Stage 4,

k ≥ 8 and k 6= 9. Recall that the components in Mj now are some double lassoes, and among

them at most two K−
4 ’s. Choose two such components with vertex sets F1 and F2. If H

′[Fi]

is not a K−
4 , then let Yi be the set of the two degree-2 vertices in one of the end triangles of

H ′[Fi]. And if H ′[Fi] is a K−
4 , then let Yi be the set of degree-2 vertices in H ′[Fi]. By the
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assumption, there are no edges between Y1 and Y2. Thus the degree sum of the four vertices

in the gadget Y1 ∪ Y2 is at least 2σ2(G) ≥ 8n−6
3 .

Suppose first that for an i ∈ {1, 2}, some y ∈ Y1 and y′ ∈ Y2 have at least 4
3 |Fi| − 1

neighbors in Fi. Then H ′[Fi] is not a K−
4 , and thus is a double lasso Dt for some t ≥ 6. We

may assume that Dt consists of the path (x1 = y, x2, . . . , xt) with edges x1x3 and xt−2xt.

To avoid a bigger double lasso, y′ has no neighbors in {x1, x2, xt−1, xt}. Since 4t/3 − 1 > t,

there exists j with 4 ≤ j ≤ t − 3 such that yxj, y
′xj−1 ∈ E(G). So we have a bigger lasso

(H ′[F2]− y′, y′, xj−1, xj−2, · · · , y, xj , · · · , xt), a contradiction.

If there are no such i, y and y′, then eG(Y, V (G) − F1 − F2) > 8
3 |V (G) − F1 − F2|.

So there is D ⊆ V (G) − F1 − F2 such that H ′[D] is a component of H ′ belonging to

{K1,K2,K3,K
−
4 , C5,Dl : l ≥ 6} and eG(Y,D) > 8|D|

3 .

If H ′[D] = K1 and D = {x}, then eG(x, Y ) ≥ 3. So, x has a neighbor y in Y1 and a

neighbor y′ in Y2. For y′′ ∈ Y2 − y′, graph G[F1 ∪ F2 + x − y′′] contains a double lasso with

|F1 ∪ F2| vertices.

If H ′[D] = K2 and D = {x1, x2}, then eG({x1, x2}, Y ) ≥ 6. By symmetry, we may assume

that eG({x1}, Y ) ≥ 3 and in particular that Y1 ⊂ NG(x1). If some y ∈ Y1 is adjacent to x2,

then G[{y, x2}] = K2 and G[F1 ∪F2 + x1 − y] contains a double lasso with |F1 ∪F2| vertices.

If N(x2)∩ Y1 = ∅, then since eG({x1, x2}, Y ) ≥ 6, we have Y ⊂ NG(x1) and Y2 ⊂ NG(x2), so

we have previous situation with Y1 and Y2 switched.

If H ′[D] = K3 and D = X = {x1, x2, x3}, then eG(X,Y ) ≥ 9. By symmetry, we may

assume that eG(X,Y1) ≥ 5, Y1 = {y1, y
′
1}, NG(y1) ⊃ X, and |NG(y

′
1) ∩ X| ≥ 2. Since

eG(X,Y2) ≥ 9 − eG(X,Y1) ≥ 3 and |NG(y
′
1) ∩ X| ≥ 2, some vertex x ∈ NG(y

′
1) ∩ X has a

neighbor in Y2. So, G[X − x+ y1] = K3 and G[F1 ∪F2 +x− y′1] contains a double lasso with

|F1 ∪ F2| vertices.

IfH ′[D] is aK−
4 , then eG(Y,D) > 32/3, thus we apply Lemma 4 to get anH-approximation

H ′′. If H ′[D] is Dk with k ≥ 6, then eG(Y,D) > 8k/3, thus by Lemma 3, there exists a Y -

connector Y ′ ⊂ Y ∪D such that G[(Y ∪D)−Y ′] contains a Dk. Thus we only need to consider

the case when H ′[D] is a C5. By Lemma 2, there exists a Y -connector Y ′ ⊂ Y ∪D such that

G[(Y ∪ D) − Y ′] either contains a C5 or contains the double lasso D5. If it contains a C5,

then we are done. So, suppose that G contains the graph H ′′ obtained from H ′ by replacing

H ′[F1 ∪ F2 ∪D] with a (|F1|+ |F2|)-lasso and a 5-lasso F3. Suppose that F3 consists of the

path P = (x1, x2, x3, x4, x5) plus edges x1x3 and x3x5. Let Y1 = {x1, x2}, Y2 = {x4, x5}

and Y = Y1 ∪ Y2. If at least one edge connecting Y1 with Y2 is present in G, then we

are done. Otherwise, H ′′ is an H-quasi-approximation and
∑

v∈V (F3)−x3
d(v) > 8n/3 − 2 >

8(n − 5)/3 + 11. Since the neighbors in F3 of these vertices contribute only 8 to this sum,

there is a component of H ′′ with vertex set, say, F4 that contributes more than 8|F4|/3 to

this sum.

We now want to show that Y ∪ F4 contains a Y -connector Y ′ such that G[Y ∪ F4 − Y ′]

contains F4. That would imply that G contains an H-approximation H ′′′ that is slightly

better than H ′. Repeating the previous argument with the new Y and with F4 in place of
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D, we again reduce the problem to the case F4 = C5. In this case, the last statement of

Lemma 2 says that G[F3 ∪ F4] contains two disjoint 5-cycles.

Stage 6: Embedding of ℓj-cycles for all ℓj ≥ 6. At the beginning of the stage, every Mj

consists of one component, Dlj . Suppose that at some step, we have an embedding into G of

an H-approximation H ′ but cannot embed any slightly better H-approximation. This means

that for some k ≥ 6, a component H ′[F1] of H
′ is the lasso Dk. Let H ′[F1] consist of the

path P = (y1, y2, . . . , yk) plus edges y1y3 and yk−2yk. Let Y1 = {y1, y2}, Y2 = {yk−1, yk}, and

Y = Y1 ∪ Y2. If G contains an edge connecting Y1 with Y2, then we are done. Otherwise,

we repeat the argument for Stage 5 and F1 = F2 with one additional possible situation for

F : it now can be also a cycle Cℓ with ℓ ≥ 6. In this additional situation, Lemma 2 says

that G[F ∪ Cℓ] contains a Ck and a Cℓ, which gives up a slightly better H-approximation, a

contradiction to the assumption.

6. Proof of Lemma 3

In this section, we will prove Lemma 3. Lemma 3 states that when there are a lot of

edges between a gadget Y and a lasso Dk, we are able to adjust them so that we will have a

Y -connector and a new copy of Dk. Due to the edge density, Y together with some part of

Dk form a dense subgraph, thus we are able to construct what we need.

Assume that H ′[F ] = Dk consists of a path (u1, u2, . . . , uk) with the additional edges u1u3
and uk−2uk. Let T1 = {u1, u2, u3}, T2 = {uk−2, uk−1, uk}, and P = {u4, . . . , uk−3}. Suppose

that the lemma is false.

Claim 1. For i = 1, 2, eG(Y, Ti) ≤ 8. Furthermore, if eG(Y, Ti) = 8, then every vertex in Y

has a neighbor in Ti.

Proof. Suppose that eG(Y, T1) ≥ 9. Then there exists i ∈ {1, 2} such that eG(Yi, T1) ≥ 5,

and eG(Y3−i, {u1, u2}) > 0. By symmetry, we may assume that u1y3−i ∈ E(G). Since

eG(Yi, T1) ≥ 5, we can rename vertices yi and y′i of Yi so that u1yi ∈ E(G) and (u2, u3, y
′
i) is

a triangle. Then (yi, u1, y3−i) is a path in G from Yi to Y3−i, and G[F − u1 + y′i] contains a

k-lasso, a contradiction.

Now suppose that eG(Y, T1) = 8 and that y1 ∈ Y1 has no neighbors in T1. Then the other

three vertices of Y have degree sequence 3, 3, 2 toward T1 and one of u1 and u2, say u1, is

adjacent to all vertices in Y − y1. Let y2 be a vertex in Y2 that has 3 neighbors in T1. Then

Y − y2 + u1 is a Y -connector, and G[F − u1 + y2] contains a Dk. �

Claim 2. Let k ≥ 9. Let S1 =
∑3

i=1 d(ui, Y ) + 5
6d(u4, Y ) + 1

2d(u5, Y ) + 1
6d(u6, Y ) and

S2 =
1
6d(uk−6, Y )+ 1

2d(uk−5, Y )+ 5
6d(uk−4, Y )+

∑k
i=k−3 d(ui, Y ). Then S1 ≤ 12 and S2 ≤ 12.

Proof. Assume that S1 > 12. By Claim 1,
∑3

i=1 d(ui, Y ) ≤ 8.

CASE 1.
∑3

i=1 d(ui, Y ) ≤ 7. Then 5
6d(u4, Y ) + 1

2d(u5, Y ) + 1
6d(u6, Y ) > 5, that is,

5d(u4, Y ) + 3d(u5, Y ) + d(u6, Y ) ≥ 31.
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If d(u4, Y ) = 4, then 3d(u5, Y ) + d(u6, Y ) ≥ 11. Since d(ui, Y ) ≤ 4, (c3) yields that the

degree sequence in Y for (u4, u5, u6) is (4, 4, 0). Then no vertex in Y has a neighbor in T1

(otherwise, we switch this vertex with u4), and thus
∑3

i=1 d(ui, Y ) = 0, and it implies that

S1 = 32/5 < 12, a contradiction.

If d(u4, Y ) ≤ 3, then 3d(u5, Y )+d(u6, Y ) ≥ 16. So d(u5, Y ) = d(u6, Y ) = 4 and d(u4, Y ) =

3, a contradiction to (c3).

CASE 2.
∑3

i=1 d(ui, Y ) = 8. Then 5
6d(u4, Y ) + 1

2d(u5, Y ) + 1
6d(u6, Y ) > 4, that is,

5d(u4, Y ) + 3d(u5, Y ) + d(u6, Y ) ≥ 25.

If d(u4, Y ) ≤ 2, then 3d(u5, Y ) + d(u6, Y ) ≥ 15. Thus d(u5, Y ) = 4 and d(u6, Y ) ≥ 3, a

contradiction to (c3).

If d(u4, Y ) = 3, then 3d(u5, Y ) + d(u6, Y ) ≥ 10. So, (c3) yields (d(u5, Y ), d(u6, Y )) ∈

{(2, 4), (3, 1), (3, 2), (4, 0), (4, 1)}. In any case, since d(u4, Y ) = 3 and d(u5, Y ) ≥ 2, there is a

neighbor y ∈ Y of u5 such that Y − y + u4 is a Y -connector. By Claim 1, y has a neighbor

in T1, and hence we may replace u4 with y in the double lasso, a contradiction.

If d(u4, Y ) = 4, then 3d(u5, Y ) + d(u6, Y ) ≥ 5. It follows that d(u5, Y ) ≥ 1. Again, switch

y ∈ N(u5) ∩ Y with u4, and we get a contradiction. �

By Claim 1,

(7) eG(Y, P ) >
8

3
|P | =

8

3
(k − 6).

It k = 6, then P = ∅, and hence eG(Y, P ) = 0, a contradiction to (7).

Let k = 7, i.e., |P | = 1. Then eG(Y, F ) ≥ 19 and eG(Y, u4) ≥ 3. By symmetry, we may

assume that y1, y2, and y′1 are neighbors of u4. Then y1 and y′1 do not have neighbors in both

T1 and T2. For the same reason, y′2 does not have neighbors in both T1 and T2. Hence there

are at least 3 × 3 = 9 non-edges between Y and T1 ∪ T2. Thus y′2 is a neighbor of u4. It

follows that y2 does not have neighbors in both T1 and T2. We now have a contradiction to

eG(F, Y ) ≥ 19.

The next case is k = 8, that is, |P | = 2. Then eG(Y, F ) ≥ 22 and eG(Y, {u4, u5}) ≥ 6. If

eG(Y, {u4, u5}) ≥ 7, then u4 and u5 have at least three common neighbors in Y , and every

common neighbor y ∈ Y of u4 and u5 cannot have neighbors in T1 ∪ T2 (otherwise, we may

switch y with u4 or u5 to get a Y -connector and a D8), thus eG(Y, F ) ≤ 32 − 3 · 6 = 14, a

contradiction. If eG(Y, {u4, u5}) = 6, then the common neighbors of u4 and u5 in Y have at

least 9 non-edges to T1 ∪ T2, thus eG(Y, F ) ≤ 32− 9− 2 = 21, a contradiction.

If k = 9, then by Claim 2, eG(Y, F ) ≤ 24 = 8/3|F |, a contradiction.

Now we let k ≥ 10. Consider the sum

S = S1 +
1

6

k−5
∑

i=5

(d3(ui, Y ) + d3(ui+1, Y )) + S2.
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Observe that S = eG(F, Y ) > 8
3k. This and Claim 2 imply that

∑k−5
i=5 (d3(ui, Y ) +

d3(ui+1, Y )) > 6(8/3k − 24) = 16(k − 9). Then there exists i with 5 ≤ i ≤ k − 5 such

that d3(ui, Y ) + d3(ui+1, Y ) ≥ 17. By the symmetry between ui and ui+1, we may assume

that d3(ui, Y ) ≥ 9. Now statement (c4) of Lemma 1 yields that one of the six configurations

in Figure 1 occurs.

Consider P as the union of three paths with the vertex sets P1 = {u4, . . . , ui−1}, P0 =

{ui, ui+1}, and P2 = {ui+2, . . . , uk−3}.

Claim 3. Let k ≥ 10. Suppose that vertices y1, y
′
1 ∈ Y1 and y2, y

′
2 ∈ Y2 are chosen so that

(R1) y′1ui, y
′
2ui+1 ∈ E(G) and

(R2) y1ui−1, y2ui+2 ∈ E(G).

Then

(S1) for each 5 ≤ j ≤ i− 1, if ujy2 ∈ E(G), then uj−1y1 /∈ E(G), and if u4y2 ∈ E(G), then

y1 has no neighbors in T1;

(S2) similarly, for each i + 2 ≤ j ≤ k − 4, if ujy1 ∈ E(G), then uj+1y2 /∈ E(G), and if

uk−3y1 ∈ E(G), then y2 has no neighbors in T2;

(S3) d(y1, P1)+ d(y2, P1)+ eG(Y, T1) ≤ i+4 and d(y1, P2)+ d(y2, P2)+ eG(Y, T2) ≤ k− i+4.

Proof. Suppose first that ujy2 ∈ E(G) and uj−1y1 ∈ E(G) for some 5 ≤ j ≤ i − 1. Then by

(R2), the sequence

(T2, uk−4, uk−5, . . . , ui+2, y2, uj , uj+1, . . . , ui−1, y1, uj−1, uj−2, . . . , u4, T1)

forms a double lasso of order k in G, and by (R1), Y − y1 − y2 + ui + ui+1 is a Y -connector.

The same argument proves the second part of (S1), and a symmetric argument proves (S2).

By (S1), d(y1, P1)+d(y2, P1) ≤ i−3. Moreover, the equality is attained only if i−4 is odd

and y1 and y2 are both adjacent to u4, u6, . . . , ui−1. Then again by (S1), y1 is not adjacent

to T1. Therefore, by Claim 1, eG(Y, T1) ≤ 7. This proves the first part of (S3). The proof of

the other part is analogous. �

Consider configurations (A), (C) and (E) in Figure 1. For each choice of y1 ∈ Y1 and

y2 ∈ Y2 in these configurations, both (R1) and (R2) hold. So, by Claim 3, (S1) and (S2)

hold for each such choice. In particular, if u4 (respectively, uk−3) has a neighbor in Y2

(respectively, Y1), then there are no edges between T1 and Y1 (respectively, T2 and Y2) which

yields eG(Y, T1) ≤ 6 (respectively, eG(Y, T2) ≤ 6). It follows from (S1) and (S2) that

eG(Y, F ) = eG(Y, {u1, . . . , ui−1}) + eG(Y, {ui, ui+1}) + eG(Y, {ui+2, . . . , uk}) ≤

(2 + 2(i− 1)) + 6 + (2 + 2(k − i− 1)) = 2k + 6.

Since eG(Y, F ) > 8k/3, we get 2k + 6 > 8k/3, i.e., k < 9, a contradiction.

Consider now configuration (D) in Fig. 1. The set Y −y1−y′2+ui+ui+1 is a Y -connector.

Graph G[F − ui − ui+1 + y1] contains lasso Dk−1. So, if y′2 is adjacent to two consecutive

vertices in P1 or P2, then G[F −ui−ui+1+ y1+ y′2] contains lasso Dk, a contradiction. Thus
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d(y′2, P1) ≤ (i − 4 + 1)/2 and d(y′2, P2) ≤ (k − i − 4 + 1)/2. Since y′2ui /∈ E(G), we obtain

d(y′2, P ) ≤ k/2− 2. Since y′1ui+2 /∈ E(G), we have d(y′1, P ) ≤ k − 7. Together with (S3) and

the fact that eG({y1, y2}, P0) = 2 we obtain

eG(Y, F ) ≤ (k/2 − 2) + (k − 7) + (i+ 4) + (k − i+ 4) + 2 = 5k/2 + 1.

It follows that 5k/2 + 1 > 8k/3, i.e., k < 6, a contradiction.

Consider configuration (F) in Fig. 1. The situation here is symmetric to (D). The set

Y − y′1 − y2 + ui + ui+1 is a Y -connector. Graph G[F − ui − ui+1 + y2] contains lasso

Dk−1. Vertex y′1 has no two consecutive neighbors on P1 and P2. Since y′1ui+2 /∈ E(G),

d(y′1, P2) ≤ (k − i − 4)/2, d(y′1, P1) ≤ (i − 3)/2, and hence d(y′1, P ) ≤ (k − 3)/2. Since

y′2ui, y
′
2ui+2 /∈ E(G), we have d(y′2, P ) ≤ k − 8. Together with (S3) and the fact that

eG({y1, y2}, P0) = 3 we obtain

eG(Y, F ) ≤ (k − 3)/2 + (k − 8) + (i+ 4) + (k − i+ 4) + 3 = (5k + 3)/2,

which yields k < 9, a contradiction.

Finally, consider configuration (B) in Fig. 1. Again, the set Y − y′1 − y2 + ui + ui+1 is a

Y -connector and G[F − ui − ui+1 + y2] contains lasso Dk−1. Since y′1ui+2, y
′
1ui−1 /∈ E(G)

and y′1 has no two consecutive neighbors on P1 and P2, we have d(y′1, P1) ≤ ⌊(i − 4)/2⌋ and

d(y′1, P2) ≤ ⌊(k− i− 4)/2⌋. Since y′2ui /∈ E(G), we have d(y′2, P ) ≤ k− 7. Together with (S3)

and the fact that eG({y1, y2}, P0) = 3 we obtain

(8) eG(Y, F ) ≤ (⌊(i−4)/2⌋+⌊(k−i−4)/2⌋+2)+(k−7)+(i+4)+(k−i+4)+3 ≤ 5k/2+2,

which yields k < 12. Furthermore, if k ∈ {10, 11}, then either i = 5 (and hence ⌊(i− 4)/2⌋ =

(i − 5)/2) or k − i = 5 (and hence ⌊(k − i − 4)/2⌋ = (k − i − 5)/2). In both cases, by (8),

eG(Y, F ) ≤ (5k + 3)/2, which yields k < 9.

7. Proof of Lemma 4

In this section, we prove Lemma 4. Lemma 4 roughly states that if there are a lot of edges

between a gadget Y and some component F = K−
4 , then we are able to adjust them to get

a Y -connector and a new copy of K−
4 . We will see that sometimes it is not enough to adjust

only the union of the gadget and K−
4 , and we need to consider another component D which

has a lot of edges to Y ∪ F .

Let F = {w1, w2, w3, w4} and H ′[F ] = K−
4 be such that dH′(w1) = dH′(w2) = 2 and

eG(Y, F ) ≥ 11. In terms of the complement, this means that

(9) eG(Y, F ) ≤ 5.

Suppose by contradiction that the lemma is not true for Y and F .

Assume first that for some i ∈ {1, 2}, wi has neighbors in both, Y1 and Y2. By symmetry, we

may assume that w1 is adjacent to y1 and y2. If some y ∈ {y′1, y
′
2} has at least two neighbors

in {w2, w3, w4}, then G[{y,w2, w3, w4}] contains K−
4 , and Y − y + w1 is a Y -connector. So,

eG({y
′
1, y

′
2}, {w2, w3, w4}) ≥ 4. By (9), w1 has a neighbor in {y′1, y

′
2}. By symmetry, we may
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assume that y′1w1 ∈ E(G). Then, as above, y1 has at most one neighbor in {w2, w3, w4}.

Hence eG(Y, F ) ≥ 6, a contradiction. Thus we may assume that w1 has no neighbors in Y2,

and w2 has no neighbors in some Yj, where j ∈ {1, 2}.

If j = 2, then again by (9), w1 and w2 have a common neighbor, say y1, in Y1. Also by (9),

at most one edge between Y1 and {w3, w4} is missing. So, by symmetry, we can assume that

y1w3, y
′
1w4 ∈ E(G). Then G[V (F )−w4 + y1] contains K

−
4 and Y − y1+w4 is a Y -connector.

This contradiction proves that j = 1. Furthermore, if w1w2 ∈ E(G), then we can switch the

roles of {w1, w2} and {w3, w4} thus forcing eG(Y,H) ≥ 8, a contradiction.

So, from now on, E′ = {w1w2, w1y2, w1y
′
2, w2y1, w2y

′
1} ⊆ E(G). Let F1 = F ∪ Y . By (9)

and symmetry, we may assume that the only non-edge of G[F1] that is not in E′ (if exists) is

either y1w1 or y1w3 (see Figure 4). So, if the Yi-block is a K−
4 , then we can switch the roles

of F and this block. This implies that

(10) neither Y1-block nor Y2-block is a K−
4 .

Let Bi denote the vertex set of the Yi-block, i = 1, 2.
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Figure 4. The subgraph induced by F1 = F ∪ Y .

Let S = Y ∪ {w1, w2}. By (2),
∑

v∈S

d(v) ≥ 3σ2(G) ≥ 4n − 3.

Since the sum gains at most 24 from the neighbors in F1,

(11) eG(S, V (G)− F1) ≥ 4n− 27 = 4(n− 8) + 5.

Therefore, either there exists a component H ′[D] of H ′ such that

(12) eG(S,D) > 4|D|,

or for some i ∈ {1, 2} the set D = Bi − Yi satisfies (12), or B1 = B2 and the set D = B1 − Y

satisfies (12).

If H ′[D] = K1 is a component of H ′ and D = {u}, then by (12) there are at least 5 edges

from u to S. So, u has a neighbor in Y1 and a neighbor, say y2 in Y2. Then Y − y′2 + u is a

Y -connector and {y′2} forms a new K1-component of H ′ (see Figure 5).

If H ′[D] is a K2-component of H ′ and D = {u1, u2}, then by (12), eG(D,S) ≥ 9 and

so eG(D,Y ) ≥ 5. By symmetry, we may assume that eG(u1, Y ) ≥ 3. We will construct a

Y -connector without using F , so we may assume that N(u1) ⊃ Y1 + y2. If u2 is adjacent to

some y ∈ Y1 + y2, then G[{y, u2}] = K2 and Y − y + u1 is a Y -connector. Otherwise, since
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y1
y1y1

w1w1 w2w2 u

v

Figure 5. Partitions with K1,K3 and K−
4

eG(D,Y ) ≥ 5, we have N(u1) ⊃ Y and u2 has a neighbor y ∈ Y . So, again G[{y, u2}] = K2

and Y − y + u1 is a Y -connector.

Suppose that H ′[D] = K3 is a component of H ′ and D = {u1, u2, u3}. By (12), eG(S,D) ≥

13. If for some i ∈ {1, 2}, |D∩N(wi)| ≥ 2, thenG[D+wi] contains aK
−
4 , G[{y3−i, w3−i, w3}] =

K3, and Y − y3−i +w4 is a Y -connector. Otherwise, eG(Y,D) ≥ 13− 2 = 11. It follows that

G[D + y1] contains a K−
4 , {y

′
1, w1, w3, y

′
2} is a Y -connector, and G[{w2, w4, y2}] = K3.

Suppose that H ′[D] = K−
4 is a component of H ′ and D = {u1, u2, u3, u4}, where u1u2 /∈

E(H ′). By (12), eG(Y,D) > 4|D| − eG({w1, w2},D) ≥ 2|D|. Then some u ∈ D has at least

3 neighbors in Y and hence has a neighbor y ∈ Y1 and a neighbor y′ ∈ Y2. Let y
′′ ∈ Y2 − y′.

If eG(Y,D) ≤ 10, then by (12), eG({w1, w2},D) ≥ 7, and by symmetry we may assume

that eG(w1,D) = 4. Then Y − y′′ + u is a Y -connector, and each of G[F − w1 + y′′] and

G[D − u+w1] contains K
−
4 . So, suppose that eG(Y,D) ≥ 11. Then repeating our argument

for F , we may assume that the missing edges in E(Y,D) are u1y2, u1y
′
2, u2y1, u2y

′
1, and

maybe one more edge. In particular, eG(Y,D) ≤ 12 and hence eG({w1, w2},D) ≥ 5. If

w2u1 ∈ E(G), let y be a neighbor of u1 in Y1 and y′ ∈ Y1 − y. In this case, {y2, w2, u1, y} is a

Y -connector, and each of G[F −w2+y′2] and G[D−u1+y′] contains a K−
4 . So, w2u1 /∈ E(G)

and similarly w1u2 /∈ E(G). Thus, since eG({w1, w2},D) ≥ 5, either eG(w1,D − u2) = 3 or

eG(w2,D−u1) = 3. If eG(w1,D−u2) = 3, then let h ∈ {3, 4} be such that uhy1 ∈ E(G) and

let y ∈ Y2 be adjacent to u2 and y′ ∈ Y2−y. In this notation, {y1, uh, u2, y} is a Y -connector,

and each of G[F − w1 + y′] and G[{w1, y
′
1, u1, u7−h}] contains a K−

4 . If eG(w1,D − u2) < 3,

then eG(w2,D − u1) = 3 and eG(Y,D) = 12, so that the missing edges in E(Y,D) are only

u1y2, u1y
′
2, u2y1, and u2y

′
1. Then {y1, u1, u3, y2} is a Y -connector, and each of G[F −w2+ y′1]

and G[{w2, y
′
2, u2, u4}] contains a K−

4 .

Before considering the remaining cases, we need two facts.

Lemma 6. Let P = (u1, u2, u3, u4) be a path in G− F1 and U = {u1, u2, u3, u4}. If

(13) d3(u2, S) + d3(u3, S) ≥ 25,

then F1 ∪U can be partitioned into three sets, W1,W2, and W3 so that W1 is a Y -connector,

G[W2] contains a u1, u4-path of length 3, and G[W3] contains a K−
4 .

Proof. Case 1: d3(u2, {w1, w2}) + d3(u3, {w1, w2}) ≥ 9. We need two claims.
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Claim 4. Let j ∈ {2, 3}.

(a) If w1uj−1, w1uj+1, w2uj ∈ E(G), then y1, y2, and y′2 are not neighbors of uj.

(b) If w2uj−1, w2uj+1, w1uj ∈ E(G), then y′1, y2, and y′2 are not neighbors of uj .

Proof. Let j = 3 (the case j = 2 is symmetric). Suppose that w1u2, w1u4, w2u3 ∈ E(G). If

z ∈ Y2 is a neighbor of u3, then Y − z + w4 is a Y -connector, G[{w3, w2, u3, z}] contains a

K−
4 , and (u1, u2, w1, u4) is a path in G. If y1u3 ∈ E(G), then Y − y′1 − y2 + u3 + w2 is a

Y -connector, G[{y′1, w3, w4, y
′
2}] = K−

4 , and (u1, u2, w1, u4) is a path in G. This proves (a).

Suppose now that w2u2, w2u4, w1u3 ∈ E(G). Let w = y1 and w′ = y′1 if y1w1 ∈ E(G)

and w = y′1 and w′ = y1 otherwise. If z ∈ Y2 is a neighbor of u3 and z′ ∈ Y2 − z, then

Y −w′−z′+u3+w1 is a Y -connector, G[{w′, w3, w4, z
′}] = K−

4 , and (u1, u2, w2, u4) is a path

in G. If y′1u3 ∈ E(G), then Y − y′1 +w4 is a Y -connector, G[{w1, w3, u3, y
′
1}] contains a K−

4 ,

and (u1, u2, w2, u4) is a path in G. �

Claim 5. Let h ∈ {1, 4}.

(a) If w1u2, w1u3, w2uh ∈ E(G), then either eG(u5−h, Y2) = 0 or eG(y
′
1, {u2, u3}) = 0.

(b) If w2u2, w2u3, w1uh ∈ E(G), then either u5−hy
′
1 /∈ E(G) or eG(Y2, {u2, u3}) = 0.

Proof. By symmetry, we consider only h = 1. Assume first that w1u2, w1u3, w2u1 ∈ E(G),

eG(u4, Y2) > 0, and eG(y
′
1, {u2, u3}) > 0. Let z be a neighbor of u4 in Y2. Then Y − y′1 − z +

w3 + w4 is a Y -connector, G[{y′1, w1, u2, u3}] contains a K−
4 , and (u1, w2, z, u4) is a path in

G. This proves (a).

Similarly, assume that w2u2, w2u3, w1u1 ∈ E(G), u4y
′
1 ∈ E(G), and eG(Y2, {u2, u3}) > 0.

Let z be a vertex in Y2 adjacent to either u2 or u3. Then Y −y′1−z+w3+w4 is a Y -connector,

G[{{z, w2, u2, u3}] contains a K−
4 , and (u1, w1, y

′
1, u4) is a path in G. �

Case 1.1: eG({u2, u3}, {w1, w2}) = 3. To have d3(u2, {w1, w2}) + d3(u3, {w1, w2}) ≥ 9,

we need eG({u1, u4}, {w1, w2}) ≥ 3. Thus there is a matching of size 2 between {w1, w2} and

{u1, u4}, so by symmetry, we may assume that w1u1, w2u4 ∈ E(G).

If w1u3, w2u2 ∈ E(G), then by Claim 4, y1, y2, y
′
2 are not neighbors of u2 and u3, we have

a contradiction to d3(u2, S) + d3(u3, S) ≥ 25. So we assume that either w1u3 6∈ E(G) or

w2u2 6∈ E(G) (thus w1u2, w2u3 ∈ E(G)). If u1w2 ∈ E(G) and u4w1 ∈ E(G), then again by

Claim 4, y1, y2, y
′
2 are not neighbors of u2 and u3, we have a contradiction to (13). Thus,

exactly one of w1u3, w2u2 is an edge in G and exactly one of u1w2, u4w1 is an edge in G. So,

we have four possibilities.

If w2u1, w2u2 ∈ E(G), then by Claim 4 (a), y′1, y2, y
′
2 are not neighbors of u2. So by

(13), eG(u3, Y1), eG(u3, Y2) ≥ 1. Let u3y2 ∈ E(G). Then Y − y′2 + u3 is a Y -connector,

(u1, u2, w2, u4) is a path in G, and G[w1, w3, w4, y
′
2] contains a K−

4 .

Symmetrically, if w1u3, w1u4 ∈ E(G), then by Claim 4 (b), y1, y2, y
′
2 are not neighbors of

u3. So by (13), eG(u2, Y1), eG(u2, Y2) ≥ 1, and we may assume that u2y2 ∈ E(G). Then
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Y − y′2 + u2 is a Y -connector, (u1, w1, u3, u4) is a path in G, and G[w2, w3, w4, y
′
2] contains a

K−
4 .

If w2u2, w1u4 ∈ E(G), then by Claim 4 (b) for j = 3, y1, y2, y
′
2 are not neighbors of u3.

By Claim 5 (b) for h = 4, either u1y
′
1 6∈ E(G) or eG(u2, Y2) = 0. So, by (13), u1y

′
1 6∈ E(G).

Now by Claim 5 (b) for h = 1, either u4y
′
1 6∈ E(G), or eG({u2, u3}, Y2) = 0. So, by (13),

u4y
′
1 6∈ E(G) and all other edges in E(S,U) are present. Thus, G[y′1, u2, u3, w1] contains a

K−
4 , {y1, w3, w4, y2} is a Y -connector, and (u1, y

′
2, w2, u4) is a path in G.

The last possibility is that w1u3, w2u1 ∈ E(G). In this case, by Claim 4 (b) for j = 2,

y1, y2, y
′
2 are not neighbors of u2. By Claim 5 (a) for h = 1, either eG(u4, Y2) = 0 or

eG(y
′
1, {u2, u3}) = 0. Since eG(y

′
1, {u2, u3}) > 0 by (13), we conclude that eG(u4, Y2) = 0.

Now by Claim 5 (a) for h = 4, either eG(u1, Y2) = 0 or eG(y
′
1, {u2, u3}) = 0. Both cases

contradict (13).

Case 1.2: eG({u2, u3}, {w1, w2}) = 4. If both, eG(u1, {w1, w2}) > 0 and eG(u4, {w1, w2}) >

0, then by Claim 4, eG({u2, u3}, Y ) ≤ 2. This contradicts (13). So, we may assume that

eG(u4, {w1, w2}) = 0. Then under the conditions of Case 1, eG(u1, {w1, w2}) > 0.

Case 1.2.1: u1w2 ∈ E(G). By Claim 4, u2y1, u2y2, u2y
′
2 /∈ E(G). By Claim 5, either

eG(u4, Y2) = 0 or eG(y
′
1, {u2, u3}) = 0. So, by (13), at most one other edge in E(Y,U) is

missing and this edge must either be u1w2 or be in E(Y, {u1, u4}). If y1u4 ∈ E(G), then

{y′1, w1, u3, y
′
2} is a Y -connector, G[{w2, w3, w4, y2} = K4, and (u1, u2, y1, u4) is a path in G.

Otherwise u1w1 ∈ E(G) and hence {y1, u2, w2, y2} is a Y -connector, G[{y′1, w3, w4, y
′
2}] = K−

4 ,

and (u1, w1, u3, u4) is a path in G.

Case 1.2.2: u1w2 /∈ E(G). Then u1w1 ∈ E(G). By Claim 4, u2y
′
1, u2y2, u2y

′
2 /∈ E(G).

By Claim 5, either u4y
′
1 /∈ E(G) or eG(Y2, {u2, u3}) = 0. So, by (13), u4y

′
1 /∈ E(G) and at

most one other edge in E(Y,U) is missing. Moreover, the missing edge, if exists, must be in

E(Y, {u1, u4}). Then u1 has a neighbor, say z, in Y2. Therefore, Y − y′1 − z + w2 + w4 is a

Y -connector, G[{{y′1, w1, w3, u2}] contains a K−
4 , and (u1, z, u3, u4) is a path in G.

Case 2: d3(u2, {w1, w2}) + d3(u3, {w1, w2}) ≤ 8. By (13), d3(u2, Y ) + d3(u3, Y ) ≥ 17. By

symmetry, we may assume that d3(u2, Y ) ≥ 9. Then by Lemma 1, we only need to consider

the 6 configurations in Figure 1 with i = 2.

Note that for each configuration in Figure 1, there exist y ∈ Y1, z ∈ Y2 adjacent to both

u1 and u3. Let y
′ ∈ Y1 − y and z′ ∈ Y2 − z. Then in all cases, y′u2, zu4 ∈ E(G).

If w2u2 ∈ E(G), then {y′, u2, w2, z} is a Y -connector, G[{w1, w3, w4, z
′}] contains a K−

4 ,

and (u1, y, u3, u4) is a path in G. Similarly, if w1u2 ∈ E(G), then {y1, w3, w2, z
′} is a Y -

connector, G[{w1, w3, u2, y
′
1}] contains a K−

4 , and (u1, z, u3, u4) is a path in G. So,

(14) w2u2 /∈ E(G) and w1u2 /∈ E(G).

Note that in all cases except (E), d3(u2, Y ) + d3(u3, Y ) = 17 and in (E), d3(u2, Y ) +

d3(u3, Y ) = 18. So, by (13), d3(u2, {w1, w2}) + d3(u3, {w1, w2}) is at least 7 in Case (E) and

at least 8 otherwise. Thus in the cases other than (E), we do not have other non-edges between

{w1, w2} and {u1, u2, u3, u4}. Therefore, G[{y,w1, w3, w4}] contains a K−
4 , {y

′, u2, u3, z
′} is a
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Y -connector, and (u1, z, w2, u4) is a path in G. This argument also works for (E) if the miss-

ing edge is incident with w1. If not, then w1 is adjacent to both u1 and u4 and y is adjacent

to at least one of them. Thus, {y′, u2, u3, z
′} is a Y -connector, G[{z, w2, w3, w4}] = K4, and

either (u1, y, w1, u4) or (u1, w1, y, u4) is a path in G. �

Lemma 7. Let F2 be a k-lasso-component of H ′ that consists of a path (u1, . . . , uk) and edges

u1u3 and uk−2uk, where k ≥ 6. Denote T = {u1, u2, u3}. Suppose that T ∩ V (F1) = ∅ and

eG(T, {w1, w2}) = 6. If G does not contain an H-approximation slightly better than H ′, then

(a) no vertex in Y − y′1 has a neighbor in {u1, u2};

(b) if u3 has a neighbor in Y2, then y′1 has no neighbor in {u1, u2};

(c) eG(Y, T ) ≤ 4.

Proof. Suppose by contradiction that eG(Y2, {u1, u2}) > 0. By symmetry, we may assume

that y2u1 ∈ E(G). Define y = y1 if y1w1 ∈ E(G) and let y = y′1 otherwise. Let y′ ∈ Y1 − y.

Then {y2, u1, w1, y} is a Y -connector, G[{y′, w3, w4, y
′
2}] contains a K−

4 , and G[T − u1 + w2]

contains a K3. The proof for y1 in place of y2 is a bit simpler. This proves (a).

Suppose now that eG(y
′
1, {u1, u2}) > 0 and eG(u3, Y2) > 0. By symmetry, we may assume

that y′1u1 ∈ E(G) and u3y2 ∈ E(G). Then {y1, w3, w4, y
′
2} is a Y -connector, G[{y′1, w1, u1, u2}]

contains a K−
4 , and G[T − u1 − u2 +w2 + y2] contains a K3. This proves (b), and (c) follows

from (a) and (b). �

Now we return to the remaining cases of D satisfying (12).

IfH ′[D] = Ck = (u1, . . . , uk), k ≥ 5, is a component ofH ′, then consider
∑

=
∑k

i=1(d3(ui, S)+

d3(ui+1, S)), where indices count modulo k. Then
∑

= 6eG(S,D) > 24k, and so there exists

1 ≤ i ≤ k such that d3(ui, S) + d3(ui+1, S) > 24, a contradiction to Lemma 6.

Suppose now that H ′[D] is a Dk-component of H ′ that contains a path (u1, . . . , uk) and

the edges u1u3 and uk−2uk for some k ≥ 6. As in the proof of Lemma 3, let T1 = {u1, u2, u3},

T2 = {uk−2, uk−1, uk}, and let P denote the path (u4, . . . , uk−3). We may assume that D∪Y

cannot be partitioned into a Y -connector and a set W such that G[W ] contains Dk, since

otherwise G contains a subgraph slightly better than H ′. Thus Claim 1 and Claim 2 hold

true.

If k = 6, then by Claim 1, eG(Y, Ti) ≤ 8 for i = 1, 2. Hence eG({w1, w2},D) > 24−8−8 = 8.

By symmetry, we may assume that eG(w1, T1) = 3 and eG(w4, T2) ≥ 2. ThenG[T1+w1] = K4,

G[T2 ∪ {w2, w3, y2}] contains a D6, and Y1 + w4 + y′2 is a Y -connector.

If k = 7, then by Lemma 3, eG(Y,D) ≤ 18, and so eG({w1, w2},D) > 28 − 18 = 10. If

u4w2 ∈ E(G) and w1 has at least two neighbors in Ti for some i = 1, 2, then G[Ti+w1] contains

a K−
4 , G[T3−i ∪ {u4, w2, w3, y2}] contains a D7, and Y1 + w4 + y′2 is a Y -connector. Thus if

u4w2 ∈ E(G), then eG(w1,D) ≤ 3 and hence eG({w1, w2},D) ≤ 7+3 = 10, a contradiction. A

symmetric argument works for w1 in place of w2. So we may assume that u4w1, u4w2 6∈ E(G).
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Then eG(T1 ∪ T2, {w1, w2}) ≥ 11, and so for some i ∈ {1, 2}, eG(Ti, {w1, w4}) = 6. By

Lemma 7, eG(Ti, Y ) ≤ 4. Then by Claim 1, eG(Y,D) ≤ 4 + 8 + 4 = 16, which in turn gives

that eG(T1 ∪ T2, {w1, w2}) ≥ 29− 16 = 13, an impossibility.

If k = 8, then by Lemma 3, eG(Y,D) ≤ 21, and so eG({w1, w2},D) > 32 − 21 = 11. If

eG({w1, w2}, {u4, u5}) = 0, then eG(T1 ∪ T2, {w1, w2}) = 12. Hence by Claim 7, eG(Y, T1 ∪

T2) ≤ 8, and so eG(Y,D) ≤ 8+2|Y | = 16. Thus in this case, eG({w1, w2},D) > 32−16 = 16,

an impossibility. If w1u4 ∈ E(G) and w2 has at least two neighbors in T1, then G[T1 + w2]

contains a K−
4 , Y − y′1 + w4 is a Y -connector, and G[T2 ∪ {u5, u4, y

′
1, w1, w3}] contains a

D8. Repeating this argument with the switched roles of w1 and w2 and/or of u4 and u5, we

conclude that if eG({w1, w2}, {u4, u5}) = j, then eG({w1, w2}, T1 ∪ T2) ≤ 12− 2j, and hence

eG({w1, w2},D) ≤ 12− j < 12, a contradiction.

Let k ≥ 9. As in the proof of Lemma 3, we consider

S′
1 =

3
∑

i=1

d(ui, S) +
5

6
d(u4, S) +

1

2
d(u5, S) +

1

6
d(u6, S),

S′
2 =

1

6
d(uk−6, S) +

1

2
d(uk−5, S) +

5

6
d(uk−4, S) +

k
∑

i=k−3

d(ui, S).

and S′ = S′
1 +

1

6

k−4
∑

i=5

(d3(ui, S) + d3(ui+1, S)) + S′
2

Note that these sums are well defined for k ≥ 9 and that S′ = eG(S,D) ≥ 4k + 1. By

Lemma 6, d3(ui, S) + d3(ui+1, S) ≤ 24 for 5 ≤ i ≤ k− 4 when k ≥ 9. Thus S′
1 +S′

2 ≥ 37. We

may assume that S′
1 ≥ 18.5. By Claim 2, Y contributes at most 12 to S′

1.

If u4w1 ∈ E(G) and eG(w2, T1) ≥ 2, then G[T1 + w2] contains a K−
4 , {y1, w4, y2, y

′
2} is a

Y -connector, and G[D − T1 + {y′1, w1, w3}] contains a Dk. Similar statement holds with the

switched roles of w1 and w2. So, if eG({w1, w2}, u4) = j, then eG({w1, w2}, T1) ≤ 6− 2j, and

hence S′
1 ≤ 12 + (6− 2j) + j · 5

6 + 2 · 1
2 + 2 · 1

6 . For j ≥ 1, this expression is less than 18.5, so

j = 0. If eG({w1, w2}, T1) ≤ 5, then S′
1 ≤ 12 + 5 + 4

3 < 18.5. Thus, eG({w1, w2}, T1) = 6 and

by Lemma 7, eG(Y, T1) ≤ 4. Then

S′
1 ≤ 4 + 4

(

5

6
+

1

2
+

1

6

)

+ 6 + 2

(

1

2
+

1

6

)

< 18,

a contradiction.

Thus all cases when H ′[D] is a component of H ′ disjoint from F1 are considered. Now,

suppose that the Y1-block and the Y2-block is the same component H ′[B] of H ′ and D =

B−Y . By the definition of a gadget and (10), H ′[B] is a double lasso, say (z1, . . . , zk), where

z1 = y1, z2 = y′1, zk−1 = y′2, zk = y2. By (11), since eG(S, V (G)−F1) ≥ 4n−27 = 4(n−8)+5

and for every component F2 of H
′ distinct from B, eG(S,F2) ≤ 4|F2|, we have eG(S,B−Y ) ≥

4(|B| − 4) + 5. Since eG(S,B − Y ) ≤ |S| |B − Y | = 6|B − Y |, we have k ≥ 7. As in the proof

of the Dirac’s theorem, if for some 3 ≤ i ≤ k−4, zizk ∈ E(G) and z1zi+1, then G[B] contains
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Hamiltonian cycle (z1, z2, . . . , zi, zk, zk−1, . . . , zi+1), a contradiction. Since z1 and z2 (and zk
and zk−1) are equivalent in B, we conclude that eG(Y,B − Y ) ≤ 2(1 + (k − 4)). It follows

that eG(S,B − Y ) ≤ 2(1 + (k − 4)) + 2(k − 4) = 2 + 4(k − 4), a contradiction.

Finally, suppose that B1 6= B2. By (11), for some j ∈ {1, 2},

(15) eG(S,Bj − Yj) ≥ 3 + 4(|Bj | − 2).

Suppose that H ′[Bj ] is a double lasso (z1, . . . , zk), where {z1, z2} = {yj, y
′
j}. Similarly to

the previous paragraph, if for some 3 ≤ i ≤ k − 4 and some z ∈ Y3−j , ziz ∈ E(G)

and z1zi+1, then G[B1 ∪ B2] contains a double lasso that contains B3−j and the path

(z, zi, zi−1, . . . , z1, zi+1, zi+2, . . . , zk). By the symmetry between z2 and z1, we conclude that

eG(Y,Bj − Yj) ≤ 2(1 + (k − 2)), a contradiction to (15). This proves the lemma.

8. Proof of Lemma 5

In this section, we prove Lemma 5. Lemma 5 is a technical lemma which handles one

complicated situations in Stage 3 and 4. Roughly speaking, it stated a half-gadget may be

improved to a Z-attachment (which will give us Y -connector) under the given edge conditions.

Assume by contradiction that the lemma fails for some choice of Z, T , and D. Everywhere

in this section we use notation T = {u1, u2, u3}. Because of (4), it will be convenient to give

to every edge in E(Z,D) weight 1.5 and to every edge in E(T,D) weight 1. Accordingly,

for every A ⊆ D and B ⊆ T ∪ Z, we define w(A,B) = eG(A,T ∩ B) + 1.5eG(A,Z ∩ B)

and wG(A,B) = eG(A,T ∩ B) + 1.5eG(A,Z ∩ B). In these terms, (4) can be rewritten as

w(D,T ∪ Z) > 4|D|, or, equivalently,

(16) wG(D,T ∪ Z) < 2|D|.

If D = {x}, then by (4), x has a neighbor zi ∈ Z and a neighbor in T . So, D∪T − z3−i+x

is a Z-attachment.

Suppose that D = {x1, x2}. By (4), w(D,T ∪ Z) ≥ 8.5. If there is a matching of size 2

connecting D with Z (say, with edges z1x1 and z2x2), then some vertex of Z (say, x1) still

has a neighbor in T . In this case, D ∪ T − z2 + x1 is a Z-attachment and G[{x2, z2}] = K2.

Otherwise, at most two edges connect Z with D and hence all edges connecting T with D

are present. Moreover, there is an edge connecting D with Z, say, x1z1. Hence for any c ∈ T ,

D ∪ T − c+ x1 is a Z-attachment and G[{x2, c}] = K2.

If H ′[D] = K3, then D has a neighbor in Z and thus G[D ∪ Z] is a Z-attachment.

Let D = {x1, x2, x3, x4} and H ′[D] = K−
4 with edge x2x4 missing. By (4),

(17) w(D,T ∪ Z) ≥ 16.5.

If some x ∈ {x2, x4} has at least two neighbors in T , then some other vertex in D still has

a neighbor in Z, and hence D ∪ Z − x is a Z-attachment. Suppose now that x2 has exactly

one neighbor in T . If x2 also has a neighbor z ∈ Z, and z′ ∈ Z − z, then T + z + x2 is

a Z-attachment, and to avoid K−
4 in G[D − x2 + z′], z′ has two non-neighbors in D − x2.

In this case, to satisfy (17), x2z
′ ∈ E(G), but then, as above, z has two non-neighbors in
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D − x2, a contradiction to (17). So, x2 has no neighbors in Z. But then, by (17), x4 has

a neighbor in T and a neighbor in Z, a contradiction, as above. Thus our assumption is

false and eG(T, {x2, x4}) = 0. It follows that at most one other edge between D and T ∪ Z

is missing. In particular, we may assume that z1 is adjacent to all vertices in D and that

z2x3 ∈ E(G). Then Z ∪ T − z1 + x3 is a Z-attachment and G[D − x3 + z1] contains a K−
4 .

Let H ′[D] be a 6-lasso with triangles T1 and T2. If T has a neighbor in Ti and Z has a

neighbor in T3−i, then Z ∪ T3−i is a Z-attachment, a contradiction. So w(D,T ∪ Z) ≤ 18 <

24 = 4|D|, a contradiction to (4).

The remaining three cases, when H ′[D] ∈ {C+
5 ,D9,D7}, need much longer proofs.

Case 1: H ′[D] = C+
5 . Let H ′[D] be a 5-cycle (y1, y2, y3, y4, y5) with chord y2y5. By (4),

(18) w(D,T ∪ Z) ≥ 20.5.

We start from a sequence of short claims (T1-T9). These claims explain where the edges

between D and T ∪ Z could be.

Since we assumed that the lemma fails for Z, T , and D, the first statement follows.

(T1) If T ∪D can be partitioned T ∪D = W1 ∪W2 so that G[W1] = K3 and G[W2] ⊇ C+
5 ,

then eG(Z,W1) = 0.

(T2) If eG(D,T ) ≥ 6, then for some yi, yj ∈ D, G[T + yi + yj] contains C+
5 .

Proof of (T2): Suppose that (T2) fails. Every 5-vertex graph with at least 8 edges contains

C+
5 . So, if eG(yi, T ) = 3 for some yi ∈ D, then eG(yi−1, T ) = 0, eG(yi+1, T ) = 0, and

eG(yj, T ) ≤ 1 for j = i−2, i+2. This yields eG(D,T ) ≤ 5, a contradiction. So, eG(yi, T ) ≤ 2

for all yi ∈ D. Then there are two adjacent yi and yj such that eG(yi, T ) = 2 and eG(yj, T ) ≥

1. For these i and j, G[T + yi + yj] contains C
+
5 .

(T3) eG(Z,D) ≤ 8 and eG(T,D) ≥ 9.

Proof of (T3): By (18), eG(D,T ) > 20−1.5eG(D,Z) ≥ 5.5. So eG(T,D) ≥ 6, with equality

only if eG(D,Z) = 10. Suppose that eG(D,Z) = 10. In this case, for any 3-vertex subset W

of D, G[W ] has an edge, and hence the set Z ∪W is a Z-attachment. Furthermore, by (T2)

for some two vertices yi, yj ∈ D, G[T + yi + yj] contains C+
5 . So, the lemma holds in this

case. Thus, eG(D,Z) ≤ 9 and hence eG(T,D) ≥ 7.

Suppose eG(D,Z) = 9. Then for any i ∈ {1, . . . , 5}, Z ∪ {vi−1, vi, vi+1} is a Z-attachment.

Since eG(T,D
′) ≥ 7, for some j ∈ {1, . . . , 5}, G[T+yj+jj+1] contains C

+
5 . This contradiction

shows that eG(Z,D) ≤ 8 and hence eG(D,T ) > 20− 1.5eG(D,Z) ≥ 8.

(T4) E(T, {y3, y4}) does not contain a matching of size two. As a result, eG(T, {y3, y4}) ≤

3.

Proof of (T4): Otherwise, T ∪ {y3, y4} contains a C+
5 . By (T1), there is no edge between

Z and the triangle (y1, y2, y5). Then eG(Z,D) ≤ 4 and so by (18), eG(T,D) ≥ 15. On the

other hand, by (18), 1.5eG(Z,D) > 20 − |T ||D| = 5, and hence eG(Z,D) ≥ 4. This means

that all edges between Z and {y3, y4} and between T and D are present. So for any u ∈ T ,

G[D − y3 + u] contains a C+
5 and Z ∪ T − u+ y3 is a Z-attachment.
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(T5) T ∪D has no partition into T ′ and D′ such that G[T ′] = K3 and G[D′] ⊃ C+
5 with

|T ∩ T ′| ≤ 1.

Proof of (T5): If there is such a partition T ∪D = T ′ ∪D′, then by (T1), eG(Z, T
′) = 0.

It follows that eG(Z,D) ≤ 6, and so eG(T,D) ≥ 12. Since in this case eG(T, {y3, y4}) ≥ 3, by

(T4), we may assume that eG(y3, T ) = 0. Hence eG(T,D − y3) = 12. If eG(Z, {y1, y5}) > 0,

then for any u ∈ T , G[T−u+y2+y3+y4] contains a C
+
5 , and Z+u+y1+y5 is a Z-attachment,

a contradiction. So eG(Z, {y1, y5}) = 0, and hence all edges connecting Z and {y2, y3, y4}

are present. Now Z + y2 + y3 + y4 is a Z-attachment, and G[T + y1 + y5] contains a C+
5 , a

contradiction.

(T6) If eG(T, {y1, y2, y5}) ≥ 8, then eG(T, {y3, y4}) = 0.

Proof of (T6): Assume by contradiction that eG(T, {y1, y2, y5}) ≥ 8 and that u1y4 ∈ E(G).

Since at most one edge in E(T, {y1, y2, y5}) is missing and we can switch the roles of u2 and u3,

we may assume that u3y1, u3y5, u2y2 ∈ E(G). So, if u1y2 ∈ E(G), then G[{u3, y1, y5}] = K3,

and G[{u1, u2, y2, y3, y4}] contains a C+
5 , a contradiction to (T5). Thus u1y2 /∈ E(G) and all

other edges connecting T with {y1, y2, y5} are present. Therefore, if y4uj ∈ E(G) for some

j ∈ {2, 3}, then we switch the roles of u1 and uj and the previous argument works. So,

eG(y4, T ) = 1. Furthermore, if y3 has a neighbor ui ∈ T , then we can switch the roles of

y3 and y4 and the roles of y2 and y5: since eG(v5, T ) = 3, our argument works. Thus the

last possibility is that E(T, {y3, y4}) = {y4u1}. Then eG(T,D) = 9 and so eG(Z, T ) ≥ 8.

On the other hand, since G[{y1, u2, u3}] = K3 and G[D − y1 + u1] contains a C+
5 , by (T1),

eG(y1, Z) = 0. It follows that eG(Z,D − y1) = 8, and hence T + y4 + z1 is a Z-attachment,

and G[D − y4 + z2] contains a C+
5 .

(T7) eG(T,D) ≤ 10 and eG(Z,D) ≥ 7.

Proof of (T7): By symmetry, assume that eG(y4, T ) ≥ eG(y3, T ). If eG(T,D) ≥ 11, then

by (T4), eG(T, {y1, y2, y5}) ≥ 8, and so by (T6), eG(T, {y3, y4}) = 0, a contradiction to

eG(T,D) ≥ 11.

(T8) 6 ≤ eG(T, {y1, y2, y5}) ≤ 7.

Proof of (T8): By (T3) and (T4), eG(T, {y1, y2, y5}) ≥ 6. Suppose that eG(T, {y1, y2, y5}) ≥

8. Then by (T6), eG(T, {y3, y4}) = 0. By (T3), eG(T, {y1, y2, y5}) = 9 and eG(Z,D) = 8.

Since G[T−u1+y1] = K3 and G[D−y1+u1] contains a C
+
5 , (T1) implies that eG(Z,D−y1) =

8, and hence Z ∪ {y2, y3, y4} is a Z-attachment, and G[T + y1 + y5] = K5, a contradiction.

(T9) eG(T, {y3, y4}) ≤ 2. So eG(Z,D) = 8, eG(T, {y3, y4}) = 2, and eG(T, {y1, y2, y5}) = 7.

Proof of (T9): If eG(T, {y3, y4}) ≥ 3, then by (T4), eG(T, {y3, y4}) = 3 and exactly one

of y3 and y4 (we may assume y3) is adjacent to all vertices of T . Suppose first that y5 has

no neighbors in T . Then by (T8), eG({y1, y2}, T ) = 6 and hence G[T + y1 − u1] = K3 and

G[D − y1 + u1] contains a C+
5 . By (T0), this yields that eG(y1, Z) = 0. On the other hand,

since eG(T,D) = 9, by (18), we have eG(Z,D) ≥ 8, and so eG(Z,D − y1) = 8. In this case,

Z ∪ {y5, y3, y4} is a Z-attachment, and G[T + y1 + y2] = K5, a contradiction.
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So by symmetry we may assume that u1y5 ∈ E(G). Then for j = 2, 3, G[{y3, y4, y5 + u1 +

uj}] contains a C+
5 , and hence by (T5), G[{u2, y1, y2}] and G[{u3, y1, y2}] are not triangles.

Thus eG(T − u1, {y1, y2}) ≤ 2. So by (T8), eG(y5, T ) ≥ 2, and we may assume that u2y5 ∈

E(G). Repeating the argument with u2 in place of u1, we conclude that eG(u1, {y1, y2}) ≤ 1.

So, by (T8), eG(y5, T ) = 3. It follows that G[{u1, y1, y2}] = K3 and G[{y3, y4, y5, u2, u3}]

contains a C+
5 , a contradiction to (T5).

We now are ready to finish Case 1. If for some 1 ≤ i ≤ 3, eG(ui, {y3, y4}) = 2, then

G[{ui, y3, y4}] = K3 and G[{y1, y2, y5, u3} ∪ (T − ui)] contains a C+
5 , a contradiction to (T5).

Thus by (T9) and (T4), we may assume that y3u1, y3u2 ∈ E(G). If y5u1, y5u2 6∈ E(G), then

by (T9), all other edges connecting T and {y1, y2, y5} are present. Hence G[{u2, u3, y1}] =

K3 and G[D − y1 + u1] contains a C+
5 . So by (T0), eG(y1, Z) = 0 and hence by (T9),

eG(Z,D− y1) = 8. It follows that G[Z + y3 + y4 + y5] is a Z-attachment, and G[T + y1 + y2]

contains a C+
5 , a contradiction. Thus assume u1y5 ∈ E(G).

Now G[u1, u2, y3, y4, y5] contains a C+
5 . Then by (T5), G[{u3, y1, y2}] 6= K3, and hence for

some i ∈ {1, 2}, u3yi 6∈ E(G).

Since u3yi 6∈ E(G), by (T9), at most one edge is missing in E(T − u3, {y1, y2, y5}). So,

by the symmetry between u1 and u2, we may assume that u1y1, u1y2, u2y5 ∈ E(G). Then

G[{u1, y1, y2}] = K3 and G[u2, u3, y3, y4, y5] contains a C+
5 , a contradiction to (T5). This

finishes Case 1.

Case 2: H ′[D] = D9. Assume that H ′[D] contains a path (x1, . . . , x9) and edges x1x3
and x7x9. Let T1 = {x1, x2, x3} and T2 = {x7, x8, x9}. By (16),

(19) wG(D,T ∪ Z) < 18.

Claim 6. For i = 1, 2, wG(Ti, Z ∪ T ) ≥ 3.

Proof. Suppose that wG(T1, Z ∪ T ) ≤ 2.5. Then eG(Z, T1) ≥ 5 and eG(T1, T ) ≥ 7. Thus

by symmetry we may assume that eG(z1, T1) = 3 and eG(z2, T1) ≥ 2. Let x ∈ {x1, x2} be a

neighbor of z2. Since eG(Ti, T ) ≥ 7, x has a neighbor in T . Then T+z2+x is a Z-attachment,

and G[D − x+ z1] contains a D9, a contradiction. �

Claim 7. If eG(Z, T1) > 0 (respectively, eG(Z, T2) > 0), then eG(x4, T ) = 0 (respectively,

eG(x6, T ) = 0).

Proof. If eG(Z, T1) > 0 and eG(x4, T ) > 0, then G[D − T1 + T ] contains a D9 and Z ∪ T1 is

a Z-attachment. �

Assume first that eG(Z, T2) = 0, i.e., wG(Z, T2) = 9. Then by (19), wG(Z, T1) < 18−9 = 9,

i.e., eG(Z, T1) > 0. So by Claim 7, eG(x4, T ) = 0, and hence by Claim 6,

wG(D,T ∪ Z)− wG(Z, T2)− wG(T1, Z ∪ T )− wG(x4, T ) < 18− 9− 3− 3 = 3.
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In particular, eG(x5, T ) > 0 and eG({x4, x5, x6}, Z) ≥ 8. Since at most one edge is missing in

E({x4, x5, x6}, Z), by the symmetry between z1 and z2, we may assume that x5z1, x4z2, x6z2 ∈

E(G). Then G[D−x5+z2] contains a D9 and T +zj +x2 is a Z-attachment, a contradiction.

So we have eG(Z, Ti) > 0 for i = 1, 2. By Claim 7, x4 and x6 have no neighbors in T .

Claim 8. wG(T1 ∪ T2, Z ∪ T ) ≥ 9.

Proof. Suppose that

(20) wG(T1 ∪ T2, Z ∪ T ) < 9.

Assume first that eG(Z, T1) ≥ 5. Then for i = 1, 2, there exists j = j(i) ∈ {1, 2} such that

xizj ∈ E(G) and G[T1 − xi + z3−j ] = K3. So for i = 1, 2, if xi has a neighbor in T , then

T +zj+x is a Z-attachment, and G[D−xi+z3−j] contains a D9, a contradiction. Therefore,

eG({x1, x2}, T ) = 0. Hence by (20), wG(T2, Z ∪ T ) < 3, a contradiction to Claim 6. So, by

the symmetry between T1 and T2, we conclude that eG(Z, Ti) ≤ 4 for i = 1, 2.

Since eG(T1 ∪ T2, Z) ≥ 4, by (20) we have wG(T1 ∪ T2, T ) < 3. Thus by the symmetry

between T1 and T2, we may assume that eG(T, T1) ≥ 8. If for some i ∈ {1, 2}, eG(xi, Z) > 0,

then we can choose some u ∈ T such that G[T −u+xi] = K3 and G[T1+u−xi] = K3. In this

case, Z ∪ (T −u)+xi is a Z-attachment, and G[D−xi+u] contains a D9. We conclude that

eG(Z, {x1, x2}) = 0 and hence wG(T1, Z) ≥ 6. This together with (20) contradicts Claim 6.

�

Claim 8 implies that

wG({x4, x5, x6}, T ∪ Z)−wG({x4, x6}, T ) < 18− 9− 6 = 3.

So eG(x5, T ) > 0 and eG({x4, x5, x6}, Z) ≥ 5. Thus we may assume that eG(z1, {x4, x5, x6}) =

3 and eG(z2, {x4, x5, x6}) ≥ 2. By symmetry we may assume that x4z2 ∈ E(G). Then

T1 + x4 + z2 is a Z-attachment, and G[T2 ∪ T ∪ {x5, x6, z1}] contains a D9, a contradiction.

Case 3: H ′[D] = D7. Assume that H ′[D] contains a path (x1, . . . , x7) and edges x1x3
and x5x7. Let T1 = {x1, x2, x3} and T2 = {x5, x6, x7}. By (16),

(21) wG(D,T ∪ Z) < 14.

If eG(x4, T ) > 0 and eG(Z, T1) > 0, then G[D − T1 + T ] contains a D7 and Z ∪ T1 is

a Z-attachment. So by symmetry, if eG(x4, T ) > 0, then eG(Z, T1 ∪ T2) = 0, and hence

wG(D,T ∪ Z) ≥ 1.5 · 12 = 18, a contradiction to (21). So,

(22) eG(x4, T ) = 0.

Claim 9. For i = 1, 2, wG(Ti, T ∪ Z) ≥ 5, and if wG(Ti, T ∪ Z) = 5, then eG(Z, Ti) = 4 and

eG(T, Ti) = 7.
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Proof. Assume that wG(T1, T ∪Z) ≤ 5. Then eG(Z, {x1, x2}) > 0, that is, for some j ∈ {1, 2},

xj has a neighbor in Z. If eG(T1, T ) ≥ 8, then since at most one edge in E(T1, T ) is missing,

we may assume that xju1, xju2, x3−ju3, x3u3 ∈ E(G). In this case, G[D − xj + u3] contains

a D7, and Z ∪ T − u3 + xj is a Z-attachment. So, eG(T1, T ) ≤ 7, i.e.,

(23) wG(T1, T ) ≥ 2.

Suppose now that eG(T1, Z) ≥ 5. Since wG(T1, T ) ≤ 5, for some j ∈ {1, 2}, xj has

a neighbor in T . Since at most one edge is missing in E(T1, Z), we may assume that

xjz1, x3−jz2, x3z2 ∈ E(G). Then G[D − xj + z2] contains a D7, and T + z1 + xj is a Z-

attachment. Thus eG(T1, Z) ≤ 4, i.e., wG(T1, Z) ≥ 3. This together with (23) yields the

claim. �

By (21) and (22), wG(T1, T ∪ Z) + wG(T2, T ∪ Z) ≤ 11. So by Claim 9, we may assume

that wG(T1, T ∪ Z) = 5, and therefore eG(Z, T1) = 4 and eG(T, T1) = 7. Also by (21), (22),

and Claim 9,

wG(x4, Z) < 14− wG(x, T )− wG(T1 ∪ T2, T ∪ Z) ≤ 14 − 3− 10 = 1,

which means that x4z1, x4z2 ∈ E(G). Since eG(Z, T1) = 4, either z1 or z2 (say z1 by symme-

try) has at least two neighbors in T1. Since eG(T, T1) = 7, every vertex in T1 has a neighbor

in T . Then T2+x4+z2 is a Z-attachment, and G[T ∪T1+z1] contains a D7, a contradiction.
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