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Abstract

A harmonious coloring of G is a proper vertex coloring of G such that every pair of colors

appears on at most one pair of adjacent vertices. The harmonious chromatic number of G, h(G),

is the minimum number of colors needed for a harmonious coloring of G. We show that if T is

a forest of order n with maximum degree ∆(T ) ≥ n+2
3 , then

h(T ) =

{
∆(T ) + 2, if T has non-adjacent vertices of degree ∆(T );

∆(T ) + 1, otherwise.

Moreover, the proof yields a polynomial-time algorithm for an optimal harmonious coloring of

such a forest.
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1 Introduction.

Let G be a simple graph. By V (G) and E(G) we denote the vertex set and the edge set of G,

respectively. A vertex of degree 1 in G is called a leaf. A harmonious coloring of G is a proper

vertex coloring of G such that every pair of colors appears on at most one pair of adjacent vertices.

The harmonious chromatic number of G, h(G), is the minimum number of colors needed for any
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harmonious coloring of G. The first paper [3] on harmonious coloring appeared in 1982. However,

the proper definition of this notion is due to Hopcroft and Krishnamoorthy [4]. Harmonious coloring

of a graph is essentially an edge-injective homomorphism from a graph G to a complete graph and

the harmonious chromatic number of G is the minimum order of a complete graph that admits such

homomorphism from G. Paths and cycles are among the first graphs whose harmonious chromatic

numbers have been established [3]. It was shown by Hopcroft and Krishnamoorthy that the problem

of determining the harmonious chromatic number of a graph is NP-hard. Moreover, Edwards and

McDiarmid [2] showed that the problem remains hard even restricted to the class of trees. Since the

problem is hard in the class of all trees, it makes sense to identify subclasses in which the problem

is easier.

Since vertices at distance at most two in a graph G must have distinct colors in any harmonious

coloring of G, h(G) ≥ ∆(G) + 1 for every graph G. In [1] it was shown that if T is a tree of order n

and ∆(T ) ≥ n
2 , then h(T ) = ∆(T ) + 1. Moreover, the proof yields a polynomial-time algorithm for

an optimal harmonious coloring of such a tree. We strengthen this result by finding a wider class

of trees T for which h(T ) = ∆(T ) + 1.

Theorem 1. Let

∆ ≥ n+ 2

3
. (1)

If T is a forest of order n with ∆(T ) = ∆, then

h(T ) =

{
∆ + 2, if T has non-adjacent vertices of degree ∆;

∆ + 1, otherwise.

Moreover, there is a polynomial-time algorithm for an optimal harmonious coloring of such a forest.

In the next section we prove the lower bounds in the theorem and show that the bound ∆ ≥ n+2
3

is sharp. In the last two sections we prove the upper bounds in the theorem.

Our notation is standard. In particular, for a graph G, v ∈ V (G) and W ⊆ V (G), NG(v)

denotes the set of vertices adjacent to v in G, dG(v) = |NG(v)|, NG[v] = {v} ∪NG(v), and G[W ] is

the subgraph of G induced by W .

2 Lower bounds

Since in each harmonious coloring f of a graph G, the colors of all neighbors of a vertex v are

different and distinct from f(v),

h(G) ≥ 1 + ∆(G) for every graph G. (2)

Claim 1 Let k ≥ 1. If a graph G contains two non-adjacent vertices, say u1 and u2, of degree k,

then h(G) ≥ k + 2.
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Figure 1: Tree T4.

Proof. Suppose that G has a harmonious (k + 1)-coloring f with colors in A + {α1, . . . , αk+1}.
Then by (2), for each j = 1, . . . , k+1, the set f−1(αj) has a vertex in NG[u1] and a vertex in NG[u2].

If f(u1) 6= f(u2), then the pair {f(u1), f(u2)} appears on two pairs of adjacent vertices: one pair

in NG[u1] and one pair in NG[u2]. And if f(u1) = f(u2), then for each α ∈ A − f(u1), the pair

{f(u1), α} appears on two pairs of adjacent vertices. So, f is not harmonious. Thus h(G) ≥ k+ 2.

Now for every ∆ ≥ 3 we present a tree T∆ such that (i) |V (T )| = 3∆− 1, (ii) ∆(T ) = ∆, (iii)

T has no non-adjacent vertices of degree ∆, and (iv) h(T ) ≥ ∆ + 2. These examples show that the

restriction (1) in Theorem 1 cannot be weakened.

Let T∆ be obtained from a 4-vertex path (v1, v2, v3, v4) by adding ∆− 1 leaves adjacent to v1,

∆− 2 leaves adjacent to v2, and ∆− 2 leaves adjacent to v4. Tree T4 is depicted in Fig. 1.

By construction, T∆ is a tree with maximum degree ∆ and |V (T∆)| = 4 + (∆− 1) + (∆− 2) +

(∆− 2) = 3∆− 1. So, (i) and (ii) hold; and (iii) is also evident. We establish (iv) by proving the

following.

Claim 2 h(T∆) = ∆ + 2.

Proof. Suppose f is a harmonious coloring of T∆ with ∆ + 1 colors. We may assume that

f(v1) = 1, f(v2) = 2, and f(v3) = 3. Also we may assume that f(N(v1)− v2) = {3, 4, . . . ,∆ + 1}.
Then f(N(v2) − v1 − v3) = {4, . . . ,∆ + 1}. Since dT∆

(v1) = dT∆
(v2) = ∆, no other vertices

can be colored 1 or 2 in a harmonious (∆ + 1)-coloring. Thus, we may assume f(v4) = 4. Then

f(N(v4)−v3) ⊂ {5, 6, . . . ,∆+1} should hold. But N(v4)−v3 has ∆−2 vertices and only ∆−3 colors

are available. Therefore we cannot complete the coloring with ∆ + 1 colors. Thus h(T∆) > ∆ + 1.

3 When h(T ) = ∆ + 1

In this section, we present polynomial-time coloring procedures yielding that

(*) if (1) holds and T is an n-vertex forest with ∆(T ) = ∆ such that T has no non-adjacent vertices

of degree ∆, then h(T ) = ∆ + 1.
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First, observe that the statement holds for ∆ ≤ 2: By (1), n ≤ 3∆ − 2. So, if ∆ ≤ 1, then

n ≤ 1, and so h(T ) ≤ 1 ≤ 1 + ∆. If ∆ = 2, then n ≤ 4 and hence T is a subgraph of the 4-vertex

path P4 whose harmonious chromatic number is 3 = ∆ + 1. So, everywhere below

∆ ≥ 3. (3)

Second, let us check that it is enough to prove (*) for trees. Indeed, if T is a disconnected

n-vertex forest satisfying (1) and (3) with no non-adjacent vertices of degree ∆, then by adding

an edge connecting two leaves or isolated vertices from different components of T , we again get a

forest with these properties and fewer components. Thus in this section we will assume that T is

a tree.

Let v ∈ V (T ) be a vertex of degree ∆. We will construct a harmonious coloring f : V (T ) →
V (K∆+1) step by step. The vertices of H := K∆+1 will by denoted by Greek letters so that we do

not mix them with the vertices of T . We start from mapping v and the ∆ neighbors of v in T into

the all different ∆ + 1 vertices of H. Let f(w) denote the color of w. If f(w) is not defined yet,

then w is an uncolored vertex, otherwise it is a colored vertex.

We consider several cases.

Case 0: T consists of two stars with a path joining them. This case is straightforward.

Case 1: v is the only vertex of degree ∆ in T , and T has no vertices of degree ∆− 1. Suppose

that we have already defined f(w) for some vertices w ∈ V (T ) (in particular, f(w) is defined for

w ∈ NT [v]). For α ∈ V (H), let

d(α) :=
∑

x∈f−1(α)

dT (x).

Also, we will say that vertices α and β of H are T -adjacent, if there are x ∈ f−1(α) and y ∈ f−1(β)

such that xy ∈ E(T ). Our procedure will color one vertex at each step. It works as follows:

(a) Choose a vertex w ∈ V (T ) such that f(w) is defined and w has a neighbor u for which f is

not defined and u is not a leaf. If there are no such vertex, then choose u which is a leaf.

(b) If there is γ ∈ V (H)−f(w) such that (i) γ is not T -adjacent to f(w) and (ii) d(γ)+dT (u) ≤
∆, then we let f(u) be any γ satisfying (i)–(ii) and go to (a) of the next step.

(c) If no γ ∈ V (H)− f(w) satisfies (i)–(ii), then we stop.

We need to prove that we do not stop until we embed all T . Note that after the initial coloring

of NT [v], for every α ∈ V (H) we have |f−1(α)| = 1, and hence d(α) ≤ ∆.

Suppose that we stopped in some step, before f(x) was defined for every x ∈ V (T ). This means

that at the moment of stopping, either every γ ∈ V (H)− f(w) is T -adjacent to f(w) or

d(γ) + dT (u) ≥ ∆ + 1 for every γ ∈ V (H)− f(w) not T -adjacent to f(w). (4)

If the former holds, then since f(u) is not defined yet, at the moment of defining f(w) we had

already had d(f(w)) + dT (w) ≥ ∆ + 1 and should have stopped then. Thus some γ ∈ V (H)− f(w)
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is not T -adjacent to f(w), and (4) holds. We may assume that f(w) = γ0. Let γ1, . . . , γr be the

vertices of H − γ0 not T -adjacent to γ0, and γr+1, . . . , γ∆ be the vertices of H that are T -adjacent

to γ0. And let γ∆ = f(v). By the above, r ≥ 1.

By the choice of u, u 6= v. So in our case d(u) ≤ ∆− 2. Thus by (4),

d(γi) ≥ ∆ + 1− dT (u) ≥ 3 for every 1 ≤ i ≤ r. (5)

Since f(v) is T -adjacent to every other vertex in H, according to our rules, f(x) 6= f(v) for

every x 6= v.

For every W ⊆ V (T ),

n− 1 = |E(T )| ≥
∑
w∈W

dT (w)− |E(T [W ])|. (6)

We may assume that d(γ1) ≤ d(γ2) ≤ . . . ≤ d(γr). Let

W := {v, u} ∪ f−1({γ0, γ1, . . . , γr}).

Case 1.1: r = 1. Then, since γ0 is T -adjacent to ∆−1 vertices in H and uw ∈ E(T ), d(γ0) ≥ ∆.

By (4), dT (u) + d(γ1) ≥ ∆ + 1. So since γ1 is not T -adjacent to γ0, the graph T [W ] has exactly 3

edges, uw, vx0 and vx1, where xi is a neighbor of v with f(xi) = γi, for i = 0, 1. Thus using this

W in (6), we have

|E(T )| ≥ dT (v) + d(γ0) + dT (u) + d(γ1)− 3 ≥ ∆ + ∆ + (∆ + 1)− 3 = 3∆− 2.

So, 3∆− 2 ≤ n− 1, i.e., ∆ ≤ n+1
3 , a contradiction.

Case 1.2: r = 2. Similarly to Case 1.1, d(γ0) ≥ ∆− 1 and dT (u) + d(γ1) ≥ ∆ + 1. Now γ1 and

γ2 are not T -adjacent to γ0. So, graph T [W ] has at most 5 edges. Thus, using this W in (6), we

have (using also (5) to estimate d(γ2))

|E(T )| ≥ dT (v) + d(γ0) + dT (u) + d(γ1) + d(γ2)− 5 ≥ ∆ + (∆− 1) + (∆ + 1) + 3− 5 = 3∆− 2,

a contradiction as in Case 1.1.

Case 1.3: r ≥ 3. Now d(γ0) ≥ ∆− r + 1 and γ1, . . . , γr are not T -adjacent to γ0. So,

|E(T [W ])| ≤ (1 + r) + 1 +

r∑
i=1

d(γi)− 1

2
(7)

(here r + 1 counts the edges incident with v, 1 stands for the edge uw and
∑r

i=1
d(γi)−1

2 estimates

from above the number of edges both ends of which are in {γ1, . . . , γr}). So by (6),

n− 1 = |E(T )| ≥ dT (v) + dT (u) +

r∑
i=0

d(γi)− r − 2−
r∑
i=1

d(γi)− 1

2
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≥ ∆ + (∆− r + 1) + (dT (u) + d(γ1))− d(γ1)− r − 2 +
r∑
i=1

d(γi) + 1

2

≥ (2∆− r + 1) + (∆ + 1)− d(γ1)− r − 2 + r
d(γ1) + 1

2
= 3∆− 2r + (r − 2)

d(γ1)

2
+
r

2

= 3∆− 3 + (d(γ1)− 3)
r − 2

2
≥ 3∆− 3 +

d(γ1)− 3

2
.

Thus if d(γ1) ≥ 4 or if (7) is a strict inequality, or if d(γ0) > ∆−r+1, then we have n−1 > 3∆−3,

which yields ∆ ≤ n+1
3 , a contradiction. So, by (5) we may suppose that d(γ1) = 3, d(γ0) = ∆−r+1,

and (7) holds with equality. In particular, by (5), dT (u) = ∆−2. Since r ≥ 3, we have ∆ ≥ 1+r ≥ 4,

and so u is not a leaf. Since we do not have Case 0, there is a leaf l not adjacent to u and not

adjacent to v. Thus, according to our rule (a), l is not colored yet. Since d(γ0) = ∆ − r + 1,

and (7) holds with equality, l is adjacent neither to any vertex in f−1(γ0) nor to any vertex in

f−1({γ1, . . . , γr}). Hence the right-hand side of (6) does not count the edge incident with l. So, we

have n− 2 ≥ 3∆− 3, a contradiction to ∆ > n+1
3 .

Therefore we do not stop until we color all the vertices in T .

Let (u1, . . . , un) be an ordering of the vertices of T such that u1 = v and dT (u1) ≥ dT (u2) ≥
. . . ≥ dT (un). In these terms, Case 1 was the case dT (u2) ≤ ∆ − 2. Let t be chosen so that

dT (ut) ≥ 2 and dT (ut+1) = 1.

Case 2: dT (u3) ≥ ∆−1. Let W ′ := {u1, . . . , ut}. Since T is connected, T [W ′] is also connected.

Then ∑
w∈W ′

dT (w) ≥ ∆ + (∆− 1) + (∆− 1) + 2(t− 3) and |E(T [W ′])| = t− 1.

So by (6),

n− 1 = |E(T )| ≥ 3∆− 2 + 2(t− 3)− (t− 1) ≥ (n+ 2) + t− 7 = n+ t− 5.

It follows that t ≤ 4, and that if t = 4, then dT (u2) = ∆− 1 and dT (u4) = 2.

Case 2.1: t = 3. The only 3-vertex tree is the 3-vertex path. So, T [W ′] is the path (w1, w2, w3).

By (*), we may assume that w3 = u3. For i = 1, 2, 3, we let f(wi) = γi−1. We place the leaves

adjacent to w1 into any dT (w1)− 1 vertices in V (H)− γ0 − γ1, the leaves adjacent to w2 into any

dT (w2)− 2 vertices in V (H)− γ0 − γ1 − γ2, and the ∆− 2 leaves adjacent to w3 into the vertices

in V (H)− γ0 − γ1 − γ2.

Case 2.2: t = 4. As it was mentioned, in this case dT (u2) = dT (u3) = ∆ − 1 and dT (u4) = 2.

Since T [W ′] is connected and dT (u4) = 2, we may assume that u3 is adjacent either to u1 or to u2.

For i = 1, 2, 3, 4, we let f(ui) = γi−1. Then for j = 1, 2, 3, 4, we place the leaves adjacent to uj into

the vertices of H − γ0 − . . . − γj−1 not occupied by the neighbors of uj in W ′. We can do it for

j = 1, 2, since dT (uj) = 1 + ∆− j for these j. And u3 was chosen so that γ2 = f(u3) is T -adjacent

to {γ0, γ1}. Finally, since T [W ′] is connected, u4 has at most one adjacent leaf. So if ∆ ≥ 4 or u4

has no adjacent leaves, then we are done. Thus we need only to handle the situation when ∆ = 3
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and each vertex of degree 2 in T has an adjacent leaf. Then T [W ′] = K1,3. For i = 2, 3, 4, let wi

be the leaf adjacent to ui. In this case, we again let f(ui) = γi−1 for i = 1, 2, 3, 4 and then let

f(w2) = γ2, f(w3) = γ3, and f(w4) = γ1.

Case 3: dT (u2) = ∆. Under Condition (*), vu2 ∈ E(G), and by Case 2, dT (u3) ≤ ∆− 2. Since

vu2 ∈ E(G), f(u2) was defined at the first step. Then we can apply the procedure of Case 1, and

the argument goes through since dT (u3) ≤ ∆− 2.

The only case, we have not yet considered is:

Case 4: dT (u2) = ∆−1 and dT (u3) ≤ ∆−2. Let P = (v1, . . . , vq) be the path in T connecting

v1 = v with vq = u2. Suppose v has exactly p adjacent non-leaves in T . We claim that

q + p ≤ ∆ + 2, (8)

since otherwise

n ≥ q + (p− 1) + (dT (v)− 1) + (dT (u2)− 1) ≥ (∆ + 3− 1) + (∆− 1) + (∆− 1− 1) = 3∆− 1,

a contradiction to (1).

By (8), we can place all the vertices of P and all remaining non-leaf neighbors of v into distinct

vertices of H. After that, we place the leaves adjacent to v into distinct vertices of H not containing

v or its neighbors. Then we again apply the procedure of Case 1 and the argument goes through

since dT (u3) ≤ ∆− 2.

4 Finishing the proof

The only situation not covered in the previous section is that T has non-adjacent vertices v and z

of degree ∆. We add a vertex w to T and make w adjacent to v to get a tree T ′ with maximum

degree ∆ + 1. Then we may apply Case 1 to T ′ and color T ′ with ∆ + 2 colors. This harmonious

coloring of T ′ gives a harmonious coloring of T with ∆ + 2 colors. This completes the proof of

Theorem 1.

Remark. Since we colored vertices one by one with no recolorings, and the choice of every

next vertex took polynomial time, the total time taken by our algorithm is polynomial.
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