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Abstract

Let K∗s,t denote the graph obtained from Ks,t by adding all edges between the s
vertices of degree t in it. We show how to adapt the argument of an our previous
paper (Discrete Math. 308 (2008), 4435–4445) to prove that if t/ log2 t ≥ 1000s, then
every graph G with average degree at least t + 8s log2 s has a K∗s,t minor. This refines
a corresponding result by Kühn and Osthus.
AMS Subject Classification: 05C35, 05C83.
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1 Introduction

Graphs in this paper are undirected simple graphs. For a graph G, V (G) is the set of its
vertices, E(G) is the set of its edges, e(G) = |E(G)|, and v(G) = |V (G)|. By G[X] we denote
the subgraph of G induced by the vertex set X. We let NG(v) denote the set of neighbors of
v in G and NG[v] = NG(v) ∪ {v}. Similarly, for X ⊆ V (G), we define N(X) :=

⋃
x∈X N(x).

A minor of a graph G is a graph H that can be obtained from G by a sequence of vertex
and edge deletions and edge contractions. For a graph H, let D(H) denote the minimum
number t such that every graph G with average degree at least t has an H-minor, i.e., a
minor isomorphic to H.

Mader [8] proved that D(Kr) ≤ 8r ln r. Later, Kostochka [2, 3] and Thomason [14] found
the order of magnitude of D(Kr), and then Thomason [15] found the asymptotics of D(Kr)
as r →∞. Myers and Thomason [12, 9] determined D(H) for almost every H, showing, in
particular, that for almost all H, the extremal graphs not containing H are quasi-random
(built deterministically from randomly generated subcomponents). Their methods work
better for dense and balanced graphs.
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Figure 1: Graph M(2, 3, 4) has no K3,4-minor.

An example of a sparse and unbalanced H is the complete bipartite graph Ks,t, where
s is fixed and t is large with respect to s. For this reason, Myers [10, 11] studied D(Ks,t)
when s is fixed and t is large. Let M(r, s, t) be the graph obtained by taking r copies of
Ks+t−1 arranged so that each two copies share the same fixed s − 1 vertices (Fig. 1 shows
M(2, 3, 4)). Myers [11] observed that M(r, s, t) has no Ks,t-minor and that

e(M(r, s, t)) =
1

2
(t+ 2s− 3)(n− s+ 1) +

(
s− 1

2

)
, (1)

where n = |V (M(r, s, t))| = rt + s − 1. He proved that for t > 1029 and n ≥ 3, each
n-vertex graph G with more than 1

2
(t + 1)(n − 1) edges has a K2,t minor. The graphs

M(r, 2, t) witness that this bound is sharp when |V (G)| ≡ 1 (mod t). In connection with
graph coloring, Chudnovsky, Reed, and Seymour [1] proved that Myers’ bound is true for all
t.

Myers conjectured that a similar, more general statement holds for Ks,t-minors.

Conjecture 1 Let s be a positive integer. Then there exists a constant C(s) such that, for
all positive integers t, if G has average degree at least C(s) · t, then G has a Ks,t-minor.

Let K∗s,t = Ks+t−E(Kt). In other words, K∗s,t is the graph obtained from Ks,t by adding

all
(
s
2

)
possible edges into the s-vertex partite set. Myers noted that the average degree that

forces G to contain a Ks,t-minor also likely forces a K∗s,t-minor, that is, D(Ks,t) = D(K∗s,t)
when s is fixed and t is large.

Myers’ Conjecture was proved independently in [5] and [7] using different methods. Kühn
and Osthus [7] showed the following.

Theorem 1 ([7]) For every 0 < ε < 10−16, there exists a number t0 = t0(ε) such that for all
integers t ≥ t0 and s ≤ ε6t/ log t, every graph of average degree at least (1 + ε)t contains Ks,t

as a minor.

They also showed that Ks,t can be replaced with K∗s,t if the restriction s ≤ ε6t/ log t is
replaced with s ≤ ε7t/ log t.

In [5], the following fact was proved.
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Theorem 2 Let n, s and t be positive integers with

t > (240s log2 s)
8s log2 s+1.

Let G be an n-vertex graph such that e(G) ≥ t+3s
2

(n − s + 1). Then G has a K∗s,t-minor.
Furthermore, for infinitely many n, there exists a graph Gn of order n and size at least
t+3s−5

√
s

2
(n− s+ 1) that has no Ks,t-minor.

From Theorem 2 we have that for huge t,

t+ 3s− 5
√
s ≤ D(Ks,t) ≤ D(K∗s,t) ≤ t+ 3s.

Hence, Myers’ insight that D(Ks,t) is the same as D(K∗s,t) is true asymptotically in s.
Observe that while Theorem 1 provides a weaker bound on the second term of D(Ks,t)

(essentially, the second term in their bound is (s ln t/t)1/6t while in Theorem 2 it is the
asymptotically (in s) exact 3s), it applies for a much wider (essentially best possible) range
of t for a given s than Theorem 2, namely for t ≥ C · s log t. Kühn and Osthus [7] also
proved the following fact showing that the statement of their theorem would be incorrect if
s ≥ 18t/ ln t.

Proposition 3 ([7, Proposition 10]) There exists n0 such that for each integer n ≥ n0 and
each α > 0, there is an n-vertex graph G with average degree at least n/2 that does not have
a Ks,t minor with s = d2n/α lnne and t = dαne.

In particular, it implies that the statement of Theorem 2 is not correct when t = s ln s and
s is large.

The goal of the present note is to show how to adapt the proof of Theorem 2 to prove
the following.

Theorem 4 Let 1 ≤ s ≤ t ≤ n be integers such that n ≥ 2s and

s ≤ t/1000 log2 t. (2)

Let G be an n-vertex graph with e(G) ≥ t+8s log2 s
2

(n− s+ 1). Then G has a K∗s,t-minor.

This theorem applies to the same range of t in terms of s as Theorem 1 (and even a bit
better, since the range does not depend on ε), but gives the better estimate of the second
term. The first author plans to use Theorem 4 to improve the result of [4], where Theorem 2
was used.

The idea of this note is that in the proof of Theorem 2, we needed t that is much larger
than s only in the case when n is small, essentially when n < t+ C · s ln t. This note shows
that in this range we can prove the bound of Theorem 4 (which is weaker) for n ≤ t+C ·s ln s.
The setup and this case are handled in Section 2. In Section 3 we list useful lemmas from [5]
and in Section 4 we present the proof of the main case.
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2 Setup and graphs of small order

In [6] we proved the following.

Theorem 5 Let t ≥ 6300. Let G be a graph of order n ≥ 3 with e(G) > 1
2
(t+ 3)(n− 2) + 1.

Then G has a K∗3,t-minor.

So, it is enough to prove Theorem 4 for s ≥ 4. Similarly to the proof in [5], we say that a
graph G is (s, t)-irreducible if
(i) v(G) ≥ 2s;
(ii) e(G) ≥ 0.5(t+ 8s log2 s)(v(G)− s+ 1);
(iii) G has no proper minor G′ possessing (i) and (ii).

For an edge e of a graph G, tG(e) denotes the number of triangles in G containing e.
Similarly to Lemma 3 in [5], the following lemma holds.

Lemma 6 If G is an n-vertex (s, t)-irreducible graph and s < t/1000 log2 t, then
(a) n ≥ t+ 8s log2 s− 1.5s+ 1;
(b) tG(e) ≥ 0.5(t+ 8s log2 s)− 1 for every e ∈ E(G);
(c) if W ⊂ V (G) and v(G)−|W | ≥ 2s, then W is incident with at least 0.5(t+ 8s log2 s)|W |
edges; in particular, δ(G) ≥ 0.5(t+ 8s log2 s);
(d) G is s-connected;
(e) e(G) < 0.5(t+ 8s log2 s)n.

Proof. The proofs of (b)–(d) are almost exactly the same as in the proof of Lemma 3 in [5].
So we present only the proof of (a) which slightly differs from that of Lemma 3 in [5]. Since G
has at most

(
n
2

)
edges, for the quadratic function f(n) := n2−n−(t+8s log2 s)(v(G)−s+1)

we have f(n) ≥ 0. The roots of f(n) are

n1,2 =
1

2

(
t+ 8s log2 s+ 1±

√
(t+ 8s log2 s+ 1)2 − 4(t+ 8s log2 s)(s− 1)

)
.

Since (t+ 8s log2 s+ 1)2−4(t+ 8s log2 s)(s−1) > (t+ 8s log2 s−3s+ 1)2 for t ≥ 1000s log2 t,
either n < 1.5s or n > t+ 8s log2 s− 1.5s+ 1. This together with (i) proves (a). �

Since we aim for a weaker bound than in [5], instead of Lemmas 4, 5, and 6 there, we
prove just one.

Lemma 7 Each (s, t)-irreducible graph with no K∗s,t-minor has at least 10t/9 vertices.

Proof. Suppose that an (s, t)-irreducible graph G has n = t + d vertices, where d ≤ t/9.
By Lemma 6(a), d ≥ 8s log2 s− 1.5s+ 1. If at most s− 1 vertices of G have degree greater
than t, then 2e(G) ≤ (s − 1)n + t(n − s + 1) = tn + d(s − 1) ≤ tn + (s − 1)t/9. Since
n > t > 1000s log t, this is less than (t+ 8s log2 s)(n− s+ 1), a contradiction to (ii). So, we
may assume that vertices v1, . . . , vs have degree at least t in G.
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Let k = dlog3/2 de. We will find s disjoint dominating sets Si with |Si| ≤ k + 1 for each
1 ≤ i ≤ s.

Initialize S0
i = {vi} for 1 ≤ i ≤ s. For 1 ≤ i ≤ s, consecutively run the following

procedure. Define U j
i be the set of vertices not dominated by Sj−1

i . By the choice of v1, . . . , vs,
|U1

i | ≤ d−1 for 1 ≤ i ≤ s. Step j for constructing Si is as follows. If U j
i is empty or j = k+1,

then set Si = Sji and stop. Otherwise, defineW j
i = V (G)−U j

i −
⋃i−1
q=1 Sq−S

j−1
i −{vi+1, . . . , vs}

and let Sj+1
i be obtained from Sji by adding a vertex vji ∈ W

j
i that has the most neighbors

in U j
i .

Since for every i, we do at most k steps and in each Step j add at most one vertex to Sji ,
we have |Si| ≤ k + 1 for every i. It follows that for all i and j,

|V (G)−W j
i | = |U

j
i ∪ S

j−1
i ∪ {vi+1, . . . , vs} ∪

i−1⋃
q=1

Sq| ≤ |U1
i |+ s(k + 1) < d+ s(k + 1). (3)

By Lemma 6(c), δ(G) ≥ 0.5(t+ 8s log2 s). So by (3) for all i and j and each u ∈ U j
i ,

|NG(u) ∩W j
i |

|W j
i |

≥ δ(G)− |V (G)−W j
i |

n− |V (G)−W j
i |
≥ 0.5t− (d+ s(k + 1))

n− (d+ s(k + 1))
≥

7t
18
− s(k + 1)

t− s(k + 1)
.

Since k + 1 ≤ 2 + log3/2 d ≤ log3/2

(
3
2

)2 t
9
≤ 1.71 log2

t
4
, we conclude from (2) that for all i

and j and each u ∈ U j
i ,

|NG(u) ∩W j
i |

|W j
i |

≥ 7

18
− s(k + 1)

t
≥ 7

18
− s(1.71 log2 t)

t
>

1

3
. (4)

Hence by the choice of vji , it has at least
|Uj

i |
3

neighbors in U j
i . Thus for all i and j, |U j

i | <
(2/3)jd. In particular,

|Uk+1
i | < d

(
2

3

)dlog3/2 de

≤ d · 1

d
= 1.

It follows that Uk+1
i is empty for 1 ≤ i ≤ s. This means Si is a dominating set of G with size

at most k + 1. Also, G[Si] is connected because each vji was chosen among the neighbors of
Sj−1
i . Since s ≥ 4 and d ≥ 8s log2 s− 1.5s+ 1 ≥ 59,

s(k + 1)

d
≤
s(1.71 log2(

9
4
d))

d
≤ 1.71s log2(18s log2 s)

7s log2 s
≤ 1.71(log2 s+ log2 log2 s+ 4.18)

7 log2 s
. (5)

The derivative of the function φ(x) = x+log2 x+4.18
x

is negative for x ≥ 2. It follows that for
s ≥ 4 by (5) we have

s(k + 1)

d
≤ 1.71(log2 4 + log2 log2 4 + 4.18)

7 log2 4
=

1.71 · 7.18

14
< 1.

So, contracting each Si to a single vertex, we do not touch at least n− d = t vertices. Thus
the resulting graph contains K∗s,t. �
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3 Lemmas

The statements and proofs of Lemmas 7, 8, 9, and 10 in [5] do not need any change, since
no relation between s and t is involved there. We will refer to the following two of them.

Lemma 8 ([5], Lemma 9) Let s, k, and n be positive integers and α ≥ 2. Suppose that
n ≤ α(k + 1). Let G be a (3s logα/(α−1) n)-connected graph with n vertices and δ(G) ≥
k + 3(s − 1) logα/(α−1) n. Then V (G) contains s disjoint subsets A1, . . . , As such that for
every i = 1, . . . , s,
(i) G[Ai] is connected;
(ii) |Ai| ≤ 3 logα/(α−1) n;
(iii) Ai dominates G− A1 − . . .− Ai−1.

Lemma 9 ([5], Lemma 10) Let H be a graph and k be a positive integer. If C is an
inclusion minimal k-separable set in H and S = N(C)−C, then the subgraph of H induced
by C ∪ S is (1 + dk

2
e)-connected.

The statement of Lemma 11 in [5] also is correct in our setting, and the proof smoothly
goes through when s ≥ 4 and t/ log2 t > 1000s. It will be our main tool:

Lemma 10 ([5], Lemma 11) Let G be a 100s log2 t-connected graph. Suppose that G con-
tains a vertex subset U with t+ 100s log2 t ≤ |U | ≤ 3t such that δ(G[U ]) ≥ 0.4t+ 100s log2 t.
Then G has a K∗s,t-minor.

4 Handling large graphs

The proof in the last section of [5] also works with small changes (we need some changes,
since the range of t is different), but for convenience of the reader, instead of pointing out
and commenting the differences we present below an updated version of this proof.

If Theorem 4 does not hold, then there exists an (s, t)-irreducible graph G with no K∗s,t-
minor. Let n = v(G). By Lemma 7, n ≥ 10t/9.

CASE 1. G is 200s log2 t-connected. If G has a vertex v with t + 100s log2 t ≤ deg(v) ≤
3t − 1, then G satisfies Lemma 10 with U = N [v] and we are done. Thus, we can assume
that every vertex in G has either ‘small’ (< t + 100s log2 t) or ‘large’ (≥ 3t) degree. Let V0

be the set of vertices of ‘small’ degree. If |V0| > t + 100s log2 t, then there is some V ′0 ⊆ V0

such that
t+ 100s log2 t ≤ |

⋃
v∈V ′

0

N [v]| ≤ 3t− 1.

In this case, we can apply Lemma 10 with U =
⋃
v∈V ′

0
N [v].

Now, let |V0| ≤ t + 100s log2 t. By Lemma 6(e), the average degree of G is less than
t+ 8s log2 s. Since every vertex outside of V0 has degree at least 3t, we get

0.5t|V0|+ 3t(n− |V0|) < (t+ 8s log2 s)n
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and hence by (2), n < 2.5|V0|
2−8s log2 s/t

< 3t. Since (again by (2)) n ≥ 10t/9 > t + 100s log2 t, we

can apply Lemma 10 with U = V (G) to find a needed minor.
CASE 2. G is not 200s log2 t-connected. Let S be a separating set with at most k =

d200s log2 te − 1 vertices and let V (G) − S = V1 ∪ V2 where vertices in V1 are not adjacent
to vertices in V2. Then each of V1 and V2 is a k-separable set. For j = 1, 2, let Wj be an
inclusion minimal k-separable set contained in Vj and Sj = N(Wj)−Wj. By Lemma lem24,
the graph Gj = G[Wj ∪ Sj] is 100s log2 t-connected.

CASE 2.1. |Wj ∪ Sj| ≥ t + 100s log2 t for some j ∈ {1, 2}. Then |Wj| ≥ t − 100s log2 t.
Let Gj = G[Wj ∪ Sj]. By Lemma 6(b), δ(Gj) ≥ 0.5(t+ 8s log2 s). If |Wj ∪ Sj| ≤ 3t, then we
apply Lemma 10 with U = Wj ∪ Sj. So suppose

|Wj ∪ Sj| > 3t. (6)

As in Case 1, we may suppose that the degree of each w ∈ Wj is either ‘small’ (< t +
100s log2 t) or ‘large’ (≥ 3t). Let W ′

j be the set of vertices w ∈ Wj of ‘small’ degree. As in
Case 1, we conclude that |W ′

j| ≤ t + 100s log2 t. Since every vertex in Wj −W ′
j has degree

at least 3t, we get

0.5t|W ′
j|+ 3t|Wj −W ′

j| < (t+ 8s log2 s)|Wj ∪ Sj|.

Since |Sj| ≤ k, by (6), 3t|Wj −W ′
j| ≥ 3t(|Wj ∪ Sj| − k − |W ′

j|) ≤ (3t− k)|Wj ∪ Sj| − 3t|W ′
j|.

So again by (2),

|Wj ∪ Sj| ≤
2.5|W ′

j|
2− (k + 8s log2 s)/t

≤ 2.5(1.1t)

2− 0.208
< 3t,

a contradiction to (6).
CASE 2.2. |Wj∪Sj| < t+100s log2 t for both j ∈ {1, 2}. Let Hj = G[Wj]. By Lemma 6(c)

and the fact that |Sj| ≤ k,

δ(Hj) ≥ 0.5t− |Sj| ≥ 0.5t− k. (7)

Suppose that S0 is a separating set in Hj with |S0| < 100s log2 t. Let Wj − S = Wj,1 ∪Wj,2

where vertices in Wj,1 are not adjacent to vertices in Wj,2. For ` = 1, 2, let e′(Wj,`) denote
the number of edges incident to Wj,`. By Lemma 6(c), e′(Wj,`) ≥ 0.5(t + 8s log2 s)|Wj,`|.
Since eG(Sj ∪ S0,Wj,`) ≤ |Sj ∪ S0||Wj,`|, we have∑

w∈Wj,`

dG(w) = 2e′(Wj,`)− eG(Sj ∪ S0,Wj) > (t− 1.5k)|Wj|.

It follows that some w` ∈ Wj,` has degree greater than t− 1.5k. Thus,

2(t− 1.5k) ≤ dG(w1) + dG(w2) < (|Wj,1|+ |Sj ∪ S0|) + (|Wj,1|+ |Sj ∪ S0|) ≤

|Wj ∪ Sj|+ |Sj|+ |S0| ≤ (t+ 100s log2 t) + 100s log2 t+ k.
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So, t < 200s log2 t + 4k < 1000s log2 t, a contradiction to (2). Therefore, Hj is 100s log2 t-
connected. By this, (7), and Lemma 8 (for k = 0.3t and α = 4), V (Hj) contains s disjoint
subsets Aj1, . . . , A

j
s such that for every i = 1, . . . , s,

(i) G[Aji ] is connected;
(ii) |Aji | ≤ 3 log4/3 |Wj| < 7.23 log2 |Wj| ≤ 7.23 log2(1.1t);

(iii) Aji dominates Wj − Aj1 − . . .− A
j
i−1.

Since G is s-connected, |Sj| ≥ s, j = 1, 2, and there are s pairwise vertex disjoint S1, S2-
paths P1, . . . , Ps. We may assume that the only common vertex of Pi with Sj is pij. By
Lemma 6(b), each pij has at least 0.5t − 200s log2 t neighbors in Wj. Thus, we can choose
2s distinct vertices qij such that qij ∈ Wj −

⋃s
k=1A

j
k and pijqij ∈ E(G).

Define Fi = A1
i ∪ A2

i ∪ V (Pi) + qi1 + qi2, i = 1, . . . , s. Then for every i = 1, . . . , s,
(i) G[Fi] is connected;
(ii) Fi-s are pairwise disjoint;
(iii) Fi dominates

⋃2
j=1Wj − F1 . . .− Fi−1.

Since by (2),

|
2⋃
j=1

Wj − F1 . . .− Fi−1| ≥ 2(t− 400s log2 t)− 14.46s log2 1.1t− 2s > t,

G has a K∗s,t-minor, a contradiction.

Comments. 1. Lemma 8 was reproved in [6] in a slightly stronger form.
2. The factor 1000 in (2) and maybe the factor 8 in front of s log2 s in Theorem 4 can

be improved with more work, but Proposition 3 shows that the theorem will not hold if we
replace both 1000 and 8 with 1/18. Still, as Deryk Osthus observed, it could be that the
statement holds for all s ≤ t if we do not change 8.

Acknowledgment. We thank Deryk Osthus for helpful comments.
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