On $K_{s, t}$-minors in graphs with given average degree, II

A.V. Kostochka* N. Prince ${ }^{\dagger}$

January 10, 2012

Abstract

Let $K_{s, t}^{*}$ denote the graph obtained from $K_{s, t}$ by adding all edges between the s vertices of degree t in it. We show how to adapt the argument of an our previous paper (Discrete Math. 308 (2008), 4435-4445) to prove that if $t / \log _{2} t \geq 1000 \mathrm{~s}$, then every graph G with average degree at least $t+8 s \log _{2} s$ has a $K_{s, t}^{*}$ minor. This refines a corresponding result by Kühn and Osthus.

AMS Subject Classification: 05C35, 05C83.
Keywords: Bipartite minors, dense graphs.

1 Introduction

Graphs in this paper are undirected simple graphs. For a graph $G, V(G)$ is the set of its vertices, $E(G)$ is the set of its edges, $e(G)=|E(G)|$, and $v(G)=|V(G)|$. By $G[X]$ we denote the subgraph of G induced by the vertex set X. We let $N_{G}(v)$ denote the set of neighbors of v in G and $N_{G}[v]=N_{G}(v) \cup\{v\}$. Similarly, for $X \subseteq V(G)$, we define $N(X):=\bigcup_{x \in X} N(x)$. A minor of a graph G is a graph H that can be obtained from G by a sequence of vertex and edge deletions and edge contractions. For a graph H, let $D(H)$ denote the minimum number t such that every graph G with average degree at least t has an H-minor, i.e., a minor isomorphic to H.

Mader [8] proved that $D\left(K_{r}\right) \leq 8 r \ln r$. Later, Kostochka [2, 3] and Thomason [14] found the order of magnitude of $D\left(K_{r}\right)$, and then Thomason [15] found the asymptotics of $D\left(K_{r}\right)$ as $r \rightarrow \infty$. Myers and Thomason [12, 9] determined $D(H)$ for almost every H, showing, in particular, that for almost all H, the extremal graphs not containing H are quasi-random (built deterministically from randomly generated subcomponents). Their methods work better for dense and balanced graphs.

[^0]

Figure 1: Graph $M(2,3,4)$ has no $K_{3,4}$-minor.

An example of a sparse and unbalanced H is the complete bipartite graph $K_{s, t}$, where s is fixed and t is large with respect to s. For this reason, Myers [10, 11] studied $D\left(K_{s, t}\right)$ when s is fixed and t is large. Let $M(r, s, t)$ be the graph obtained by taking r copies of K_{s+t-1} arranged so that each two copies share the same fixed $s-1$ vertices (Fig. 1 shows $M(2,3,4))$. Myers [11] observed that $M(r, s, t)$ has no $K_{s, t}$-minor and that

$$
\begin{equation*}
e(M(r, s, t))=\frac{1}{2}(t+2 s-3)(n-s+1)+\binom{s-1}{2} \tag{1}
\end{equation*}
$$

where $n=|V(M(r, s, t))|=r t+s-1$. He proved that for $t>10^{29}$ and $n \geq 3$, each n-vertex graph G with more than $\frac{1}{2}(t+1)(n-1)$ edges has a $K_{2, t}$ minor. The graphs $M(r, 2, t)$ witness that this bound is sharp when $|V(G)| \equiv 1(\bmod t)$. In connection with graph coloring, Chudnovsky, Reed, and Seymour [1] proved that Myers' bound is true for all t.

Myers conjectured that a similar, more general statement holds for $K_{s, t}$-minors.
Conjecture 1 Let s be a positive integer. Then there exists a constant $C(s)$ such that, for all positive integers t, if G has average degree at least $C(s) \cdot t$, then G has a $K_{s, t}$-minor.

Let $K_{s, t}^{*}=K_{s+t}-E\left(K_{t}\right)$. In other words, $K_{s, t}^{*}$ is the graph obtained from $K_{s, t}$ by adding all $\binom{s}{2}$ possible edges into the s-vertex partite set. Myers noted that the average degree that forces G to contain a $K_{s, t}$-minor also likely forces a $K_{s, t}^{*}$-minor, that is, $D\left(K_{s, t}\right)=D\left(K_{s, t}^{*}\right)$ when s is fixed and t is large.

Myers' Conjecture was proved independently in [5] and [7] using different methods. Kühn and Osthus [7] showed the following.

Theorem 1 ([7]) For every $0<\epsilon<10^{-16}$, there exists a number $t_{0}=t_{0}(\epsilon)$ such that for all integers $t \geq t_{0}$ and $s \leq \epsilon^{6} t / \log t$, every graph of average degree at least $(1+\epsilon) t$ contains $K_{s, t}$ as a minor.

They also showed that $K_{s, t}$ can be replaced with $K_{s, t}^{*}$ if the restriction $s \leq \epsilon^{6} t / \log t$ is replaced with $s \leq \epsilon^{7} t / \log t$.

In [5], the following fact was proved.

Theorem 2 Let n, s and t be positive integers with

$$
t>\left(240 s \log _{2} s\right)^{8 s \log _{2} s+1}
$$

Let G be an n-vertex graph such that $e(G) \geq \frac{t+3 s}{2}(n-s+1)$. Then G has a $K_{s, t}^{*}$-minor . Furthermore, for infinitely many n, there exists a graph G_{n} of order n and size at least $\frac{t+3 s-5 \sqrt{s}}{2}(n-s+1)$ that has no $K_{s, t}$-minor.

From Theorem 2 we have that for huge t,

$$
t+3 s-5 \sqrt{s} \leq D\left(K_{s, t}\right) \leq D\left(K_{s, t}^{*}\right) \leq t+3 s
$$

Hence, Myers' insight that $D\left(K_{s, t}\right)$ is the same as $D\left(K_{s, t}^{*}\right)$ is true asymptotically in s.
Observe that while Theorem 1 provides a weaker bound on the second term of $D\left(K_{s, t}\right)$ (essentially, the second term in their bound is $(s \ln t / t)^{1 / 6} t$ while in Theorem 2 it is the asymptotically (in s) exact $3 s$), it applies for a much wider (essentially best possible) range of t for a given s than Theorem 2, namely for $t \geq C \cdot s \log t$. Kühn and Osthus [7] also proved the following fact showing that the statement of their theorem would be incorrect if $s \geq 18 t / \ln t$.

Proposition 3 ([7, Proposition 10]) There exists n_{0} such that for each integer $n \geq n_{0}$ and each $\alpha>0$, there is an n-vertex graph G with average degree at least $n / 2$ that does not have a $K_{s, t}$ minor with $s=\lceil 2 n / \alpha \ln n\rceil$ and $t=\lceil\alpha n\rceil$.

In particular, it implies that the statement of Theorem 2 is not correct when $t=s \ln s$ and s is large.

The goal of the present note is to show how to adapt the proof of Theorem 2 to prove the following.

Theorem 4 Let $1 \leq s \leq t \leq n$ be integers such that $n \geq 2 s$ and

$$
\begin{equation*}
s \leq t / 1000 \log _{2} t \tag{2}
\end{equation*}
$$

Let G be an n-vertex graph with $e(G) \geq \frac{t+8 s \log _{2} s}{2}(n-s+1)$. Then G has a $K_{s, t}^{*}$-minor.
This theorem applies to the same range of t in terms of s as Theorem 1 (and even a bit better, since the range does not depend on ϵ), but gives the better estimate of the second term. The first author plans to use Theorem 4 to improve the result of [4], where Theorem 2 was used.

The idea of this note is that in the proof of Theorem 2, we needed t that is much larger than s only in the case when n is small, essentially when $n<t+C \cdot s \ln t$. This note shows that in this range we can prove the bound of Theorem 4 (which is weaker) for $n \leq t+C \cdot s \ln s$. The setup and this case are handled in Section 2. In Section 3 we list useful lemmas from [5] and in Section 4 we present the proof of the main case.

2 Setup and graphs of small order

In [6] we proved the following.
Theorem 5 Let $t \geq 6300$. Let G be a graph of order $n \geq 3$ with $e(G)>\frac{1}{2}(t+3)(n-2)+1$. Then G has a $K_{3, t}^{*}-$ minor.

So, it is enough to prove Theorem 4 for $s \geq 4$. Similarly to the proof in [5], we say that a graph G is (s, t)-irreducible if
(i) $v(G) \geq 2 s$;
(ii) $e(G) \geq 0.5\left(t+8 s \log _{2} s\right)(v(G)-s+1)$;
(iii) G has no proper minor G^{\prime} possessing (i) and (ii).

For an edge e of a graph $G, t_{G}(e)$ denotes the number of triangles in G containing e. Similarly to Lemma 3 in [5], the following lemma holds.

Lemma 6 If G is an n-vertex (s, t)-irreducible graph and $s<t / 1000 \log _{2} t$, then
(a) $n \geq t+8 s \log _{2} s-1.5 s+1$;
(b) $t_{G}(e) \geq 0.5\left(t+8 s \log _{2} s\right)-1$ for every $e \in E(G)$;
(c) if $W \subset V(G)$ and $v(G)-|W| \geq 2 s$, then W is incident with at least $0.5\left(t+8 s \log _{2} s\right)|W|$ edges; in particular, $\delta(G) \geq 0.5\left(t+8 s \log _{2} s\right)$;
(d) G is s-connected;
(e) $e(G)<0.5\left(t+8 s \log _{2} s\right) n$.

Proof. The proofs of (b)-(d) are almost exactly the same as in the proof of Lemma 3 in [5]. So we present only the proof of (a) which slightly differs from that of Lemma 3 in [5]. Since G has at most $\binom{n}{2}$ edges, for the quadratic function $f(n):=n^{2}-n-\left(t+8 s \log _{2} s\right)(v(G)-s+1)$ we have $f(n) \geq 0$. The roots of $f(n)$ are

$$
n_{1,2}=\frac{1}{2}\left(t+8 s \log _{2} s+1 \pm \sqrt{\left(t+8 s \log _{2} s+1\right)^{2}-4\left(t+8 s \log _{2} s\right)(s-1)}\right)
$$

Since $\left(t+8 s \log _{2} s+1\right)^{2}-4\left(t+8 s \log _{2} s\right)(s-1)>\left(t+8 s \log _{2} s-3 s+1\right)^{2}$ for $t \geq 1000 s \log _{2} t$, either $n<1.5 s$ or $n>t+8 s \log _{2} s-1.5 s+1$. This together with (i) proves (a).

Since we aim for a weaker bound than in [5], instead of Lemmas 4, 5, and 6 there, we prove just one.

Lemma 7 Each (s, t)-irreducible graph with no $K_{s, t}^{*}$-minor has at least $10 t / 9$ vertices.
Proof. Suppose that an (s, t)-irreducible graph G has $n=t+d$ vertices, where $d \leq t / 9$. By Lemma $6(\mathrm{a}), d \geq 8 s \log _{2} s-1.5 s+1$. If at most $s-1$ vertices of G have degree greater than t, then $2 e(G) \leq(s-1) n+t(n-s+1)=t n+d(s-1) \leq t n+(s-1) t / 9$. Since $n>t>1000 s \log t$, this is less than $\left(t+8 s \log _{2} s\right)(n-s+1)$, a contradiction to (ii). So, we may assume that vertices v_{1}, \ldots, v_{s} have degree at least t in G.

Let $k=\left\lceil\log _{3 / 2} d\right\rceil$. We will find s disjoint dominating sets S_{i} with $\left|S_{i}\right| \leq k+1$ for each $1 \leq i \leq s$.

Initialize $S_{i}^{0}=\left\{v_{i}\right\}$ for $1 \leq i \leq s$. For $1 \leq i \leq s$, consecutively run the following procedure. Define U_{i}^{j} be the set of vertices not dominated by S_{i}^{j-1}. By the choice of v_{1}, \ldots, v_{s}, $\left|U_{i}^{1}\right| \leq d-1$ for $1 \leq i \leq s$. Step j for constructing S_{i} is as follows. If U_{i}^{j} is empty or $j=k+1$, then set $S_{i}=S_{i}^{j}$ and stop. Otherwise, define $W_{i}^{j}=V(G)-U_{i}^{j}-\bigcup_{q=1}^{i-1} S_{q}-S_{i}^{j-1}-\left\{v_{i+1}, \ldots, v_{s}\right\}$ and let S_{i}^{j+1} be obtained from S_{i}^{j} by adding a vertex $v_{i}^{j} \in W_{i}^{j}$ that has the most neighbors in U_{i}^{j}.

Since for every i, we do at most k steps and in each Step j add at most one vertex to S_{i}^{j}, we have $\left|S_{i}\right| \leq k+1$ for every i. It follows that for all i and j,

$$
\begin{equation*}
\left|V(G)-W_{i}^{j}\right|=\left|U_{i}^{j} \cup S_{i}^{j-1} \cup\left\{v_{i+1}, \ldots, v_{s}\right\} \cup \bigcup_{q=1}^{i-1} S_{q}\right| \leq\left|U_{i}^{1}\right|+s(k+1)<d+s(k+1) \tag{3}
\end{equation*}
$$

By Lemma $6(\mathrm{c}), \delta(G) \geq 0.5\left(t+8 s \log _{2} s\right)$. So by (3) for all i and j and each $u \in U_{i}^{j}$,

$$
\frac{\left|N_{G}(u) \cap W_{i}^{j}\right|}{\left|W_{i}^{j}\right|} \geq \frac{\delta(G)-\left|V(G)-W_{i}^{j}\right|}{n-\left|V(G)-W_{i}^{j}\right|} \geq \frac{0.5 t-(d+s(k+1))}{n-(d+s(k+1))} \geq \frac{\frac{7 t}{18}-s(k+1)}{t-s(k+1)} .
$$

Since $k+1 \leq 2+\log _{3 / 2} d \leq \log _{3 / 2}\left(\frac{3}{2}\right)^{2} \frac{t}{9} \leq 1.71 \log _{2} \frac{t}{4}$, we conclude from (2) that for all i and j and each $u \in U_{i}^{j}$,

$$
\begin{equation*}
\frac{\left|N_{G}(u) \cap W_{i}^{j}\right|}{\left|W_{i}^{j}\right|} \geq \frac{7}{18}-\frac{s(k+1)}{t} \geq \frac{7}{18}-\frac{s\left(1.71 \log _{2} t\right)}{t}>\frac{1}{3} \tag{4}
\end{equation*}
$$

Hence by the choice of v_{i}^{j}, it has at least $\frac{\left|U_{i}^{j}\right|}{3}$ neighbors in U_{i}^{j}. Thus for all i and $j,\left|U_{i}^{j}\right|<$ $(2 / 3)^{j} d$. In particular,

$$
\left|U_{i}^{k+1}\right|<d\left(\frac{2}{3}\right)^{\left\lceil\log _{3 / 2} d\right\rceil} \leq d \cdot \frac{1}{d}=1
$$

It follows that U_{i}^{k+1} is empty for $1 \leq i \leq s$. This means S_{i} is a dominating set of G with size at most $k+1$. Also, $G\left[S_{i}\right]$ is connected because each v_{i}^{j} was chosen among the neighbors of S_{i}^{j-1}. Since $s \geq 4$ and $d \geq 8 s \log _{2} s-1.5 s+1 \geq 59$,

$$
\begin{equation*}
\frac{s(k+1)}{d} \leq \frac{s\left(1.71 \log _{2}\left(\frac{9}{4} d\right)\right)}{d} \leq \frac{1.71 s \log _{2}\left(18 s \log _{2} s\right)}{7 s \log _{2} s} \leq \frac{1.71\left(\log _{2} s+\log _{2} \log _{2} s+4.18\right)}{7 \log _{2} s} \tag{5}
\end{equation*}
$$

The derivative of the function $\phi(x)=\frac{x+\log _{2} x+4.18}{x}$ is negative for $x \geq 2$. It follows that for $s \geq 4$ by (5) we have

$$
\frac{s(k+1)}{d} \leq \frac{1.71\left(\log _{2} 4+\log _{2} \log _{2} 4+4.18\right)}{7 \log _{2} 4}=\frac{1.71 \cdot 7.18}{14}<1
$$

So, contracting each S_{i} to a single vertex, we do not touch at least $n-d=t$ vertices. Thus the resulting graph contains $K_{s, t}^{*}$.

3 Lemmas

The statements and proofs of Lemmas 7, 8, 9, and 10 in [5] do not need any change, since no relation between s and t is involved there. We will refer to the following two of them.

Lemma 8 ([5], Lemma 9) Let s, k, and n be positive integers and $\alpha \geq 2$. Suppose that $n \leq \alpha(k+1)$. Let G be a $\left(3 s \log _{\alpha /(\alpha-1)} n\right)$-connected graph with n vertices and $\delta(G) \geq$ $k+3(s-1) \log _{\alpha /(\alpha-1)} n$. Then $V(G)$ contains s disjoint subsets A_{1}, \ldots, A_{s} such that for every $i=1, \ldots, s$,
(i) $G\left[A_{i}\right]$ is connected;
(ii) $\left|A_{i}\right| \leq 3 \log _{\alpha /(\alpha-1)} n$;
(iii) A_{i} dominates $G-A_{1}-\ldots-A_{i-1}$.

Lemma 9 ([5], Lemma 10) Let H be a graph and k be a positive integer. If C is an inclusion minimal k-separable set in H and $S=N(C)-C$, then the subgraph of H induced by $C \cup S$ is $\left(1+\left\lceil\frac{k}{2}\right\rceil\right)$-connected.

The statement of Lemma 11 in [5] also is correct in our setting, and the proof smoothly goes through when $s \geq 4$ and $t / \log _{2} t>1000 s$. It will be our main tool:

Lemma 10 ([5], Lemma 11) Let G be a $100 s \log _{2} t$-connected graph. Suppose that G contains a vertex subset U with $t+100 s \log _{2} t \leq|U| \leq 3 t$ such that $\delta(G[U]) \geq 0.4 t+100 s \log _{2} t$. Then G has a $K_{s, t}^{*}$-minor.

4 Handling large graphs

The proof in the last section of [5] also works with small changes (we need some changes, since the range of t is different), but for convenience of the reader, instead of pointing out and commenting the differences we present below an updated version of this proof.

If Theorem 4 does not hold, then there exists an (s, t)-irreducible graph G with no $K_{s, t^{-}}^{*}$ minor. Let $n=v(G)$. By Lemma $7, n \geq 10 t / 9$.

CASE 1. G is $200 s \log _{2} t$-connected. If G has a vertex v with $t+100 s \log _{2} t \leq \operatorname{deg}(v) \leq$ $3 t-1$, then G satisfies Lemma 10 with $U=N[v]$ and we are done. Thus, we can assume that every vertex in G has either 'small' $\left(<t+100 s \log _{2} t\right)$ or 'large' ($\left.\geq 3 t\right)$ degree. Let V_{0} be the set of vertices of 'small' degree. If $\left|V_{0}\right|>t+100 s \log _{2} t$, then there is some $V_{0}^{\prime} \subseteq V_{0}$ such that

$$
t+100 s \log _{2} t \leq\left|\bigcup_{v \in V_{0}^{\prime}} N[v]\right| \leq 3 t-1
$$

In this case, we can apply Lemma 10 with $U=\bigcup_{v \in V_{0}^{\prime}} N[v]$.
Now, let $\left|V_{0}\right| \leq t+100 s \log _{2} t$. By Lemma 6(e), the average degree of G is less than $t+8 s \log _{2} s$. Since every vertex outside of V_{0} has degree at least $3 t$, we get

$$
0.5 t\left|V_{0}\right|+3 t\left(n-\left|V_{0}\right|\right)<\left(t+8 s \log _{2} s\right) n
$$

and hence by (2), $n<\frac{2.5\left|V_{0}\right|}{2-8 s \log _{2} s / t}<3 t$. Since (again by (2)) $n \geq 10 t / 9>t+100 s \log _{2} t$, we can apply Lemma 10 with $U=V(G)$ to find a needed minor.

CASE 2. G is not $200 s \log _{2} t$-connected. Let S be a separating set with at most $k=$ $\left\lceil 200 s \log _{2} t\right\rceil-1$ vertices and let $V(G)-S=V_{1} \cup V_{2}$ where vertices in V_{1} are not adjacent to vertices in V_{2}. Then each of V_{1} and V_{2} is a k-separable set. For $j=1,2$, let W_{j} be an inclusion minimal k-separable set contained in V_{j} and $S_{j}=N\left(W_{j}\right)-W_{j}$. By Lemma lem24, the graph $G_{j}=G\left[W_{j} \cup S_{j}\right]$ is $100 s \log _{2} t$-connected.

CASE 2.1. $\left|W_{j} \cup S_{j}\right| \geq t+100 s \log _{2} t$ for some $j \in\{1,2\}$. Then $\left|W_{j}\right| \geq t-100 s \log _{2} t$. Let $G_{j}=G\left[W_{j} \cup S_{j}\right]$. By Lemma $6(\mathrm{~b}), \delta\left(G_{j}\right) \geq 0.5\left(t+8 s \log _{2} s\right)$. If $\left|W_{j} \cup S_{j}\right| \leq 3 t$, then we apply Lemma 10 with $U=W_{j} \cup S_{j}$. So suppose

$$
\begin{equation*}
\left|W_{j} \cup S_{j}\right|>3 t \tag{6}
\end{equation*}
$$

As in Case 1, we may suppose that the degree of each $w \in W_{j}$ is either 'small' $(<t+$ $\left.100 s \log _{2} t\right)$ or 'large' ($\geq 3 t$). Let W_{j}^{\prime} be the set of vertices $w \in W_{j}$ of 'small' degree. As in Case 1, we conclude that $\left|W_{j}^{\prime}\right| \leq t+100 s \log _{2} t$. Since every vertex in $W_{j}-W_{j}^{\prime}$ has degree at least $3 t$, we get

$$
0.5 t\left|W_{j}^{\prime}\right|+3 t\left|W_{j}-W_{j}^{\prime}\right|<\left(t+8 s \log _{2} s\right)\left|W_{j} \cup S_{j}\right|
$$

Since $\left|S_{j}\right| \leq k$, by (6), $3 t\left|W_{j}-W_{j}^{\prime}\right| \geq 3 t\left(\left|W_{j} \cup S_{j}\right|-k-\left|W_{j}^{\prime}\right|\right) \leq(3 t-k)\left|W_{j} \cup S_{j}\right|-3 t\left|W_{j}^{\prime}\right|$. So again by (2),

$$
\left|W_{j} \cup S_{j}\right| \leq \frac{2.5\left|W_{j}^{\prime}\right|}{2-\left(k+8 s \log _{2} s\right) / t} \leq \frac{2.5(1.1 t)}{2-0.208}<3 t
$$

a contradiction to (6).
CASE 2.2. $\left|W_{j} \cup S_{j}\right|<t+100 s \log _{2} t$ for both $j \in\{1,2\}$. Let $H_{j}=G\left[W_{j}\right]$. By Lemma 6(c) and the fact that $\left|S_{j}\right| \leq k$,

$$
\begin{equation*}
\delta\left(H_{j}\right) \geq 0.5 t-\left|S_{j}\right| \geq 0.5 t-k \tag{7}
\end{equation*}
$$

Suppose that S_{0} is a separating set in H_{j} with $\left|S_{0}\right|<100 s \log _{2} t$. Let $W_{j}-S=W_{j, 1} \cup W_{j, 2}$ where vertices in $W_{j, 1}$ are not adjacent to vertices in $W_{j, 2}$. For $\ell=1,2$, let $e^{\prime}\left(W_{j, \ell}\right)$ denote the number of edges incident to $W_{j, \ell}$. By Lemma $6(\mathrm{c}), e^{\prime}\left(W_{j, \ell}\right) \geq 0.5\left(t+8 s \log _{2} s\right)\left|W_{j, \ell}\right|$. Since $e_{G}\left(S_{j} \cup S_{0}, W_{j, \ell}\right) \leq\left|S_{j} \cup S_{0}\right|\left|W_{j, \ell}\right|$, we have

$$
\sum_{w \in W_{j, \ell}} d_{G}(w)=2 e^{\prime}\left(W_{j, \ell}\right)-e_{G}\left(S_{j} \cup S_{0}, W_{j}\right)>(t-1.5 k)\left|W_{j}\right| .
$$

It follows that some $w_{\ell} \in W_{j, \ell}$ has degree greater than $t-1.5 k$. Thus,

$$
\begin{gathered}
2(t-1.5 k) \leq d_{G}\left(w_{1}\right)+d_{G}\left(w_{2}\right)<\left(\left|W_{j, 1}\right|+\left|S_{j} \cup S_{0}\right|\right)+\left(\left|W_{j, 1}\right|+\left|S_{j} \cup S_{0}\right|\right) \leq \\
\left|W_{j} \cup S_{j}\right|+\left|S_{j}\right|+\left|S_{0}\right| \leq\left(t+100 s \log _{2} t\right)+100 s \log _{2} t+k .
\end{gathered}
$$

So, $t<200 s \log _{2} t+4 k<1000 s \log _{2} t$, a contradiction to (2). Therefore, H_{j} is $100 s \log _{2} t-$ connected. By this, (7), and Lemma 8 (for $k=0.3 t$ and $\alpha=4$), $V\left(H_{j}\right)$ contains s disjoint subsets $A_{1}^{j}, \ldots, A_{s}^{j}$ such that for every $i=1, \ldots, s$,
(i) $G\left[A_{i}^{j}\right]$ is connected;
(ii) $\left|A_{i}^{j}\right| \leq 3 \log _{4 / 3}\left|W_{j}\right|<7.23 \log _{2}\left|W_{j}\right| \leq 7.23 \log _{2}(1.1 t)$;
(iii) A_{i}^{j} dominates $W_{j}-A_{1}^{j}-\ldots-A_{i-1}^{j}$.

Since G is s-connected, $\left|S_{j}\right| \geq s, j=1,2$, and there are s pairwise vertex disjoint $S_{1}, S_{2^{-}}$ paths P_{1}, \ldots, P_{s}. We may assume that the only common vertex of P_{i} with S_{j} is $p_{i j}$. By Lemma 6(b), each $p_{i j}$ has at least $0.5 t-200 s \log _{2} t$ neighbors in W_{j}. Thus, we can choose $2 s$ distinct vertices $q_{i j}$ such that $q_{i j} \in W_{j}-\bigcup_{k=1}^{s} A_{k}^{j}$ and $p_{i j} q_{i j} \in E(G)$.

Define $F_{i}=A_{i}^{1} \cup A_{i}^{2} \cup V\left(P_{i}\right)+q_{i 1}+q_{i 2}, i=1, \ldots, s$. Then for every $i=1, \ldots, s$, (i) $G\left[F_{i}\right]$ is connected;
(ii) F_{i}-s are pairwise disjoint;
(iii) F_{i} dominates $\bigcup_{j=1}^{2} W_{j}-F_{1} \ldots-F_{i-1}$.

Since by (2),

$$
\left|\bigcup_{j=1}^{2} W_{j}-F_{1} \ldots-F_{i-1}\right| \geq 2\left(t-400 s \log _{2} t\right)-14.46 s \log _{2} 1.1 t-2 s>t
$$

G has a $K_{s, t}^{*}$-minor, a contradiction.

Comments. 1. Lemma 8 was reproved in [6] in a slightly stronger form.
2. The factor 1000 in (2) and maybe the factor 8 in front of $s \log _{2} s$ in Theorem 4 can be improved with more work, but Proposition 3 shows that the theorem will not hold if we replace both 1000 and 8 with $1 / 18$. Still, as Deryk Osthus observed, it could be that the statement holds for all $s \leq t$ if we do not change 8 .

Acknowledgment. We thank Deryk Osthus for helpful comments.

References

[1] M. Chudnovsky, B. Reed, and P. Seymour, The edge density for $K_{2, t}$ minors, J. Combin. Theory Ser. B 101 (2011), 1846.
[2] A. V. Kostochka, The minimum Hadwiger number for graphs with a given mean degree of vertices, Metody Diskret. Analiz. 38 (1982) 37-58.
[3] A. V. Kostochka, Lower bound of the Hadwiger number of graphs by their average degree, Combinatorica 4 (1984), 307-316.
[4] A. V. Kostochka, On $K_{s, t}$ minors in $(s+t)$-chromatic graphs, J. Graph Theory, 65 (2010), 343-350.
[5] A.V. Kostochka and N. Prince, On $K_{s, t}$-minors in graphs with given average degree, Discrete Math. 308 (2008), 4435-4445.
[6] A.V. Kostochka and N. Prince, Dense graphs have $K_{3, t}$ minors, Discrete Math. 310 (2010), 2637-2654.
[7] D. Kühn and D. Osthus, Forcing complete unbalanced bipartite minors, Europ. J. Combin. 26 (2005), 75-81.
[8] W. Mader, Homomorphieeigenschaften und mittlere Kantendichte von Graphen, Math. Annalen 174 (1967), 265-268.
[9] J. S. Myers, Graphs without large complete minors are quasi-random, Combinatorics, Probability, and Computing 11 (2002), 571-585.
[10] J. S. Myers, Extremal theory of graph minors and directed graphs, PhD dissertation, University of Cambridge (2003).
[11] J. S. Myers, The extremal function for unbalanced bipartite minors, Discrete Math. 271 (2003), 209-222.
[12] J. S. Myers and A. Thomason, The extremal function for noncomplete minors, Combinatorica 25 (2005), 725-753.
[13] P. Seymour, Oral communication.
[14] A. Thomason, An extremal function for contractions of graphs, Math. Proc. Cambridge Philos. Soc. 95 (1984), 261-265.
[15] A. Thomason, The extremal function for complete minors, J. Combin. Theory $B \mathbf{8 1}$ (2001), 318-338.
[16] D. R. Woodall, List colourings of graphs. Surveys in combinatorics, 2001 (Sussex), London Math. Soc. Lecture Note Ser. 288 (2001), Cambridge Univ. Press, Cambridge, 269-301.

[^0]: *Department of Mathematics, University of Illinois, Urbana, IL, 61801, USA and Sobolev Institute of Mathematics, Novosibirsk, Russia. E-mail address: kostochk@math.uiuc.edu. Research of this author is supported in part by NSF grant DMS-0965587, by the Ministry of education and science of the Russian Federation (Contract no. 14.740.11.0868) and by grant 09-01-00244 of the Russian Foundation for Basic Research.
 ${ }^{\dagger}$ Illinois Mathematics and Science Academy, Aurora, IL, 60506, USA. E-mail address: nprince@imsa.edu.

