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Abstract

Let K3, denote the graph obtained from K;; by adding all edges between the s
vertices of degree t in it. We show how to adapt the argument of an our previous
paper (Discrete Math. 308 (2008), 4435-4445) to prove that if ¢/logy ¢ > 1000s, then
every graph G with average degree at least ¢ + 8slog, s has a K, minor. This refines
a corresponding result by Kiihn and Osthus.
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1 Introduction

Graphs in this paper are undirected simple graphs. For a graph G, V(G) is the set of its
vertices, E(G) is the set of its edges, e(G) = |E(G)|, and v(G) = |V(G)|. By G[X] we denote
the subgraph of G induced by the vertex set X. We let Ng(v) denote the set of neighbors of
vin G and Ng[v] = Ng(v) U {v}. Similarly, for X C V(G), we define N(X) := (J,cx N(2).
A minor of a graph G is a graph H that can be obtained from G by a sequence of vertex
and edge deletions and edge contractions. For a graph H, let D(H) denote the minimum
number ¢ such that every graph G with average degree at least ¢ has an H-minor, i.e., a
minor isomorphic to H.

Mader [8] proved that D(K,) < 8rlnr. Later, Kostochka [2, 3] and Thomason [14] found
the order of magnitude of D(K ), and then Thomason [15] found the asymptotics of D(K)
as r — 0o0. Myers and Thomason [12, 9] determined D(H) for almost every H, showing, in
particular, that for almost all H, the extremal graphs not containing H are quasi-random
(built deterministically from randomly generated subcomponents). Their methods work
better for dense and balanced graphs.
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Figure 1: Graph M (2,3,4) has no K3 4-minor.

An example of a sparse and unbalanced H is the complete bipartite graph K, where
s is fixed and ¢ is large with respect to s. For this reason, Myers [10, 11] studied D(Kj,)
when s is fixed and ¢ is large. Let M(r,s,t) be the graph obtained by taking r copies of
K1 arranged so that each two copies share the same fixed s — 1 vertices (Fig. 1 shows
M(2,3,4)). Myers [11] observed that M(r, s, t) has no K ;-minor and that

1 —1

e(M(r,s,t)):§(t+2s—3)(n—8—|—1)+(82 ), (1)
where n = |V(M(r,s,t))| = rt + s — 1. He proved that for ¢ > 10* and n > 3, each
n-vertex graph G with more than 3(¢ + 1)(n — 1) edges has a K, minor. The graphs
M(r,2,t) witness that this bound is sharp when |V(G)| = 1 (mod ¢). In connection with
graph coloring, Chudnovsky, Reed, and Seymour [1] proved that Myers’ bound is true for all
t.

Myers conjectured that a similar, more general statement holds for K ;-minors.

Conjecture 1 Let s be a positive integer. Then there exists a constant C(s) such that, for
all positive integers t, if G has average degree at least C(s) - t, then G has a K -minor.

Let K7, = K1y — E(K;). In other words, K7, is the graph obtained from K ; by adding
all (;) possible edges into the s-vertex partite set. Myers noted that the average degree that
forces G to contain a K, ,-minor also likely forces a K7 ,-minor, that is, D(K,,;) = D(K},)
when s is fixed and t is large.

Myers’ Conjecture was proved independently in [5] and [7] using different methods. Kiihn
and Osthus [7] showed the following.

Theorem 1 ([7]) For every 0 < e < 107, there exists a number ty = to(€) such that for all
integers t >ty and s < €%t/ logt, every graph of average degree at least (1+€)t contains Ky,
as a minor.

They also showed that K, can be replaced with K7, if the restriction s < St/ logt is
replaced with s < €'t/ logt.
In [5], the following fact was proved.



Theorem 2 Let n,s and t be positive integers with
t > (240slog, 5)3¢10e2 511,

Let G be an n-vertex graph such that e(G) > 52(n — s+ 1). Then G has a K},-minor.
Furthermore, for infinitely many n, there exists a graph G, of order n and size at least
w(n — s+ 1) that has no K, -minor.

From Theorem 2 we have that for huge t,
t+3s —5y/s < D(K,;) < D(KZ,) <t+3s.

Hence, Myers’ insight that D(Kj,) is the same as D(K7,) is true asymptotically in s.
Observe that while Theorem 1 provides a weaker bound on the second term of D(Kj,)
(essentially, the second term in their bound is (sInt/t)/%¢ while in Theorem 2 it is the
asymptotically (in s) exact 3s), it applies for a much wider (essentially best possible) range
of t for a given s than Theorem 2, namely for ¢ > C - slogt. Kiihn and Osthus [7] also
proved the following fact showing that the statement of their theorem would be incorrect if

s > 18t/ Int.

Proposition 3 ([7, Proposition 10]) There exists ng such that for each integer n > ng and
each o > 0, there is an n-vertex graph G with average degree at least n/2 that does not have
a Ky minor with s = [2n/alnn] and t = [an].

In particular, it implies that the statement of Theorem 2 is not correct when ¢ = slns and
s is large.

The goal of the present note is to show how to adapt the proof of Theorem 2 to prove
the following.

Theorem 4 Let 1 < s <t <n be integers such that n > 2s and
s < /1000 log, t. (2)
Let G be an n-vertex graph with e(G) > %(n —s+1). Then G has a K} ;-minor.

This theorem applies to the same range of ¢ in terms of s as Theorem 1 (and even a bit
better, since the range does not depend on €), but gives the better estimate of the second
term. The first author plans to use Theorem 4 to improve the result of [4], where Theorem 2
was used.

The idea of this note is that in the proof of Theorem 2, we needed ¢ that is much larger
than s only in the case when n is small, essentially when n < ¢t 4+ C - sInt. This note shows
that in this range we can prove the bound of Theorem 4 (which is weaker) forn < t+C-sln s.
The setup and this case are handled in Section 2. In Section 3 we list useful lemmas from [5]
and in Section 4 we present the proof of the main case.



2 Setup and graphs of small order
In [6] we proved the following.

Theorem 5 Lett > 6300. Let G be a graph of order n > 3 with e(G) > 3(t+3)(n—2) +1.
Then G has a K3 ,-minor.

So, it is enough to prove Theorem 4 for s > 4. Similarly to the proof in [5], we say that a
graph G is (s, t)-irreducible if
(i) v(G) > 25
(ii) e(G) > 0.5(t + 8slog, ) (v(G) — s + 1);
(ili) G has no proper minor G’ possessing (i) and (ii).

For an edge e of a graph G, tg(e) denotes the number of triangles in G containing e.
Similarly to Lemma 3 in [5], the following lemma holds.

Lemma 6 If G is an n-vertex (s,t)-irreducible graph and s < t/1000log, t, then

(a) n >t + 8slogys — 1.5s + 1;

(b) ta(e) > 0.5(t + 8slogy s) — 1 for every e € E(G);

(c) if W C V(G) and v(G) — |W| > 2s, then W is incident with at least 0.5(t + 8slog, s)|W|
edges; in particular, 6(G) > 0.5(t + 8slog, s);

(d) G is s-connected;

(e) e(G) < 0.5(t + 8slog, s)n.

Proof. The proofs of (b)—(d) are almost exactly the same as in the proof of Lemma 3 in [5].
So we present only the proof of (a) which slightly differs from that of Lemma 3 in [5]. Since G
has at most (}) edges, for the quadratic function f(n) :=n*—n— (t+8slog, s)(v(G) —s+1)
we have f(n) > 0. The roots of f(n) are

1
mg =g (t+8310g23+ 14+ +/(t +8slog, s + 1)2 — 4(t + 8slog, 5)(s — 1)) :
Since (t+8slogy s+ 1) —4(t +8slogy s)(s —1) > (t+8slogy s —3s+1)? for t > 1000s log, t,
either n < 1.5s or n >t + 8slog, s — 1.5s + 1. This together with (i) proves (a). O

Since we aim for a weaker bound than in [5], instead of Lemmas 4, 5, and 6 there, we
prove just one.

Lemma 7 FEach (s,t)-irreducible graph with no K7 ;-minor has at least 10t/9 vertices.

Proof. Suppose that an (s,t)-irreducible graph G has n = t + d vertices, where d < ¢/9.
By Lemma 6(a), d > 8slog, s — 1.5s + 1. If at most s — 1 vertices of G have degree greater
than ¢, then 2¢(G) < (s —1)n+t(n —s+1) =tn+d(s —1) < tn+ (s — 1)t/9. Since
n >t > 1000s logt, this is less than (£ 4+ 8slog, s)(n — s + 1), a contradiction to (ii). So, we
may assume that vertices vy, ..., vs have degree at least ¢ in G.



Let k = [logg, d]. We will find s disjoint dominating sets S; with |S;| <k + 1 for each
1<0<s.

Initialize SY = {v;} for 1 < i < s. For 1 < i < s, consecutively run the following
procedure. Define U; 7 be the set of vertices not dominated by S] ' By the choice of vy, .. ., vg,
UM < d—1for 1 <i<s. Step j for constructing S; is as follows. If U7 is empty orj= k:—l—l,
then set S; = S7 and stop. Otherwise, define W/ = V(G ) Ul — UZ LS, =S v, vs)
and let S be obtained from S by adding a vertex v} € W/ that has the most neighbors
in Uj.

Since for every ¢, we do at most k steps and in each Step j add at most one vertex to Sij ,
we have |S;| < k+ 1 for every ¢. It follows that for all ¢ and j,

i—1
V(G) =W/ | = U7 US ™ U{viga, ... v} U U Syl < U +s(k+1)<d+s(k+1). (3)

q=1
By Lemma 6(c), 6(G) > 0.5(¢ + 8slog, s). So by (3) for all i and j and each u € U7,

[Ne(w) NW]| _ 8(G) = [V(G) = W/| _ 05t — (d+s(k+1) 35 —s(k+1)
Wil T a—|V(GQ) =W T n—(d+s(k+1) T t—sk+1)’

Since k + 1 < 2 + logg, d < log, (%)25 < 1.71log, £, we conclude from (2) that for all ¢
and j and each u € UY,

)

|Ng(u) N W/ ST skt 7 s(171logyt) 1

. S - 4
Wi T 18 t  ~ 18 t @)

W

Hence by the choice of v , it has at least ‘ nelghbors in UJ Thus for all ¢ and j, |U; I <
(2/3)7d. In particular,
b1 2 “0g3/2 d] 1
U <d| = <d--=1.
or<a(3) T sdeg

It follows that U*! is empty for 1 < i < s. This means .S; is a dominating set of G with size
at most k + 1. Also, G[S;] is connected because each v} was chosen among the neighbors of
Sf_l. Since s > 4 and d > 8slog, s — 1.5s + 1 > 59,

s(k+1) < s(1.711ogy(3d)) < 1.71slog,(18s log, s) 1.71(log, s + log, log, s + 4.18)

d - d - 7slogy s - 7log, s - (5)

The derivative of the function ¢(z) = w is negative for x > 2. It follows that for
s > 4 by (5) we have

s(k+1) < 1.71(log, 4 4 logy logy 4 +4.18)  1.71-7.18

= < 1.
d = 7log, 4 14
So, contracting each S; to a single vertex, we do not touch at least n — d = t vertices. Thus
the resulting graph contains K7 ,. O



3 Lemmas

The statements and proofs of Lemmas 7, 8, 9, and 10 in [5] do not need any change, since
no relation between s and t is involved there. We will refer to the following two of them.

Lemma 8 ([5], Lemma 9) Let s, k, and n be positive integers and o > 2. Suppose that
n < a(k+1). Let G be a (3slog,,—_1)n)-connected graph with n vertices and 6(G) >
k+3(s — 1)log,/a_1yn. Then V(G) contains s disjoint subsets Ay, ..., A such that for
everyti=1,...,s,

(i) G[A;] is connected;

(i1) |Ai] < 31084 /(a—1) 1

(1ii) A; dominates G — Ay — ... — A;_1.

Lemma 9 ([5], Lemma 10) Let H be a graph and k be a positive integer. If C' is an
inclusion minimal k-separable set in H and S = N(C) — C, then the subgraph of H induced
by CUS is (1+ [£])-connected.

The statement of Lemma 11 in [5] also is correct in our setting, and the proof smoothly
goes through when s > 4 and t/log, t > 1000s. It will be our main tool:

Lemma 10 ([5], Lemma 11) Let G be a 100s log, t-connected graph. Suppose that G con-
tains a vertex subset U with t +100slog, t < |U| < 3t such that §(G[U]) > 0.4t + 100s log, .
Then G has a Kg,-minor.

4 Handling large graphs

The proof in the last section of [5] also works with small changes (we need some changes,
since the range of t is different), but for convenience of the reader, instead of pointing out
and commenting the differences we present below an updated version of this proof.

If Theorem 4 does not hold, then there exists an (s, )-irreducible graph G with no K7 -
minor. Let n = v(G). By Lemma 7, n > 10¢/9.

CASE 1. G is 200s log, t-connected. If G has a vertex v with ¢ + 100slog, t < deg(v) <
3t — 1, then G satisfies Lemma 10 with U = N[v] and we are done. Thus, we can assume
that every vertex in G has either ‘small’ (< ¢t 4 100slog, t) or ‘large’ (> 3t) degree. Let Vj
be the set of vertices of ‘small’ degree. If |Vy| > ¢ + 100slog, ¢, then there is some Vj C V,
such that

t+100slog,t < | | J N[v]| <3t — 1.

veVy

In this case, we can apply Lemma 10 with U = Uvevo/ NJv].

Now, let |Vo| < t + 100slog,t. By Lemma 6(e), the average degree of G is less than
t + 8slog, s. Since every vertex outside of V; has degree at least 3¢, we get

0.5t|Vo| + 3t(n — |Vo|) < (t + 8slog, s)n

6



and hence by (2), n < H%{gm < 3t. Since (again by (2)) n > 10t/9 > t + 100s log, t, we

can apply Lemma 10 with U = V(G) to find a needed minor.

CASE 2. G is not 200s log, t-connected. Let S be a separating set with at most k =
[200slog, t] — 1 vertices and let V(G) — S = Vi UV, where vertices in V; are not adjacent
to vertices in V5. Then each of Vi and V5 is a k-separable set. For j = 1,2, let W, be an
inclusion minimal k-separable set contained in V; and S; = N(W;) — W;. By Lemma lem24,
the graph G; = G[W; U S;] is 100s log, t-connected.

CASE 2.1. |W; U S;| > t+ 100slog, t for some j € {1,2}. Then |W;| > ¢t — 100slog, t.
Let G; = G[W; U S;]. By Lemma 6(b), 6(G;) > 0.5(t + 8slog, s). If [W; US;| < 3¢, then we
apply Lemma 10 with U = W; U S;. So suppose

W;US,| > 3t. (6)

As in Case 1, we may suppose that the degree of each w € W; is either ‘small’ (< ¢ +
100slogy t) or ‘large’ (> 3t). Let W} be the set of vertices w € W; of ‘small” degree. As in
Case 1, we conclude that [W}| <t + 100slog, t. Since every vertex in W; — W} has degree
at least 3t, we get

0.5t|W| + 3t|W; — W] < (t 4 8slog, s)|W; U Sj|.

Since |S;| < k, by (6), 3t|W; — Wi| > 3t(|W; U S;| — k — [WJ]) < (3t — k)[W; U Sj| — 3t|W]].
So again by (2),

2.5/ _ 250111

W;u S, < <
W; ]’_2—(k—|—8510g25)/t_2—0.208

3t,

a contradiction to (6).
CASE 2.2. |[W;US;| < t4+100slog, t for both j € {1,2}. Let H; = G[W;]. By Lemma 6(c)
and the fact that |S;| <k,
d(H;) > 0.5t — |S;| > 0.5t — k. (7)
Suppose that Sy is a separating set in H; with [Sy| < 100slogyt. Let W; — S = W;1 U W,
where vertices in W;; are not adjacent to vertices in W,,. For £ = 1,2, let /(W) denote

the number of edges incident to W,,. By Lemma 6(c), €' (W,,) > 0.5(t + 8slog, s)|W; /.
Since eq(S; U So, Wje) < [S; U Sp||Wje|, we have

Y da(w) =26/ (W;e) — eq(S; U So, Wj) > (£ — 1.5k)|W;].

It follows that some w, € W;, has degree greater than ¢ — 1.5k. Thus,
2(t = 1.5k) < dg(wr) + da(w2) < ([Wja| + 155U Sol) + (IWjal 155U Sol) <

|W; U S|+ [S;] + |So] < (t + 100slog, t) + 100s log, t + k.

7



So, t < 200slog,t + 4k < 1000slog, t, a contradiction to (2). Therefore, H; is 100slog, t-
connected. By this, (7), and Lemma 8 (for £ = 0.3t and o = 4), V/(H;) contains s disjoint
subsets A7, ..., AJ such that for every i = 1,...,s,

(i) G[Af] is connected;

(ii) [A]] < 3logys [Wj| < 7.23log, [W;| < 7.23log,(1.1¢);

(iti) A7 dominates W; — A — ... — A] .

Since G is s-connected, |S;| > s, j = 1,2, and there are s pairwise vertex disjoint S, So-
paths Pp,..., P,. We may assume that the only common vertex of P; with S; is p;;. By
Lemma 6(b), each p;; has at least 0.5t — 200s log, ¢ neighbors in W;. Thus, we can choose
2s distinct vertices g;; such that ¢; € W; — J;_, A% and pijqi; € B(G).

Define F; = Al UA?UV(P) + g1 + iz, i =1,...,s. Then for every i =1,...,s,

(i) G[F;] is connected;
(i) Fj-s are pairwise disjoint;
(iii) F; dominates U§:1 W, —Fy...— F_;.

Since by (2),

2
JW; = Fi... = Fia| > 2(t — 400slogy t) — 14.465log, 1.1t — 25 > t,
j=1
G has a K7 ;-minor, a contradiction. |

Comments. 1. Lemma 8 was reproved in [6] in a slightly stronger form.

2. The factor 1000 in (2) and maybe the factor 8 in front of slog, s in Theorem 4 can
be improved with more work, but Proposition 3 shows that the theorem will not hold if we
replace both 1000 and 8 with 1/18. Still, as Deryk Osthus observed, it could be that the
statement holds for all s <t if we do not change 8.

Acknowledgment. We thank Deryk Osthus for helpful comments.
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