On $K_{s,t}$ -minors in graphs with given average degree, II

A.V. Kostochka^{*} N. Prince †

January 10, 2012

Abstract

Let $K_{s,t}^*$ denote the graph obtained from $K_{s,t}$ by adding all edges between the *s* vertices of degree *t* in it. We show how to adapt the argument of an our previous paper (Discrete Math. **308** (2008), 4435–4445) to prove that if $t/\log_2 t \ge 1000s$, then every graph *G* with average degree at least $t + 8s \log_2 s$ has a $K_{s,t}^*$ minor. This refines a corresponding result by Kühn and Osthus.

AMS Subject Classification: 05C35, 05C83.

Keywords: Bipartite minors, dense graphs.

1 Introduction

Graphs in this paper are undirected simple graphs. For a graph G, V(G) is the set of its vertices, E(G) is the set of its edges, e(G) = |E(G)|, and v(G) = |V(G)|. By G[X] we denote the subgraph of G induced by the vertex set X. We let $N_G(v)$ denote the set of neighbors of v in G and $N_G[v] = N_G(v) \cup \{v\}$. Similarly, for $X \subseteq V(G)$, we define $N(X) := \bigcup_{x \in X} N(x)$. A minor of a graph G is a graph H that can be obtained from G by a sequence of vertex and edge deletions and edge contractions. For a graph H, let D(H) denote the minimum number t such that every graph G with average degree at least t has an H-minor, i.e., a minor isomorphic to H.

Mader [8] proved that $D(K_r) \leq 8r \ln r$. Later, Kostochka [2, 3] and Thomason [14] found the order of magnitude of $D(K_r)$, and then Thomason [15] found the asymptotics of $D(K_r)$ as $r \to \infty$. Myers and Thomason [12, 9] determined D(H) for almost every H, showing, in particular, that for almost all H, the extremal graphs not containing H are quasi-random (built deterministically from randomly generated subcomponents). Their methods work better for dense and balanced graphs.

^{*}Department of Mathematics, University of Illinois, Urbana, IL, 61801, USA and Sobolev Institute of Mathematics, Novosibirsk, Russia. E-mail address: kostochk@math.uiuc.edu. Research of this author is supported in part by NSF grant DMS-0965587, by the Ministry of education and science of the Russian Federation (Contract no. 14.740.11.0868) and by grant 09-01-00244 of the Russian Foundation for Basic Research.

[†]Illinois Mathematics and Science Academy, Aurora, IL, 60506, USA. E-mail address: nprince@imsa.edu.

Figure 1: Graph M(2,3,4) has no $K_{3,4}$ -minor.

An example of a sparse and unbalanced H is the complete bipartite graph $K_{s,t}$, where s is fixed and t is large with respect to s. For this reason, Myers [10, 11] studied $D(K_{s,t})$ when s is fixed and t is large. Let M(r, s, t) be the graph obtained by taking r copies of K_{s+t-1} arranged so that each two copies share the same fixed s-1 vertices (Fig. 1 shows M(2,3,4)). Myers [11] observed that M(r, s, t) has no $K_{s,t}$ -minor and that

$$e(M(r,s,t)) = \frac{1}{2}(t+2s-3)(n-s+1) + \binom{s-1}{2},$$
(1)

where n = |V(M(r, s, t))| = rt + s - 1. He proved that for $t > 10^{29}$ and $n \ge 3$, each *n*-vertex graph *G* with more than $\frac{1}{2}(t+1)(n-1)$ edges has a $K_{2,t}$ minor. The graphs M(r, 2, t) witness that this bound is sharp when $|V(G)| \equiv 1 \pmod{t}$. In connection with graph coloring, Chudnovsky, Reed, and Seymour [1] proved that Myers' bound is true for all t.

Myers conjectured that a similar, more general statement holds for $K_{s,t}$ -minors.

Conjecture 1 Let s be a positive integer. Then there exists a constant C(s) such that, for all positive integers t, if G has average degree at least $C(s) \cdot t$, then G has a $K_{s,t}$ -minor.

Let $K_{s,t}^* = K_{s+t} - E(K_t)$. In other words, $K_{s,t}^*$ is the graph obtained from $K_{s,t}$ by adding all $\binom{s}{2}$ possible edges into the *s*-vertex partite set. Myers noted that the average degree that forces *G* to contain a $K_{s,t}$ -minor also likely forces a $K_{s,t}^*$ -minor, that is, $D(K_{s,t}) = D(K_{s,t}^*)$ when *s* is fixed and *t* is large.

Myers' Conjecture was proved independently in [5] and [7] using different methods. Kühn and Osthus [7] showed the following.

Theorem 1 ([7]) For every $0 < \epsilon < 10^{-16}$, there exists a number $t_0 = t_0(\epsilon)$ such that for all integers $t \ge t_0$ and $s \le \epsilon^6 t / \log t$, every graph of average degree at least $(1 + \epsilon)t$ contains $K_{s,t}$ as a minor.

They also showed that $K_{s,t}$ can be replaced with $K_{s,t}^*$ if the restriction $s \leq \epsilon^6 t / \log t$ is replaced with $s \leq \epsilon^7 t / \log t$.

In [5], the following fact was proved.

Theorem 2 Let n, s and t be positive integers with

$$t > (240s \log_2 s)^{8s \log_2 s + 1}.$$

Let G be an n-vertex graph such that $e(G) \geq \frac{t+3s}{2}(n-s+1)$. Then G has a $K_{s,t}^*$ -minor. Furthermore, for infinitely many n, there exists a graph G_n of order n and size at least $\frac{t+3s-5\sqrt{s}}{2}(n-s+1)$ that has no $K_{s,t}$ -minor.

From Theorem 2 we have that for huge t,

$$t + 3s - 5\sqrt{s} \le D(K_{s,t}) \le D(K_{s,t}^*) \le t + 3s.$$

Hence, Myers' insight that $D(K_{s,t})$ is the same as $D(K_{s,t}^*)$ is true asymptotically in s.

Observe that while Theorem 1 provides a weaker bound on the second term of $D(K_{s,t})$ (essentially, the second term in their bound is $(s \ln t/t)^{1/6}t$ while in Theorem 2 it is the asymptotically (in s) exact 3s), it applies for a much wider (essentially best possible) range of t for a given s than Theorem 2, namely for $t \ge C \cdot s \log t$. Kühn and Osthus [7] also proved the following fact showing that the statement of their theorem would be incorrect if $s \ge 18t/\ln t$.

Proposition 3 ([7, Proposition 10]) There exists n_0 such that for each integer $n \ge n_0$ and each $\alpha > 0$, there is an n-vertex graph G with average degree at least n/2 that does not have a $K_{s,t}$ minor with $s = \lceil 2n/\alpha \ln n \rceil$ and $t = \lceil \alpha n \rceil$.

In particular, it implies that the statement of Theorem 2 is not correct when $t = s \ln s$ and s is large.

The goal of the present note is to show how to adapt the proof of Theorem 2 to prove the following.

Theorem 4 Let $1 \le s \le t \le n$ be integers such that $n \ge 2s$ and

$$s \le t/1000 \log_2 t. \tag{2}$$

Let G be an n-vertex graph with $e(G) \geq \frac{t+8s\log_2 s}{2}(n-s+1)$. Then G has a $K_{s,t}^*$ -minor.

This theorem applies to the same range of t in terms of s as Theorem 1 (and even a bit better, since the range does not depend on ϵ), but gives the better estimate of the second term. The first author plans to use Theorem 4 to improve the result of [4], where Theorem 2 was used.

The idea of this note is that in the proof of Theorem 2, we needed t that is much larger than s only in the case when n is small, essentially when $n < t + C \cdot s \ln t$. This note shows that in this range we can prove the bound of Theorem 4 (which is weaker) for $n \leq t + C \cdot s \ln s$. The setup and this case are handled in Section 2. In Section 3 we list useful lemmas from [5] and in Section 4 we present the proof of the main case.

2 Setup and graphs of small order

In [6] we proved the following.

Theorem 5 Let $t \ge 6300$. Let G be a graph of order $n \ge 3$ with $e(G) > \frac{1}{2}(t+3)(n-2)+1$. Then G has a $K_{3,t}^*$ -minor.

So, it is enough to prove Theorem 4 for $s \ge 4$. Similarly to the proof in [5], we say that a graph G is (s, t)-irreducible if

(i) $v(G) \ge 2s$;

(ii) $e(G) \ge 0.5(t + 8s \log_2 s)(v(G) - s + 1);$

(iii) G has no proper minor G' possessing (i) and (ii).

For an edge e of a graph G, $t_G(e)$ denotes the number of triangles in G containing e. Similarly to Lemma 3 in [5], the following lemma holds.

Lemma 6 If G is an n-vertex (s,t)-irreducible graph and $s < t/1000 \log_2 t$, then (a) $n \ge t + 8s \log_2 s - 1.5s + 1$; (b) $t_G(e) \ge 0.5(t + 8s \log_2 s) - 1$ for every $e \in E(G)$; (c) if $W \subset V(G)$ and $v(G) - |W| \ge 2s$, then W is incident with at least $0.5(t + 8s \log_2 s)|W|$ edges; in particular, $\delta(G) \ge 0.5(t + 8s \log_2 s)$; (d) G is s-connected; (e) $e(G) < 0.5(t + 8s \log_2 s)n$.

Proof. The proofs of (b)–(d) are almost exactly the same as in the proof of Lemma 3 in [5]. So we present only the proof of (a) which slightly differs from that of Lemma 3 in [5]. Since G has at most $\binom{n}{2}$ edges, for the quadratic function $f(n) := n^2 - n - (t + 8s \log_2 s)(v(G) - s + 1)$ we have $f(n) \ge 0$. The roots of f(n) are

$$n_{1,2} = \frac{1}{2} \left(t + 8s \log_2 s + 1 \pm \sqrt{(t + 8s \log_2 s + 1)^2 - 4(t + 8s \log_2 s)(s - 1)} \right)$$

Since $(t+8s\log_2 s+1)^2 - 4(t+8s\log_2 s)(s-1) > (t+8s\log_2 s-3s+1)^2$ for $t \ge 1000s\log_2 t$, either n < 1.5s or $n > t+8s\log_2 s-1.5s+1$. This together with (i) proves (a).

Since we aim for a weaker bound than in [5], instead of Lemmas 4, 5, and 6 there, we prove just one.

Lemma 7 Each (s,t)-irreducible graph with no $K_{s,t}^*$ -minor has at least 10t/9 vertices.

Proof. Suppose that an (s,t)-irreducible graph G has n = t + d vertices, where $d \leq t/9$. By Lemma 6(a), $d \geq 8s \log_2 s - 1.5s + 1$. If at most s - 1 vertices of G have degree greater than t, then $2e(G) \leq (s-1)n + t(n-s+1) = tn + d(s-1) \leq tn + (s-1)t/9$. Since $n > t > 1000s \log t$, this is less than $(t + 8s \log_2 s)(n - s + 1)$, a contradiction to (ii). So, we may assume that vertices v_1, \ldots, v_s have degree at least t in G. Let $k = \lceil \log_{3/2} d \rceil$. We will find s disjoint dominating sets S_i with $|S_i| \le k + 1$ for each $1 \le i \le s$.

Initialize $S_i^0 = \{v_i\}$ for $1 \le i \le s$. For $1 \le i \le s$, consecutively run the following procedure. Define U_i^j be the set of vertices not dominated by S_i^{j-1} . By the choice of v_1, \ldots, v_s , $|U_i^1| \le d-1$ for $1 \le i \le s$. Step j for constructing S_i is as follows. If U_i^j is empty or j = k+1, then set $S_i = S_i^j$ and stop. Otherwise, define $W_i^j = V(G) - U_i^j - \bigcup_{q=1}^{i-1} S_q - S_i^{j-1} - \{v_{i+1}, \ldots, v_s\}$ and let S_i^{j+1} be obtained from S_i^j by adding a vertex $v_i^j \in W_i^j$ that has the most neighbors in U_i^j .

Since for every *i*, we do at most *k* steps and in each Step *j* add at most one vertex to S_i^j , we have $|S_i| \leq k + 1$ for every *i*. It follows that for all *i* and *j*,

$$|V(G) - W_i^j| = |U_i^j \cup S_i^{j-1} \cup \{v_{i+1}, \dots, v_s\} \cup \bigcup_{q=1}^{i-1} S_q| \le |U_i^1| + s(k+1) < d + s(k+1).$$
(3)

By Lemma 6(c), $\delta(G) \ge 0.5(t + 8s \log_2 s)$. So by (3) for all *i* and *j* and each $u \in U_i^j$,

$$\frac{|N_G(u) \cap W_i^j|}{|W_i^j|} \ge \frac{\delta(G) - |V(G) - W_i^j|}{n - |V(G) - W_i^j|} \ge \frac{0.5t - (d + s(k+1))}{n - (d + s(k+1))} \ge \frac{\frac{7t}{18} - s(k+1)}{t - s(k+1)}.$$

Since $k + 1 \leq 2 + \log_{3/2} d \leq \log_{3/2} \left(\frac{3}{2}\right)^2 \frac{t}{9} \leq 1.71 \log_2 \frac{t}{4}$, we conclude from (2) that for all i and j and each $u \in U_i^j$,

$$\frac{|N_G(u) \cap W_i^j|}{|W_i^j|} \ge \frac{7}{18} - \frac{s(k+1)}{t} \ge \frac{7}{18} - \frac{s(1.71\log_2 t)}{t} > \frac{1}{3}.$$
(4)

Hence by the choice of v_i^j , it has at least $\frac{|U_i^j|}{3}$ neighbors in U_i^j . Thus for all i and j, $|U_i^j| < (2/3)^j d$. In particular,

$$|U_i^{k+1}| < d\left(\frac{2}{3}\right)^{|\log_{3/2} d|} \le d \cdot \frac{1}{d} = 1.$$

It follows that U_i^{k+1} is empty for $1 \le i \le s$. This means S_i is a dominating set of G with size at most k + 1. Also, $G[S_i]$ is connected because each v_i^j was chosen among the neighbors of S_i^{j-1} . Since $s \ge 4$ and $d \ge 8s \log_2 s - 1.5s + 1 \ge 59$,

$$\frac{s(k+1)}{d} \le \frac{s(1.71\log_2(\frac{9}{4}d))}{d} \le \frac{1.71s\log_2(18s\log_2 s)}{7s\log_2 s} \le \frac{1.71(\log_2 s + \log_2\log_2 s + 4.18)}{7\log_2 s}.$$
 (5)

The derivative of the function $\phi(x) = \frac{x + \log_2 x + 4.18}{x}$ is negative for $x \ge 2$. It follows that for $s \ge 4$ by (5) we have

$$\frac{s(k+1)}{d} \le \frac{1.71(\log_2 4 + \log_2 \log_2 4 + 4.18)}{7\log_2 4} = \frac{1.71 \cdot 7.18}{14} < 1.$$

So, contracting each S_i to a single vertex, we do not touch at least n - d = t vertices. Thus the resulting graph contains $K_{s,t}^*$.

3 Lemmas

The statements and proofs of Lemmas 7, 8, 9, and 10 in [5] do not need any change, since no relation between s and t is involved there. We will refer to the following two of them.

Lemma 8 ([5], Lemma 9) Let s, k, and n be positive integers and $\alpha \geq 2$. Suppose that $n \leq \alpha(k+1)$. Let G be a $(3s \log_{\alpha/(\alpha-1)} n)$ -connected graph with n vertices and $\delta(G) \geq k+3(s-1)\log_{\alpha/(\alpha-1)} n$. Then V(G) contains s disjoint subsets A_1, \ldots, A_s such that for every $i = 1, \ldots, s$, (i) $G[A_i]$ is connected; (ii) $|A_i| \leq 3 \log_{\alpha/(\alpha-1)} n$; (iii) A_i dominates $G - A_1 - \ldots - A_{i-1}$.

Lemma 9 ([5], Lemma 10) Let H be a graph and k be a positive integer. If C is an inclusion minimal k-separable set in H and S = N(C) - C, then the subgraph of H induced by $C \cup S$ is $(1 + \lceil \frac{k}{2} \rceil)$ -connected.

The statement of Lemma 11 in [5] also is correct in our setting, and the proof smoothly goes through when $s \ge 4$ and $t/\log_2 t > 1000s$. It will be our main tool:

Lemma 10 ([5], Lemma 11) Let G be a $100s \log_2 t$ -connected graph. Suppose that G contains a vertex subset U with $t + 100s \log_2 t \le |U| \le 3t$ such that $\delta(G[U]) \ge 0.4t + 100s \log_2 t$. Then G has a $K_{s,t}^*$ -minor.

4 Handling large graphs

The proof in the last section of [5] also works with small changes (we need some changes, since the range of t is different), but for convenience of the reader, instead of pointing out and commenting the differences we present below an updated version of this proof.

If Theorem 4 does not hold, then there exists an (s, t)-irreducible graph G with no $K_{s,t}^*$ -minor. Let n = v(G). By Lemma 7, $n \ge 10t/9$.

CASE 1. G is $200s \log_2 t$ -connected. If G has a vertex v with $t + 100s \log_2 t \le \deg(v) \le 3t - 1$, then G satisfies Lemma 10 with U = N[v] and we are done. Thus, we can assume that every vertex in G has either 'small' $(< t + 100s \log_2 t)$ or 'large' $(\ge 3t)$ degree. Let V_0 be the set of vertices of 'small' degree. If $|V_0| > t + 100s \log_2 t$, then there is some $V'_0 \subseteq V_0$ such that

$$t + 100s \log_2 t \le |\bigcup_{v \in V'_0} N[v]| \le 3t - 1.$$

In this case, we can apply Lemma 10 with $U = \bigcup_{v \in V'_0} N[v]$.

Now, let $|V_0| \leq t + 100s \log_2 t$. By Lemma 6(e), the average degree of G is less than $t + 8s \log_2 s$. Since every vertex outside of V_0 has degree at least 3t, we get

$$0.5t|V_0| + 3t(n - |V_0|) < (t + 8s\log_2 s)n$$

and hence by (2), $n < \frac{2.5|V_0|}{2-8s\log_2 s/t} < 3t$. Since (again by (2)) $n \ge 10t/9 > t + 100s\log_2 t$, we can apply Lemma 10 with U = V(G) to find a needed minor.

CASE 2. G is not $200s \log_2 t$ -connected. Let S be a separating set with at most $k = \lceil 200s \log_2 t \rceil - 1$ vertices and let $V(G) - S = V_1 \cup V_2$ where vertices in V_1 are not adjacent to vertices in V_2 . Then each of V_1 and V_2 is a k-separable set. For j = 1, 2, let W_j be an inclusion minimal k-separable set contained in V_j and $S_j = N(W_j) - W_j$. By Lemma lem24, the graph $G_j = G[W_j \cup S_j]$ is $100s \log_2 t$ -connected.

CASE 2.1. $|W_j \cup S_j| \ge t + 100s \log_2 t$ for some $j \in \{1, 2\}$. Then $|W_j| \ge t - 100s \log_2 t$. Let $G_j = G[W_j \cup S_j]$. By Lemma 6(b), $\delta(G_j) \ge 0.5(t + 8s \log_2 s)$. If $|W_j \cup S_j| \le 3t$, then we apply Lemma 10 with $U = W_j \cup S_j$. So suppose

$$|W_j \cup S_j| > 3t. \tag{6}$$

As in Case 1, we may suppose that the degree of each $w \in W_j$ is either 'small' $(< t + 100s \log_2 t)$ or 'large' $(\geq 3t)$. Let W'_j be the set of vertices $w \in W_j$ of 'small' degree. As in Case 1, we conclude that $|W'_j| \leq t + 100s \log_2 t$. Since every vertex in $W_j - W'_j$ has degree at least 3t, we get

$$0.5t|W_j'| + 3t|W_j - W_j'| < (t + 8s\log_2 s)|W_j \cup S_j|$$

Since $|S_j| \le k$, by (6), $3t|W_j - W'_j| \ge 3t(|W_j \cup S_j| - k - |W'_j|) \le (3t - k)|W_j \cup S_j| - 3t|W'_j|$. So again by (2),

$$|W_j \cup S_j| \le \frac{2.5|W_j'|}{2 - (k + 8s \log_2 s)/t} \le \frac{2.5(1.1t)}{2 - 0.208} < 3t,$$

a contradiction to (6).

CASE 2.2. $|W_j \cup S_j| < t + 100s \log_2 t$ for both $j \in \{1, 2\}$. Let $H_j = G[W_j]$. By Lemma 6(c) and the fact that $|S_j| \le k$,

$$\delta(H_j) \ge 0.5t - |S_j| \ge 0.5t - k.$$
(7)

Suppose that S_0 is a separating set in H_j with $|S_0| < 100s \log_2 t$. Let $W_j - S = W_{j,1} \cup W_{j,2}$ where vertices in $W_{j,1}$ are not adjacent to vertices in $W_{j,2}$. For $\ell = 1, 2$, let $e'(W_{j,\ell})$ denote the number of edges incident to $W_{j,\ell}$. By Lemma 6(c), $e'(W_{j,\ell}) \ge 0.5(t + 8s \log_2 s)|W_{j,\ell}|$. Since $e_G(S_j \cup S_0, W_{j,\ell}) \le |S_j \cup S_0||W_{j,\ell}|$, we have

$$\sum_{w \in W_{j,\ell}} d_G(w) = 2e'(W_{j,\ell}) - e_G(S_j \cup S_0, W_j) > (t - 1.5k)|W_j|.$$

It follows that some $w_{\ell} \in W_{j,\ell}$ has degree greater than t - 1.5k. Thus,

$$2(t-1.5k) \le d_G(w_1) + d_G(w_2) < (|W_{j,1}| + |S_j \cup S_0|) + (|W_{j,1}| + |S_j \cup S_0|) \le |W_j \cup S_j| + |S_j| + |S_0| \le (t+100s\log_2 t) + 100s\log_2 t + k.$$

So, $t < 200s \log_2 t + 4k < 1000s \log_2 t$, a contradiction to (2). Therefore, H_j is $100s \log_2 t$ connected. By this, (7), and Lemma 8 (for k = 0.3t and $\alpha = 4$), $V(H_j)$ contains s disjoint
subsets A_1^j, \ldots, A_s^j such that for every $i = 1, \ldots, s$,

- (i) $G[A_i^j]$ is connected;
- (ii) $|A_i^j| \le 3 \log_{4/3} |W_j| < 7.23 \log_2 |W_j| \le 7.23 \log_2(1.1t);$

(iii) A_i^j dominates $W_j - A_1^j - \ldots - A_{i-1}^j$.

Since G is s-connected, $|S_j| \ge s$, j = 1, 2, and there are s pairwise vertex disjoint S_1, S_2 paths P_1, \ldots, P_s . We may assume that the only common vertex of P_i with S_j is p_{ij} . By Lemma 6(b), each p_{ij} has at least $0.5t - 200s \log_2 t$ neighbors in W_j . Thus, we can choose 2s distinct vertices q_{ij} such that $q_{ij} \in W_j - \bigcup_{k=1}^s A_k^j$ and $p_{ij}q_{ij} \in E(G)$.

Define $F_i = A_i^1 \cup A_i^2 \cup V(P_i) + q_{i1} + q_{i2}, i = 1, ..., s$. Then for every i = 1, ..., s,

- (i) $G[F_i]$ is connected;
- (ii) F_i -s are pairwise disjoint;
- (iii) F_i dominates $\bigcup_{j=1}^2 W_j F_1 \dots F_{i-1}$. Since by (2),

 $\left|\bigcup_{j=1}^{2} W_{j} - F_{1} \dots - F_{i-1}\right| \ge 2(t - 400s \log_{2} t) - 14.46s \log_{2} 1.1t - 2s > t,$

G has a $K_{s,t}^*$ -minor, a contradiction.

Comments. 1. Lemma 8 was reproved in [6] in a slightly stronger form.

2. The factor 1000 in (2) and maybe the factor 8 in front of $s \log_2 s$ in Theorem 4 can be improved with more work, but Proposition 3 shows that the theorem will not hold if we replace both 1000 and 8 with 1/18. Still, as Deryk Osthus observed, it could be that the statement holds for all $s \leq t$ if we do not change 8.

Acknowledgment. We thank Deryk Osthus for helpful comments.

References

- [1] M. Chudnovsky, B. Reed, and P. Seymour, The edge density for $K_{2,t}$ minors, J. Combin. Theory Ser. B 101 (2011), 1846.
- [2] A. V. Kostochka, The minimum Hadwiger number for graphs with a given mean degree of vertices, *Metody Diskret. Analiz.* 38 (1982) 37–58.
- [3] A. V. Kostochka, Lower bound of the Hadwiger number of graphs by their average degree, *Combinatorica* 4 (1984), 307–316.
- [4] A. V. Kostochka, On $K_{s,t}$ minors in (s + t)-chromatic graphs, J. Graph Theory, 65 (2010), 343–350.

- [5] A.V. Kostochka and N. Prince, On $K_{s,t}$ -minors in graphs with given average degree, Discrete Math. **308** (2008), 4435–4445.
- [6] A.V. Kostochka and N. Prince, Dense graphs have $K_{3,t}$ minors, *Discrete Math.* **310** (2010), 2637–2654.
- [7] D. Kühn and D. Osthus, Forcing complete unbalanced bipartite minors, Europ. J. Combin. 26 (2005), 75–81.
- [8] W. Mader, Homomorphieeigenschaften und mittlere Kantendichte von Graphen, Math. Annalen 174 (1967), 265–268.
- [9] J. S. Myers, Graphs without large complete minors are quasi-random, *Combinatorics*, *Probability, and Computing* **11** (2002), 571–585.
- [10] J. S. Myers, Extremal theory of graph minors and directed graphs, PhD dissertation, University of Cambridge (2003).
- [11] J. S. Myers, The extremal function for unbalanced bipartite minors, *Discrete Math.* 271 (2003), 209–222.
- [12] J. S. Myers and A. Thomason, The extremal function for noncomplete minors, Combinatorica 25 (2005), 725–753.
- [13] P. Seymour, Oral communication.
- [14] A. Thomason, An extremal function for contractions of graphs, Math. Proc. Cambridge Philos. Soc. 95 (1984), 261–265.
- [15] A. Thomason, The extremal function for complete minors, J. Combin. Theory B 81 (2001), 318–338.
- [16] D. R. Woodall, List colourings of graphs. Surveys in combinatorics, 2001 (Sussex), London Math. Soc. Lecture Note Ser. 288 (2001), Cambridge Univ. Press, Cambridge, 269–301.