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Abstract

Let G be a color-critical graph with χ(G) ≥ Δ(G) = 2t + 1 ≥ 5 such that the
subgraph of G induced by the vertices of degree 2t+1 has clique number at most t−1.
We prove that then either t ≥ 3 and G = K2t+2 or t = 2 and G ∈ {K6, O5}, where O5

is a special graph with χ(O5) = 5 and |O5| = 9. This result for t ≥ 3 improves a case
of a theorem by Rabern [9] and for t = 2 answers a question raised by Kierstead and
Kostochka in [6].
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1 Introduction

In this paper we consider finite, simple, undirected graphs. Given a graph G, we write V (G)
for its vertex set and E(G) for its edge set. Furthermore, we write Δ(G) for its maximum
degree, δ(G) for its minimum degree, ω(G) for its clique number and χ(G) for its chromatic
number.

A graph G is called critical, or color-critical if χ(H) < χ(G) whenever H is a proper
subgraph of G. Let ρ be a monotone graph parameter, that is a mapping that assigns to
each graph G a real number such that ρ(H) ≤ ρ(G) whenever H is a isomorphic to a
subgraph of G. If we want to show that every graph G satisfies χ(G) ≤ ρ(G), then it suffices
to establish this inequality for all critical graphs. This follows from the simple fact that each
graph contains a critical graph with the same chromatic number.

The only critical graph with chromatic number k ∈ {1, 2} is the complete graph Kk on
k vertices and the only critical graphs with chromatic number 3 are the odd cycles C2p+1.
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However, for any given integer k ≥ 4, a characterization of all critical graphs with chromatic
number k seems to be unlikely.

Critical graphs were first defined and investigated by Dirac [3] in 1951. He observed that
δ(G) ≥ χ(G) − 1 for every critical graph G with χ(G) ≥ 1 and proved as a generalization
the following result.

Theorem 1.1 (Dirac [4] 1953) If G is a critical graph with χ(G) = k for an integer k ≥ 1,
then G is (k − 1)-edge connected.

In view of this, the vertices of a critical graph G with degree χ(G)− 1 are called the low
vertices and the others are called the high vertices. For a critical graph G, we denote by
L(G) the subgraph induced by the low vertices of G, and by H(G) the subgraph induced by
the high vertices of G.

Dirac’s simple observation concerning the minimum degree in critical graphs implies, in
particular, that every graph G satisfies

χ(G) ≤ Δ(G) + 1. (1)

Brooks’s fundamental result from 1941 characterizes the graphs for which (1) holds with
equality.

Theorem 1.2 (Brooks [1] 1941) If a graph G satisfies χ(G) = Δ(G) + 1, then either G
contains KΔ(G)+1 or Δ(G) = 2 and G contains an odd cycle.

Observe that Brooks’s theorem is equivalent to the statement that the only critical graphs
G with χ(G) = Δ(G) + 1 or, equivalently with H(G) = ∅, are the complete graphs and the
odd cycles. This result was generalized by Gallai.

Theorem 1.3 (Gallai [5] 1963) If G is a critical graph with χ(G) ≥ 1, then each block of
L(G) is a complete graph or an odd cycle.

The Ore-degree of an edge xy in a graph G is the sum θG(xy) = dG(x) + dG(y) of the
degrees of its ends. The Ore-degree of a graph G is defined as θ(G) = maxxy∈E(G) θG(xy).
The counterpart of (1) for the Ore-degree of a graph G is

χ(G) ≤ �θ(G)/2�+ 1. (2)

This also follows easily from Dirac’s observation that δ(G) ≥ χ(G)− 1 for every critical
graph G. Clearly, equality in (2) holds for complete graphs and odd cycles. However, for
small odd θ there are other critical graphs for which (2) holds with equality.

Example 1 Let O4 be a family of graphs defined recursively as follows. The graph ob-
tained from disjoint graphs K4 −xy and K4 − x′y′ by identifying x and x′ and joining y and
y′ belongs to the family. If G belongs to the family, then the graph G′ obtained as follows
also belongs to the family: Choose a vertex z with dG(z) = 4 and split z into two vertices z1
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and z2 of degree two. Add two new vertices u and v that are adjacent to z1, z2 and to each
other. The resulting graph is G′, see Figure 1. It is easy to show that each graph G ∈ O4 is
a critical graph such that θ(G) = 7 and χ(G) = 4, see also [7].

Example 2 Let O5 be the graph obtained from K5 − xy and K4 by joining two vertices of
K4 to x and the two other vertices of K4 to y, see Figure 2. Then O5 is a critical graph
satisfying |V (O5)| = 9, θ(O5) = 9 and χ(O5) = 5.

The Ore-degree of a graph is closely related to Ore’s famous theorem about the existence
of Hamilton cycles (for the complement). Ore-type bounds for the chromatic number of a
graph were first investigated by Kierstead and Kostochka [6, 7].
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Figure 1: Two graphs in O4.

Theorem 1.4 (Kierstead and Kostochka [6] 2009) If 7 ≤ χ(G) = �θ(G)/2� + 1, then
G contains the complete graph Kχ(G).

Theorem 1.4 is equivalent to the following statement about critical graphs.

Theorem 1.5 (Kierstead and Kostochka [6] 2009) The complete graph KΔ(G)+1 is the
only critical graph G with χ(G) ≥ Δ(G) ≥ 7 such that H(G) is edgeless.

The proof of Theorem 1.5 given in [6] uses a list coloring argument for an auxiliary
bipartite graph and is based on Gallai’s characterization of the low vertex subgraph L(G) of
a critical graph G and a result from [11] saying that if G is a critical graph, then H(G) has
at most as many components as L(G) has. The proof only works if Δ(G) ≥ 7. Very recently,
Rabern [9] found a simpler argument that also works for critical graphs with χ(G) ≥ Δ(G) ≥
6. He proved a stronger result:

Theorem 1.6 (Rabern [9] 2010) The complete graph KΔ(G)+1 is the only critical graph
G with χ(G) ≥ Δ(G) ≥ 6 such that ω(H(G)) ≤ �Δ(G)/2� − 2.

In this paper, using the ideas of the proof of Theorem 1.6, we improve its bound for odd
Δ(G) ≥ 7. Furthermore, we also consider the case Δ(G) = 5, see Theorem 1.8.
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Figure 2: The graph O5.

Theorem 1.7 If G is a critical graph and t ≥ 3 is an integer such that χ(G) ≥ Δ(G) = 2t+1
and ω(H(G)) ≤ t− 1, then G = K2t+2.

Theorem 1.7 is a partial case of a more general result which will be stated and proved in
Section 3.

Theorem 1.8 If G is a critical graph satisfying χ(G) ≥ Δ(G) = 5 and ω(H(G)) ≤ 1, then
G ∈ {K6, O5}.

Corollary 1.9 If χ(G) = �θ(G)/2� + 1 = 5, then G ∈ {K5, O5}.

Theorem 1.8 answers a question raised by Kostochka and Kierstead [6] in the affirmative.
Description of critical graphs with χ(G) = Δ(G) = 4 and ω(H(G)) ≤ 1 remains unknown.
Observe that there is no critical graph with χ(G) = Δ(G) ≤ 3.

2 Proper partitions and Mozhan’s lemma

Our main tool to prove both theorems is an useful observation made by Mozhan [8] developing
an idea by Catlin [2]. Let us start with some terminology.

In the sequel, let G denote a critical graph with χ(G) ≥ 4. For a vertex set X ⊆ V (G),
let G[X] denote the subgraph of G induced by X and let EG(X) = E(G[X ]). Further, let
G − X = G[V (G) \ X]. If x ∈ V (G) we write G − x rather than G − {x}. For a vertex
v ∈ V (G) and a vertex set X ⊆ V (G), let NG(v : X) = {u ∈ X | uv ∈ E(G)} and let
dG(v : X) = |NG(v : X)|. We put NG(x) = NG(x : V (G)) and dG(x) = dG(x : V (G)).

A sequence (x,X1, . . . , Xp) is called a (n ordered) partition of G if x ∈ V (G) and
X1, . . . , Xp are pairwise disjoint subsets of V (G − x) whose union is V (G − x). We call
such a partition a (t1, . . . , tp)-partition of G if χ(G − x) = t1 + . . . + tp and χ(G[Xi]) = ti
for i = 1, . . . , p. By an optimal (t1, . . . , tp)-partition of G we mean a (t1, . . . , tp)-partition
(x,X1, . . . , Xp) of G such that the weight

w(X1, . . . , Xp) = |EG(X1)|+ · · ·+ |EG(Xp)|
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is minimum over all (t1, . . . , tp)-partitions of G. Observe that for any sequence (t1, . . . , tp)
such that χ(G) = 1 + t1 + · · · + tp, there exists a (t1, . . . , tp)-partition of G. If P =
(x,X1, . . . , Xp) is a (t1, . . . , tp)-partition, we will denote the component of G[Xi ∪ {x}] con-
taining the vertex x by Ki(P). Note that G[Xi ∪ {x}] is not necessarily connected.

The next result is a simple consequence of Brooks’s theorem and the fact that the chro-
matic number is subadditive in the sense that every partition (Y1, . . . , Ys) of the vertex set
of a graph H satisfies χ(H) ≤ χ(H [Y1]) + · · ·+ χ(H [Ys]).

Lemma 2.1 (Mozhan [8] 1983) Let G be a critical graph and let P = (x,X1, . . . , Xp)
be an optimal (t1, . . . , tp)-partition of G for integers t1, . . . , tp ≥ 1. Then the following
statements hold:

(a) χ(G[Xi ∪ {x}]) = ti + 1 and dG(x : Xi) ≥ ti for all i ∈ {1, . . . , p}.
(b) If x is a low vertex of G, then dG(x : Xi) = ti for all i ∈ {1, . . . , p}.
(c) If dG(x : Xi) = ti for some i ∈ {1, . . . , p}, then either Ki(P) = Kti+1 or ti = 2 and

Ki(P ) is an odd cycle.

Proof. By definition, χ(G) = 1 + t1 + · · · + tp and χ(G[Xi]) = ti for all i ∈ {1, . . . , p}.
Since (X1, . . . , Xp) is a partition of V (G − x), we have χ(G[Xi ∪ {x}] = ti + 1 and hence
dG(x : Xi) ≥ ti for all i ∈ {1, . . . , p}. This proves (a). If x is a low vertex of G, then
dG(x) = χ(G) − 1 = t1 + · · · + tp. By (a), this implies that dG(x : Xi) = ti for all
i ∈ {1, . . . , p}. This proves (b).

For the proof of (c), assume that dG(x : Xi) = ti for some i ∈ {1, . . . , p}. By (a)
it then follows that χ(Ki(P)) = ti + 1. We claim that Δ(Ki(P)) ≤ ti. Suppose this is
false. Then choose a vertex y in Ki(P) with dKi(P)(y) > ti closest to x and let P = (x1 =
x, x2, . . . , xs = y) be a shortest path in Ki(P) joining x and y. Now, let ϕ be a (proper)
coloring of G[Xi] with ti colors. Then ϕ induces a coloring of Ki(P) − x with ti colors.
Clearly, x �= y and dG(xk : Xi) = ti for 1 ≤ k < s. Since χ(Ki(P)) = ti + 1, this implies
that among the ti neighbors of x = x1 in Ki(P) all ti colors occur. Hence if we recolor x1

with ϕ(x2) and uncolor x2, we obtain a coloring of G[(Xi ∪ {x1})] − x2 with ti colors such
that dG(x2 : (Xi ∪ {x1}) \ {x2}) = ti. Now we can repeat the argument. Hence if we recolor
xk by ϕ(xk+1) for 1 ≤ k < s and uncolor xs = y, we obtain a ti-coloring of G[X ′

i] with
X ′

i = (Xi∪{x})\{y}. Thus (y,Xi, . . . , Xi−1, X
′
i, Xi+1, . . . , Xp) is a (t1, . . . , tp)-partition of G

with a smaller weight. This however contradicts the choice of our partition (x,X1, . . . , Xp).
This proves the claim that Δ(Ki(P)) ≤ ti. Since χ(Ki(P)) = ti + 1, by Brooks’s theorem
either Ki(P) = Kti+1 or ti = 2 and Ki(P) is an odd cycle. This proves (c) and hence the
lemma. �

Let P = (x,X1, . . . , Xp) be an optimal (t1, . . . , tp)-partition of G and let y ∈ Xi be a
vertex for some i ∈ {1, . . . , p}. For j ∈ {1, . . . , p} we let

Yj =

{
Xj if j �= i,
(Xi ∪ {x}) \ {y} if j = i.
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We then say that P ′ = (y, Y1, . . . , Yp) is obtained from P by swapping x with y and write
P ′ = P/(x, y). Clearly, P ′ is a (t1, . . . , tp)-partition of G if and only if χ(G[Yi]) = ti. If
dG(x : Xi) = ti and y ∈ V (Ki(P)), then it follows from Lemma 2.1(c) that χ(G[Yi]) = ti
and P ′ = (y, Y1, . . . , Yp) is a (t1, . . . , tp)-partition of G with the same weight as P. So, we
obtain the following statement.

Lemma 2.2 Let G be a critical graph and let P = (x,X1, . . . , Xp) be an optimal (t1, . . . , tp)-
partition of G for integers t1, . . . , tp ≥ 1. If dG(x : Xi) = ti for some i ∈ {1, . . . , p} and
y ∈ V (Ki(P)), then P/(x, y) is an optimal (t1, . . . , tp)-partition of G.

We call P = (x,X1, . . . , Xp) a proper (t1, . . . , tp)-partition of G if P is an optimal
(t1, . . . , tp)-partition of G and x is a low vertex of G. As a simple consequence of Lemma
2.1(b)(c) and Lemma 2.2 we obtain the following result.

Lemma 2.3 Let G be a critical graph and let P = (x,X1, . . . , Xp) be a proper (t1, . . . , tp)-
partition of G for integers t1, . . . , tp ≥ 1. Then the following statements hold:

(a) For all i ∈ {1, . . . , p}, we have dG(x : Xi) = ti and, moreover, either Ki(P) = Kti+1

or ti = 2 and Ki(P) is an odd cycle.

(b) If y ∈ ⋃p
i=1 V (Ki(P)) is a low vertex of G, then P/(x, y) is a proper (t1, . . . , tp)-

partition of G.

Lemma 2.4 Let G be a critical graph and let P = (x,X1, . . . , Xp) be a proper (t1, . . . , tp)-
partition of G for integers t1, . . . , tp ≥ 1. Furthermore, let y ∈ V (Ki(P) − x) be a low
vertex of G with i ∈ {1, . . . , p}. If y has a neighbor in G belonging to Kj(P) − x for
j ∈ {1, . . . , p} \ {i}, then NG(x : Xj) = NG(y : Xj).

Proof. Since y is a low vertex of G belonging to Ki(P) − x, Lemma 2.3(b) implies that
P ′ = P/(x, y) is a proper (t1, . . . , tp)-partition of G. Since y has a neighbor in G belong-
ing to Kj(P) − x, we conclude that Kj(P) − x = Kj(P ′) − y. Hence, by Lemma 2.3(a),
NG(x : Xj) = NG(y : Xj). �

Let P = (x,X1, . . . , Xp) be a proper (t1, . . . , tp)-partition of G for integers t1, . . . , tp ≥ 1.
Then we denote the special vertex x by v(P) and the ith set Xi of P by Vi(P). For i ∈
{1, . . . , p}, we put K̃i(P) = Ki(P)− x. Lemma 2.3 implies that K̃i(P) is either a complete
graph with ti vertices or ti = 2 and K̃i(P) is an odd path (i.e., a path with an odd number
of edges). Observe that K̃i(P) is a component of the graph G[Xi]. By Ki(P) we denote the
set of all components K of G[Xi] such that either K is a complete graph with ti vertices or
ti = 2 and K is an odd path.

If H is a subgraph of G and x ∈ V (G) \ V (H) is a vertex, then we denote by H + x the
graph obtained from H by adding the vertex x and joining x to each vertex of H by an edge.
If H + x is a subgraph of G, then we say that x is completely joined to H (and to V (H)).
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Lemma 2.5 Let G be a critical graph such that χ(G) = 1+t1+· · ·+tp for integers t1, . . . , tp ≥
2. If Δ(G) ≤ χ(G) + p − 2 and ω(H(G)) ≤ min{t1, . . . , tp} − 1, then there exists a proper
(t1, . . . , tp)-partition of G.

Proof. Since χ(G) = 1 + t1 + · · · + tp and G is critical, there is an optimal (t1, . . . , tp)-
partition P of G. Let v = v(P). If v is a low vertex of G, then P is a proper (t1, . . . , tp)-
partition of G and we are done. Otherwise v is a high vertex of G. Then, there is an
i ∈ {1, . . . p} such that dG(v : Vi(P)) = ti. Otherwise, we conclude from Lemma 2.1(a) that
Δ(G) ≥ dG(v) ≥ (t1+1)+· · ·+(tp+1) = χ(G)+p−1, a contradiction to Δ(G) ≤ χ(G)+p−2.
Then Lemma 2.1(c) implies that ti ≥ 3 and Ki(P) = Kti+1 or ti = 2 and Ki(P) is an odd
cycle. Since ω(H(G)) ≤ ti − 1, it then follows that there is a low vertex y of G belonging
to K̃i(P ) = Ki(P) − v(P). From Lemma 2.2 it then follows that P ′ = P/(v(P), y) is an
optimal (t1, . . . , tp+1)-partition of G. Since v(P ′) = y is a low vertex of G, P ′ is a proper
(t1, . . . , tp+1)-partition of G. This proves the lemma. �

Lemma 2.6 (Main Lemma) Let G be a critical graph such that χ(G) = 1+t1+· · ·+tp for
integers t1, . . . , tp ≥ 1, let P be a proper (t1, . . . , tp)-partition of G, and let i, j ∈ {1, . . . , p} be
two different integers such that ti, tj ≥ 3 and ω(H(G)) ≤ min{ti, tj}− 1. Then the following
statements hold:

(a) Let K ∈ Kh(P) for h ∈ {i, j}. Then K is a complete graph Kth containing at least one
low vertex. Furthermore, for u ∈ V (K), either NG(u) = V (K−u)∪NG(u :

⋃
k �=h Vk(P))

or K = K̃h(P) and NG(u) = V (K − u) ∪ {v(P)} ∪NG(u :
⋃

k �=h Vk(P)).

(b) K̃i(P) contains a low vertex u of G such that u has a neighbor in G belonging to K̃j(P).

(c) Each low vertex x of G belonging to U = V (K̃i) ∪ V (K̃j) ∪ {v(P)} is in G completely
joined to U \ {x}.

Proof. Statement (a) follows immediately from Lemma 2.3 and from the assumption that
ω(H(G)) ≤ th − 1 and the fact that K is a component of G[Vh(P)].

For the proof of (b), suppose this is false. Then every low vertex u of G belonging to
K̃i(P) satisfies NG(u) ∩ V (K̃j(P)) = ∅. To arrive at a contradiction, we shall construct an
infinite sequence (L0, L1, . . .) of distinct graphs all belonging to K = Ki(P) ∪ Kj(P). First,
we put P0 = P, x0 = v(P), L0 = K̃j(P), and L1 = K̃i(P). By (a), L1 contains a low
vertex x1. For k ≥ 0, we now construct recursively the partition Pk+1 and the graph Lk+2

by defining Pk+1 = Pk/(xk, xk+1) and

Lk+2 =

{
K̃i(Pk+1) if k is odd,

K̃j(Pk+1) if k is even.

By (a), Lk+2 contains a low vertex xk+2. This completes our construction.
Let W = Vi(P)∪Vj(P)∪{v(P)}. We now claim that for each integer k ≥ 0 the sequence

(L0, L1, . . . , Lk, Lk+1) satisfies the following properties:
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(1) L0, L1, . . . , Lk, Lk+1 are pairwise distinct graphs from K, where Lh belongs to Ki(P) if
h is odd and to Kj(P) if h is even.

(2) For h ∈ {1, . . . , k}, xh ∈ V (Lh) is a low vertex of G such that NG(xh : W ) = V (Lh −
xh) ∪ {xh−1} ∪ V (Lh+1). Moreover, NG(x0 : W ) = V (L1) ∪ V (L0).

The proof of the claim is by induction on k. If k = 0, the claim is evidently true.
Now, assume that the claim holds for the sequence S = (L0, L1, . . . , Lk, Lk+1) with k ≥ 0.
Furthermore, let xk+1 ∈ V (Lk+1) be a low vertex. By Lemma 2.3(b), we conclude from (1)
and (2) that P0 = P, P1 = P0/(x0, x1), . . . ,Pk = Pk−1/(xk−1, xk),Pk+1 = Pk/(xk, xk+1) is a
sequence of proper partitions of G. Now, consider the proper partition P ′ = Pk+1 of G. For
h ∈ {1, . . . , k + 1}, let L′

h = (Lh − xh) + xh−1. Then we have

Ki(P ′) = Ki(P) \ {Lh | 1 ≤ h ≤ k + 1, h odd} ∪ {L′
h | 1 ≤ h ≤ k + 1, h odd}

and

Kj(P ′) = Kj(P) \ {Lh | 1 ≤ h ≤ k + 1, h even} ∪ {L′
h | 1 ≤ h ≤ k + 1, h even}.

Observe that L0 ∈ Kj(P ′). Furthermore, we have v(P ′) = xk+1. To show that the sequence
S ′ = (L0, L1, . . . , Lk, Lk+1, Lk+2) satisfies (1) and (2), we distinguish two cases.

Case 1: k is odd. Then Lk+2 = K̃i(P ′) belongs to Ki(P ′). Since (1) and (2) hold for
the sequence S, we have NG(xk+1 : W ) ∩ {xh | 0 ≤ h ≤ k − 1, h even} = ∅. Since Ki(P ′) is
a complete graph containing xk+1, it follows that Lk+1 �∈ {L′

h | 1 ≤ h ≤ k + 1, h odd}. This
implies that Lk+2 ∈ Ki(P) \ {Lh | 1 ≤ h ≤ k + 1, h odd}. Hence, the sequence S ′ satisfies
(1). Furthermore, we have K̃j(P ′) = L′

k+1 and, therefore, xk+1 ∈ V (Lk+1) is a low vertex of
G such that

NG(xk+1 : W ) = V (L′
k+1) ∪ V (Lk+2) = V (Lk+1 − xk+1) ∪ {xk} ∪ V (Lk+2).

Hence, S ′ also satisfies (2).

Case 2: k is even. Then Lk+2 = K̃j(P ′) belongs to Kj(P ′). Since (1) and (2) hold
for the sequence S, it follows that NG(xk+1 : W ) ∩ {xh | 1 ≤ h ≤ k − 1, h odd} = ∅.
Consequently, Lk+1 �∈ {L′

h | 1 ≤ h ≤ k + 1, h even}. This implies that Lk+2 belongs to
Kj(P) \ {Lh | 1 ≤ h ≤ k + 1, h even}.

Next, we claim that Lk+2 �= L0. Suppose this is false. Then xk+1 is completely joined to
L0. Since the low vertex x1 ∈ V (L1) has no neighbor in L0 = K̃j(P), we have k ≥ 2. Now,
we can choose a low vertex x ∈ L0. Observe that x is adjacent to x0 and, therefore, x has a
neighbor in L′

1. By Lemma 2.3(b), P∗ = P ′/(xk+1, x) is a proper partition with v(P∗) = x.
Since L′

1 ∈ Ki(P∗) and x has a neighbor in L′
1, this implies that L′

1 = K̃i(P∗). Consequently,
x is completely joined to L′

1. But then x has a neighbor in L1 = K̃i(P). So by Lemma 2.4,
x is adjacent to x1, a contradiction. Hence Lk+2 �= L0.
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Consequently, the sequence S ′ satisfies (1). Furthermore, we have K̃i(P ′) = L′
k+1 and,

therefore, xk+1 ∈ V (Lk+1) is a low vertex of G such that

NG(xk+1 : W ) = V (L′
k+1) ∪ V (Lk+2) = V (Lk+1 − xk+1) ∪ {xk} ∪ V (Lk+2).

Hence, S ′ also satisfies (2).
This shows that for each k ≥ 0, the sequence (L0, L1, . . . , Lk, Lk+1) satisfies (1) and (2).

Since our graph G is finite, this gives a contradiction. This completes the proof of (b).
Finally, we prove (c). By (b), K̃i(P) contains a low vertex u of G such that u has a

neighbor in G belonging to K̃j(P). Then Lemma 2.4 implies that u is completely joined to
K̃j(P). Now again by Lemma 2.4, every low vertex x ∈ U is completely joined to U \ {x}
in G. �

3 A generalization of Theorem 1.7

Theorem 1.7 is the case p = 1 of the following more general statement.

Theorem 3.1 Let G be a critical graph with Δ(G) ≤ Δ and χ(G) ≥ Δ− p+ 1 for integers
Δ, p satisfying Δ ≥ 4p+3 and p ≥ 1. Let �, r be integers satisfying Δ− p = �(p+1)+ r and
0 ≤ r ≤ p, further put

b =

⌈
�(p− 1) + 2p− r

2p

⌉
.

If ω(H(G)) ≤ �− b, then G = Kχ(G).

Proof. Assume that Theorem 3.1 is false. Then there exists a critical graph G �= Kχ(G) such
that Δ(G) ≤ Δ, χ(G) ≥ Δ − p + 1 and ω(H(G)) ≤ � − b, where Δ, p, �, r, b are integers
satisfying the hypothesis of the theorem. We choose such G with the minimum |V (G)|. To
arrive at a contradiction, we shall show that this leads to a coloring of G using k = χ(G)−1
colors. Based on Lemma 2.6, we shall first exhibit a set U of k + 1 vertices such that U
contains at least p + 2 low vertices and each low vertex contained in U has no neighbor
outside U . Then we show that a certain coloring of G−U with k colors can be extended to
a coloring of G with k colors.

From the assumption we easily conclude that � ≥ 3 and 1 ≤ b ≤ � − 1. Next, we define
a sequence (t1, . . . , tp) of integers as follows. For i ∈ {1, . . . , p}, let ti = � + 1 if 1 ≤ i ≤ r
and ti = � otherwise. Finally, let tp+1 = k − t1 − · · · − tp. Since t1 + . . . tp = �p + r and
k = χ(G) − 1 ≥ Δ − p = �(p + 1) + r, we have tp+1 ≥ �. Consequently, we have χ(G) =
k+1 = 1+t1+· · · tp+1 and ω(H(G)) ≤ �−b ≤ �−1 ≤ min{t1, . . . , tp+1}−1. Then by Lemma
2.5, there exists a proper (t1, . . . , tp+1)-partition P of G. Let U = {v(P)} ∪⋃p+1

i=1 V (K̃i(P)),
let X denote the set of all low vertices of G belonging to U , and let Y = U \X . For a set
M ⊆ V (G), let M c = V (G) \M .

By construction, |U | = 1+t1+· · ·+tp+1 = k+1 = χ(G) and ti ≥ � ≥ 3 for i = 1, . . . , p+1.
So, by Lemma 2.6, K̃i(P) = Kti for i = 1, . . . , p + 1, and every vertex x ∈ X is completely
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joined to U \ {x} in G. This implies, in particular, that dG(x : U) = k and dG(x : U c) = 0
for every x ∈ X. Furthermore, since ω(H(G)) ≤ � − b and v(P) ∈ X, we conclude that
|X∩V (K̃j(P))| ≥ (tj−(�−b)) ≥ b for j = 1, . . . , p+1 and, therefore, |X| ≥ 1+(p+1)b ≥ p+2.
Since Δ(G) ≤ Δ ≤ k + p, this implies that

(1) dG(y : Xc) ≤ k − 2 for all y ∈ Y .

We also claim that

(2) dG(y : U) ≥ k − p(�− b) for all y ∈ Y .

This follows from the fact that a vertex y ∈ Y belongs to Ki(P) = Kti+1 with 1 ≤ i ≤ p+ 1
and therefore,

dG(y : U) = ti +
∑
j �=i

dG(y : V (K̃j(P))

≥ ti +
∑
j �=i

|X ∩ V (K̃j(P))|

≥ ti +
∑
j �=i

(tj − (�− b))

= k − p(�− b).

In fact, the above proof yields the following strengthening of (2).

(3) If dG(y : U) = k − p(�− b) for a vertex y ∈ Y ∩ V (K̃i(P)) and i ∈ I = {1, . . . , p+ 1},
then dG(y : Y ∩ V (K̃j(P)) = 0 and |Y ∩ V (K̃j(P))| = �− b for all j ∈ I \ {i}.

As the graph G is critical with χ(G) = k+1 and G �= Kk+1, we conclude that ω(G) ≤ k.
Since |U | = k + 1, this implies that G[U ] is not a complete graph. Since G[X ] is complete,
it then follows that G[Y ] is not a complete graph. Therefore, we can choose a pair (u, v) of
two distinct vertices in Y with uv �∈ E(G). Then u ∈ V (K̃i(P)) and v ∈ V (K̃j(P)) where
i �= j. Now, let H = G[U c ∪ {u, v}] and let H ′ be the graph obtained from H by identifying
u and v, that is, we replace u, v by a new vertex w = w(u, v) and join w to each vertex in
NH(u) ∪ NH(v) by an edge. Since G is critical and χ(G) = k + 1, we have χ(H) ≤ k and,
therefore, χ(H ′) ≤ k + 1.

We claim that χ(H ′) = k + 1. Otherwise, there is a coloring ϕ of H with a set C of
k colors such that ϕ(u) = ϕ(v). Then ϕ can be extended to a coloring ϕ′ of G′ = G − X
using the same k colors from C. To see this, observe that, by (1), each vertex y ∈ Y satisfies
dG(y : V (G′)) ≤ dG(y : Xc) ≤ k − 2. Eventually, we can extend ϕ′ to a coloring of G
using the colors from C. To see this, we associate to each vertex x ∈ X a list L(x) =
C \ {ϕ′(u) | u ∈ NG(x : Xc)} of colors available for x. Then |X| = r ≥ 3 and each vertex
x ∈ X is adjacent to u and v in G and satisfies dG(x) = k and dG(x : X) = r− 1. Hence, we
have |L(x)| ≥ k − (k − (r − 1)− 1) = r for all x ∈ X. Consequently, there is a coloring ϕ′′

of G[X] such that ϕ′′(x) ∈ L(x) for all x ∈ X . Then ϕ′ ∪ϕ′′ is a coloring of G with k colors,
contradicting χ(G) = k + 1. This proves that χ(H ′) = k + 1.
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Consequently, there is a critical subgraph G′ of H ′ with χ(G′) = k + 1. Since χ(H) ≤ k,
we have w = w(u, v) ∈ V (G′) and, therefore, dG′(w) ≥ k. Recall that Δ(G) ≤ Δ, k ≥
Δ− p = �(p+ 1) + r and b =

⌈
�(p−1)+2p−r

2p

⌉
. By (2) this implies that

k ≤ dG′(w) ≤ dG(u : U c) + dG(v : U c) ≤ 2Δ(G)− dG(u : U)− dG(v : U)

≤ 2Δ− 2k + 2p(�− b) ≤ 2p+ 2p(�− b) ≤ �(p+ 1) + r

= Δ− p ≤ k.

Then we conclude that w is a low vertex of G′, Δ(G) = Δ, χ(G) − 1 = k = Δ − p,

b = �(p−1)+2p−r
2p

and, moreover, dG(u : U) = dG(v : U) = k − p(� − b) and dG(z : U c) =

Δ − dG(z : U) = k/2 for z ∈ {u, v}. We also conclude that NG(u : U c) and NG(v : U c) are
disjoint sets, each with k/2 elements.

The vertex w being a low vertex of the critical graph G′, we have Δ(G′) ≤ Δ and
ω(H(G′)) ≤ ω(H(G)) ≤ � − b. Since χ(G′) = k + 1 = Δ − p + 1 and |G′| < |G|, it then
follows that G′ = Kk+1. Consequently, for the vertex pair (u, v), consisting of two distinct
vertices of Y with uv �∈ E(G), we obtain the following result:

(4) There is a set W = W (u, v) ⊆ U c of k vertices such that G[W ] = Kk and the pair
(NG(u : U c), NG(v : U c)) is a partition of W with |NG(u : U c)| = |NG(v : U c)| = k/2.

Since u ∈ V (K̃i(P)) and v ∈ V (K̃j(P)) with i �= j and since dG(z : U) = k − p(� − b)
for z ∈ {u, v}, it follows from (3) that dG(u : Y ∩ V (K̃h(P)) = 0 for all h ∈ I \ {i},
dG(v : Y ∩ V (K̃h(P)) = 0 for all h ∈ I \ {j} and, moreover, |Y ∩ V (K̃h(P))| = �− b ≥ 1 for
all h ∈ I, where I = {1, . . . , p+1}. Since this holds for any pair (u, v) of distinct vertices in
Y with uv �∈ E(G), we conclude that two vertices of Y are adjacent in G if and only if they
belong to the same complete graph K̃i(P) for some i ∈ I.

If p ≥ 2, then there exists a set {u1, u2, u3} ⊆ Y of three vertices that are independent
in G. Then it follows from (4) that, for 1 ≤ i < j ≤ 3, G[W (ui, uj)] = Kk and the pair
(NG(ui : U

c), NG(uj : U
c)) is a partition of W (ui, uj) with |NG(ui : U

c)| = |NG(uj : U
c)| =

k/2. This implies that the sets NG(u1 : U c), NG(u2 : U c), NG(u3 : U c) are pairwise disjoint
and G[NG(u1 : U c) ∪ NG(u2 : U c) ∪ NG(u3 : U c)] = K3k/2. Therefore, ω(G) ≥ 3k/2 > k, a
contradiction.

If p = 1, then we have b = �(p−1)+2p−r
2p

= 2−r
2
. Since 0 ≤ r ≤ 1 and b is an integer,

this implies that r = 0 and b = 1. Hence we obtain that χ(G) = Δ(G) = Δ = 2� + 1,
k = 2�, and |Y ∩ V (K̃h(P))| = � − b = � − 1 ≥ 2 for h ∈ {1, 2}. Then we can choose
three vertices u, v1, v2 ∈ Y such that uv1, uv2 �∈ E(G). Then it follows from (4) that, for
i = 1, 2, G[W (u, vi)] = K� and the pair (NG(u : U c), NG(vi : U

c)) is a partition of W (u, vi)
with |NG(u : U c)| = |NG(vi : U c)| = �. First, assume that NG(v1 : U c) �= NG(v2 : U c).
Then Gu = G[NG(u : U c)] = K� and each vertex in Gu has degree at least 2� + 1 = Δ.
Hence ω(H(G)) ≥ �, a contradiction. Now, assume that NG(v1 : U c) = NG(v2 : U c). Then
G1 = G[NG(v1 : U c)] = K� and each vertex in G1 has degree at least 2� + 1 = Δ. Hence
ω(H(G)) ≥ �, a contradiction, too. This completes the proof of Theorem 3.1 �
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4 Proof of Theorem 1.8

Assume that Theorem 1.8 is false. Then there is a critical graph G �∈ {K6, O5} such that
χ(G) ≥ Δ(G) ≥ 5 and ω(H(G)) ≤ 1. We choose such G with the minimum |V (G)|.

By Brooks’s theorem, χ(G) = Δ(G) = 5. Since G is critical, we have δ(G) ≥ 4. To come
to a contradiction, we shall prove that there exists a coloring of G with 4 colors. For a set
M ⊆ V (G), let M c = V (G) \M .

Claim 4.1 G contains no K−
5 -subgraph.

Proof. Suppose that G contains a subgraph L = K−
5 = K5 − xy. Since G is a critical graph

with χ(G) = Δ(G) = 5, we conclude that xy �∈ E(G). Clearly, K = L− x− y is a K3.
Let H = G−V (K) and let H ′ be the graph obtained from H by identifying x and y to a

new vertex v = v(x, y). Since G is critical and χ(G) = 5, we have χ(H) = 4 and, therefore,
χ(H ′) ≤ 5.

We claim that χ(H ′) = 5. Indeed, otherwise, there is a colouring ϕ of H with a set C
of 4 colors such that ϕ(x) = ϕ(y). Since ω(H(G)) ≤ 1, K contains at most one high vertex
of G. Then using a simple greedy strategy, ϕ can be extended to a coloring ϕ′ of G using
the same 4 colors from C (the last vertex to color is chosen to be of degree 4 and has two
neighbors, y and x, of the same colour), contradicting χ(G) = 5. This proves the claim.

Consequently, H ′ contains a critical subgraph G′ with χ(G′) = 5. Since χ(H) = 4, we
have v = v(y, x) ∈ V (G′) and, therefore, dG′(v) ≥ 4. Since

dG′(v) ≤ dG(x : V (L)c) + dG(y : V (L)c) = (dG(x)− 3) + (dG(y)− 3),

we need dG(x) = dG(y) = 5, i.e., both x and y are high vertices of G. So, all vertices of
NG(x)∪NG(y) are low vertices. Hence, dG′(u) = 4 for each vertex u ∈ NG′(v). We conclude
that Δ(G′) ≤ 5, ω(H(G′)) ≤ 1, and G′ �= O5 (note that each low vertex of O5 is adjacent to
at least one high vertex). Since G′ satisfies the conditions of the theorem, has fewer vertices
than G and is not O5, we have G′ = K5. Since dG(x : V (L)c) = dG(y : V (L)c) = 2, this
implies that G′′ = G[V (L) ∪ V (G′ − v)] is isomorphic to O5. Since G′′ is a critical subgraph
of G and χ(G′′) = 5, we obtain that G = G′′ = O5, a contradiction. �

Claim 4.2 Let K = K4 be a subgraph of G. Then for each v ∈ V (G)− V (K), at most one
neighbor of v in K is a low vertex.

Proof. Suppose this is false. Then G contains a subgraph K = K4 such that there are two
low vertices x, y ∈ V (K) and a vertex u ∈ V (K)c with ux, uy ∈ E(G). Let x′, y′ denote the
two vertices ofK−x−y. Since G is 5-critical and G �= K5, it does not contain aK5-subgraph.
By Claim 4.1, G does not contain K−

5 -subgraph. This implies that ux′, uy′ �∈ E(G). Since
x′y′ ∈ E(G), by symmetry, we may assume that x′ is a low vertex of G. If u is a low vertex
of G, then G[{x′, x, y, u}] is a K−

4 contained in L(G) as an induced subgraph. This, however,
is a contradiction to Theorem 1.3, saying that each block of L(G) is either a complete graph
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or an odd cycle. Hence u is a high vertex of G. Since ux′ �∈ E(G), there is a vertex
z ∈ V (G) \ {x′, y′, x, y, u} such that zx′ ∈ E(G).

Let H = G− V (K) + zu. Since G is critical, we have χ(G− V (K)) ≤ 4 and χ(H) ≤ 5.
We claim that χ(H) = 5. Indeed, otherwise, there is a coloring ϕ of G− V (K) with a set C
of 4 colors such that ϕ(u) �= ϕ(z). Then we let ϕ(x′) = ϕ(u) and color y′, x, y greedily from
C in this order. Since y has two neighbors of the same color, we will succeed, contradicting
χ(G) = 5.

So, χ(H) = 5. Consequently, we have zu �∈ E(G) and there is a critical subgraph G′ of
H with χ(G′) = 5. Since χ(G− V (K)) = 4, we have uz ∈ E(G′). Note that dH(u) = 4 and
dH(z) ≤ dG(z). Hence Δ(G′) ≤ 5 and ω(H(G′)) ≤ 1. Since G is a smallest counterexample,
this implies that G′ ∈ {K5, O5}.

First, assume that G′ = O5. Observe that u is a high vertex of G, but a low vertex of G′.
Since ω(H(G)) ≤ 1, this implies that each neighbor of u in G is a low vertex of G. However,
in G′ = O5 the vertex v is adjacent to some high vertex of G′. This implies that z is a high
vertex of G′. Consequently, zy′ �∈ E(G) and dH(z) = dG(z), that is, z is a high vertex of G.
Since G is critical and K is a complete subgraph of G, graph G− V (K) is connected. Next,
we claim that G′ = H . Suppose this is false. Then there is an edge vw ∈ E(H) − E(G′)
with v ∈ V (G′). If v is a high vertex of G′ or v = u, we conclude that dG(v) ≥ 6 > Δ(G),
a contradiction. If v is a low vertex of G′ with v �= u, then v is a high vertex of G. Since
G′ = O5, the low vertex v is adjacent to some high vertex v′ of G′. Then v′ is a high vertex of
G and and vv′ ∈ E(G), implying that ω(H(G)) ≥ 2, a contradiction. This proves the claim
that G′ = H = V (G)−V (K)+uz. Clearly, y′ is adjacent to some vertex w ∈ V (G′)−{u, z}.
Since Since wy′ /∈ E(G′), w is low in G′, but a high of G. Hence, in G′ = O5 vertex w has
a neighbor w′ that is a high vertex in G′. Then w′ is a high vertex of G. So, edge ww′ in G
joins two high vertices of G, contradicting ω(H(G)) ≤ 1.

Now, assume that G′ = K5. Then G′′ = G[V (K) ∪ V (G′)] is isomorphic to O−
5 , where

the missing edge is zy′. If the edge zy′ belongs to G, then G contains O5 and, as before,
we conclude that G = O5, a contradiction. If zy′ �∈ E(G), then dG′′(y′) = 3 implies that
there is edge y′w in G such that w /∈ V (K). Since ω(H(G)) ≤ 1, we then conclude that
w ∈ V (G′′)c. Furthermore, we conclude that there are at most three edges joining a vertex
of V (G′′) (namely y′ or z) with a vertex of V (G′′)c. This contradicts Theorem 1.1, saying
that G is 4-edge connected.

Hence, in both cases we arrived at a contradiction. Thus the claim is proved. �

To complete the proof of the theorem, we shall investigate the structure of proper (2, 2)-
partitions of G. In the sequel, such a partition is briefly called a proper partition of G. An
edge uv of L(G) is called a low edge of G.

Claim 4.3 Let P be a proper partition of G, let C = Ki(P) with i ∈ {1, 2} and let j ∈
{1, 2} \ {i}. Then C is an odd cycle containing a low edge of G. If u ∈ V (C) is a low vertex
of G, then P ′ = P/(v(P), u) is a proper partition and every graph P ∈ Kj(P) is an odd
path such that either N(u : Vj(P)) ∩ V (P ) = ∅ or N(u : Vj(P)) ∩ V (P ) consists of the two
endvertices of P .
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Proof. By Lemma 2.3 and the assumption that ω(H(G)) ≤ 1, C is an odd cycle and contains
a low edge. Let u ∈ V (C) be a low vertex of G. By Lemma 2.3, P ′ = P/(v(P), u) is a
proper partition, where Kj(P ′) = Kj(P) consists of odd paths. Since |NG(u : V (P))| = 2
and Kj(P ′) is an odd cycle containing u, the two vertices in NG(u;Vj(P)) are the two end-
vertices of exactly one path in Kj(P). �

Since G is a critical graph with χ(G) = Δ(G) = 5 and ω(H(G)) ≤ 1, by Lemma
2.5, there is a proper partition P of G. Starting with P, we construct recursively a se-
quence C1, . . . , Ck+1 of odd cycles, a sequence P1, . . . ,Pk+1 of proper partitions and sequence
u1v1, . . . , ukvk of edges as follows. Put P1 = P and C1 = K1(P). Furthermore, choose a low
edge u1v1 of C1 such that u1 = v(P1) if possible. Now, let h ≥ 1. Let Ph+1 = Ph/(v(Ph), vh)
and, let

Ch+1 =

{
K2(Ph+1) if h is odd,
K1(Ph+1) if h is even.

If Ch+1 contains a vertex from the set {u1, . . . , uh}, then k = h and we stop. Otherwise,
we choose a low edge uh+1vh+1 ∈ E(Ch+1), such that uh+1 = v(Ph+1) if possible. Then we
continue the construction with h+ 1. Since G is a finite graph, k is well defined.

Now, we choose such a proper partition P with the minimum k. We use the same notation
as above. Clearly, k ≥ 2 and, for 1 ≤ i ≤ k + 1, Ci is an odd cycle containing the edge
uivi. Furthermore, if 1 ≤ h ≤ k, then v(Ph+1) = vh ∈ V (Ch+1), and C1 − v1, . . . , Ch − vh are
pairwise vertex-disjoint odd paths satisfying

{Ci − vi | 1 ≤ i ≤ h odd} ⊆ K1(Ph+1),

and
{Ci − vi | 1 ≤ i ≤ h even} ⊆ K2(Ph+1).

The odd cycle Ck+1 = Kp(Pk+1) with p = 1, 2 and k + 1 ≡ p mod 2 belongs to
G[Vp(Pk+1) ∪ {vk}], contains the vertex vk and, moreover, a vertex from the set U =
{u1, . . . , uk}. This implies that Ck+1 contains exactly one vertex from the set U, say uj.
Then Ck+1 − vk = Cj − vj and k + 1 ≡ j mod 2. We claim that j = 1. Otherwise,
P ′
2 = (v(P2), V2(P2), V1(P2)) is a proper partition and C2, . . . , Ck+1 is the corresponding se-

quence of odd cycles, contradicting the choice of P = P1. This shows that j = 1 and,
therefore, k is even, Ck+1 = K1(Pk+1), vk = v(Pk+1), and Ck+1 − vk = C1 − v1.

By definition, u1v1 is a low edge of G belonging to the odd cycle C1 and, moreover, there
is a vertex w1 such that NG(v1 : V (C1)) = {u1, w1}. Note that NG(vk : V1(Pk+1)) = {u1, w1}.
Furthermore, C2 is an odd cycle containing the low edge u2v2 and C2−v2 is a path inK2(Pk+1)
containing the vertex v1. Hence u2 is an endvertex of the path C2 − v2. Let w2 denote the
other endvertex of C2 − v2. Since u1 is a low vertex of G contained in Ck+1 = K1(Pk+1),
we conclude from Claim 4.3, that v1 ∈ NG(u1 : V2(Pk+1)) = {u2, w2}. Since v1 = v(P2), our
construction rule implies that u2 = v1.

Clearly, P = C2 − v1 is an odd path and v2 is an endvertex of P . By our construction,
we conclude that P ∈ K2(P). Since u1 is a low vertex of G contained in C1 = K1(P) and
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u1 is adjacent to w2 ∈ V (P ), Claim 4.3 implies that NG(u1 : V2(P)) = {v2, w2} and v2, w2

are the two endvertices of P . This implies that C2 is a K3 with V (C2) = {v1 = u2, w2, v2}.
Since dG(u1) = 4 and u1vk ∈ E(G), we conclude that vk = v2 and k = 2. Consequently,
G[{u1, v1, w2, v2}] = K4 and NG(w1) contains the vertices vk = v2 and v1. Since v1, v2 are
low vertices of G, this gives a contradiction to Claim 4.2. This contradiction completes the
proof of Theorem 1.8.
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