Graphs with chromatic number close to maximum degree

Alexandr V. Kostochka* Landon Rabern ${ }^{\dagger}$ Michael Stiebitz ${ }^{\ddagger}$

Abstract

Let G be a color-critical graph with $\chi(G) \geq \Delta(G)=2 t+1 \geq 5$ such that the subgraph of G induced by the vertices of degree $2 t+1$ has clique number at most $t-1$. We prove that then either $t \geq 3$ and $G=K_{2 t+2}$ or $t=2$ and $G \in\left\{K_{6}, O_{5}\right\}$, where O_{5} is a special graph with $\chi\left(O_{5}\right)=5$ and $\left|O_{5}\right|=9$. This result for $t \geq 3$ improves a case of a theorem by Rabern [9] and for $t=2$ answers a question raised by Kierstead and Kostochka in [6].

AMS Subject Classification: 05C15
Keywords: Graph coloring, Brook's theorem, Critical graphs.

1 Introduction

In this paper we consider finite, simple, undirected graphs. Given a graph G, we write $V(G)$ for its vertex set and $E(G)$ for its edge set. Furthermore, we write $\Delta(G)$ for its maximum degree, $\delta(G)$ for its minimum degree, $\omega(G)$ for its clique number and $\chi(G)$ for its chromatic number.

A graph G is called critical, or color-critical if $\chi(H)<\chi(G)$ whenever H is a proper subgraph of G. Let ρ be a monotone graph parameter, that is a mapping that assigns to each graph G a real number such that $\rho(H) \leq \rho(G)$ whenever H is a isomorphic to a subgraph of G. If we want to show that every graph G satisfies $\chi(G) \leq \rho(G)$, then it suffices to establish this inequality for all critical graphs. This follows from the simple fact that each graph contains a critical graph with the same chromatic number.

The only critical graph with chromatic number $k \in\{1,2\}$ is the complete graph K_{k} on k vertices and the only critical graphs with chromatic number 3 are the odd cycles $C_{2 p+1}$.

[^0]However, for any given integer $k \geq 4$, a characterization of all critical graphs with chromatic number k seems to be unlikely.

Critical graphs were first defined and investigated by Dirac [3] in 1951. He observed that $\delta(G) \geq \chi(G)-1$ for every critical graph G with $\chi(G) \geq 1$ and proved as a generalization the following result.

Theorem 1.1 (Dirac [4] 1953) If G is a critical graph with $\chi(G)=k$ for an integer $k \geq 1$, then G is $(k-1)$-edge connected.

In view of this, the vertices of a critical graph G with degree $\chi(G)-1$ are called the low vertices and the others are called the high vertices. For a critical graph G, we denote by $\mathcal{L}(G)$ the subgraph induced by the low vertices of G, and by $\mathcal{H}(G)$ the subgraph induced by the high vertices of G.

Dirac's simple observation concerning the minimum degree in critical graphs implies, in particular, that every graph G satisfies

$$
\begin{equation*}
\chi(G) \leq \Delta(G)+1 \tag{1}
\end{equation*}
$$

Brooks's fundamental result from 1941 characterizes the graphs for which (1) holds with equality.

Theorem 1.2 (Brooks [1] 1941) If a graph G satisfies $\chi(G)=\Delta(G)+1$, then either G contains $K_{\Delta(G)+1}$ or $\Delta(G)=2$ and G contains an odd cycle.

Observe that Brooks's theorem is equivalent to the statement that the only critical graphs G with $\chi(G)=\Delta(G)+1$ or, equivalently with $\mathcal{H}(G)=\emptyset$, are the complete graphs and the odd cycles. This result was generalized by Gallai.

Theorem 1.3 (Gallai [5] 1963) If G is a critical graph with $\chi(G) \geq 1$, then each block of $\mathcal{L}(G)$ is a complete graph or an odd cycle.

The Ore-degree of an edge $x y$ in a graph G is the sum $\theta_{G}(x y)=d_{G}(x)+d_{G}(y)$ of the degrees of its ends. The Ore-degree of a graph G is defined as $\theta(G)=\max _{x y \in E(G)} \theta_{G}(x y)$. The counterpart of (1) for the Ore-degree of a graph G is

$$
\begin{equation*}
\chi(G) \leq\lfloor\theta(G) / 2\rfloor+1 \tag{2}
\end{equation*}
$$

This also follows easily from Dirac's observation that $\delta(G) \geq \chi(G)-1$ for every critical graph G. Clearly, equality in (2) holds for complete graphs and odd cycles. However, for small odd θ there are other critical graphs for which (2) holds with equality.

Example 1 Let \mathcal{O}_{4} be a family of graphs defined recursively as follows. The graph obtained from disjoint graphs $K_{4}-x y$ and $K_{4}-x^{\prime} y^{\prime}$ by identifying x and x^{\prime} and joining y and y^{\prime} belongs to the family. If G belongs to the family, then the graph G^{\prime} obtained as follows also belongs to the family: Choose a vertex z with $d_{G}(z)=4$ and split z into two vertices z_{1}
and z_{2} of degree two. Add two new vertices u and v that are adjacent to z_{1}, z_{2} and to each other. The resulting graph is G^{\prime}, see Figure 1. It is easy to show that each graph $G \in \mathcal{O}_{4}$ is a critical graph such that $\theta(G)=7$ and $\chi(G)=4$, see also [7].

Example 2 Let O_{5} be the graph obtained from $K_{5}-x y$ and K_{4} by joining two vertices of K_{4} to x and the two other vertices of K_{4} to y, see Figure 2. Then O_{5} is a critical graph satisfying $\left|V\left(O_{5}\right)\right|=9, \theta\left(O_{5}\right)=9$ and $\chi\left(O_{5}\right)=5$.

The Ore-degree of a graph is closely related to Ore's famous theorem about the existence of Hamilton cycles (for the complement). Ore-type bounds for the chromatic number of a graph were first investigated by Kierstead and Kostochka [6, 7].

Figure 1: Two graphs in \mathcal{O}_{4}.

Theorem 1.4 (Kierstead and Kostochka [6] 2009) If $7 \leq \chi(G)=\lfloor\theta(G) / 2\rfloor+1$, then G contains the complete graph $K_{\chi(G)}$.

Theorem 1.4 is equivalent to the following statement about critical graphs.
Theorem 1.5 (Kierstead and Kostochka [6] 2009) The complete graph $K_{\Delta(G)+1}$ is the only critical graph G with $\chi(G) \geq \Delta(G) \geq 7$ such that $\mathcal{H}(G)$ is edgeless.

The proof of Theorem 1.5 given in [6] uses a list coloring argument for an auxiliary bipartite graph and is based on Gallai's characterization of the low vertex subgraph $\mathcal{L}(G)$ of a critical graph G and a result from [11] saying that if G is a critical graph, then $\mathcal{H}(G)$ has at most as many components as $\mathcal{L}(G)$ has. The proof only works if $\Delta(G) \geq 7$. Very recently, Rabern [9] found a simpler argument that also works for critical graphs with $\chi(G) \geq \Delta(G) \geq$ 6. He proved a stronger result:

Theorem 1.6 (Rabern [9] 2010) The complete graph $K_{\Delta(G)+1}$ is the only critical graph G with $\chi(G) \geq \Delta(G) \geq 6$ such that $\omega(\mathcal{H}(G)) \leq\lfloor\Delta(G) / 2\rfloor-2$.

In this paper, using the ideas of the proof of Theorem 1.6, we improve its bound for odd $\Delta(G) \geq 7$. Furthermore, we also consider the case $\Delta(G)=5$, see Theorem 1.8.

Figure 2: The graph O_{5}.

Theorem 1.7 If G is a critical graph and $t \geq 3$ is an integer such that $\chi(G) \geq \Delta(G)=2 t+1$ and $\omega(\mathcal{H}(G)) \leq t-1$, then $G=K_{2 t+2}$.

Theorem 1.7 is a partial case of a more general result which will be stated and proved in Section 3.

Theorem 1.8 If G is a critical graph satisfying $\chi(G) \geq \Delta(G)=5$ and $\omega(\mathcal{H}(G)) \leq 1$, then $G \in\left\{K_{6}, O_{5}\right\}$.

Corollary 1.9 If $\chi(G)=\lfloor\theta(G) / 2\rfloor+1=5$, then $G \in\left\{K_{5}, O_{5}\right\}$.
Theorem 1.8 answers a question raised by Kostochka and Kierstead [6] in the affirmative. Description of critical graphs with $\chi(G)=\Delta(G)=4$ and $\omega(\mathcal{H}(G)) \leq 1$ remains unknown. Observe that there is no critical graph with $\chi(G)=\Delta(G) \leq 3$.

2 Proper partitions and Mozhan's lemma

Our main tool to prove both theorems is an useful observation made by Mozhan [8] developing an idea by Catlin [2]. Let us start with some terminology.

In the sequel, let G denote a critical graph with $\chi(G) \geq 4$. For a vertex set $X \subseteq V(G)$, let $G[X]$ denote the subgraph of G induced by X and let $E_{G}(X)=E(G[X])$. Further, let $G-X=G[V(G) \backslash X]$. If $x \in V(G)$ we write $G-x$ rather than $G-\{x\}$. For a vertex $v \in V(G)$ and a vertex set $X \subseteq V(G)$, let $N_{G}(v: X)=\{u \in X \mid u v \in E(G)\}$ and let $d_{G}(v: X)=\left|N_{G}(v: X)\right|$. We put $N_{G}(x)=N_{G}(x: V(G))$ and $d_{G}(x)=d_{G}(x: V(G))$.

A sequence $\left(x, X_{1}, \ldots, X_{p}\right)$ is called a (n ordered) partition of G if $x \in V(G)$ and X_{1}, \ldots, X_{p} are pairwise disjoint subsets of $V(G-x)$ whose union is $V(G-x)$. We call such a partition a $\left(t_{1}, \ldots, t_{p}\right)$-partition of G if $\chi(G-x)=t_{1}+\ldots+t_{p}$ and $\chi\left(G\left[X_{i}\right]\right)=t_{i}$ for $i=1, \ldots, p$. By an optimal $\left(t_{1}, \ldots, t_{p}\right)$-partition of G we mean a $\left(t_{1}, \ldots, t_{p}\right)$-partition $\left(x, X_{1}, \ldots, X_{p}\right)$ of G such that the weight

$$
w\left(X_{1}, \ldots, X_{p}\right)=\left|E_{G}\left(X_{1}\right)\right|+\cdots+\left|E_{G}\left(X_{p}\right)\right|
$$

is minimum over all $\left(t_{1}, \ldots, t_{p}\right)$-partitions of G. Observe that for any sequence $\left(t_{1}, \ldots, t_{p}\right)$ such that $\chi(G)=1+t_{1}+\cdots+t_{p}$, there exists a $\left(t_{1}, \ldots, t_{p}\right)$-partition of G. If $\mathcal{P}=$ $\left(x, X_{1}, \ldots, X_{p}\right)$ is a $\left(t_{1}, \ldots, t_{p}\right)$-partition, we will denote the component of $G\left[X_{i} \cup\{x\}\right]$ containing the vertex x by $K^{i}(\mathcal{P})$. Note that $G\left[X_{i} \cup\{x\}\right]$ is not necessarily connected.

The next result is a simple consequence of Brooks's theorem and the fact that the chromatic number is subadditive in the sense that every partition $\left(Y_{1}, \ldots, Y_{s}\right)$ of the vertex set of a graph H satisfies $\chi(H) \leq \chi\left(H\left[Y_{1}\right]\right)+\cdots+\chi\left(H\left[Y_{s}\right]\right)$.

Lemma 2.1 (Mozhan [8] 1983) Let G be a critical graph and let $\mathcal{P}=\left(x, X_{1}, \ldots, X_{p}\right)$ be an optimal $\left(t_{1}, \ldots, t_{p}\right)$-partition of G for integers $t_{1}, \ldots, t_{p} \geq 1$. Then the following statements hold:
(a) $\chi\left(G\left[X_{i} \cup\{x\}\right]\right)=t_{i}+1$ and $d_{G}\left(x: X_{i}\right) \geq t_{i}$ for all $i \in\{1, \ldots, p\}$.
(b) If x is a low vertex of G, then $d_{G}\left(x: X_{i}\right)=t_{i}$ for all $i \in\{1, \ldots, p\}$.
(c) If $d_{G}\left(x: X_{i}\right)=t_{i}$ for some $i \in\{1, \ldots, p\}$, then either $K^{i}(\mathcal{P})=K_{t_{i}+1}$ or $t_{i}=2$ and $K^{i}(P)$ is an odd cycle.

Proof. By definition, $\chi(G)=1+t_{1}+\cdots+t_{p}$ and $\chi\left(G\left[X_{i}\right]\right)=t_{i}$ for all $i \in\{1, \ldots, p\}$. Since $\left(X_{1}, \ldots, X_{p}\right)$ is a partition of $V(G-x)$, we have $\chi\left(G\left[X_{i} \cup\{x\}\right]=t_{i}+1\right.$ and hence $d_{G}\left(x: X_{i}\right) \geq t_{i}$ for all $i \in\{1, \ldots, p\}$. This proves (a). If x is a low vertex of G, then $d_{G}(x)=\chi(G)-1=t_{1}+\cdots+t_{p}$. By (a), this implies that $d_{G}\left(x: X_{i}\right)=t_{i}$ for all $i \in\{1, \ldots, p\}$. This proves (b).

For the proof of (c), assume that $d_{G}\left(x: X_{i}\right)=t_{i}$ for some $i \in\{1, \ldots, p\}$. By (a) it then follows that $\chi\left(K^{i}(\mathcal{P})\right)=t_{i}+1$. We claim that $\Delta\left(K^{i}(\mathcal{P})\right) \leq t_{i}$. Suppose this is false. Then choose a vertex y in $K^{i}(\mathcal{P})$ with $d_{K^{i}(\mathcal{P})}(y)>t_{i}$ closest to x and let $P=\left(x_{1}=\right.$ $x, x_{2}, \ldots, x_{s}=y$) be a shortest path in $K^{i}(\mathcal{P})$ joining x and y. Now, let φ be a (proper) coloring of $G\left[X_{i}\right]$ with t_{i} colors. Then φ induces a coloring of $K^{i}(\mathcal{P})-x$ with t_{i} colors. Clearly, $x \neq y$ and $d_{G}\left(x_{k}: X_{i}\right)=t_{i}$ for $1 \leq k<s$. Since $\chi\left(K^{i}(\mathcal{P})\right)=t_{i}+1$, this implies that among the t_{i} neighbors of $x=x_{1}$ in $K^{i}(\mathcal{P})$ all t_{i} colors occur. Hence if we recolor x_{1} with $\varphi\left(x_{2}\right)$ and uncolor x_{2}, we obtain a coloring of $G\left[\left(X_{i} \cup\left\{x_{1}\right\}\right)\right]-x_{2}$ with t_{i} colors such that $d_{G}\left(x_{2}:\left(X_{i} \cup\left\{x_{1}\right\}\right) \backslash\left\{x_{2}\right\}\right)=t_{i}$. Now we can repeat the argument. Hence if we recolor x_{k} by $\varphi\left(x_{k+1}\right)$ for $1 \leq k<s$ and uncolor $x_{s}=y$, we obtain a t_{i}-coloring of $G\left[X_{i}^{\prime}\right]$ with $X_{i}^{\prime}=\left(X_{i} \cup\{x\}\right) \backslash\{y\}$. Thus $\left(y, X_{i}, \ldots, X_{i-1}, X_{i}^{\prime}, X_{i+1}, \ldots, X_{p}\right)$ is a $\left(t_{1}, \ldots, t_{p}\right)$-partition of G with a smaller weight. This however contradicts the choice of our partition $\left(x, X_{1}, \ldots, X_{p}\right)$. This proves the claim that $\Delta\left(K^{i}(\mathcal{P})\right) \leq t_{i}$. Since $\chi\left(K^{i}(\mathcal{P})\right)=t_{i}+1$, by Brooks's theorem either $K^{i}(\mathcal{P})=K_{t_{i}+1}$ or $t_{i}=2$ and $K^{i}(\mathcal{P})$ is an odd cycle. This proves (c) and hence the lemma.

Let $\mathcal{P}=\left(x, X_{1}, \ldots, X_{p}\right)$ be an optimal $\left(t_{1}, \ldots, t_{p}\right)$-partition of G and let $y \in X_{i}$ be a vertex for some $i \in\{1, \ldots, p\}$. For $j \in\{1, \ldots, p\}$ we let

$$
Y_{j}= \begin{cases}X_{j} & \text { if } j \neq i \\ \left(X_{i} \cup\{x\}\right) \backslash\{y\} & \text { if } j=i\end{cases}
$$

We then say that $\mathcal{P}^{\prime}=\left(y, Y_{1}, \ldots, Y_{p}\right)$ is obtained from \mathcal{P} by swapping x with y and write $\mathcal{P}^{\prime}=\mathcal{P} /(x, y)$. Clearly, \mathcal{P}^{\prime} is a $\left(t_{1}, \ldots, t_{p}\right)$-partition of G if and only if $\chi\left(G\left[Y_{i}\right]\right)=t_{i}$. If $d_{G}\left(x: X_{i}\right)=t_{i}$ and $y \in V\left(K^{i}(\mathcal{P})\right)$, then it follows from Lemma 2.1(c) that $\chi\left(G\left[Y_{i}\right]\right)=t_{i}$ and $\mathcal{P}^{\prime}=\left(y, Y_{1}, \ldots, Y_{p}\right)$ is a $\left(t_{1}, \ldots, t_{p}\right)$-partition of G with the same weight as \mathcal{P}. So, we obtain the following statement.

Lemma 2.2 Let G be a critical graph and let $\mathcal{P}=\left(x, X_{1}, \ldots, X_{p}\right)$ be an optimal $\left(t_{1}, \ldots, t_{p}\right)$ partition of G for integers $t_{1}, \ldots, t_{p} \geq 1$. If $d_{G}\left(x: X_{i}\right)=t_{i}$ for some $i \in\{1, \ldots, p\}$ and $y \in V\left(K^{i}(\mathcal{P})\right)$, then $\mathcal{P} /(x, y)$ is an optimal $\left(t_{1}, \ldots, t_{p}\right)$-partition of G.

We call $\mathcal{P}=\left(x, X_{1}, \ldots, X_{p}\right)$ a proper $\left(t_{1}, \ldots, t_{p}\right)$-partition of G if \mathcal{P} is an optimal $\left(t_{1}, \ldots, t_{p}\right)$-partition of G and x is a low vertex of G. As a simple consequence of Lemma 2.1(b)(c) and Lemma 2.2 we obtain the following result.

Lemma 2.3 Let G be a critical graph and let $\mathcal{P}=\left(x, X_{1}, \ldots, X_{p}\right)$ be a proper $\left(t_{1}, \ldots, t_{p}\right)$ partition of G for integers $t_{1}, \ldots, t_{p} \geq 1$. Then the following statements hold:
(a) For all $i \in\{1, \ldots, p\}$, we have $d_{G}\left(x: X_{i}\right)=t_{i}$ and, moreover, either $K^{i}(\mathcal{P})=K_{t_{i}+1}$ or $t_{i}=2$ and $K^{i}(\mathcal{P})$ is an odd cycle.
(b) If $y \in \bigcup_{i=1}^{p} V\left(K^{i}(\mathcal{P})\right)$ is a low vertex of G, then $\mathcal{P} /(x, y)$ is a proper $\left(t_{1}, \ldots, t_{p}\right)$ partition of G.

Lemma 2.4 Let G be a critical graph and let $\mathcal{P}=\left(x, X_{1}, \ldots, X_{p}\right)$ be a proper $\left(t_{1}, \ldots, t_{p}\right)$ partition of G for integers $t_{1}, \ldots, t_{p} \geq 1$. Furthermore, let $y \in V\left(K^{i}(\mathcal{P})-x\right)$ be a low vertex of G with $i \in\{1, \ldots, p\}$. If y has a neighbor in G belonging to $K^{j}(\mathcal{P})-x$ for $j \in\{1, \ldots, p\} \backslash\{i\}$, then $N_{G}\left(x: X_{j}\right)=N_{G}\left(y: X_{j}\right)$.

Proof. Since y is a low vertex of G belonging to $K^{i}(\mathcal{P})-x$, Lemma 2.3(b) implies that $\mathcal{P}^{\prime}=\mathcal{P} /(x, y)$ is a proper $\left(t_{1}, \ldots, t_{p}\right)$-partition of G. Since y has a neighbor in G belonging to $K^{j}(\mathcal{P})-x$, we conclude that $K^{j}(\mathcal{P})-x=K^{j}\left(\mathcal{P}^{\prime}\right)-y$. Hence, by Lemma 2.3(a), $N_{G}\left(x: X_{j}\right)=N_{G}\left(y: X_{j}\right)$.

Let $\mathcal{P}=\left(x, X_{1}, \ldots, X_{p}\right)$ be a proper $\left(t_{1}, \ldots, t_{p}\right)$-partition of G for integers $t_{1}, \ldots, t_{p} \geq 1$. Then we denote the special vertex x by $v(\mathcal{P})$ and the $i^{\text {th }}$ set X_{i} of \mathcal{P} by $V_{i}(\mathcal{P})$. For $i \in$ $\{1, \ldots, p\}$, we put $\tilde{K}^{i}(\mathcal{P})=K^{i}(\mathcal{P})-x$. Lemma 2.3 implies that $\tilde{K}^{i}(\mathcal{P})$ is either a complete graph with t_{i} vertices or $t_{i}=2$ and $\tilde{K}^{i}(\mathcal{P})$ is an odd path (i.e., a path with an odd number of edges). Observe that $\tilde{K}^{i}(\mathcal{P})$ is a component of the graph $G\left[X_{i}\right]$. By $\mathcal{K}^{i}(\mathcal{P})$ we denote the set of all components K of $G\left[X_{i}\right]$ such that either K is a complete graph with t_{i} vertices or $t_{i}=2$ and K is an odd path.

If H is a subgraph of G and $x \in V(G) \backslash V(H)$ is a vertex, then we denote by $H+x$ the graph obtained from H by adding the vertex x and joining x to each vertex of H by an edge. If $H+x$ is a subgraph of G, then we say that x is completely joined to H (and to $V(H)$).

Lemma 2.5 Let G be a critical graph such that $\chi(G)=1+t_{1}+\cdots+t_{p}$ for integers $t_{1}, \ldots, t_{p} \geq$ 2. If $\Delta(G) \leq \chi(G)+p-2$ and $\omega(\mathcal{H}(G)) \leq \min \left\{t_{1}, \ldots, t_{p}\right\}-1$, then there exists a proper $\left(t_{1}, \ldots, t_{p}\right)$-partition of G.

Proof. Since $\chi(G)=1+t_{1}+\cdots+t_{p}$ and G is critical, there is an optimal $\left(t_{1}, \ldots, t_{p}\right)$ partition \mathcal{P} of G. Let $v=v(\mathcal{P})$. If v is a low vertex of G, then \mathcal{P} is a proper $\left(t_{1}, \ldots, t_{p}\right)$ partition of G and we are done. Otherwise v is a high vertex of G. Then, there is an $i \in\{1, \ldots p\}$ such that $d_{G}\left(v: V_{i}(\mathcal{P})\right)=t_{i}$. Otherwise, we conclude from Lemma 2.1(a) that $\Delta(G) \geq d_{G}(v) \geq\left(t_{1}+1\right)+\cdots+\left(t_{p}+1\right)=\chi(G)+p-1$, a contradiction to $\Delta(G) \leq \chi(G)+p-2$. Then Lemma 2.1(c) implies that $t_{i} \geq 3$ and $K^{i}(\mathcal{P})=K_{t_{i}+1}$ or $t_{i}=2$ and $K^{i}(\mathcal{P})$ is an odd cycle. Since $\omega(\mathcal{H}(G)) \leq t_{i}-1$, it then follows that there is a low vertex y of G belonging to $\tilde{K}^{i}(P)=K^{i}(\mathcal{P})-v(\mathcal{P})$. From Lemma 2.2 it then follows that $\mathcal{P}^{\prime}=\mathcal{P} /(v(\mathcal{P}), y)$ is an optimal $\left(t_{1}, \ldots, t_{p+1}\right)$-partition of G. Since $v\left(\mathcal{P}^{\prime}\right)=y$ is a low vertex of G, \mathcal{P}^{\prime} is a proper $\left(t_{1}, \ldots, t_{p+1}\right)$-partition of G. This proves the lemma.

Lemma 2.6 (Main Lemma) Let G be a critical graph such that $\chi(G)=1+t_{1}+\cdots+t_{p}$ for integers $t_{1}, \ldots, t_{p} \geq 1$, let \mathcal{P} be a proper $\left(t_{1}, \ldots, t_{p}\right)$-partition of G, and let $i, j \in\{1, \ldots, p\}$ be two different integers such that $t_{i}, t_{j} \geq 3$ and $\omega(\mathcal{H}(G)) \leq \min \left\{t_{i}, t_{j}\right\}-1$. Then the following statements hold:
(a) Let $K \in \mathcal{K}^{h}(\mathcal{P})$ for $h \in\{i, j\}$. Then K is a complete graph $K_{t_{h}}$ containing at least one low vertex. Furthermore, for $u \in V(K)$, either $N_{G}(u)=V(K-u) \cup N_{G}\left(u: \bigcup_{k \neq h} V_{k}(\mathcal{P})\right)$ or $K=\tilde{K}^{h}(\mathcal{P})$ and $N_{G}(u)=V(K-u) \cup\{v(\mathcal{P})\} \cup N_{G}\left(u: \bigcup_{k \neq h} V_{k}(\mathcal{P})\right)$.
(b) $\tilde{K}^{i}(\mathcal{P})$ contains a low vertex u of G such that u has a neighbor in G belonging to $\tilde{K}^{j}(\mathcal{P})$.
(c) Each low vertex x of G belonging to $U=V\left(\tilde{K}^{i}\right) \cup V\left(\tilde{K}^{j}\right) \cup\{v(\mathcal{P})\}$ is in G completely joined to $U \backslash\{x\}$.

Proof. Statement (a) follows immediately from Lemma 2.3 and from the assumption that $\omega(\mathcal{H}(G)) \leq t_{h}-1$ and the fact that K is a component of $G\left[V_{h}(\mathcal{P})\right]$.

For the proof of (b), suppose this is false. Then every low vertex u of G belonging to $\tilde{K}^{i}(\mathcal{P})$ satisfies $N_{G}(u) \cap V\left(\tilde{K}^{j}(\mathcal{P})\right)=\emptyset$. To arrive at a contradiction, we shall construct an infinite sequence $\left(L_{0}, L_{1}, \ldots\right)$ of distinct graphs all belonging to $\mathcal{K}=\mathcal{K}^{i}(\mathcal{P}) \cup \mathcal{K}^{j}(\mathcal{P})$. First, we put $\mathcal{P}_{0}=\mathcal{P}, x_{0}=v(\mathcal{P}), L_{0}=\tilde{K}^{j}(\mathcal{P})$, and $L_{1}=\tilde{K}^{i}(\mathcal{P})$. By (a), L_{1} contains a low vertex x_{1}. For $k \geq 0$, we now construct recursively the partition \mathcal{P}_{k+1} and the graph L_{k+2} by defining $\mathcal{P}_{k+1}=\mathcal{P}_{k} /\left(x_{k}, x_{k+1}\right)$ and

$$
L_{k+2}= \begin{cases}\tilde{K}^{i}\left(\mathcal{P}_{k+1}\right) & \text { if } k \text { is odd } \\ \tilde{K}^{j}\left(\mathcal{P}_{k+1}\right) & \text { if } k \text { is even }\end{cases}
$$

By (a), L_{k+2} contains a low vertex x_{k+2}. This completes our construction.
Let $W=V_{i}(\mathcal{P}) \cup V_{j}(\mathcal{P}) \cup\{v(\mathcal{P})\}$. We now claim that for each integer $k \geq 0$ the sequence $\left(L_{0}, L_{1}, \ldots, L_{k}, L_{k+1}\right)$ satisfies the following properties:
(1) $L_{0}, L_{1}, \ldots, L_{k}, L_{k+1}$ are pairwise distinct graphs from \mathcal{K}, where L_{h} belongs to $\mathcal{K}^{i}(\mathcal{P})$ if h is odd and to $\mathcal{K}^{j}(\mathcal{P})$ if h is even.
(2) For $h \in\{1, \ldots, k\}, x_{h} \in V\left(L_{h}\right)$ is a low vertex of G such that $N_{G}\left(x_{h}: W\right)=V\left(L_{h}-\right.$ $\left.x_{h}\right) \cup\left\{x_{h-1}\right\} \cup V\left(L_{h+1}\right)$. Moreover, $N_{G}\left(x_{0}: W\right)=V\left(L_{1}\right) \cup V\left(L_{0}\right)$.

The proof of the claim is by induction on k. If $k=0$, the claim is evidently true. Now, assume that the claim holds for the sequence $\mathcal{S}=\left(L_{0}, L_{1}, \ldots, L_{k}, L_{k+1}\right)$ with $k \geq 0$. Furthermore, let $x_{k+1} \in V\left(L_{k+1}\right)$ be a low vertex. By Lemma 2.3(b), we conclude from (1) and (2) that $\mathcal{P}_{0}=\mathcal{P}, \mathcal{P}_{1}=\mathcal{P}_{0} /\left(x_{0}, x_{1}\right), \ldots, \mathcal{P}_{k}=\mathcal{P}_{k-1} /\left(x_{k-1}, x_{k}\right), \mathcal{P}_{k+1}=\mathcal{P}_{k} /\left(x_{k}, x_{k+1}\right)$ is a sequence of proper partitions of G. Now, consider the proper partition $\mathcal{P}^{\prime}=\mathcal{P}_{k+1}$ of G. For $h \in\{1, \ldots, k+1\}$, let $L_{h}^{\prime}=\left(L_{h}-x_{h}\right)+x_{h-1}$. Then we have

$$
\mathcal{K}^{i}\left(\mathcal{P}^{\prime}\right)=\mathcal{K}^{i}(\mathcal{P}) \backslash\left\{L_{h} \mid 1 \leq h \leq k+1, h \text { odd }\right\} \cup\left\{L_{h}^{\prime} \mid 1 \leq h \leq k+1, h \text { odd }\right\}
$$

and

$$
\mathcal{K}^{j}\left(\mathcal{P}^{\prime}\right)=\mathcal{K}^{j}(\mathcal{P}) \backslash\left\{L_{h} \mid 1 \leq h \leq k+1, h \text { even }\right\} \cup\left\{L_{h}^{\prime} \mid 1 \leq h \leq k+1, h \text { even }\right\}
$$

Observe that $L_{0} \in \mathcal{K}^{j}\left(\mathcal{P}^{\prime}\right)$. Furthermore, we have $v\left(\mathcal{P}^{\prime}\right)=x_{k+1}$. To show that the sequence $\mathcal{S}^{\prime}=\left(L_{0}, L_{1}, \ldots, L_{k}, L_{k+1}, L_{k+2}\right)$ satisfies (1) and (2), we distinguish two cases.

Case 1: k is odd. Then $L_{k+2}=\tilde{K}^{i}\left(\mathcal{P}^{\prime}\right)$ belongs to $\mathcal{K}^{i}\left(\mathcal{P}^{\prime}\right)$. Since (1) and (2) hold for the sequence \mathcal{S}, we have $N_{G}\left(x_{k+1}: W\right) \cap\left\{x_{h} \mid 0 \leq h \leq k-1, h\right.$ even $\}=\emptyset$. Since $\mathcal{K}^{i}\left(\mathcal{P}^{\prime}\right)$ is a complete graph containing x_{k+1}, it follows that $L_{k+1} \notin\left\{L_{h}^{\prime} \mid 1 \leq h \leq k+1, h\right.$ odd $\}$. This implies that $L_{k+2} \in \mathcal{K}^{i}(\mathcal{P}) \backslash\left\{L_{h} \mid 1 \leq h \leq k+1, h\right.$ odd $\}$. Hence, the sequence \mathcal{S}^{\prime} satisfies (1). Furthermore, we have $K^{j}\left(\mathcal{P}^{\prime}\right)=L_{k+1}^{\prime}$ and, therefore, $x_{k+1} \in V\left(L_{k+1}\right)$ is a low vertex of G such that

$$
N_{G}\left(x_{k+1}: W\right)=V\left(L_{k+1}^{\prime}\right) \cup V\left(L_{k+2}\right)=V\left(L_{k+1}-x_{k+1}\right) \cup\left\{x_{k}\right\} \cup V\left(L_{k+2}\right)
$$

Hence, \mathcal{S}^{\prime} also satisfies (2).
Case 2: k is even. Then $L_{k+2}=\tilde{K}^{j}\left(\mathcal{P}^{\prime}\right)$ belongs to $\mathcal{K}^{j}\left(\mathcal{P}^{\prime}\right)$. Since (1) and (2) hold for the sequence \mathcal{S}, it follows that $N_{G}\left(x_{k+1}: W\right) \cap\left\{x_{h} \mid 1 \leq h \leq k-1, h\right.$ odd $\}=\emptyset$. Consequently, $L_{k+1} \notin\left\{L_{h}^{\prime} \mid 1 \leq h \leq k+1, h\right.$ even $\}$. This implies that L_{k+2} belongs to $\mathcal{K}^{j}(\mathcal{P}) \backslash\left\{L_{h} \mid 1 \leq h \leq k+1, h\right.$ even $\}$.

Next, we claim that $L_{k+2} \neq L_{0}$. Suppose this is false. Then x_{k+1} is completely joined to L_{0}. Since the low vertex $x_{1} \in V\left(L_{1}\right)$ has no neighbor in $L_{0}=\tilde{K}^{j}(\mathcal{P})$, we have $k \geq 2$. Now, we can choose a low vertex $x \in L_{0}$. Observe that x is adjacent to x_{0} and, therefore, x has a neighbor in L_{1}^{\prime}. By Lemma 2.3(b), $\mathcal{P}^{*}=\mathcal{P}^{\prime} /\left(x_{k+1}, x\right)$ is a proper partition with $v\left(\mathcal{P}^{*}\right)=x$. Since $L_{1}^{\prime} \in \mathcal{K}^{i}\left(\mathcal{P}^{*}\right)$ and x has a neighbor in L_{1}^{\prime}, this implies that $L_{1}^{\prime}=\tilde{K}^{i}\left(\mathcal{P}^{*}\right)$. Consequently, x is completely joined to L_{1}^{\prime}. But then x has a neighbor in $L_{1}=\tilde{K}^{i}(\mathcal{P})$. So by Lemma 2.4, x is adjacent to x_{1}, a contradiction. Hence $L_{k+2} \neq L_{0}$.

Consequently, the sequence \mathcal{S}^{\prime} satisfies (1). Furthermore, we have $\tilde{K}^{i}\left(\mathcal{P}^{\prime}\right)=L_{k+1}^{\prime}$ and, therefore, $x_{k+1} \in V\left(L_{k+1}\right)$ is a low vertex of G such that

$$
N_{G}\left(x_{k+1}: W\right)=V\left(L_{k+1}^{\prime}\right) \cup V\left(L_{k+2}\right)=V\left(L_{k+1}-x_{k+1}\right) \cup\left\{x_{k}\right\} \cup V\left(L_{k+2}\right)
$$

Hence, \mathcal{S}^{\prime} also satisfies (2).
This shows that for each $k \geq 0$, the sequence ($L_{0}, L_{1}, \ldots, L_{k}, L_{k+1}$) satisfies (1) and (2). Since our graph G is finite, this gives a contradiction. This completes the proof of (b).

Finally, we prove (c). By (b), $\tilde{K}^{i}(\mathcal{P})$ contains a low vertex u of G such that u has a neighbor in G belonging to $\tilde{K}^{j}(\mathcal{P})$. Then Lemma 2.4 implies that u is completely joined to $\tilde{K}^{j}(\mathcal{P})$. Now again by Lemma 2.4, every low vertex $x \in U$ is completely joined to $U \backslash\{x\}$ in G.

3 A generalization of Theorem 1.7

Theorem 1.7 is the case $p=1$ of the following more general statement.
Theorem 3.1 Let G be a critical graph with $\Delta(G) \leq \Delta$ and $\chi(G) \geq \Delta-p+1$ for integers Δ, p satisfying $\Delta \geq 4 p+3$ and $p \geq 1$. Let ℓ, r be integers satisfying $\Delta-p=\ell(p+1)+r$ and $0 \leq r \leq p$, further put

$$
b=\left\lceil\frac{\ell(p-1)+2 p-r}{2 p}\right\rceil .
$$

If $\omega(\mathcal{H}(G)) \leq \ell-b$, then $G=K_{\chi(G)}$.
Proof. Assume that Theorem 3.1 is false. Then there exists a critical graph $G \neq \mathcal{K}_{\chi(G)}$ such that $\Delta(G) \leq \Delta, \chi(G) \geq \Delta-p+1$ and $\omega(\mathcal{H}(G)) \leq \ell-b$, where Δ, p, ℓ, r, b are integers satisfying the hypothesis of the theorem. We choose such G with the minimum $|V(G)|$. To arrive at a contradiction, we shall show that this leads to a coloring of G using $k=\chi(G)-1$ colors. Based on Lemma 2.6, we shall first exhibit a set U of $k+1$ vertices such that U contains at least $p+2$ low vertices and each low vertex contained in U has no neighbor outside U. Then we show that a certain coloring of $G-U$ with k colors can be extended to a coloring of G with k colors.

From the assumption we easily conclude that $\ell \geq 3$ and $1 \leq b \leq \ell-1$. Next, we define a sequence $\left(t_{1}, \ldots, t_{p}\right)$ of integers as follows. For $i \in\{1, \ldots, p\}$, let $t_{i}=\ell+1$ if $1 \leq i \leq r$ and $t_{i}=\ell$ otherwise. Finally, let $t_{p+1}=k-t_{1}-\cdots-t_{p}$. Since $t_{1}+\ldots t_{p}=\ell p+r$ and $k=\chi(G)-1 \geq \Delta-p=\ell(p+1)+r$, we have $t_{p+1} \geq \ell$. Consequently, we have $\chi(G)=$ $k+1=1+t_{1}+\cdots t_{p+1}$ and $\omega(\mathcal{H}(G)) \leq \ell-b \leq \ell-1 \leq \min \left\{t_{1}, \ldots, t_{p+1}\right\}-1$. Then by Lemma 2.5 , there exists a proper $\left(t_{1}, \ldots, t_{p+1}\right)$-partition \mathcal{P} of G. Let $U=\{v(\mathcal{P})\} \cup \bigcup_{i=1}^{p+1} V\left(\tilde{K}^{i}(\mathcal{P})\right)$, let X denote the set of all low vertices of G belonging to U, and let $Y=U \backslash X$. For a set $M \subseteq V(G)$, let $M^{c}=V(G) \backslash M$.

By construction, $|U|=1+t_{1}+\cdots+t_{p+1}=k+1=\chi(G)$ and $t_{i} \geq \ell \geq 3$ for $i=1, \ldots, p+1$. So, by Lemma 2.6, $\tilde{K}^{i}(\mathcal{P})=K_{t_{i}}$ for $i=1, \ldots, p+1$, and every vertex $x \in X$ is completely
joined to $U \backslash\{x\}$ in G. This implies, in particular, that $d_{G}(x: U)=k$ and $d_{G}\left(x: U^{c}\right)=0$ for every $x \in X$. Furthermore, since $\omega(\mathcal{H}(G)) \leq \ell-b$ and $v(\mathcal{P}) \in X$, we conclude that $\left|X \cap V\left(\tilde{K}^{j}(\mathcal{P})\right)\right| \geq\left(t_{j}-(\ell-b)\right) \geq b$ for $j=1, \ldots, p+1$ and, therefore, $|X| \geq 1+(p+1) b \geq p+2$. Since $\Delta(G) \leq \Delta \leq k+p$, this implies that
(1) $d_{G}\left(y: X^{c}\right) \leq k-2$ for all $y \in Y$.

We also claim that
(2) $d_{G}(y: U) \geq k-p(\ell-b)$ for all $y \in Y$.

This follows from the fact that a vertex $y \in Y$ belongs to $K^{i}(\mathcal{P})=K_{t_{i}+1}$ with $1 \leq i \leq p+1$ and therefore,

$$
\begin{aligned}
d_{G}(y: U) & =t_{i}+\sum_{j \neq i} d_{G}\left(y: V\left(\tilde{K}^{j}(\mathcal{P})\right)\right. \\
& \geq t_{i}+\sum_{j \neq i}\left|X \cap V\left(\tilde{K}^{j}(\mathcal{P})\right)\right| \\
& \geq t_{i}+\sum_{j \neq i}\left(t_{j}-(\ell-b)\right) \\
& =k-p(\ell-b) .
\end{aligned}
$$

In fact, the above proof yields the following strengthening of (2).
(3) If $d_{G}(y: U)=k-p(\ell-b)$ for a vertex $y \in Y \cap V\left(\tilde{K}^{i}(\mathcal{P})\right)$ and $i \in I=\{1, \ldots, p+1\}$, then $d_{G}\left(y: Y \cap V\left(\tilde{K}^{j}(\mathcal{P})\right)=0\right.$ and $\left|Y \cap V\left(\tilde{K}^{j}(\mathcal{P})\right)\right|=\ell-b$ for all $j \in I \backslash\{i\}$.

As the graph G is critical with $\chi(G)=k+1$ and $G \neq K_{k+1}$, we conclude that $\omega(G) \leq k$. Since $|U|=k+1$, this implies that $G[U]$ is not a complete graph. Since $G[X]$ is complete, it then follows that $G[Y]$ is not a complete graph. Therefore, we can choose a pair (u, v) of two distinct vertices in Y with $u v \notin E(G)$. Then $u \in V\left(\tilde{K}^{i}(\mathcal{P})\right)$ and $v \in V\left(\tilde{K}^{j}(\mathcal{P})\right)$ where $i \neq j$. Now, let $H=G\left[U^{c} \cup\{u, v\}\right]$ and let H^{\prime} be the graph obtained from H by identifying u and v, that is, we replace u, v by a new vertex $w=w(u, v)$ and join w to each vertex in $N_{H}(u) \cup N_{H}(v)$ by an edge. Since G is critical and $\chi(G)=k+1$, we have $\chi(H) \leq k$ and, therefore, $\chi\left(H^{\prime}\right) \leq k+1$.

We claim that $\chi\left(H^{\prime}\right)=k+1$. Otherwise, there is a coloring φ of H with a set C of k colors such that $\varphi(u)=\varphi(v)$. Then φ can be extended to a coloring φ^{\prime} of $G^{\prime}=G-X$ using the same k colors from C. To see this, observe that, by (1), each vertex $y \in Y$ satisfies $d_{G}\left(y: V\left(G^{\prime}\right)\right) \leq d_{G}\left(y: X^{c}\right) \leq k-2$. Eventually, we can extend φ^{\prime} to a coloring of G using the colors from C. To see this, we associate to each vertex $x \in X$ a list $L(x)=$ $C \backslash\left\{\varphi^{\prime}(u) \mid u \in N_{G}\left(x: X^{c}\right)\right\}$ of colors available for x. Then $|X|=r \geq 3$ and each vertex $x \in X$ is adjacent to u and v in G and satisfies $d_{G}(x)=k$ and $d_{G}(x: X)=r-1$. Hence, we have $|L(x)| \geq k-(k-(r-1)-1)=r$ for all $x \in X$. Consequently, there is a coloring $\varphi^{\prime \prime}$ of $G[X]$ such that $\varphi^{\prime \prime}(x) \in L(x)$ for all $x \in X$. Then $\varphi^{\prime} \cup \varphi^{\prime \prime}$ is a coloring of G with k colors, contradicting $\chi(G)=k+1$. This proves that $\chi\left(H^{\prime}\right)=k+1$.

Consequently, there is a critical subgraph G^{\prime} of H^{\prime} with $\chi\left(G^{\prime}\right)=k+1$. Since $\chi(H) \leq k$, we have $w=w(u, v) \in V\left(G^{\prime}\right)$ and, therefore, $d_{G^{\prime}}(w) \geq k$. Recall that $\Delta(G) \leq \Delta, k \geq$ $\Delta-p=\ell(p+1)+r$ and $b=\left\lceil\frac{\ell(p-1)+2 p-r}{2 p}\right\rceil$. By (2) this implies that

$$
\begin{aligned}
k \leq d_{G^{\prime}}(w) & \leq d_{G}\left(u: U^{c}\right)+d_{G}\left(v: U^{c}\right) \leq 2 \Delta(G)-d_{G}(u: U)-d_{G}(v: U) \\
& \leq 2 \Delta-2 k+2 p(\ell-b) \leq 2 p+2 p(\ell-b) \leq \ell(p+1)+r \\
& =\Delta-p \leq k
\end{aligned}
$$

Then we conclude that w is a low vertex of $G^{\prime}, \Delta(G)=\Delta, \chi(G)-1=k=\Delta-p$, $b=\frac{\ell(p-1)+2 p-r}{2 p}$ and, moreover, $d_{G}(u: U)=d_{G}(v: U)=k-p(\ell-b)$ and $d_{G}\left(z: U^{c}\right)=$ $\Delta-d_{G}(z: U)=k / 2$ for $z \in\{u, v\}$. We also conclude that $N_{G}\left(u: U^{c}\right)$ and $N_{G}\left(v: U^{c}\right)$ are disjoint sets, each with $k / 2$ elements.

The vertex w being a low vertex of the critical graph G^{\prime}, we have $\Delta\left(G^{\prime}\right) \leq \Delta$ and $\omega\left(\mathcal{H}\left(G^{\prime}\right)\right) \leq \omega(\mathcal{H}(G)) \leq \ell-b$. Since $\chi\left(G^{\prime}\right)=k+1=\Delta-p+1$ and $\left|G^{\prime}\right|<|G|$, it then follows that $G^{\prime}=K_{k+1}$. Consequently, for the vertex pair (u, v), consisting of two distinct vertices of Y with $u v \notin E(G)$, we obtain the following result:
(4) There is a set $W=W(u, v) \subseteq U^{c}$ of k vertices such that $G[W]=K_{k}$ and the pair $\left(N_{G}\left(u: U^{c}\right), N_{G}\left(v: U^{c}\right)\right)$ is a partition of W with $\left|N_{G}\left(u: U^{c}\right)\right|=\left|N_{G}\left(v: U^{c}\right)\right|=k / 2$.
Since $u \in V\left(\tilde{K}^{i}(\mathcal{P})\right)$ and $v \in V\left(\tilde{K}^{j}(\mathcal{P})\right)$ with $i \neq j$ and since $d_{G}(z: U)=k-p(\ell-b)$ for $z \in\{u, v\}$, it follows from (3) that $d_{G}\left(u: Y \cap V\left(\tilde{K}^{h}(\mathcal{P})\right)=0\right.$ for all $h \in I \backslash\{i\}$, $d_{G}\left(v: Y \cap V\left(\tilde{K}^{h}(\mathcal{P})\right)=0\right.$ for all $h \in I \backslash\{j\}$ and, moreover, $\left|Y \cap V\left(\tilde{K}^{h}(\mathcal{P})\right)\right|=\ell-b \geq 1$ for all $h \in I$, where $I=\{1, \ldots, p+1\}$. Since this holds for any pair (u, v) of distinct vertices in Y with $u v \notin E(G)$, we conclude that two vertices of Y are adjacent in G if and only if they belong to the same complete graph $\tilde{K}^{i}(\mathcal{P})$ for some $i \in I$.

If $p \geq 2$, then there exists a set $\left\{u_{1}, u_{2}, u_{3}\right\} \subseteq Y$ of three vertices that are independent in G. Then it follows from (4) that, for $1 \leq i<j \leq 3, G\left[W\left(u_{i}, u_{j}\right)\right]=K_{k}$ and the pair $\left(N_{G}\left(u_{i}: U^{c}\right), N_{G}\left(u_{j}: U^{c}\right)\right)$ is a partition of $W\left(u_{i}, u_{j}\right)$ with $\left|N_{G}\left(u_{i}: U^{c}\right)\right|=\left|N_{G}\left(u_{j}: U^{c}\right)\right|=$ $k / 2$. This implies that the sets $N_{G}\left(u_{1}: U^{c}\right), N_{G}\left(u_{2}: U^{c}\right), N_{G}\left(u_{3}: U^{c}\right)$ are pairwise disjoint and $G\left[N_{G}\left(u_{1}: U^{c}\right) \cup N_{G}\left(u_{2}: U^{c}\right) \cup N_{G}\left(u_{3}: U^{c}\right)\right]=K_{3 k / 2}$. Therefore, $\omega(G) \geq 3 k / 2>k$, a contradiction.

If $p=1$, then we have $b=\frac{\ell(p-1)+2 p-r}{2 p}=\frac{2-r}{2}$. Since $0 \leq r \leq 1$ and b is an integer, this implies that $r=0$ and $b=1$. Hence we obtain that $\chi(G)=\Delta(G)=\Delta=2 \ell+1$, $k=2 \ell$, and $\left|Y \cap V\left(\tilde{K}^{h}(\mathcal{P})\right)\right|=\ell-b=\ell-1 \geq 2$ for $h \in\{1,2\}$. Then we can choose three vertices $u, v_{1}, v_{2} \in Y$ such that $u v_{1}, u v_{2} \notin E(G)$. Then it follows from (4) that, for $i=1,2, G\left[W\left(u, v_{i}\right)\right]=K_{\ell}$ and the pair $\left(N_{G}\left(u: U^{c}\right), N_{G}\left(v_{i}: U^{c}\right)\right)$ is a partition of $W\left(u, v_{i}\right)$ with $\left|N_{G}\left(u: U^{c}\right)\right|=\left|N_{G}\left(v_{i}: U^{c}\right)\right|=\ell$. First, assume that $N_{G}\left(v_{1}: U^{c}\right) \neq N_{G}\left(v_{2}: U^{c}\right)$. Then $G_{u}=G\left[N_{G}\left(u: U^{c}\right)\right]=K_{\ell}$ and each vertex in G_{u} has degree at least $2 \ell+1=\Delta$. Hence $\omega(\mathcal{H}(G)) \geq \ell$, a contradiction. Now, assume that $N_{G}\left(v_{1}: U^{c}\right)=N_{G}\left(v_{2}: U^{c}\right)$. Then $G_{1}=G\left[N_{G}\left(v_{1}: U^{c}\right)\right]=K_{\ell}$ and each vertex in G_{1} has degree at least $2 \ell+1=\Delta$. Hence $\omega(\mathcal{H}(G)) \geq \ell$, a contradiction, too. This completes the proof of Theorem 3.1

4 Proof of Theorem 1.8

Assume that Theorem 1.8 is false. Then there is a critical graph $G \notin\left\{K_{6}, O_{5}\right\}$ such that $\chi(G) \geq \Delta(G) \geq 5$ and $\omega(\mathcal{H}(G)) \leq 1$. We choose such G with the minimum $|V(G)|$.

By Brooks's theorem, $\chi(G)=\Delta(G)=5$. Since G is critical, we have $\delta(G) \geq 4$. To come to a contradiction, we shall prove that there exists a coloring of G with 4 colors. For a set $M \subseteq V(G)$, let $M^{c}=V(G) \backslash M$.

Claim 4.1 G contains no K_{5}^{-}-subgraph .
Proof. Suppose that G contains a subgraph $L=K_{5}^{-}=K_{5}-x y$. Since G is a critical graph with $\chi(G)=\Delta(G)=5$, we conclude that $x y \notin E(G)$. Clearly, $K=L-x-y$ is a K_{3}.

Let $H=G-V(K)$ and let H^{\prime} be the graph obtained from H by identifying x and y to a new vertex $v=v(x, y)$. Since G is critical and $\chi(G)=5$, we have $\chi(H)=4$ and, therefore, $\chi\left(H^{\prime}\right) \leq 5$.

We claim that $\chi\left(H^{\prime}\right)=5$. Indeed, otherwise, there is a colouring φ of H with a set C of 4 colors such that $\varphi(x)=\varphi(y)$. Since $\omega(\mathcal{H}(G)) \leq 1, K$ contains at most one high vertex of G. Then using a simple greedy strategy, φ can be extended to a coloring φ^{\prime} of G using the same 4 colors from C (the last vertex to color is chosen to be of degree 4 and has two neighbors, y and x, of the same colour), contradicting $\chi(G)=5$. This proves the claim.

Consequently, H^{\prime} contains a critical subgraph G^{\prime} with $\chi\left(G^{\prime}\right)=5$. Since $\chi(H)=4$, we have $v=v(y, x) \in V\left(G^{\prime}\right)$ and, therefore, $d_{G^{\prime}}(v) \geq 4$. Since

$$
d_{G^{\prime}}(v) \leq d_{G}\left(x: V(L)^{c}\right)+d_{G}\left(y: V(L)^{c}\right)=\left(d_{G}(x)-3\right)+\left(d_{G}(y)-3\right),
$$

we need $d_{G}(x)=d_{G}(y)=5$, i.e., both x and y are high vertices of G. So, all vertices of $N_{G}(x) \cup N_{G}(y)$ are low vertices. Hence, $d_{G^{\prime}}(u)=4$ for each vertex $u \in N_{G^{\prime}}(v)$. We conclude that $\Delta\left(G^{\prime}\right) \leq 5, \omega\left(\mathcal{H}\left(G^{\prime}\right)\right) \leq 1$, and $G^{\prime} \neq O_{5}$ (note that each low vertex of O_{5} is adjacent to at least one high vertex). Since G^{\prime} satisfies the conditions of the theorem, has fewer vertices than G and is not O_{5}, we have $G^{\prime}=K_{5}$. Since $d_{G}\left(x: V(L)^{c}\right)=d_{G}\left(y: V(L)^{c}\right)=2$, this implies that $G^{\prime \prime}=G\left[V(L) \cup V\left(G^{\prime}-v\right)\right]$ is isomorphic to O_{5}. Since $G^{\prime \prime}$ is a critical subgraph of G and $\chi\left(G^{\prime \prime}\right)=5$, we obtain that $G=G^{\prime \prime}=O_{5}$, a contradiction.

Claim 4.2 Let $K=K_{4}$ be a subgraph of G. Then for each $v \in V(G)-V(K)$, at most one neighbor of v in K is a low vertex.

Proof. Suppose this is false. Then G contains a subgraph $K=K_{4}$ such that there are two low vertices $x, y \in V(K)$ and a vertex $u \in V(K)^{c}$ with $u x, u y \in E(G)$. Let x^{\prime}, y^{\prime} denote the two vertices of $K-x-y$. Since G is 5 -critical and $G \neq K_{5}$, it does not contain a K_{5}-subgraph. By Claim 4.1, G does not contain K_{5}^{-}-subgraph. This implies that $u x^{\prime}, u y^{\prime} \notin E(G)$. Since $x^{\prime} y^{\prime} \in E(G)$, by symmetry, we may assume that x^{\prime} is a low vertex of G. If u is a low vertex of G, then $G\left[\left\{x^{\prime}, x, y, u\right\}\right]$ is a K_{4}^{-}contained in $\mathcal{L}(G)$ as an induced subgraph. This, however, is a contradiction to Theorem 1.3, saying that each block of $\mathcal{L}(G)$ is either a complete graph
or an odd cycle. Hence u is a high vertex of G. Since $u x^{\prime} \notin E(G)$, there is a vertex $z \in V(G) \backslash\left\{x^{\prime}, y^{\prime}, x, y, u\right\}$ such that $z x^{\prime} \in E(G)$.

Let $H=G-V(K)+z u$. Since G is critical, we have $\chi(G-V(K)) \leq 4$ and $\chi(H) \leq 5$. We claim that $\chi(H)=5$. Indeed, otherwise, there is a coloring φ of $G-V(K)$ with a set C of 4 colors such that $\varphi(u) \neq \varphi(z)$. Then we let $\varphi\left(x^{\prime}\right)=\varphi(u)$ and color y^{\prime}, x, y greedily from C in this order. Since y has two neighbors of the same color, we will succeed, contradicting $\chi(G)=5$.

So, $\chi(H)=5$. Consequently, we have $z u \notin E(G)$ and there is a critical subgraph G^{\prime} of H with $\chi\left(G^{\prime}\right)=5$. Since $\chi(G-V(K))=4$, we have $u z \in E\left(G^{\prime}\right)$. Note that $d_{H}(u)=4$ and $d_{H}(z) \leq d_{G}(z)$. Hence $\Delta\left(G^{\prime}\right) \leq 5$ and $\omega\left(\mathcal{H}\left(G^{\prime}\right)\right) \leq 1$. Since G is a smallest counterexample, this implies that $G^{\prime} \in\left\{K_{5}, O_{5}\right\}$.

First, assume that $G^{\prime}=O_{5}$. Observe that u is a high vertex of G, but a low vertex of G^{\prime}. Since $\omega(\mathcal{H}(G)) \leq 1$, this implies that each neighbor of u in G is a low vertex of G. However, in $G^{\prime}=O_{5}$ the vertex v is adjacent to some high vertex of G^{\prime}. This implies that z is a high vertex of G^{\prime}. Consequently, $z y^{\prime} \notin E(G)$ and $d_{H}(z)=d_{G}(z)$, that is, z is a high vertex of G. Since G is critical and K is a complete subgraph of G, graph $G-V(K)$ is connected. Next, we claim that $G^{\prime}=H$. Suppose this is false. Then there is an edge $v w \in E(H)-E\left(G^{\prime}\right)$ with $v \in V\left(G^{\prime}\right)$. If v is a high vertex of G^{\prime} or $v=u$, we conclude that $d_{G}(v) \geq 6>\Delta(G)$, a contradiction. If v is a low vertex of G^{\prime} with $v \neq u$, then v is a high vertex of G. Since $G^{\prime}=O_{5}$, the low vertex v is adjacent to some high vertex v^{\prime} of G^{\prime}. Then v^{\prime} is a high vertex of G and and $v v^{\prime} \in E(G)$, implying that $\omega(\mathcal{H}(G)) \geq 2$, a contradiction. This proves the claim that $G^{\prime}=H=V(G)-V(K)+u z$. Clearly, y^{\prime} is adjacent to some vertex $w \in V\left(G^{\prime}\right)-\{u, z\}$. Since Since $w y^{\prime} \notin E\left(G^{\prime}\right), w$ is low in G^{\prime}, but a high of G. Hence, in $G^{\prime}=O_{5}$ vertex w has a neighbor w^{\prime} that is a high vertex in G^{\prime}. Then w^{\prime} is a high vertex of G. So, edge $w w^{\prime}$ in G joins two high vertices of G, contradicting $\omega(\mathcal{H}(G)) \leq 1$.

Now, assume that $G^{\prime}=K_{5}$. Then $G^{\prime \prime}=G\left[V(K) \cup V\left(G^{\prime}\right)\right]$ is isomorphic to O_{5}^{-}, where the missing edge is $z y^{\prime}$. If the edge $z y^{\prime}$ belongs to G, then G contains O_{5} and, as before, we conclude that $G=O_{5}$, a contradiction. If $z y^{\prime} \notin E(G)$, then $d_{G^{\prime \prime}}\left(y^{\prime}\right)=3$ implies that there is edge $y^{\prime} w$ in G such that $w \notin V(K)$. Since $\omega(\mathcal{H}(G)) \leq 1$, we then conclude that $w \in V\left(G^{\prime \prime}\right)^{c}$. Furthermore, we conclude that there are at most three edges joining a vertex of $V\left(G^{\prime \prime}\right)$ (namely y^{\prime} or z) with a vertex of $V\left(G^{\prime \prime}\right)^{c}$. This contradicts Theorem 1.1, saying that G is 4-edge connected.

Hence, in both cases we arrived at a contradiction. Thus the claim is proved.

To complete the proof of the theorem, we shall investigate the structure of proper (2,2)partitions of G. In the sequel, such a partition is briefly called a proper partition of G. An edge $u v$ of $\mathcal{L}(G)$ is called a low edge of G.

Claim 4.3 Let \mathcal{P} be a proper partition of G, let $C=K^{i}(\mathcal{P})$ with $i \in\{1,2\}$ and let $j \in$ $\{1,2\} \backslash\{i\}$. Then C is an odd cycle containing a low edge of G. If $u \in V(C)$ is a low vertex of G, then $\mathcal{P}^{\prime}=\mathcal{P} /(v(\mathcal{P}), u)$ is a proper partition and every graph $P \in \mathcal{K}^{j}(\mathcal{P})$ is an odd path such that either $N\left(u: V_{j}(\mathcal{P})\right) \cap V(P)=\emptyset$ or $N\left(u: V_{j}(\mathcal{P})\right) \cap V(P)$ consists of the two endvertices of P.

Proof. By Lemma 2.3 and the assumption that $\omega(\mathcal{H}(G)) \leq 1, C$ is an odd cycle and contains a low edge. Let $u \in V(C)$ be a low vertex of G. By Lemma 2.3, $\mathcal{P}^{\prime}=\mathcal{P} /(v(\mathcal{P}), u)$ is a proper partition, where $\mathcal{K}^{j}\left(\mathcal{P}^{\prime}\right)=\mathcal{K}^{j}(\mathcal{P})$ consists of odd paths. Since $\left|N_{G}(u: V(\mathcal{P}))\right|=2$ and $K^{j}\left(\mathcal{P}^{\prime}\right)$ is an odd cycle containing u, the two vertices in $N_{G}\left(u ; V_{j}(\mathcal{P})\right)$ are the two endvertices of exactly one path in $\mathcal{K}^{j}(\mathcal{P})$.

Since G is a critical graph with $\chi(G)=\Delta(G)=5$ and $\omega(\mathcal{H}(G)) \leq 1$, by Lemma 2.5 , there is a proper partition \mathcal{P} of G. Starting with \mathcal{P}, we construct recursively a sequence C_{1}, \ldots, C_{k+1} of odd cycles, a sequence $\mathcal{P}_{1}, \ldots, \mathcal{P}_{k+1}$ of proper partitions and sequence $u_{1} v_{1}, \ldots, u_{k} v_{k}$ of edges as follows. Put $\mathcal{P}_{1}=\mathcal{P}$ and $C_{1}=K^{1}(\mathcal{P})$. Furthermore, choose a low edge $u_{1} v_{1}$ of C_{1} such that $u_{1}=v\left(\mathcal{P}_{1}\right)$ if possible. Now, let $h \geq 1$. Let $\mathcal{P}_{h+1}=\mathcal{P}_{h} /\left(v\left(\mathcal{P}_{h}\right), v_{h}\right)$ and, let

$$
C_{h+1}= \begin{cases}K^{2}\left(\mathcal{P}_{h+1}\right) & \text { if } h \text { is odd } \\ K^{1}\left(\mathcal{P}_{h+1}\right) & \text { if } h \text { is even. }\end{cases}
$$

If C_{h+1} contains a vertex from the set $\left\{u_{1}, \ldots, u_{h}\right\}$, then $k=h$ and we stop. Otherwise, we choose a low edge $u_{h+1} v_{h+1} \in E\left(C_{h+1}\right)$, such that $u_{h+1}=v\left(\mathcal{P}_{h+1}\right)$ if possible. Then we continue the construction with $h+1$. Since G is a finite graph, k is well defined.

Now, we choose such a proper partition \mathcal{P} with the minimum k. We use the same notation as above. Clearly, $k \geq 2$ and, for $1 \leq i \leq k+1, C_{i}$ is an odd cycle containing the edge $u_{i} v_{i}$. Furthermore, if $1 \leq h \leq k$, then $v\left(\mathcal{P}_{h+1}\right)=v_{h} \in V\left(C_{h+1}\right)$, and $C_{1}-v_{1}, \ldots, C_{h}-v_{h}$ are pairwise vertex-disjoint odd paths satisfying

$$
\left\{C_{i}-v_{i} \mid 1 \leq i \leq h \text { odd }\right\} \subseteq \mathcal{K}^{1}\left(\mathcal{P}_{h+1}\right)
$$

and

$$
\left\{C_{i}-v_{i} \mid 1 \leq i \leq h \text { even }\right\} \subseteq \mathcal{K}^{2}\left(\mathcal{P}_{h+1}\right) .
$$

The odd cycle $C_{k+1}=K^{p}\left(\mathcal{P}_{k+1}\right)$ with $p=1,2$ and $k+1 \equiv p \bmod 2$ belongs to $G\left[V_{p}\left(\mathcal{P}_{k+1}\right) \cup\left\{v_{k}\right\}\right]$, contains the vertex v_{k} and, moreover, a vertex from the set $U=$ $\left\{u_{1}, \ldots, u_{k}\right\}$. This implies that C_{k+1} contains exactly one vertex from the set U, say u_{j}. Then $C_{k+1}-v_{k}=C_{j}-v_{j}$ and $k+1 \equiv j \bmod 2$. We claim that $j=1$. Otherwise, $P_{2}^{\prime}=\left(v\left(P_{2}\right), V_{2}\left(P_{2}\right), V_{1}\left(P_{2}\right)\right)$ is a proper partition and C_{2}, \ldots, C_{k+1} is the corresponding sequence of odd cycles, contradicting the choice of $\mathcal{P}=\mathcal{P}_{1}$. This shows that $j=1$ and, therefore, k is even, $C_{k+1}=K^{1}\left(\mathcal{P}_{k+1}\right), v_{k}=v\left(\mathcal{P}_{k+1}\right)$, and $C_{k+1}-v_{k}=C_{1}-v_{1}$.

By definition, $u_{1} v_{1}$ is a low edge of G belonging to the odd cycle C_{1} and, moreover, there is a vertex w_{1} such that $N_{G}\left(v_{1}: V\left(C_{1}\right)\right)=\left\{u_{1}, w_{1}\right\}$. Note that $N_{G}\left(v_{k}: V_{1}\left(\mathcal{P}_{k+1}\right)\right)=\left\{u_{1}, w_{1}\right\}$. Furthermore, C_{2} is an odd cycle containing the low edge $u_{2} v_{2}$ and $C_{2}-v_{2}$ is a path in $\mathcal{K}^{2}\left(\mathcal{P}_{k+1}\right)$ containing the vertex v_{1}. Hence u_{2} is an endvertex of the path $C_{2}-v_{2}$. Let w_{2} denote the other endvertex of $C_{2}-v_{2}$. Since u_{1} is a low vertex of G contained in $C_{k+1}=K^{1}\left(\mathcal{P}_{k+1}\right)$, we conclude from Claim 4.3, that $v_{1} \in N_{G}\left(u_{1}: V_{2}\left(\mathcal{P}_{k+1}\right)\right)=\left\{u_{2}, w_{2}\right\}$. Since $v_{1}=v\left(\mathcal{P}_{2}\right)$, our construction rule implies that $u_{2}=v_{1}$.

Clearly, $P=C_{2}-v_{1}$ is an odd path and v_{2} is an endvertex of P. By our construction, we conclude that $P \in \mathcal{K}^{2}(\mathcal{P})$. Since u_{1} is a low vertex of G contained in $C_{1}=K^{1}(\mathcal{P})$ and
u_{1} is adjacent to $w_{2} \in V(P)$, Claim 4.3 implies that $N_{G}\left(u_{1}: V_{2}(\mathcal{P})\right)=\left\{v_{2}, w_{2}\right\}$ and v_{2}, w_{2} are the two endvertices of P. This implies that C_{2} is a K_{3} with $V\left(C_{2}\right)=\left\{v_{1}=u_{2}, w_{2}, v_{2}\right\}$. Since $d_{G}\left(u_{1}\right)=4$ and $u_{1} v_{k} \in E(G)$, we conclude that $v_{k}=v_{2}$ and $k=2$. Consequently, $G\left[\left\{u_{1}, v_{1}, w_{2}, v_{2}\right\}\right]=K_{4}$ and $N_{G}\left(w_{1}\right)$ contains the vertices $v_{k}=v_{2}$ and v_{1}. Since v_{1}, v_{2} are low vertices of G, this gives a contradiction to Claim 4.2. This contradiction completes the proof of Theorem 1.8.

References

[1] R. L. Brooks, On colouring the nodes of a network, Math. Proc. Cambridge Philos. Soc. 37 (1941), 194-197.
[2] P. A. Catlin, Another bound on the chromatic number of a graph, Discrete Math. 24 (1978), 1-6.
[3] G. A. Dirac, Note on the colouring of graphs, Math. Z. 54 (1951), 347-353.
[4] G. A. Dirac, The structure of k-chromatic graphs, Fund. Math. 40 (1953), 42-55.
[5] T. Gallai, Kritische Graphen I, Publ. Math. Inst. Hungar. Acad. Sci. 8 (1963), 165-192.
[6] H. A. Kierstead, A. V. Kostochka, Ore-type versions of Brook's theorem, Journal of Combinatorial Theory, Serie B. 99 (2009), 298-305.
[7] H. A. Kierstead, A. V. Kostochka, Extremal graph packing problems, in: Surveys in Combinatorics, 2010, London Math. Soc. Lecture Notes Series 365, Cambridge University Press, 2010, 113-135.
[8] N. N. Mozhan, Chromatic number of graphs with a density that does not exceed twothirds of the maximum degree, Metody Diskretn. Anal. 39 (1983), 52-65 (in Russian).
[9] L. Rabern, Coloring Δ-critical graphs with small high vertex cliques, manuscript 2010.
[10] L. Rabern, An improvement on Brooks's theorem, manuscript 2010.
[11] M. Stiebitz, Proof of a conjecture of T. Gallai concerning connectivity properties of colour-critical graphs, Combinatorica 2 (1982), 315-323.

[^0]: *Department of Mathematics, University of Illinois, Urbana, IL 61801 and Sobolev Institute of Mathematics, Novosibirsk 630090, Russia. E-mail address: kostochk@math.uiuc.edu. This material is based upon work supported by NSF grant DMS-0965587 and by grant 08-01-00673 of the Russian Foundation for Basic Research.
 ${ }^{\dagger}$ E-mail address: landon.rabern@gmail.com.
 ${ }^{\ddagger}$ Institute of Mathematics, Technische Universität Ilmenau, D-98684 Ilmenau, Germany. E-mail address: Michael.Stiebitz@tu-ilmenau.de.

