A Stability Theorem on Fractional Covering of Triangles by Edges*

Penny Haxell ${ }^{\dagger}$ Alexandr Kostochka ${ }^{\ddagger}$ and Stéphan Thomassé ${ }^{\S}$

February 3, 2011

Abstract

Let $\nu(G)$ denote the maximum number of edge-disjoint triangles in a graph G and $\tau^{*}(G)$ denote the minimum total weight of a fractional covering of its triangles by edges. Krivelevich proved that $\tau^{*}(G) \leq 2 \nu(G)$ for every graph G. This is sharp, since for the complete graph K_{4} we have $\nu\left(K_{4}\right)=1$ and $\tau^{*}\left(K_{4}\right)=$ 2. We refine this result by showing that if a graph G has $\tau^{*}(G) \geq 2 \nu(G)-x$, then G contains $\nu(G)-\lfloor 10 x\rfloor$ edge-disjoint K_{4}-subgraphs plus an additional $\lfloor 10 x\rfloor$ edge-disjoint triangles. Note that just these K_{4} 's and triangles witness that $\tau^{*}(G) \geq 2 \nu(G)-\lfloor 10 x\rfloor$. Our proof also yields that $\tau^{*}(G) \leq 1.8 \nu(G)$ for each K_{4}-free graph G. In contrast, we show that for each $\epsilon>0$, there exists a K_{4}-free graph G_{ϵ} such that $\tau\left(G_{\epsilon}\right)>(2-\epsilon) \nu\left(G_{\epsilon}\right)$.

1 Introduction

The main motivation for this paper is an old conjecture of Tuza about packing and covering of triangles by edges. A triangle packing in a graph G is a set of pairwise edge-disjoint triangles. A triangle edge cover in G is a set of edges meeting all triangles. We denote by $\nu(G)$ the maximum cardinality of a triangle packing in G, and by $\tau(G)$ the minimum cardinality of a triangle edge cover for G. It is clear that for every graph G we have $\nu(G) \leq \tau(G) \leq 3 \nu(G)$.

In [6], Tuza proposed the following conjecture.

[^0]Conjecture 1. For every graph $G, \tau(G) \leq 2 \nu(G)$.
The complete graphs K_{4} and K_{5} show that this bound is tight. The conjecture is known to be true for certain special classes of graphs, for example K_{5}-free chordal graphs and planar graphs (Tuza [7]), more generally graphs without a subdivision of $K_{3,3}$ (Krivelevich [5]), and tripartite graphs (Haxell and Kohayakawa [3]). The only general bound known [2] shows that $\tau(G) \leq \frac{66}{23} \nu(G)$ for every graph G.

In [5], Krivelevich proved two weaker versions of Tuza's conjecture, involving fractional parameters. A fractional triangle edge cover in G is a function $\phi: E(G) \rightarrow$ $[0,1]$ such that $\sum_{e \in T} \phi(e) \geq 1$ for every triangle T in G. Thus a triangle edge cover of G can be viewed as a fractional triangle edge cover that takes only the values 0 or 1. The parameter $\tau^{*}(G)$ is defined to be the minimum of $\sum_{e \in E(G)} \phi(e)$ over all fractional triangle edge covers ϕ of G. Then $\tau^{*}(G) \leq \tau(G)$ for every graph G. Using a result of Füredi [1], Krivelevich [5] proved that $\tau^{*}(G) \leq 2 \nu(G)$ for every graph G. Again this bound is tight, for example for K_{4}. (For the fractional triangle packing parameter ν^{*}, Krivelevich also proved that $\tau(G) \leq 2 \nu^{*}(G)$ for every graph G.)

Our aim in this paper is to prove the following stability version of the theorem of Krivelevich.

Theorem 1. Let G be a graph and suppose $\tau^{*}(G) \geq 2 \nu(G)-x$. Then G contains $\nu(G)-\lfloor 10 x\rfloor K_{4}$-subgraphs and an additional $\lfloor 10 x\rfloor$ triangles, all of which are pairwise edge-disjoint.

In particular, equality holds in the theorem of Krivelevich if and only if G is an edge-disjoint union of copies of K_{4} (plus possibly edges that are not in triangles). It also follows from the proof of Theorem 1 that $\tau^{*}(G) \leq 1.8 \nu(G)$ for the class of $K_{4}{ }^{-}$ free graphs. This is in contrast with ordinary triangle packing, where for each $\epsilon>0$, there is a K_{4}-free graph G_{ϵ} such that $\tau\left(G_{\epsilon}\right)>(2-\epsilon) \nu\left(G_{\epsilon}\right)$. A series of such examples is as follows. For large n, let G_{n}^{\prime} be an n-vertex triangle-free graph with independence number $\alpha\left(G_{n}^{\prime}\right)<n^{2 / 3}$ (it is known that for large n there are many such graphs, see e.g. [4]). Let G_{n} be obtained from G_{n}^{\prime} by adding a vertex v_{0} adjacent to all other vertices. Each triangle in G_{n} contains v_{0}, and there is a one-to-one correspondence between the triangles in G_{n} and the edges of G_{n}^{\prime}. In particular, $\nu\left(G_{n}\right)$ equals the size of a maximum matching in G_{n}^{\prime} and hence $\nu\left(G_{n}\right) \leq n / 2$. On the other hand, among the smallest coverings of the triangles in G_{n} by edges there always exists a covering that uses only edges incident with v_{0}. It follows that $\tau\left(G_{n}\right)=n-\alpha\left(G_{n}^{\prime}\right)>n-n^{2 / 3}$. Now for each $\epsilon>0$, we can find an n such that $n-n^{2 / 3}>(2-\epsilon) n / 2$.

Our proof of Theorem 1 is a structural argument based on certain special subgraphs of G detailed in Section 2. In Section 3 we show how to define a fractional triangle cover of G, and in the last section we prove an upper bound on the total weight of this cover.

2 Patterns and their properties

In this section we will define a special set of edge-disjoint subgraphs in G called a \mathcal{T}-pattern, where \mathcal{T} is a set of $\nu(G)$ edge-disjoint triangles in G. Each subgraph of a \mathcal{T}-pattern will be a copy of one of the following: K_{5}, K_{3}, the 5 -wheel W_{5}, K_{5}^{-}, K_{4}^{-}(here K_{r}^{-}denotes the graph obtained from the complete graph K_{r} by deleting an edge), or a graph formed by gluing together copies of K_{4} which we call a K_{4} structure. When referring to W_{5}, which is the graph formed by adding a new vertex x to a 5-cycle C_{5} and joining x to all vertices of C_{5}, we sometimes call x the hub and C_{5} the rim, and the edges incident to x the spokes.

A K_{4}-structure is defined inductively and algorithmically as follows. A $K_{4^{-}}$ subgraph Q of G is a K_{4}-structure, and Q itself is the only block of this structure. Note that $\nu(Q)=1$. Let Q_{1} be a K_{4}-structure, and let Q_{2} be a K_{4}-subgraph of G with $V\left(Q_{2}\right)=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ such that $v_{1} v_{2} \in E\left(Q_{1}\right)$ and all other edges of Q_{2} are not in $E\left(Q_{1}\right)$. Then $Q=Q_{1} \cup Q_{2}$ is a K_{4}-structure and its blocks are Q_{2} and all blocks of Q_{1}. In this case, $v_{1} v_{2}$ is called the attachment edge for Q_{2} of the new K_{4}-structure. Note that $\nu(Q) \geq \nu\left(Q_{1}\right)+1$.

We define the central edge in a K_{4}^{-}to be the edge connecting the two vertices of degree 3. The following three statements are easy to check.

Lemma 2. A graph obtained from K_{4}^{-}by deleting an edge that is not central contains a triangle.

Lemma 3. The graph obtained by deleting the edges of a 4-cycle from K_{5} has two edge-disjoint triangles. In particular, any graph obtained from K_{5} by deleting two arbitrary edges, or three edges forming a path, contains two edge-disjoint triangles.

Lemma 4. Any graph obtained from W_{5} by deleting an edge contains two edgedisjoint triangles. The same holds if we delete two edges such that both of them are on the rim or one of them is on the rim and the other is a spoke sharing a vertex with it.

To state a fact analogous to Lemmas 2-4 for K_{4}-structures, we introduce the notion of heavy edges. Two edges e and e^{\prime} in a K_{4}-structure Q are parallel if there exists a sequence $e=e_{1}, e_{2}, \ldots, e_{k}=e^{\prime}$ of edges of Q such that for every $i=$ $1, \ldots, k-1$, the edges e_{i} and e_{i+1} are in the same block of Q and are vertex-disjoint. (Note that it is possible for two parallel edges to share a vertex, if $k \geq 4$, see Fig. 1.) If Q consists of only one block, then it has no heavy edges. Suppose now that Q consists of $k>1$ blocks. Order them B_{1}, \ldots, B_{k} in the order of construction of Q. We define heavy edges in $k-1$ steps. In Step 1 we call heavy the attachment edge for B_{2} and the edges in B_{1} and B_{2} parallel to it. In Step $i, 2 \leq i \leq k-1$, consider the attachment edge e_{i+1} for B_{i+1}. We declare that e_{i+1} and the edge parallel to it in B_{i+1} are now heavy. Moreover, if e_{i+1} already was heavy, but some edge e^{\prime} parallel to it is not heavy, then we make e^{\prime} also heavy. Note that there could be at most one such edge e^{\prime}. After $k-1$ steps, all edges that are not yet heavy are light. Note

Figure 1: The edges $x y, z t, v w$ and $u x$ of the 3 -block K_{4}-structure in the figure are parallel to each other, and edges $x y$ and $x u$ share a vertex.
also that each block B_{i} of Q contains a pair of parallel heavy edges, and hence each triangle in B_{i} contains a heavy edge.

Lemma 5. Any graph obtained from a K_{4}-structure Q with k blocks by deleting any edge contains k edge-disjoint triangles. Moreover, after deleting from Q at most one light edge from each block, the remaining subgraph still contains k edge-disjoint triangles.

Proof. For the first statement, suppose B_{1}, \ldots, B_{k} are the blocks of Q in order of construction. If $k=1$ then the statement is clearly true. Since each B_{i} contains a triangle edge-disjoint from $\bigcup_{j=1}^{i-1} E\left(B_{j}\right)$, we may assume that the deleted edge e is in B_{k} and not in $\bigcup_{j=1}^{k-1} E\left(B_{j}\right)$. By induction we may assume that $\bigcup_{j=1}^{k-1} B_{j}$ contains $k-1$ edge-disjoint triangles that are also disjoint from the attachment edge e^{\prime} of B_{k}. But then these together with a triangle in B_{k} that avoids e gives the required triangle packing of size k.

To prove the second statement, suppose that the blocks of Q are B_{1}, \ldots, B_{k}, in the order of construction of Q. For $i=1, \ldots, k$, let e_{i} be any light edge in B_{i} (if B_{i} has a light edge at all). Choose in B_{1} any triangle T_{1} not containing e_{1}. Now for $i=2, \ldots, k$, choose in B_{i} the triangle T_{i} not containing e_{i} and the attachment edge for B_{i}, if e_{i} exists, and any triangle T_{i} not containing the attachment edge for B_{i}, if e_{i} does not exist. By construction, all triangles T_{1}, \ldots, T_{k} are edge-disjoint.

Lemma 6. Let Q be a K_{4}-structure Q with k blocks. Let e_{1} and e_{2} be two edges of Q.
(a) If e_{1} and e_{2} are not parallel to each other, then $\nu\left(Q-e_{1}-e_{2}\right) \geq k$;
(b) if e_{1} and e_{2} share a vertex and at least one of them is light, then $\nu\left(Q-e_{1}-e_{2}\right) \geq k$.

Proof. We use induction on k. Both statements are trivial for $k=1$. Let $k>1$ and B_{1}, \ldots, B_{k} be the blocks of Q in the order of construction. For $s=1,2$, let j_{s} be the
minimum j such that $e_{s} \in E\left(B_{j}\right)$. Since every B_{i} contains a triangle edge-disjoint from $\bigcup_{j=1}^{i-1} E\left(B_{j}\right)$, we may assume that $k=j_{2} \geq j_{1}$. Let $Q^{\prime}=\bigcup_{j=1}^{k-1} B_{j}$ and e_{2}^{\prime} be the attachment edge for B_{k}.

Case 1: $j_{1}=k$. Since e_{1} and e_{2} are not parallel to each other, B_{k} contains a triangle T disjoint from both e_{1} and e_{2}. Now by Lemma $5, Q^{\prime}-e_{2}^{\prime}$ contains $k-1$ edge-disjoint triangles which together with T satisfy the lemma.

Case 2: $j_{1}<k$ and e_{2} is light. Then B_{k} contains a triangle T not containing e_{2} and e_{2}^{\prime}. In this case, by Lemma $5, Q^{\prime}-e_{1}$ contains $k-1$ edge-disjoint triangles which together with T satisfy the lemma.

Case 3: $j_{1}<k$ and e_{2} is heavy. Suppose that the conditions for (a) hold. Since e_{2}^{\prime} is parallel to e_{2}, it is not parallel to e_{1}. By the induction assumption, $Q^{\prime}-e_{1}-e_{2}^{\prime}$ has $k-1$ edge-disjoint triangles which together with a triangle in B_{k} containing e_{2}^{\prime} satisfy the lemma. Thus, e_{1} and e_{2} are parallel, but e_{1} is light. By the definition of the heavy edges, this might happen only if e_{1} lies in a block $B_{i} \neq B_{k}$ that contains e_{2}^{\prime}. But then e_{1} cannot share a vertex with e_{2}.

For a family \mathcal{T} of $\nu(G)$ edge-disjoint triangles in G, and for each of the subgraph types $P=K_{5}, W_{5}, K_{5}^{-}$and K_{4}^{-}, we define a \mathcal{T} - P to be a P-subgraph of G that contains $\nu(P)$ triangles of \mathcal{T} and is otherwise edge-disjoint from \mathcal{T}. We say that a K_{4}-structure Q with k blocks is a \mathcal{T} - K_{4}-structure if Q contains k triangles in \mathcal{T}, and Q is otherwise edge-disjoint from \mathcal{T}. This implies in particular that $\nu(Q)=k$. (Note then that the K_{4}-structure Q depicted in Figure 1 is not a \mathcal{T} - K_{4}-structure for any \mathcal{T}, since it has three blocks but $\nu(Q)=4$.) Observe that if Q^{\prime} is a K_{4} that shares exactly one edge e with Q, and Q^{\prime} contains a triangle of \mathcal{T} and its other edges (except possibly e) are not in any triangle of \mathcal{T}, then $Q \cup Q^{\prime}$ is also a \mathcal{T} - K_{4}-structure.

A \mathcal{T}-pattern \mathcal{P} is a collection of edge-disjoint \mathcal{T} - K_{4}-structures, $\mathcal{T}-K_{5}$'s, \mathcal{T} - K_{5}^{-}'s, $\mathcal{T}-W_{5}$'s, \mathcal{T} - K_{4}^{-}'s and simply of the members of \mathcal{T} in G that together contain all the members of \mathcal{T}. In particular, \mathcal{T} itself is a \mathcal{T}-pattern. The members of \mathcal{P} will be called pieces of \mathcal{P}. The members of \mathcal{T} that are pieces of \mathcal{P} will be called \mathcal{P}-lonely. The type of a pattern \mathcal{P} is the 5 -tuple $\left(x_{1}, \ldots, x_{5}\right)$, where x_{1} is the total number of blocks in all \mathcal{T} - K_{4}-structures in \mathcal{P}, x_{2} is the number of $\mathcal{T}-K_{5}$'s in \mathcal{P}, x_{3} is the number of \mathcal{T} - K_{5}^{-}'s in \mathcal{P}, x_{4} is the number of $\mathcal{T}-W_{5}$'s in \mathcal{P}, and x_{5} is the number of \mathcal{T} - K_{4}^{-}'s in \mathcal{P}. We say that a pattern \mathcal{P} is better than a pattern \mathcal{P}^{\prime} if the type of \mathcal{P} is lexicographically greater than that of \mathcal{P}^{\prime}.

3 A fractional covering

Let \mathcal{T} be a family of ν edge-disjoint triangles in G and let \mathcal{P} be a \mathcal{T}-pattern so that \mathcal{P} is the best among all patterns of all families of ν edge-disjoint triangles in G. An edge of G is unused, if it does not belong to any piece of \mathcal{P}. We define a function $\phi: E(G) \rightarrow[0,1]$ according to the rules below.
(R0) Initially, $\phi(e)=1 / 2$ for every $e \in E(G)$ that belongs to a \mathcal{P}-lonely triangle and
$\phi(e)=0$ for every other $e \in E(G)$. The weights of unused edges will not change.
Now we start increasing the values of $\phi(e)$ for some used e considering the pieces of \mathcal{P} one by one. Let $P \in \mathcal{P}$.
(R1) If $P=K_{5}$, then let $\phi(e)=1 / 3$ for each edge e.
(R2) Let P be a \mathcal{P} - K_{4}-structure. If $\nu(P)=1$, then we let $\phi(e)=1 / 3$ for each $e \in E(P)$. If P has at least 2 blocks, then let $\phi(e)=1 / 2$ if e is heavy, and $\phi(e)=3 / 10$, otherwise.
(R3) If $P=W_{5}$, then let $\phi(e)=2 / 5$ if e is incident to the hub, and $\phi(e)=3 / 10$, otherwise.
(R4) Let $P=K_{4}^{-}$and $x y$ be its central edge. We say that P is extendable if there exists a vertex v such that $v x$ and $v y$ both are unused edges. Otherwise, we say that P is fixed. If P is extendable, then let $\phi(x y)=1$ and $\phi(e)=1 / 5$ for the other 4 edges. If P is fixed, then let $\phi(x y)=4 / 5$ and $\phi(e)=1 / 4$ for the other 4 edges.
(R5) Let $P=K_{5}^{-}$. For each of the 6 edges e incident with a vertex of degree 3 in P, let $\phi(e)=2 / 5$, for each of the remaining 3 edges, let $\phi(e)=1 / 3$.
(R6) Let e be an edge of a \mathcal{P}-lonely triangle. Recall that by (R0), the current value of $\phi(e)$ is $1 / 2$. Among all triangles of G containing e, choose a triangle T^{\prime} with the minimum value of $\phi\left(T^{\prime}\right):=\sum_{e^{\prime} \in E\left(T^{\prime}\right)} \phi\left(e^{\prime}\right)$. If $\phi\left(T^{\prime}\right)=\beta<1$, then we redefine $\phi(e):=3 / 2-\beta$ so that for the new ϕ we have $\phi\left(T^{\prime}\right)=\beta-1 / 2+(3 / 2-\beta)=1$. Do this for every edge of every \mathcal{P}-lonely triangle.

Lemma 7. If \mathcal{P} is a best \mathcal{T}-pattern, then ϕ defined above is a fractional covering of triangles in G.

Proof. Consider an arbitrary triangle $T=\left(v_{1}, v_{2}, v_{3}\right)$ in G. Suppose that $\phi(T)<1$. By (R6), T does not contain any edge of any \mathcal{P}-lonely triangle. By (R4), T does not contain the central edge of any extendable $\mathcal{T}-K_{4}^{-}$in \mathcal{P}. Furthermore, if T contains the central edge of a fixed \mathcal{T} - K_{4}^{-}in \mathcal{P}, then to have $\phi(T)<1$, the two other edges of T are unused, a contradiction to the definition of a fixed $\mathcal{T}-K_{4}^{-}$. Thus, by Lemmas $2-$ 5 , if T does not contain two edges from the same piece of \mathcal{P}, then we can find ν edge-disjoint triangles in G that do not contain any edge of T, a contradiction to the definition of ν. So, we may assume that $v_{1} v_{2}$ and $v_{2} v_{3}$ both belong to some $P \in \mathcal{P}$.

Case 1: $P=K_{4}^{-}$. Since $v_{1} v_{3}$ is not the central edge of P, we may assume that $V(P)=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ and the central edge of P is $v_{2} v_{4}$. Since $v_{1} v_{3} \in E(T)$, $G\left[\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}\right]=K_{4}$. In this case, \mathcal{P} is not the best. Indeed, if $v_{1} v_{3}$ belongs to a \mathcal{T} - K_{4}-structure Q, then we delete P from the pattern and increase Q by adding the block $G\left[\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}\right]$. If $v_{1} v_{3}$ is in another piece P^{\prime} of \mathcal{P}, then we (possibly) alter \mathcal{T} by destroying P^{\prime} into $\nu\left(P^{\prime}\right)$ edge-disjoint triangles that are disjoint from $v_{1} v_{3}$ and the rest of \mathcal{P}, which will become new lonely triangles, and we replace P with the $\mathcal{T}-K_{4^{-}}$ structure $G\left[\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}\right]$. Otherwise we simply replace P with $G\left[\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}\right]$. In all cases, the first coordinate of the type of the new pattern is greater than that of \mathcal{P}.

Case 2: $P=W_{5}$. If $E(T) \subset E(P)$ then by (R3), $\phi(T) \geq 1$. So, $v_{1} v_{3} \notin E(P)$. Since $\phi\left(v_{1} v_{3}\right)=\phi(T)-\phi\left(v_{1} v_{2}\right)-\phi\left(v_{2} v_{3}\right)<1-3 / 10-3 / 10<1 / 2$, by Lemmas $2-5$,
for the piece P^{\prime} of \mathcal{P} containing $v_{1} v_{3}$ (if it exists) we have $\nu\left(P^{\prime}-v_{1} v_{3}\right)=\nu\left(P^{\prime}\right)$. On the other hand, adding any edge to a W_{5} increases its packing number, and so $\nu\left(P+v_{1} v_{3}\right)=3$, a contradiction to the maximality of ν.

Case 3: $P \in\left\{K_{5}, K_{5}^{-}\right\}$. If $v_{1} v_{3} \in E(P)$, then by (R1) or (R5), $\phi(T) \geq 1 / 3+$ $1 / 3+1 / 3=1$. So, $v_{1} v_{3} \notin E(P)$. Then $P=K_{5}^{-}$and we may assume that $V(P)=$ $\left\{v_{1}, \ldots, v_{5}\right\}$. By (R5), in this case $\phi\left(v_{1} v_{2}\right)=\phi\left(v_{2} v_{3}\right)=2 / 5$ and so we have a problem only if $\phi\left(v_{1} v_{3}\right)<1 / 5$, which means that $v_{1} v_{3}$ is not in any piece of \mathcal{P}. Then we simply add $v_{1} v_{3}$ to P and get a better pattern.

Case 4: P is a \mathcal{T} - K_{4}-structure. Let P have k blocks. Suppose first that $v_{1} v_{3}$ also is in $E(P)$. Then in order to have $\phi(T)<1$, we need that $k \geq 2$ and $\phi\left(v_{1} v_{2}\right)=\phi\left(v_{1} v_{3}\right)=\phi\left(v_{2} v_{3}\right)=3 / 10$. Since every triangle inside a block of P contains a heavy edge, all edges of T belong to different blocks. In particular, $k \geq 3$. Then by Lemma $5, \nu(P-E(T))=\nu(P)$. This contradicts the maximality of ν. So, $v_{1} v_{3} \notin E(P)$ and $\phi\left(v_{1} v_{3}\right)<1-6 / 10=2 / 5$. Then by Lemmas $2-5$, for the piece P^{\prime} containing $v_{1} v_{3}$ we have $\nu\left(P^{\prime}-v_{1} v_{3}\right)=\nu\left(P^{\prime}\right)$. On the other hand by Lemma 6 $\nu\left(P-v_{1} v_{2}-v_{2} v_{3}\right)=k$, and hence $\nu(G-E(T)) \geq \nu$, a contradiction.

4 The weight of the covering

Lemma 8. Let \mathcal{P} be a best \mathcal{T}-pattern. Let $k \geq 1$. For each \mathcal{T} - K_{4}-structure Q of \mathcal{P} with k blocks, $\phi(Q) \leq 1.9 k+0.1$.

Proof. For $k=1$, the statement is trivial. Let $k=2$. Then Q has 3 heavy edges and 8 light ones, and so

$$
\phi(Q)=3(1 / 2)+8(3 / 10)=3.9=1.9(2)+0.1
$$

Suppose that the statement is proved for all $k^{\prime}<k$. Let B_{k} be the last block in Q and Q^{\prime} be the union of all other blocks of Q. By our assumption, $\phi\left(Q^{\prime}\right) \leq 1.9(k-1)+0.1$. When we add B_{k} to Q^{\prime}, we add 4 light edges and one heavy edge plus at most one edge of Q^{\prime} turns from light to heavy. Thus, $\phi(Q)-\phi\left(Q^{\prime}\right) \leq 4(3 / 10)+1 / 2+2 / 10=1.9$.

Lemma 9. Let \mathcal{P} be a best \mathcal{T}-pattern. For each \mathcal{P}-lonely triangle $T, \phi(T) \leq 1.9$. Moreover, if G does not contain a K_{4}, then $\phi(T) \leq 1.8$.

Proof. Suppose that $\phi(T)>1.8$ and $V(T)=\left\{v_{1}, v_{2}, v_{3}\right\}$. We may assume that for $i=1,2,3, \phi\left(v_{i} v_{i+1}\right)=\alpha_{i}$ (taking indices modulo 3). If $\alpha_{i}>1 / 2$, then by definition,

$$
\begin{equation*}
\text { there is a vertex } w_{i} \text { such that } \quad \phi\left(v_{i} w_{i}\right)+\phi\left(v_{i+1} w_{i}\right)=1-\alpha_{i} \text {. } \tag{1}
\end{equation*}
$$

Recall that if e is not in a \mathcal{P}-lonely triangle, then

$$
\begin{equation*}
\phi(e) \in\{0,1 / 5,1 / 4,3 / 10,1 / 3,2 / 5,1 / 2,4 / 5,1\} . \tag{2}
\end{equation*}
$$

Thus since $v_{i} w_{i}$ and $v_{i+1} w_{i}$ cannot be in \mathcal{P}-lonely triangles,

$$
\begin{equation*}
\text { if } \alpha_{i}>1 / 2 \text {, then } \alpha_{i} \in\{1,4 / 5,3 / 4,7 / 10,2 / 3,3 / 5,11 / 20\} . \tag{3}
\end{equation*}
$$

If for some $i, \phi\left(v_{i} w_{i}\right)=\phi\left(v_{i+1} w_{i}\right)=0$, then we may replace T in \mathcal{P} with the K_{4}^{-} obtained by adding to T the edges $v_{i} w_{i}$ and $v_{i+1} w_{i}$. The new pattern is better than \mathcal{P}, a contradiction to the choice of \mathcal{P}. So,

$$
\begin{equation*}
\text { for } i=1,2,3, \quad \max \left\{\phi\left(v_{i} w_{i}\right), \phi\left(v_{i+1} w_{i}\right)\right\}>0 \tag{4}
\end{equation*}
$$

We may assume that $\alpha_{1}=\max \left\{\alpha_{i}: 1 \leq i \leq 3\right\}$. Then

$$
\begin{equation*}
\alpha_{1} \geq \frac{1}{3} \phi(T)>\frac{1}{3}(1.8)=\frac{3}{5} \quad \text { and by }(2), \min \left\{\phi\left(v_{1} w_{1}\right), \phi\left(v_{2} w_{1}\right)\right\}=0 . \tag{5}
\end{equation*}
$$

Case 1: For some $j \in\{2,3\}, \alpha_{j}>1 / 2$ and $w_{1} \neq w_{j}$. We may assume that $j=2$.
Case 1.1: No two edges in $F:=\left\{v_{1} w_{1}, v_{2} w_{1}, v_{2} w_{2}, v_{3} w_{2}\right\}$ belong to the same piece of \mathcal{P}. Since $\phi(e)<1 / 2$ for every $e \in F$, none of them belongs to a lonely triangle or is the central edge of a $\mathcal{T}-K_{4}^{-}$. So, by Lemmas $2-5, \nu(G-F)=\nu(G)$. This contradicts the fact that we can replace T in \mathcal{P} with $\left(v_{1}, w_{1}, v_{2}\right)$ and $\left(v_{2}, w_{2}, v_{3}\right)$.

Case 1.2: $v_{1} w_{1}$ and $v_{3} w_{2}$ are in the same piece P of \mathcal{P}. Then by $(5), \phi\left(v_{2} w_{1}\right)=0$. Suppose first that $v_{2} w_{2} \in E(P)$. Since $1 / 2<\alpha_{2}=1-\phi\left(v_{2} w_{2}\right)-\phi\left(v_{3} w_{2}\right)$, we have that one of $\phi\left(v_{3} w_{2}\right)$ and $\phi\left(v_{2} w_{2}\right)$ is less than $1 / 4$, and so by (2) it is $1 / 5$. It follows that $P=K_{4}^{-}$, but we have already 5 vertices in P, a contradiction. So, $v_{2} w_{2} \notin E(P)$.

Case 1.2.1: $P=K_{4}^{-}$. Since $v_{1} v_{3} \notin E(P)$, the only possibility is that $E(P)=$ $\left\{v_{1} w_{1}, w_{1} w_{2}, w_{1} v_{3}, v_{1} w_{2}, v_{3} w_{2}\right\}$. Then replacing P and T in \mathcal{P} with the $K_{5}-v_{2} w_{2}$ on the vertex set $\left\{v_{1}, w_{1}, v_{2}, w_{2}, v_{3}\right\}$ would create a pattern better than \mathcal{P}, a contradiction.

Case 1.2.2: $P \in\left\{K_{5}, K_{5}^{-}\right\}$. Since $v_{1} v_{3} \notin E(P), P=K_{5}^{-}$. But then by (R5) $\alpha_{1}=3 / 5$, a contradiction to (5).

Case 1.2.3: $P=W_{5}$. Since $\alpha_{1}>0.6, v_{1} w_{1}$ is on the rim of P. If $v_{2} w_{2} \in P^{\prime} \in \mathcal{P}$, then by Lemmas $2-5, \nu\left(P^{\prime}-v_{2} w_{2}\right)=\nu\left(P^{\prime}\right)$. Thus if $\nu\left(P-v_{1} w_{1}-v_{3} w_{2}\right)=2$, then as above, replacing T in \mathcal{P} with the triangles $v_{1} w_{1} v_{2}$ and $v_{2} w_{2} v_{3}$ and rearranging triangles within P and P^{\prime}, we find $\nu+1$ edge-disjoint triangles in G, a contradiction. So, by Lemma $4, v_{3} w_{2}$ is incident to the hub of P. In particular, $\phi\left(v_{3} w_{2}\right)=2 / 5$ and hence $\phi\left(v_{2} w_{2}\right)=0$. Since $v_{1} v_{3} \notin E(P), w_{2}$ is the hub of P. In particular, $w_{1} w_{2}$ is an edge of P. Then $\nu\left(P+w_{1} v_{2}+v_{2} w_{2}\right)=3$, a contradiction to the maximality of ν.

Case 1.2.4: P is a K_{4}-structure. Then $\phi\left(v_{3} w_{2}\right) \geq 3 / 10$. Since $\alpha_{2}>1 / 2$, by (2), $\phi\left(v_{2} w_{2}\right)=0$. Since $v_{1} v_{3} \notin E(P)$, edges $v_{1} w_{1}$ and $v_{3} w_{2}$ are in distinct blocks of P, in particular, $\nu(P) \geq 2$. By (5), since $\alpha_{1}>1 / 2$ we know that $v_{1} w_{1}$ is light. Similarly since $\alpha_{2}>1 / 2$ and $\phi\left(v_{2} w_{2}\right)=0$ we see that $v_{3} w_{2}$ is light. Thus by Lemma 5, $\nu\left(P-v_{1} w_{1}-v_{3} w_{2}\right)=\nu(P)$, and replacing $v_{1} v_{2} v_{3}$ by $v_{1} v_{2} w_{1}$ and $v_{2} v_{3} w_{2}$ we find $\nu+1$ edge-disjoint triangles in G.

Case 1.3: $v_{1} w_{1}$ and $v_{2} w_{2}$ are in the same piece P of \mathcal{P}. Since Case 1.2 does not hold, $v_{3} w_{2} \notin E(P)$. Since $v_{2} w_{1}, v_{2} v_{1} \notin E(P), P \notin\left\{K_{4}^{-}, K_{5}, K_{5}^{-}\right\}$.

Case 1.3.1: $P=W_{5}$. Since $\alpha_{1}>3 / 5, v_{1} w_{1}$ is on the rim of P. Adding to $P=W_{5}$ the edge $w_{1} v_{2}$ creates a K_{4} in P, and there is a triangle in P edge-disjoint from this K_{4}. Then replacing P with this K_{4} and triangle gives a pattern better than \mathcal{P}.

Case 1.3.2: P is a K_{4}-structure. Repeating the proof of Case 1.2 .4 with the roles of $v_{2} w_{2}$ and $v_{3} w_{2}$ switched and using the fact that $w_{1} v_{2} \notin P$, we come to a contradiction again.

Case 1.4: $v_{2} w_{1}$ and $v_{3} w_{2}$ are in the same piece P of \mathcal{P}. Then by (5), $\phi\left(v_{1} w_{1}\right)=0$. Suppose first that $v_{2} w_{2} \in E(P)$. Since $1 / 2<\alpha_{2}=1-\phi\left(v_{2} w_{2}\right)-\phi\left(v_{3} w_{2}\right)$, we have that one of $\phi\left(v_{3} w_{2}\right)$ and $\phi\left(v_{2} w_{2}\right)$ is less than $1 / 4$, and so by (2), it is $1 / 5$. Therefore $P=K_{4}^{-}$. Since $v_{2} v_{3} \notin E(P)$, we have $w_{1} w_{2}, w_{1} v_{3} \in E(P)$. Then we replace P and T in \mathcal{P} with $G\left[\left\{v_{1}, v_{2}, v_{3}, w_{1}, w_{2}\right\}\right]-v_{1} w_{2}=K_{5}^{-}$, a contradiction to the choice of \mathcal{P}. So, $v_{2} w_{2} \notin E(P)$.

Since $v_{2} w_{2}, v_{2} v_{3} \notin E(P), P \notin\left\{K_{4}^{-}, K_{5}, K_{5}^{-}\right\}$.
Case 1.4.1: $P=W_{5}$. Since $\alpha_{2}>1 / 2, \phi\left(v_{2} w_{2}\right)<1 / 2-3 / 10=1 / 5$ and hence $\phi\left(v_{2} w_{2}\right)=0$. As in Case 1.3.1, adding to $P=W_{5}$ the edge $w_{2} v_{2}$ creates a K_{4} in it, and there is a triangle in P edge-disjoint from this K_{4}.

Case 1.4.2: P is a K_{4}-structure. As in Case 1.3.2, essentially repeating the proof of Case 1.2.4, we come to a contradiction again.

Case 1.5: $v_{2} w_{1}$ and $v_{2} w_{2}$ are in the same piece P of \mathcal{P}. Since Case 1.4 does not hold, $v_{3} w_{2} \notin E(P)$.

Case 1.5.1: $P=K_{4}^{-}$. Since $v_{2} v_{1}, v_{2} v_{3} \notin E(P)$, there exists $v_{0} \neq v_{1}, v_{3}$ such that $G\left[\left\{v_{2}, v_{0}, w_{1}, w_{2}\right\}\right]$ contains P. Since edges $v_{2} w_{1}$ and $v_{2} w_{2}$ are not central in P and share a vertex, the central edge of P is either $w_{1} w_{2}$ or $v_{2} v_{0}$. If the central edge of P is $w_{1} w_{2}$, then we destroy P and T and remove $w_{2} v_{3}$ from the piece P^{\prime} containing it (if it exists), but add triangles $v_{1} v_{2} w_{1}, w_{1} w_{2} w_{0}$, and $v_{2} v_{3} w_{2}$, a contradiction to the maximality of ν. Otherwise, the central edge is $v_{0} v_{2}$. If $\phi\left(v_{3} w_{2}\right)=0$, then we replace P and T in \mathcal{P} by the copy Q of W_{5} with edge set $E(P) \cup E(T) \cup\left\{v_{1} w_{1}, v_{3} w_{2}\right\}$. This creates a pattern better than \mathcal{P}, a contradiction. Suppose that $\phi\left(v_{3} w_{2}\right)>0$. Since $\alpha_{2}>1 / 2, \phi\left(v_{3} w_{2}\right)<1-1 / 2-1 / 5=3 / 10$, and hence $\phi\left(v_{3} w_{2}\right) \leq 1 / 4$. It follows that the piece P^{\prime} containing $v_{3} w_{2}$ is a K_{4}^{-}. So we downgrade P^{\prime} to a triangle and again replace P and T with Q.

Case 1.5.2: $P=W_{5}$. Since $\phi\left(v_{2} w_{2}\right) \geq 3 / 10$ and $\alpha_{2}>1 / 2$, we have $\phi\left(v_{3} w_{2}\right)=0$. By (5), $v_{2} w_{1}$ is on the rim of P. So, by Lemma $4, \nu\left(P-v_{2} w_{1}-v_{2} w_{2}\right)=2$. Thus we can replace $P \cup T$ with triangles $v_{1} w_{1} v_{2}, v_{2} w_{2} v_{3}$, and the two triangles in $P-v_{2} w_{1}-v_{2} w_{2}$, a contradiction to the maximality of ν.

Case 1.5.3: P is a K_{4}-structure. As in Case 1.5 .2 we know that $\phi\left(v_{3} w_{2}\right)=0$. We claim that $\nu\left(P-v_{2} w_{1}-v_{2} w_{2}\right)=\nu(P)$. If $\nu(P)=1$, then this is clear. If $\nu(P) \geq 2$, then by (5), $v_{2} w_{1}$ is a light edge in P, and the claim follows from Lemma 6(b). Thus again we can use triangles $v_{1} w_{1} v_{2}$ and $v_{2} w_{2} v_{3}$ to find $\nu+1$ edge-disjoint triangles in G, a contradiction.

Case 1.5.4: $P \in\left\{K_{5}, K_{5}^{-}\right\}$. Again, since $\phi\left(v_{2} w_{2}\right) \geq 1 / 3$ and $\alpha_{2}>1 / 2$, we have $\phi\left(v_{3} w_{2}\right)=0$. If $P=K_{5}$, then by Lemma $3, \nu\left(P-v_{2} w_{1}-v_{2} w_{2}\right)=2$, and
we find $\nu+1$ edge-disjoint triangles replacing T with triangles $v_{1} w_{1} v_{2}$ and $v_{2} w_{2} v_{3}$, a contradiction. So, $P=K_{5}^{-}$. By (5) and (R5), $\phi\left(v_{2} w_{1}\right)=1 / 3$. This means that $v_{2} w_{1}$ is disjoint from the non-edge in P. If the non-edge in P contains w_{2}, then by Lemma $3, \nu\left(P-v_{2} w_{1}-v_{2} w_{2}\right)=2$, and we get a contradiction in the same way. So, we may assume that $V(P)=\left\{w_{1}, v_{2}, w_{2}, w_{4}, w_{5}\right\}$ and $w_{4} w_{5} \notin E(P)$. In particular, $w_{1} w_{2} \in E(G)$. If $\alpha_{3} \leq 1 / 2$, then $\phi(T) \leq 2 / 3+2 / 3+1 / 2=11 / 6<1.9$ (note that in this case G is not K_{4}-free). So we may assume $\alpha_{3}>1 / 2$. Now the situation is symmetric between w_{1} and w_{2} in the sense that $\alpha_{1}=\alpha_{2}$ and $\phi\left(v_{1} w_{1}\right)=\phi\left(v_{2} w_{2}\right)=0$. Since $\alpha_{3}>1 / 2$ and $w_{1} \neq w_{2}$, we may therefore assume that $w_{3} \neq w_{1}$, and Case 1 holds with $j=3$. Since $\phi\left(v_{1} w_{1}\right)=0$, now the only possible cases are 1.1, 1.2, 1.3 and 1.6 below. Thus the proof will be complete once we have finished Case 1.6.

Case 1.6: $v_{2} w_{2}$ and $v_{3} w_{2}$ are in the same piece P of \mathcal{P}. Since $\alpha_{2}>1 / 2, \phi\left(v_{2} w_{2}\right)=$ $\phi\left(v_{3} w_{2}\right)=1 / 5, P$ is an extendable K_{4}^{-}, and $\alpha_{2}=3 / 5$. Since $v_{2} v_{3} \notin E(P)$, there exists w_{4} such that $V(P)=\left\{v_{2}, w_{2}, v_{3}, w_{4}\right\}$ and $w_{2} w_{4}$ is the central edge. Note that $w_{4} \neq v_{1}$ since $v_{1} v_{2} \notin P$, and $w_{4} \neq w_{1}$ since we are not in Case 1.4. By the definition of an extendable K_{4}^{-}, there exists a vertex w_{5} such that $w_{2} w_{5}$ and $w_{4} w_{5}$ are unused edges. Let e^{\prime} be the edge in $\left\{v_{1} w_{1}, v_{2} w_{1}\right\}$ with $\phi\left(e^{\prime}\right)>0$ and P^{\prime} be the piece of \mathcal{P} containing e^{\prime}. Since $\phi\left(e^{\prime}\right)<1 / 2$, by Lemmas 2-5 we know $P^{\prime}-e^{\prime}$ contains $\nu\left(P^{\prime}\right)$ edge disjoint triangles. We replace $P \cup T \cup P^{\prime}$ with these triangles and triangles $w_{1} v_{1} v_{2}$, $w_{2} v_{3} v_{2}$, and $w_{2} w_{4} w_{5}$. This contradicts the maximality of ν.

Case 2: For $i=2,3$, either $\alpha_{i}=1 / 2$ or $w_{i}=w_{1}$. By (4) we know $\alpha_{1} \leq 1-1 / 5=$ 0.8 , and so $\alpha_{2}+\alpha_{3}=\phi(T)-\alpha_{1}>1$. So, we may assume that $\alpha_{2}>1 / 2$ and hence $w_{2}=w_{1}$. Then T is contained in K_{4} induced by $\left\{v_{1}, v_{2}, v_{3}, w_{1}\right\}$, and we want to prove now that $\phi(T) \leq 1.9$. So, suppose $\phi(T)>1.9$.

Let $F=\left\{w_{1} v_{1}, w_{1} v_{2}, w_{1} v_{3}\right\}$. By (5), $\phi(e)=0$ for some $e \in F$ incident to w_{1}. As in the proof of (4), we see that there is only one such e. By (5), $e \neq w_{1} v_{3}$.

Case 2.1: $e=w_{1} v_{1}$. Since $\alpha_{2}>1 / 2, \phi(F-e)<1 / 2$. It follows that $\phi\left(w_{1} v_{2}\right), \phi\left(w_{1} v_{3}\right) \in\{1 / 5,1 / 4\}$. If $w_{1} v_{2}$ and $w_{1} v_{3}$ are in distinct K_{4}^{-}-pieces of \mathcal{P}, then we downgrade these pieces to triangles, but upgrade T to the $K_{4}=G\left[\left\{v_{1}, v_{2}, v_{3}, w_{1}\right\}\right]$. The new pattern is better than \mathcal{P}. So, suppose that $w_{1} v_{2}$ and $w_{1} v_{3}$ are in the same K_{4}^{-}-piece P^{\prime}. Since $v_{2} v_{3} \notin E\left(P^{\prime}\right)$, there is w_{0} such that $w_{0} w_{1}$ is the central edge in P^{\prime}. Then we replace the pieces T and P^{\prime} in \mathcal{P} by the K_{5}^{-}-subgraph $G\left[\left\{v_{1}, v_{2}, v_{3}, w_{1}, w_{0}\right\}\right]-w_{0} v_{1}$ of G. The new pattern is better than \mathcal{P}.

Case 2.2: $e=w_{1} v_{2}$. If $\phi\left(w_{1} v_{1}\right), \phi\left(w_{1} v_{3}\right) \in\{1 / 5,1 / 4\}$, then we argue as in Case 2.1 with the roles of $w_{1} v_{1}$ and $w_{1} v_{2}$ switched. So since $\alpha_{1} \geq \alpha_{2}$, we may assume that $\phi\left(w_{1} v_{3}\right) \geq 3 / 10$. If $\phi\left(w_{1} v_{1}\right)+\phi\left(w_{1} v_{3}\right) \geq 6 / 10$, then

$$
\alpha_{3}=\phi(T)-\left(1-\phi\left(w_{1} v_{1}\right)\right)-\left(1-\phi\left(w_{1} v_{3}\right)\right)>1.9-2+6 / 10=1 / 2
$$

so since we are in Case 2 we must have $w_{3}=w_{1}$, which contradicts (1). Thus $\phi\left(w_{1} v_{1}\right) \leq 1 / 4$. For $i=1,3$, let P_{i} be the piece of \mathcal{P} containing $w_{1} v_{i}$. Then P_{1} is a K_{4}^{-}, and since $\phi\left(w_{1} v_{3}\right) \geq 3 / 10$ we know P_{3} is not a K_{4}^{-}. Thus in particular $P_{1} \neq P_{3}$. If P_{3} is not a K_{4}-structure, then we downgrade P_{1} and P_{3} but upgrade T to the $K_{4}=G\left[\left\{v_{1}, v_{2}, v_{3}, w_{1}\right\}\right]$. If P_{3} is a K_{4}-structure, then we downgrade P_{1}, but increase
P_{3} by adding to it the block $G\left[\left\{v_{1}, v_{2}, v_{3}, w_{1}\right\}\right]$. In either case we get a better pattern, contradicting the choice of \mathcal{P}.

Theorem 10. Let \mathcal{P} be a best \mathcal{T}-pattern. If \mathcal{P} has exactly y pieces that are K_{4} structures, then $\sum_{e \in E(G)} \phi(e) \leq 1.9 \nu+0.1 y$. Furthermore, if G is $K_{4}-$ free, then $\sum_{e \in E(G)} \phi(e) \leq 1.8 \nu$.

Proof. Note that $\phi(e)=0$ for every e that is not in $\bigcup_{P \in \mathcal{P}} E(P)$. Let P be a piece of \mathcal{P}. By definition, if $P=K_{4}^{-}$, then $\phi(P)=9 / 5$; if $P=K_{5}$, then $\phi(P)=10 / 3=$ $\frac{5}{3} \nu(P)$; if $P=K_{5}^{-}$, then $\phi(P)=3(1 / 3)+6(2 / 5)=17 / 5=1.7 \nu(P)$; if $P=W_{5}$, then $\phi(P)=5(3 / 10)+5(2 / 5)=3.5=\frac{7}{4} \nu(P)$. Using Lemmas 8 and 9 , we obtain the first statement.

If G does not contain K_{4}, then the pieces of \mathcal{P} are only W_{5}, K_{4}^{-}and lonely triangles. Using the calculations of the previous paragraph and the second statement of Lemma 9, we derive the second statement of our theorem.

The proof of Theorem 1 now follows immediately. Suppose G is such that $\tau^{*}(G) \geq 2 \nu(G)-x$. Then by Theorem 10 we find $2 \nu-x \leq 1.9 \nu+0.1 y$, implying that $y \geq \nu-10 x$. Therefore G has at least $\nu-10 x K_{4}$-structures and hence at least $\nu-10 x$ edge-disjoint K_{4} 's, together with an additional $10 x$ edge-disjoint triangles.

We end with the remark that we are still quite far from understanding the behaviour of $\tau^{*}(G)$ for K_{4}-free graphs G. With some extra work we are able to show that our bound of $\tau^{*}(G) \leq 1.8 \nu(G)$ can be improved to $\tau^{*}(G) \leq 1.75 \nu(G)$, but in terms of lower bounds we know only that the ratio $\tau^{*}(G) / \nu(G)$ can be as large as 1.25 , which is attained by the 5 -wheel W_{5}. It would be interesting to close this gap for the class of K_{4}-free graphs.

References

[1] Z. Füredi, Maximum degree and fractional matchings in uniform hypergraphs, Combinatorica 1 (1981) 155-162.
[2] P. E. Haxell, Packing and covering triangles in graphs, Discrete Math. 195 (1999) 251-254.
[3] P. E. Haxell and Y. Kohayakawa, Packing and covering triangles in tripartite graphs, Graphs Combin. 14 (1998) 1-10.
[4] J. H. Kim, The Ramsey number $R(3, t)$ has order of magnitude $t^{2} / \log t$, Random Structures Algorithms 7 (1995) 173-207.
[5] M. Krivelevich, On a conjecture of Tuza about packing and covering of triangles, Discrete Math. 142 (1995) 281-286.
[6] Zs. Tuza, Conjecture, Finite and Infinite Sets, Eger, Hungary 1981, A. Hajnal, L. Lovász, V. T. Sós (Eds.), Proc. Colloq. Math. Soc. J. Bolyai, Vol. 37, NorthHolland, Amsterdam, (1984), 888.
[7] Zs. Tuza, A conjecture on triangles of graphs, Graphs Combin. 6 (1990) 373-380.

[^0]: *This research was done at the Institute for Pure and Applied Mathematics at UCLA.
 ${ }^{\dagger}$ Department of Combinatorics and Optimization, University of Waterloo, Waterloo, ON N2L 3G1, Canada. E-mail address: pehaxell@math.uwaterloo.ca. This author's research was partially supported by NSERC.
 ${ }^{\ddagger}$ Department of Mathematics, University of Illinois, Urbana, IL 61801 USA and Institute of Mathematics, Novosibirsk 630090, Russia. E-mail address: kostochk@math.uiuc.edu. Research of this author is supported in part by NSF grant DMS-06-50784 and by grant 08-01-00673 of the Russian Foundation for Basic Research.
 ${ }^{\S}$ LIRMM, Université Montpellier II, 34392 Montpellier Cedex 5, France. E-mail address: Stephan.Thomasse@lirmm.fr

