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LOWER B O U N D  OF THE HADWIGER N U M B E R  
OF GRAPHS BY THEIR AVERAGE DEGREE 

A. V. K O S T O C H K A  
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The aim of this paper is to show that the minimum Hadwiger number of graphs with average 
degree k is 0 (k/l/l'~k). Specially, it follows that Hadwiger's conjecture is true for almost all 
graphs with n vertices, furthermore if k is large enough then for almost all graphs with n vertices 
and nk edges. 

1. Introduction 

Let us recall the notion of  the Hadwiger number. The following operations are 
called elementary contractions: 

substitution of  two adjacent points vl and v~ for a new point vs connected to 
the points connected to v~ or v2; 

removal of  an edge; 
removal of  a point. 
The graph G is said to be contractable to the graph H if H can be obtained 

from G by means of  a sequence of  elementary contractions. The Hadwiger number 
~(G) of  a graph G is the maximum order of the complete graphs to which G can be 
contracted. 

A contraction of  a connected graph G=(V, E) to the complete graph of  r 
vertices also can be considered as an onto mapping ~: V-~{I, 2 . . . . .  r} with the 
following properties: 

every subgraph O-~(i) of  G is connected (1 <=i<=r); 
for any integers l<=i<j<=r, there exist vertices v~k-l(i)  and WE~/--I(j) 

such that (v, w)E E. 
The contraction is one of  the most natural operations on graphs. Thus, it is 

very important to study the Hadwiger number and its relation to other features of  
graphs. For  example, let us mention Hadwiger's well-known conjecture ¢[2]) that the 
chromatic number z(G) of  a graph G is not greater than r/(G). Let w(k)= 
= min {r/(G): z (G)~k}.  Then Hadwiger's conjecture is equivalent to the following 
statement: w(k)=k for any natural number k. Wagner [7] showed that w(k)= 
_~4+log2(k-1/3) .  Mader's [5] result implies that w(k)>(k/16) logs k. 

AMS subject classification 1980): 05 C 10, 05 C 15, 60 C 05. 
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Many authors (see e.g. [5], [6], [8], [9]) are interested in how small Hadwiger 
number a graph G=(V, E) can have if IE[/[VI>=k. Denote this minimum by r/(k). 
Considering contraction as mapping, we can easily prove that the Hadwiger number 
of almost all graphs of n vertices is at most n / l l ~  n. It means that there exists a graph 
G=(V, E) with IVl=n, [El>=nZ/4 and rl(G)<=n/1V~n. Thus rl(k)<=ak/flogk if 
k is large enough. On the other hand, Mader [5] proved that rl(k)>k/8 log2 k. 
That is, if k is large then 

k 4k 
< n (k) - < _ - - .  

8 logs k t /~g k 

The aim of this paper is to prove that the order of  ~/(k) is O(k/l/log k). The 
consequences of  this statement improve the lower bound of w(k) and prove Had- 
wiger's conjecture for for ahnost all graphs of n vertices and kn edges if k is large 
enough. 

2. Notation 

The sign " - "  must be read as "equal by definition". 
Let G=(V, E) be a graph and V0= V. Then G(Vo) and G -  V 0 denote the 

subgraphs of G induced by V0 and V -  Vo, resp. If  v6 V then Nc,(V)'-- {u6 V -  {v}: 
(u, v)~E}, de(v)- ING(v)I, a(G) "- mo£avX d6(v), 6(G)- minvEv de(v). For a graph G =  

=(V, E), G=(V, E) denotes the complement of G. Let ~k-- {G=(V, E): IE1/IV[>= 
~k}. Then rt(k)= min r/(G). 

G ~ N  k 

3. Results and comments 

Theorem 1. tl(k)>=k/270 }/-~g k for k>-2. 

Corollary 2. w(k)>=k/540 ~/-~g k for k>=2. 

Corollary 3. Hadwiger's conjecture is true for ahnost all graphs of  n vertices. 

Note. Corollary 3 was proved by P. Erd6s, B. Bollob~is and P. A. Catlin independ- 
ently from each other. 

Corollary 4. I f  k is large enough then Hadwiger's conjecture is true for almost all 
graphs of n vertices and kn edges. 

Corollary 5. min (rI(G)q-rt(G))= ~2(n/1/1--~). 
~=(v,E),lVl=, 

Let v(k) be the smallest possible Hadwiger number of  a k-connected graph. 
Mader [5] proved that r/(k)/2_<- v(k) = 2r/(k). From these inequalities and Theorem 
1, we obtain 

Corollary 6. v(k)=I2(k/ l ~  k). I 
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function rh(k)= min r/(G) were studied instead o f ~ k  and r/(k) for different reasons 
GE~'k 

(see e.g. [5], [8], [9]). As it is a more natural class, we formulate our results for ~ .  
Actually, we prove a bit stronger statement than Theorem 1: 
Theorem 1'. ~h(k)=>l/270.(k/~q-og~ for k~2 .  

From the proof  of  Theorem 1', it is easy to obtain a polynomial-time algorithm 
with the help of  that any graph in ek can be contracted to the complete graph of  
k/270 t/log k vertices. 

We can see in the proof  of  Theorem 1" that the constant 1/270 can be improved 
at the expense of  the length of  the proof. It is proved in [4] that 

k k 
.064 t/1--~-g k --< ~h(k) <-- 2.25 t/log k 

The structure of the proof  is as follows. In section 4, we prove that it is sutfi- 
cient to study the contraction of  graphs containing much more edges than its comple- 
ment. Some features of  contraction of  such graphs are studied in section 5. Using 
these features, a lower bound of  the Hadwiger number of  such graphs is given in 
section 6 by an auxiliary function. Theorem 1" is proved in section 7 on the basis of  
sections 4 and 6. Corollaries 2--5  are also proved in section 7. 

4. Graphs with large number of edges 

Let k ~ 2  and ~->0 be real numbers and let 

~(k ,  cO - { G = ( V , E ) :  [V I =>3, Igl > k ' I V l + ~ ' l g [ 2 - 1 } .  

Lemma 1. Suppose that k=>2 and ~=>0 are fixedreal numbers andthe graph G= 
= (V, E)6 N (k, e) cannot be contracted to any graph in ~ (k, a). Then every edge of G 
is in more than k + 2 e .  IVl-~-I triangles. 

Proof. Let k=>2. If  n = 3  then I E [ ~ 2 . 3 -  1=5  and this is impossible. Hence n>3 .  
Suppose that an edge (u, v) of  G is contained by at most k + 2 ~ n - e -  1 triangles. 
Let G'=(V' ,  E') denote the graph obtained from G by the contraction of  the edge 
(u,v). Then I V ' l = n - l ~ 3  and I E ' l = > l E l - ( k + 2 e n - a - l ) - l = > k n + a n 2 - 1 - k  - 
- 2 c m + ~ = k ( n - 1 ) + e ( n - 1 ) 2 - 1 .  Thus G'6~(k ,e ) ,  a contradiction. II 

Lemma 2. I f  k=>39 then ever), graph G6N(k, 1/3) can be contracted to a graph 
Go=(Vo, Eo) such that IVol-->5k+l and 6(G0)=>7/8. IV01, 
Proof. Suppose that the lemma is not true. Let G=(V,  E) be a counterexample with 
minimum number of edges and let IVl--n. Then IEl<-kn+n~/3. Since n k + n Z / 3  - 
- 1 < ( n  2 - n ) / 2  so 

(1) n = > 6 k + l  

Specially, since k=>39 so 

(2) n _~ 9_35 
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If 6(G) >=7n/8 then Go= G provides the statement of  the lemma, a contradiction to 
the choice of  G. Therefore 

(3) 6 (G) < 7n/8 

Let voEV, da(vo)=f(G). Consider the graph G'-G(NG(vo)U{vo}). For 
every vertex vENa(vo), the edge (vo, v) is in more than k+2n/3-1/3-1 triangles 
by Lemma 1, i.e. 5(G')>k+2/3-1/3. Thus if 8/7(k+2/3-1/3)>-1+6(G) then for 
Go=G'=(V ", E'), we have (V'l>-k+2/3n-1/3+l>=k+4k+2/3+2/3>5k+l, 
a contradiction to the choice of  G. Thus 

(4) 
Then 

and hence 

(5) 

8 2 

7 ( k + 3 , - 3 ) <  l + 2 1 E [ ~ l + 2 + 2 n .  
-8 n - 

n 29 
9 18" 

Combining the inequalities (3), (4) and (5), we get n<232,  a contradiction to (2). I 

Lemma 3. If  k ~8 then every graph GE~(k,  2/9) can be contracted to a graph Go = 
=IV0, E0) such that IVo[>=13k/5 and 6(Go)>=31Vo[/4. 

Proof. Suppose that the lemma is not true. Let G=(V, E) be a counterexample with 
minimum number of  edges and let IV I=n. As in the proof  of Lemma 2, we obtain 
the following inequalities: 

(Y) n ~ k  
(2") n = > 29 

3 
(3") 6 (G) < ~- n 

(4') 2)< i+6(0-') k 
3 

2 35 
(5') k > - ~ n  18" 

Combining the inequalities (3'), (4') and (5"), we get n <  14, a contradiction to (2'). I 

Lemma 4. Let k=>6480 be a natural number and let GEgk be a graph where 8k = 

={G=(V,', E):  [V]_->k, IEl>k.]Vl-[k~lJ}." - "" Then Gcanbecontractedtoagraph 

H=(Vo, Eo) such that IVol>=13k/432+l and 6(H)>-71V,,I/8. 
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Proof. Let Gx=(V1, E~) be a graph in gk with minimum number of  edges that G can 
be contracted onto. Then IE~l<k. II"11 and 6 ( G 0 ~ 2 k - l .  Let v0E V~ be a vertex 
such that 6~l(VO)=f(G1) and Gz(V~, Ez)-G~(NG~(Vo)U{v}). As in the proof  of  
Lemma 1, it is easy to see that every edge in Ex is contained by more than k -  1 trian- 
gles. Thus 6(G~)>k. Notice that [V~.l=fi(G~)+l<=2k and [E~I~I/26(Gz)IV~]=> 
>=k l V~l/2. 

Let ka-k/18. Then GzC~(k~, 2/9). According to Lemma 3, G2 can be con- 
tracted to a graph G z = (Vz, 173) such that ]Va[~ 13k~/5 = 13k/90 and 6 (Ga) => 31V31/4 
Let k 2 -  Iv3[/24. Then G3~(kz ,  1/3) and according to Lemma 2, Ga can be con- 
tracted to a graph H =  ( V o, E0) such that ] V01 ~> 5kz + 1 => 5/24 I Val + I => 13k/24 • 18k + 1 
and ~(n)=>7 IVol/8. | 

So Lemma 4 implies that to prove the inequality min~l(G)>-c~k/[C~k 
G ( 8  k 

it is sufficient to show that rl(G)=>c~n/lol/~ holds for any graph G=(V, E) with 
IVI=4 and ~(G)=>:-7n/8. 

5. Contraction of graphs with large number of edges 

Lemma 5. )l(G)>-_3lV[/4-1/4 holds for any graph G=(V, E) with IEI<IV[/2. 
Proof. Let G=(V, E) be a counterexample with the minimum number of  vertices 
and lzt ]V[=n. It is obvious that n>4 .  We distinguish three cases. 

Case 1. a(G)=>2. 
Let d~(vl):b(G) and GI=(V1,E1)'--G-{Vl}. Then 2 1 E l l < n - a 1 =  

= I Vll-3 and there exist isolated vertices v2, v3, v4 in G1. Let G 2 -  G I -  {vl, vz, v4}. 
Then r/(Gz) => (3/4) (n - 4) - 1/4 = 3n/4-13/4 by the minimality of G. Since the vertices 
v,, v3, v4 are pairwise adjacent in GI so q(G)~_q(G~)=>3+~(Gz)~3n/4-1/4, a con- 
tradiction to the choice of  G. 

Case 2. ]E]_~ 1. 
Then r/(G)=>n - 1 >- 3n/4-1/4. 

Case 3. a ( G ) = l ,  IEI=>2. 
Let el=(Vl, vz)~E and e2=(vz, v4)EE. Contracting the edge (vl, v3) in the 

graph G, we obtain a graph (~1=(V1, Ea) with IV1]=n-1  in which the vertices 
vz, v4 and the vertex ~ obtained from v~ and v 3 are adjacent to each other. Then 
r / ( ~ -  {Vl, v2, v3, v4}) -> (3/4) (n - 4) - 1/4 = 3n/4-13/4 by the minimality of  G. Hence 
r / ( t ~ ) ~ 3 + ( 3 n / 4 - 1 3 / 4 ) = 3 n / 4 - 1 / 4 .  1 

Lemma 6. (crucial one) Let r>=G and G=(V, E) be a graph of n vertices such that 
a(G)_~n/r. Then ~ can be contracted to a graph H=(V0,  E0) of In/21 vertices such 
that 2 IE0l ~ (27r/(r-2)Z(r - 1)2)-11101 "~. 

Proof. Connect every vertex v~ V by a quasi-edge to the vertices which are not adja- 
cent to v and from which mare than 3n/(r-1)(r-2) paths of length two lead to v. 
We show that every vertex is incident to at most (n(r-2)/3r)-  I quasi-edges. If  it is 
not the case then the number of  paths of  length two from v is greater than 
(3n / ( r -1 )  ( r - 2 ) ) ( n  ( r - 2 ) -  3r)/3r. At the same time, the total number of  these paths 
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is at most ~r(G)(a(G)-l)<=n(n-r)/r ~ and the inequality 

3 n  n ( r -  2) - 3r  n (n - r) 

( r -  l ) ( r - 2 )  3r r ~ 

holds for any natural number n=r_G.  
Let G' = (V', E') denote the graph obtained from G by adding the quasi-edges. 

Then a(G')<-n/r+ (n(r-2) /3r)-  1 = (n(r+ 1/3r) -  1 < ( n -  1)/2, i.e. G' has a Hamil- 
tonian cycle and a matching of [n/2l edges. 

The contraction of an edge (Vl, vz) in Cr corresponds to a sticking in G: we 
replace the non-adjacent vertices vl and v~ with a new vertex v3 adjacent to wC V -  
-{v i ,  v2} iff @1, w)~E and (v2, w)EE. 

Let rc be an arbitrary matching of In/2J edges in G'. Sticking every pair of 
vertices in G corresponding to the edges of n and deleting the vertex not covered by 
n if n is odd, we obtain a graph H,  of tn/2J vertices. From among the graphs H~, 
we choose a graph H-H=o=(Vo, Eo) with minimum number of edges. Let V0= 
= {vl: i =  1 . . . . .  n/2} and suppose that vi is obtained by sticking vl~ and v.,i. Notice 
that (v~, vj)~Eo iff {(vl~, vii), (vli, v~j), (vz~, vii), (v2~, v~j)}=E. 

A path (Xl, xa, xz) of length 2 will be called a fork on the vertex pair {xl, x~}. 
We will say that the pair {x~, x2} is the support of this fork. 

If (vll, vl~)q E" and (v2~, v2j)¢ E'((v~l, v2j)i~ E" and (v~.i, Vlj)¢ E', resp.) (for 
some i,j~{1 ..... I/2}, iCj  then the graph H~j=(V~,E]j)(H~=(V ~, E~), resp.) 
is called the (i,j, 1)-transformation ((i,j, 2)-transformation, resp.) of the graph 
Ho = (Eo, Vo). The graph H~ (H~, resp.) is obtained by stickings along the matching 

1 2 P rcu(n~j, resp.) in G ,  where ~ 2 u~j(Tt~j, resp.) is obtained from n0 replacing the edges 
(v~l, vzl) and (v~j, v2j) with the edges (vii, v~;) and (Vzi, Vzi)((vat, vzi) and (Vzi, vl~), 
resp.). These transi'ormations will be called (i,j)-transfornaations? 

Let dn(v~)=6(1 <=i<=[n/2l). During an (i,j,/)-transformation, 6+tl edges of 
Eo-E~ti are destroyed but it may occur that new edges arise. The edges of G' hinder 
the existence of some (i,j)-transformations. Since every edge of G" may cross 
at most one transformation so every vertex v ~ V  can take part in at least 

} t, 3r 1 transformations. Then [glj-Eol~_tl+to holds for l~i,j<= 
~[n/2], 1=<l_<-2 by the choice of H. Every edge of E ~ - E 0  has a pair of forks in G 
with common supports in n0 A;z~j. Every pair of forks may take part in at most one 
transformation producing "new" edge. Then every (i,j ,/)-transformation corre- 
sponds to x~j ~ t~ + t~ pairs of forks and the members of every such pair have a com- 
mon support belonging to ~z 0. Associate h pairs from among these x~j pairs of forks 
with v~ and tj pairs from among the remaining x ~ - h  pairs with v Then at least 
t~(n-(2n(r+ 1)/3r)-1)  pairs of forks will belong to vi (1 ~-i<=[n/2J~." Furthermore, 
every edge (vi, vj)~E o corresponds to the pairs {(Vli , vx~, v,~)(v~i, %j, v~)} and 
{(v~ i, vx~, vzj), (vx~, v~, v2~)} of forks not belonging to any vertex. I.e., the total 
number of pairs of forks in G with common supports in no is at least 

L÷J f,,(,--2) ) ] 
t, 1 +2[E0l = 1 .21E0]+2]E0[ = 21Eol n(r-2)  

t=1 l, 3-r ( 3r 3r 
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On the other hand, (vii , v2~)(E for 1 : l  =[n/21 thus {vu, v2~} is the support  of  at 
most (3n/(r-1)(r-2))  forks and so it is the common support  of at most 

I ( r -  l ) ( r - 2 )  pairs of forks. Hence 
2 

2lE°]n(r-2) [ 2 ]  9n ( ( r - 1 ) ~ r - 2 ) . )  
3r -<_ 2 ( r _ l ) 2 ( r _ 2 )  2 • n i.e. 

2[E01 <--[2I n--1 27r 
2 ( r - 1 ) 2 ( r - 2 )  a '  | 

6 .  L o w e r  e s t i m a t i o n  o f  ~/ (G) 

Let f(n,m)-n/2~/1-~gn(i/logn2/2m-14) and f (G) - f ( lV] ,  ]El) for any 
graph G=(V,  E). The aim of this section is to give a lower bound of  ~/(G-) byf(G)  
for graphs with small ratio IEI/IV] z. 

Lemma 7. Let n>=3, 2m>=n, 1.4<]/logn=/2m and n/2>a>=l+logn~/2m - 
- 1.4i/log n2/2m. Then f(n, m)<=f(n- I, m-2m~/n).  

Proof. Let c -  n2/2m, c~ - ( n -  1)=/2(m-(2ma/n)). Then 

2 m ~  x 1 
f n -- 1, m-----n---J - f ( n ,  m) -->_ 2 I/l-'o-~ ((n - 1)(~ 1 ~ 7 7 - 1 . 4 ) -  n (lol/~-c--1.4)). 

I.e., it is sufficient to prove the inequality 

(6) ( n - l )  l ~ q  ~ nV' l -~c- l .4 .  

The inequality for r, in the conditions of the lemma implies that 

Since 

Thus 

21ogc--2.8  lt/~gc ~ 2(~--1). (n-- l f -  
n ( n - 2 ) "  

x < l o g ( l - x )  -1 for xC(0, 1) so 

- - 1 ) n ( ~  ( 2 ( ~ - ! ! / - 1  ( n -  1)2 . l o g n U  2 2(a (n--  1) ~ < (n- - l )  2 log 1 -- -< 
= n n - - 2  ) n 2 ~  - -  

( 7  f 1 - ( n -  1) z n ~ 1 - -  

n 

_ ( n - -  1)_____~ 2 (log cl--log c).  
n 

(n -- 1)" (log cx--log c) ~ 2n log c-- 2.8n l/log c. 
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Then 
(n  - 1) ~ log ca =~ 

_-> (n - 1) 2 log c + 2n log c -  2.8n ~ = n 2 log c + log c - 2.8n t /~g  c = 

= (n ~ -1 .4 )2+  (log c -  1.96) > (n ~ - 1 . 4 )  ~, 

i.e. (6) holds. II 

With the help o f  derivates, it is easy to prove 

Lemma 8. I f  x >- 1/log 49 then ea'4~/5 >- 1 + x 2 -  1.4x. | 

Lemma 9. Let G =( V, E) be a graph with [ V l = n ,  E ¢ 0 and suppose that c - n2/2 [El -> 
_->49, ~r(G)<=n/c.(1/5)ela~.  Then G can be contracted to a graph _~=(Vo, Eo) 
of tn/2J vertices such that either E0=0  or f(H)>=f(G). 

P r o o f .  Let z'--cr(G)c/n. According to Lemma 6, G can be contracted to a graph 
H = ( V o ,  Go) such that  IWol=tn/21 and either Eo=0  or  c~-IVol~/21Eo!>-(c/z)4. 
• 1/27. ( 1 - 3 / c ) 2 ( 1 - 2 3 / c )  a. Suppose that  E0~0.  If  c=>49 then (1/5c)eL4gl-~g~< 1/15 

and if z /c<I /15  holds then ( l - z /c )~(1-2z /c)3>43/76.  Thus 

(7) cl --> 76 .27  " > 0.02 

Estimate f (H) - - f (G) .  

1 2 l  (t/l°--°g-~x -- 1.4) n (l/log c--1.4) 
f ( H )  - f ( G )  = ~_ 

=v,o c 

~ 2 ~  21 /~gn  

I.e., it is sufficient to prove the inequality 

0.25 l o g c l - - ( l l ~  c - 0 , 7 )  2 

0.5 + c - 0 . 7  

log c -  log z + I log .02-- log c + 1.4 l/log c -  0.49 _~ 1.4 ~ -  log (z .  50 It~ el/Z). 

4 

We have z<=el.4tCi-ffff/5<el.alCi'~/[/50e 2 by the conditions o f  the lemma and so (8) 
holds. II 

Lemma 10. The inequality q(G) >=f(G) holds for any graph with E~- 0 and I VIZ/21EI ~_ 
_->49. 

Applying (7), the left side o f  (8) is at least 

1 
(8) -~ log cl -- log c + 1.4 ll/~g c - .49 ~ 0. 
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Proof. Let ]Vl=n, c'-IVI2/2IEI, z=a(G).c/n. If  n<_-8 then the statement of the 
lemma is obvious. Suppose that the lemma is true for n'<n. We distinguish four 
cases. 

Case l. 0<21E[<n.  
If lel>O then and . (a) => 3n/4 - 1 / 4  _-> 

=>(~-/2)n by Lemma 5. 

Case 2. 2[E[=>n, z<--eL41gi-~/5. 
Since c<=n so f(G)<=ln/2]. Let H=(Vo,  E0) be a graph described in Lemma 

9. I f  Eo=0 then rl(G)>=[n/2J~_f(G). If  Eo#0 then f(H)>=f(G)and the character- 
istics of the function f i m p l y  that ([Vol~/2]Eol)>c>-49. Then rl(H)>-f(H)>-f(G) 
by the induction hypothesis. But r/(G)=>q(H). 

Case 3. 2 IEI >-n, z>=l +log c -  1.4t/log c. 
Deleting a vertex Vo with do(vo)=a(G)=zn/c from G, we obtain a graph 

G'=(V',E')  with ] V ' l = n - 1  and ]E']<-]El-2[EI/n(l+logc--l.41/logc). Now 
f(G')>=f(G) by Lemma 7. It is clear that ]V'I2/2IE'I>-e>=49. And rl(G')>=f(G')>= 
=>f(G) by the induction hypothesis. 

Thus, we have to settle only 

Case 4. 2 ]El =>n, 1 + l o g  c -  1 . 4 1 ~ g  c > z  > eL4 I°¢i;7;/5. 
I f  C=>49 then e~.~gig~g~/5>=l+logc--l.4l/~ge holds by Lemma 8. | 

7. Proof of  Theorem 1' and its corollaries 

Proof  of  Theorem 1'. 

Case 1. k-<6480. 
Mader [5] proved that rit(k)>=l/8(k/log.,k) and if k<-6480 then 

(1/8)(k/log k) =>(1/270) (k/ lflf~k) holds. 

Case 2. k>6480. 
Let G~,Yk. Then G can be contracted to a graph H = ( V  0, E0) such that 

[Vo[>=13k/432+l and a(H)<=[Vo]/8 by Lemma 4. Now H c a n  be contracted to a 
graph HI=(Vj,E1) such that IVl!>=13k/864 and 2]E~[<=IVl[2/49 by Lemma 6. 
Let e-([V~IZ/21Elt) if Ea#0.  Then 

( lofi3- -l.4)lvll > .51v l 1 13k 1 k 
q (H1) ~- f ( H  ) = > > 21/~g Iv2l 2 l/log [vx[ 4 864 I/log k 270 ]/logk 

by Lemma 10. Finally if E~=0 then rl(G)>=lV~l>-13/864k. II 

Proof  of  Corollary 2. If  k_- < I000 then the statement holds obviously. Let k >  1000. 
Every k-chromatic graph G contains a critical k-chromatic subgraph G" such that the 
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degree o f  every vertex o f  G '  is at least k - 1 .  It  is clear that  G '  E ~/~?/• Then n(a)>= 

> = r l ( G ' ) > = l / 2 7 0 . - - > - k / 5 4 0 1 ~ k  by Theorem 1. | 
¢logk/2 

Proof  of Corollary 3. It  is known that Z(G)-~n/log n holds for almost  all graphs G 
with n vertices (see [3]). Furthermore ,  it it easy to see that  IEI>=nV~ for almost all 

graphs G=(V,  E) with n vertices. Then e(G)_~l /270.  (n/O/1/log n) by Theorem 1. 
If, in addit ion ~ / ~ g n > 6 . 2 7 0  then )~(G)~_q(G). | 

Proof  of  Corollary 4. I t  is known (see [1], p. 96) that if k is large enough then 
"z(G)N3k/log k holds for almost  all graphs G o f  n vertices and kn edges. Now 

~(G) >- (1 /270) (k / lV~k)  for  any graph G o f  this class by Theorem 1. Therefore if k 
is large enough  then Corol lary 4 is true. II 

Proof  of Corollary 5. Let G = ( V , E )  be an arbitrary graph with ]VI=n. 
Then either IEl>=(n-1)n/4 or IEl>=(n-1)n/4. N o w  max {~(G),t/(G)}_~ 
>- (1/270) (n/4 1 ~  n) by Theorem 1. 

On the other  hand,  as we said it ill the introduction, the Hadwiger  number  o f  
almost all graphs o f  n vertices is at most  n / I / ~  n. Thus if n is large then there exists 

a graph Go=(Vo, Eo) with [Vo]=n such that  ~(Go)<-n/gl--~n and r/((~o)_~ 
= n / 1 V ~ n .  Then r/(G0)+t/(Go)_-<2n/lo~gn. II 
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