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Abstract 

The result announced in the title is proved. A new proof of the total 6-colorability of any 
multigraph with maximum degree 4 is also given. 

1 Introduction 

A total coloring of a multigraph G with k colors is a mapping 
f :  E ( G ) u  V(G) ~ {1 . . . . .  k} such that for any two adjacent or incident elements a, b of 
E(G)u  V(G), f (a)  ¢ f (b ) .  The minimum k such that there exists a total coloring of 
a multigraph G with k colors is called the total chromatic number of G and is denoted 
by z2(G) (to distinguish it from the chromatic number  z(G) and from the edge 

chromatic number  Z1 (G) of G). 
Vizing [16] and Behzad [1] conjectured that for any positive integer A and for each 

simple graph G with maximum degree A, 

Zz(G) ~< A + 2. (1) 

The validity of (1) is known to be true for graphs in several wide families (see [3, 4]). 
Hind [6] and then Chetwynd and H~iggkvist [5] proved that it is 'almost true', i.e. that 
z2(G) ~< A + o(A) for each simple graph G with maximum degree A. But the exact 
bound (1) was published only for A ~< 3 [14, 15] and for A = 4 [7]. The inequality (1) 
is not true if we replace simple graphs by multigraphs, since for each A ~> 1, there 
exists a multigraph S (so-called Shannon's triangle) with maximum degree A and 
zI(G) = L1.5A J. In [10] (cf. also [8]) it was proved that for any integer A >~ 4, A ~ 5 
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and for each multigraph G with maximum degree A, 

z2(G) ~< L 1.5A J. (2) 

Thus, the main result of the present paper announced in its title completes the total 
coloring analogue (2) of Shannon Theorem on edge coloring and proves the validity of 
Vizing-Behzad conjecture for one more value of A. Note that the result of this paper 
was proved in [9] but was not published because of size of the proof. The present 
proof is sufficiently shorter (though not quite short). 

The paper structure is as follows. After introducing in Section 2 definitions and 
notation, in Section 3 a new proof of the following known result is given. 

Theorem 1. For each multigraph G with maximum degree at most four, 

Zz(G) ~< 6. 

Then the idea of the proof of Theorem 1 is developed in Sections 4 and 5 and gives 

Theorem 2. For each 5-regular multigraph G having a perfect matching, 

z2(G) ~ 7. 

Finally, in Section 6 the general case is reduced to that described by Theorem 2. 

2 Notation 

For any multigraph G, let V(G) (respectively, E(G)) denote the set of vertices 
(respectively, edges) of G. All the elements of the set V(G)u E(G) are called elements of 
G. For W c_ V(G) (respectively, F ~_ E(G)), by G(W)  (respectively, G(F)) is denoted 
the subgraph of G induced by W (respectively, spanned by F). As usual, for multi- 
graphs G and H, the multigraph R = G n H  (respectively, Q = G u H )  has 
V(R) = v ( a ) n  V(H) and E ( R ) =  E ( G ) n E ( H )  (respectively, V ( Q ) =  V(G)u V(H) 
and E(Q) = E(G)uE(H)) .  

Although, for v, w • V(G), there can be several edges of G connecting v with w we 
will still use expression (v, w). It will mean 'some edge connecting v with w'. In 
particular, the record H = Gw {(v, w)} means that H is obtained from G by adding an 
additional edge connecting v with w. 

For 1/1, V2 ~- V (G), 1/1 n I/2 = O, v • V (G), let EG(V1, V2) denote the set of edges of G, 
connecting V~ with V2, dega (v, I/1) = ]Ea({v}, l/l\{v})l and dega(v) = 
degG (v, V(G) \  {v}). In clear cases the subscript will be omitted. The maximum degree 
A(G) of a multigraph G is max {deg~ (v)[ v • V(G)}. If V2 = V(G)\V1 then we will call 
E6(V1, V2) a cut of G and denote it by [1/1, 1/2]. 

A coloring of a multigraph G with k colors is an arbitrary mapping 
f : E ( G ) u V ( G ) - * { 1 , . . . , k } .  If f (a)  is not defined for several elements 
a • V(G)uE(G) ,  we say that f i s  a partial coloring ofG. A proper (total) coloring of 
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a multigraph G by k colors is a coloring such that for any two adjacent or incident 
elements a,b E E ( G ) u  V(G), f (a)  ¢ f (b ) .  Let Z z ( G )  denote the minimum k such that 
there exists a proper coloring of G with k colors. 

3 Coloring multigraphs with maximum degree four 

Lemma 1. Let G be a 4-regular connected multigraph, G ¢: Ks. Then there exists a cut 
[1/1,1/2] of G such that 

(1) the induced subgraphs Gi := G(Vi), i ~ {1, 2} have no cycles of length at least three; 
(2) A(G,) <<, 2, i t  {1,2}; 
(3) the multigraph G = G\ (E(Gx)u  E(G2)) is connected. 

Proof. Borodin [2] and Kronk and Mitchem [113 independently proved that there is 
a cut of G satisfying statement (1). Among cuts with this property choose a cut [V~, V2 ] 
containing maximal number of edges. This is the desired cut. Indeed, if v e 1/1 and 
degG(v, V1) ~> 3, then the cut [V ' ,V"]  = [ V l \ { U } , V 2 k - ) { v } ]  has more edges than 
IV1, V2] and v does not belong to any cycle of G(V"). So, [1/1, V2] satisfies (2). 

Suppose that a cut [W1, Wz] of(~ has no edges. Denote Aij = V~c~ Wj. Then the cut 
[V', V"] with V' = A~auA22, V" = A l z U A 2 1  has more edges than [1/1, V2] and still 
G(V') and G(V") have no cycles. [] 

Lemma 2. Let G be a 4-regular connected multigraph, G ~ K5 and [1/1, V2] be a cut of 
G satisfying Lemma 1. Then there exists a partition of E(G) into two 2-factors F1 and 
F2 such that 

A(G(F~)chG(V~))<~ 1, i e{1 ,2} .  (3) 

Proof. By assumption every component of Gi = G(V,.), i = 1,2 is a path or a 2-cycle. 
Replace each such a path Pj by an edge pj connecting its ends, and each such a cycle 
(Xk, Yk) by a loop lk at the vertex Xk. Due to Lemma 1 (3), the resulting multigraph G' is 
connected and therefore eulerian. Let L' = (e'l, e~ . . . . .  e~) be an eulerian trail of G'. 
Replacing in L' every edge pj not belonging to G back by the path Pj, and each loop 
lk by the cycle (Xk, Yk), we obtain an eulerian trail L = (el, e2 . . . . .  e,) of G on which the 
edges of each Pj and each (Xk, Yk) lie in consecutive order. As Petersen [13] observed. 
the subgraphs F1 and/72 consisting of the edges having odd and even numbers in L, 
respectively, are 2-factors of G. Because of tricks with Pj and (Xk, Yk), FI and F 2 a r e  

what we need. []  

Let [1411, WE] be a cut of a multigraph G. Say that a path P = (Xo, Xl, - . .  , Xr) in G is 
a [Wi, W3-i]-path (i e {1,2}) if it satisfies the following two conditions: 

(1) r/> 4 and r is even; 
(2) V(P)chWs_i = {Xz,X4 . . . . .  xr-2}. 
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Let [W1, W2] be a cut of a multigraph G and f b e  a proper partial coloring of Wi in 
G. We say that f i s  (G, W/)-9ood if for each [W~, W3 _/]-path P = (Xo, xa, . . . ,  x,) in G at 
least one of the following conditions is satisfied: 

(a) there are uncolored vertices in V(P)~  Wi; 

(b) f (xo)  Cf(x , ) ;  
(c) f (xo)  e { f(x3),  f ( x s )  . . . . .  f ( x , -  3) }" 

Lemma 3. Let C be a cycle of length at least three or a path and [W1, W2] be a cut of 
C such that 

A(C(W1)) ~ 1. (4) 

Suppose that f is a (C, Wx)-good colorin9 of W1 with colors 1, 2 and 3 and W'I is the 
colored part of Wa. Then we can extend f to a proper colorin9 of W'I u E(C) with the 
same colors 1, 2 and 3. 

Proof. Suppose that C is a minimal counterexample with respect to the number of 
edges. If e = (v, w) E E(C) and {v, w} n W] = 0, then after coloring the edges of C \ e  
(which is possible because of the minimality of C) we could color e with a color in 
{1,2,3} not used for coloring the edges incident with e. We can also color e after 
coloring other edges if C is a path, e = (v, w) is its first edge, and ]{v, w} r~ W] [ ~< 1. 
Thus, 

{v, w} c~ w l  ¢ 0; (5) 

(C is a path and (v, w) is its first edge) =~ {v, w} c Wl .  (6) 

Case 1. There is an edge e = (v, w) e E(C) with {v, w} c Wi. If {v, w} = V(C), then 
since C is not a 2-cycle, we simply color e with ~ e { 1, 2, 3} \ { f(v), f(w)}. Otherwise, 
because of (5), (6) and the symmetry of v and w we may suppose that there are vertices 
x e W2,y e Wi ,  z e V(C) with (w,x)e  E(C), (x ,y )e  E(C), (y , z )e  E(C). Let, for defi- 
niteness, f (v)  = 1, f (w) = 2. We ought to put f((v, w)) := 3, f ((w,  x)) := 1. If f ( y )  = 1 
then we could temporarily delete edge (x, y) and color it at the end with the color fl 
{2 ,3} \ { f ( (y , z ) ) } .  Let f ( y ) ~  {2,3}. Then we ought to put f ( ( x , y ) ) e  {2,3}\{ / (y)} ,  

f ( (y ,z ) )  := 1. 
If z e W i  then (v,w,x,y,z)  is a [W1, W2]-path and, according to (b) above, 

f (z )  # f ( v )  = 1 should hold. So, in this case we could temporarily delete edge (x, y) and 
color it at the end with color f(z). If z e W1 \ Wi then due to (5) and (6) there exists 
u e W'~\{y} incident with z. But this contradicts (4). 

Thus, z e W2. Then again by (5) and (6) there are vertices p e W'l, q e V(C) with 
(z, p) e E(C), (p, q) e E(C). We deal with them like we did with y and z, since f ( (y ,  z)) 
has to be 1. We proceed in this manner until either we meet two adjacent vertices in 
W1, and then use the conditions (b) and (4), or we meet a vertex r e W1 with f (r)  = 1 
and deal with r as we did with y. 
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Case 2. For  each edge (v, w) of C, [{v, w} c~ W]] = 1. Then by (5) and (6), C is an even 
cycle, and by (7), W'I = W1. Let C = (x 1, x2 . . . . .  X2k),. and W'I = {x~, x3 . . . . .  X2k- 1 }. 
If f ( x l )  = f ( x 3 )  . . . . .  f(Xzk-1) then we color the edges of C with two remaining 
colors. Assume that f(x2k_1) v~f(Xl). Put f ( (Xzk ,X l ) )=f (Xzk_ l )  and then for 
j -- 1,2, ... ,k - 1, choose f ( (x2~-~,xzi ) )e  { 1 , 2 , 3 } \ { f ( ( x 2 j - 2 , x z j - O ) , f ( x 2 j - 1 ) } ,  
f((xz~,X2j+O) ~ {1 ,2 ,3} \{ f ( (x21- l ,x2 j ) ) ,  f(x2~+l)}, and at last f((X2k-l,XZk)) 

{1,2,3}\{f((X2k-2,X2k-1)) ,  f(X2k-~)}. [] 

Proof of Theorem 1. Let G be a connected multigraph with A (G) ~< 4 such that adding 
any edge violates the condition A(G) ~< 4. By this choice, there is a vertex s ~ V(G) 
such that all the other vertices have degree 4 in G. 

Construct a 4-regular multigraph H as follows. If degG(s) = 4 then put H = G. 
Otherwise take a copy G' of G and connect s with its copy s' in G' by 4 - dega(s) 
edges. If H = K5, then z 2 ( H )  = 5. 

Let H # K5 and [1/1, V2] be a cut of H possessing the properties (1)-(3) of Lemma 1. 
Choose disjoint 2-factors F1 and F2 satisfying (4). We are going to color for i = 1, 2 the 
vertices in V~ and the edges in F~ with colors 3i - 2, 3i - 1 and 3i. 

In order to construct a (H(Fx), V1)-good coloring of V~, we construct a multigraph 
/~1 by adding some edges to H1 := H(V1) in the following way. We add the edge (v, w) 
if and only if the following condition holds: 

one of the paths connecting in F1 vertices v and w is a [1/1, V2]-path. (7) 

Since for each v ~ V1 there is at most one vertex w such that v and w satisfy (7), we 
added to Ha some matching. But H~ is a forest (up to 2-cycles which do not affect 
vertex coloring). Hence , / t l  is strictly 3-degenerate (i.e. every subgraph has a vertex of 
degree less than 3) and so 3-colorable. Fix any 3-coloring f o r  H1 with colors l, 2 and 
3. The edges added to H1 provide for the cycles in F1 of length at least three the 
conditions of Lemma 3 and hence a proper 3-coloring of their edges. But if (x, y) is 
a 2-cycle in F~, then, by (4), [{x, y} c~ V~] ~< 1 and we have two free colors in { 1, 2, 3} to 
color the edges of this 2-cycle. Thus, the edges in F~ are colored. 

We deal analogously with the vertices in V2 and the edges in Fz. [] 

4 Analogues of Lemmas 1 and 2 

Throughout  this Section, G is a 5-regular multigraph having a perfect matching, 
and n is some such matching. If we find a cut [1/1, 1/2] of G possessing the properties 
(1)-(3) of Lemma 1 then we would color the edges in n by color 7, and the rest of G - as 
in the proof of Theorem 1. But we can only use the following weaker statement. 

Lemma 4. Let G be a 5-regular multigraph having a perfect matching. Then there exist 
a perfect matching n and a cut [V1, V2-] of G such that denoting Gi := G(V/) we have 

(1) A(Gi) <~ 2, i~ {1,2}; 
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(2) the multigraph G~ := (G\  zr)k(E(Ga)w E(G2)) has the same number of components 
as G\  zr; 

(3) /f (v l, v2) ~ E(G), vi ~ Vii, and degG, \ ,  (vl) = 2 for i e { 1, 2} then (v l, vz) ~ lr. 

Proof. Choose zr and [1/1, V2] so as to maximize I[V1, V2]klrl, and among the triples 
1/1, 1/2, ~ with the maximum value of ] [V x, V2 ] \ ~l choose a triple with the maximum 
possible [[1/1, 1/211. We prove that this is a desired triple. 

I fv ~ VI and degG(v, 1/1) t> 3, then the cut [V', V"] = [Vl\{v}, V2 u{v}] has more 
edges than [Vx, Vz] and [[V', V"] \;z I/> I[1/1, Vz] \Trl, a contradiction. This proves (1). 

Assume that for a component H of G \ ~, the multigraph H ~ ff,~ is not connected. 
Let a cut [W1, W2] of G, have no edges and V(H)c~Wi¢:O, i =  1,2. Denote 
Aij = V/n Wj. Then the cut [V', V"] with V' = A l 1 L J A 2 2  , V"  = A 1 2 u A 2 1  contains 
more edges of G \ zr than [ 1/1, V2 ]. A contradiction to the choice of n, 1/1 and V2 proves 
(2). 

Now, if (vl, v2 )~E(G)kn ,  vi~Vi,  deg~, \ , (v i )=2 for i~{1,2} then denoting 
V; := (V~\{vi})u{v3_,} we obtain 

IEV', v"]\Trl = IFV1, Vz3\zrl + 2 ,  

a contradiction. [] 

The presence of cycles in G1 and G 2 complicates the situation seriously and we need 
several tricks. 

Let zc and [I/1, V2] be chosen so that they satisfy (1)-(3) above. Say that a 4-cycle 
C ~_ G(V1)uG(Vz)  isj-bad, j ~ {0, 1,2} if exactlyj of its edges belong to lr. The path of 
length 3 obtained from a 1-bad 4-cycle by deleting its edges belonging to lr will be 
called a bad path. Also any odd cycle C ~_ (G(Va)uG(V2)) \n  is a bad cycle. Other 
paths and cycles are not so bad. 

Let H be a component of G \ 7r. If the total number of bad paths and odd bad cycles 
in H is odd then we mark one of these paths or cycles. Thus, 

(i) the total number of non-marked bad paths and odd bad cycles in each compon- 
ent of Gkrc is even; 

(ii) the total number of marked paths and cycles in each component of GkTr is at 
most one. 

The analogue of Lemma 2 is the following statement. 

Lemma 5. Let G be a 5-regular multigraph and a perfect matching ~ and a cut [V1, V2] 
of G satisfy statements of Lemma 4. Then there exists a partition (F1,/72, F3) of E( G ) \ ~z 
such that denoting Gi := G(V/) we have 

(1) A(G(FI)) <~ 2, i t  {1,2,3}; 
(2) A(G(Fi)nGI) <~ 1, i~ {1,2}; 
(3) the edges in F3 are exactly edges of non-marked bad paths, non-marked bad odd 

cycles and of those O-bad 4-cycles C = (vl,v2, v3, v4)~- Gi, i ~ {1,2} for which there 
exist x ,y  e V(G)k V(C) such that Fi ~- {(x, vl),(x, v3),(y, v2),(y, v4)}; 
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(4) for each vertex v of any cycle in F3, 

degF, (v) = deg~  (v) = 1 ; 

(5) for each bad path P = (vl, v2, va, v4), 

degv , (v2)=degv , (V3) - -1 ,  i 6 { 1 , 2 } ,  

degv,(V,) = degv~ ~(v4) e {1,2}, i a {1,2}; 

(6) for each 2-bad 4-cycle (Vl, V2, V3, V4) with (vl, v4), (v2, v3) ~ zr such that vl and v3 lie 
in the same component of G \ 7r, edges (v l, v2) and (v3, v 4 ) belong to different F,  i ~ [1, 2}: 

(7) if P =(v~,v2, v3 ,v4)c  G~, i e  {1,2} is a marked bad path, then E(P)~F~ = 

(8) /f C = (vl . . . . .  v2, + 1) --- Gi, i e { 1, 2} is a marked bad odd cycle, then E(Clc~ F~ = 
{(V2j, V2j+,)]  j = l,  . . . , l } .  

Proof.  We will construct  a part i t ion (F1, F2, F3 ) of edges in each component  H of G ",. 7r 
and then just take the union of them. Probably ,  ~ will be changed, but the vertex-sets 
of components  of G \ g  will not  be changed and Lemma 4 (1)-(3) will hold all the time. 

So, let H be a componen t  of G \~ ,  H + := Hc~(GI uG2), H -  := H\E(H+) ,  and let 
II(H)~ denote  the set of quadruples  (vl, v,~,v3,v4)~-Ec~V(H), i e  {1,2} such that 

(Vl, V4.), (V2, V3) (~ 7"C and @1, v2), (V 3 , V4) ff E(H). 
Let Wt . . . .  , W~ be all quadruples  in F/(H)I ~F/ (H)2 ,  and W~+~, . . . ,  W,, be the 

vertex-sets of components  of H + \  ~)}= 1 Wj. We start from construct ing an auxiliary 
mult igraph (probably with one loop) H,, as follows. 

Set H o := H - .  Due to Lemma 4(2), Ho is connected. Now, for r = 1 . . . . .  m, apply 
the following procedure.  

Procedure 1. ( I ) I f  l ~ r < . s ,  Wr={v l ,  v2, v3,v4}, (vl, v~), (v2,v3)ezt  then put 
V(H,) := V(Hr-,)w{xr,~,xr,2}, E ( H , ) : =  g(Hr_l}~J{(xr, bvj), (Xr, j, V j + 2 ) l j  = 1,21 

(2) If [W,[ a {1,2} then H,  := Hr-1. 
(3) If H(W~) is the marked  bad path P = (vl, v2, v3, v4) then H,  := H~_ 1 ~ [(vl, v4)}. 
(4) If H(W~) is a non-marked  bad path P = (vb v2, v3, v4) then V(H,) := V(H~ 1)w 

{x~}, E(H,) := E(Hr_ ,)w { (x,, v 1 ), (xe, V4) }. 
(5) If H(W,) is a not  so bad path P = (vl, ... ,v,), t >/-3, then put V(Hr):= 

g(gr-1)Ld{xr,2 . . . . .  Xr, t - 1 }  , E(H,):=g(H,-1)w{(x~, j ,  x r , ) + l ) l j = 2  . . . . .  t - - 2 l w  
{(xr, 2, v,), v,)}. 

(6) If H(W,) is the marked  bad odd cycle C = (v 1, . . . ,  v2~+ 1) then H,  is obtained 
from H,_  1 by adding a loop at Vl. 

(7) If H(Wr) is a non-marked  cycle then Hr :=- Hr_ 1. 
By Construct ion,  the degree of each vertex in Hm is even. Let us see that 

I E ( H ) I = I E ( H , . ) I  (mod2) .  
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Denote  e l (Wr) :=  [E(H(W,))[, ez(Wr):= IE(H,)\E(H,-I)[. Then 

IE(H)I = IE(H.,)[ = [ E ( n + ) l -  ~ ez(W,) = ~ (el(W,) - ez(W,)). 
r = l  r = l  

The difference el (W~) - e2(W~) is odd only if H(W~) is a non-marked  bad odd cycle or 
a bad path, but  due to (i) above, the number  of such cases is even. 

Since H is 4-regular, IE(H)I is even, and whence IE(Hm)I is even. Let  A be an 
eulerian trail in H,,,  and F]  and F[  be the sets of edges with odd and even numbers  in 
A respectively. By construction,  for each/)  e V(H~), 

degel (v) = degrl (v). (8) 

Because of symmetry  of F]  and F [ ,  we can assume 
(a) if P =(/)1,/)2,v3,/)4) ~- G~nH is the marked  bad path then edge 

(vl,/)4) e E(Hm)kE(H) belongs to f3-1; 
(b) if C = (/)1 . . . .  ,/)2,+0 ~ G~c~H is the marked  bad odd cycle then the loop at 

/)1 belongs to F3-~. 
N o w  we construct  desired F1, Fz and F3. Fo r  r = 1 . . . .  , m we run the following 

Procedure  2, which starts with F3 := 0, F1 := F] ,  F2 := F[ .  

Procedure 2. (1) Let 1 ~ r ~< s, W, : { / ) 1 , / ) 2 , / ) 3 , / ) 4 } ,  (Xr. 1,/)1) E F1, (X,, 1, V3) 6 F2. If 
(x,,2,v2)6F1, then put  F1 :=(Flk{(x,.2,/)z),(x,,1, vl)})w{(vbvz)}, F2: = 
(F2\{(Xr, 2,va,), (Xr, 1,/)3)})k-){(/)3,/)4)}, F3 := F3. 

If (x, .2,/)2)e/72, then we change =: 7z := (=\{(vl ,  v4), (v2,v3)})w{(v,,v2),(v3,v,)} 
and put  F1 := (FI \ {(x,. 2,/)2 ), (x,. 1, v, )} ) w { (v l, v4)},/72 := (F2 \ { (x,. 2, v,,), (x,. 1, v3 ) } ) w 
{(v2,v3)},F3 := F3. Note  that  because of Lemma  4(2) the change of = preserves the 
vertex-set of H and the propert ies  (1)-(3) of L emma  4. 

By (1), above after step s, proper ty  (6) of Procedure  1 will be fulfilled. 
(2) If [ IV,[ e { i, 2} then Fi := Fi, i = 1, 2, 3. 
(3) Let  H(W,) be the marked  bad path P=(/)b/)2,/)3,/)4)c_ Gi, i s { l , 2 } .  Pu t  

1:, := F, u {(/)5,/)3)}, F3-,  := (F3-, \ { (vl, /)4) } ) u  {(/)1, v2), (/)3,/),)}, F3 := F3. 
Due to (8) and (a) above, after this step we will keep (8) and L emma  5(7) will be 

fulfilled. 
(4) If H(W,)  is a non-marked  bad path P then FI := F1, F2 := F2, Fa := F3wE(P). 
(5) If H(Wr) is a not  so bad path P = (vl . . . . .  /)t), t /> 3, and (vl,xz)e Fi then put  

Fi:=F,w{(v2s-l, v2s)[l <.j<~t/2}, F3_,:=F3_,w{(v21, v21+l)[l < . j < ( t -  1)/2}, 
F3 := F3. 

(6) If H(Wr) is the marked  bad odd cycle C = (/)1, --.,/)2, + x) - Gi, i e { 1, 2} then put  

Fi :=Fiw{(v2j, Ves+l)[1 <~j <~t}, F3-1 :=F3-1w{(/)zj-l, Vzs)[1 ~ j  <<.t}u{(/)2t+l,/)l)}, 
F 3 : = F  3 . 

Due to (8) and (b) above, after this step we will still keep (8) and Lemma  5(8) will be 
fulfilled. 

(7) If H(Wr) is a non-marked  bad odd cycle C then F1 := F1, F2 := F2, 
F 3 : =  F 3 u E ( C  ). 
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(8) If H(W,) is a 4-cycle C = ( V l , V 2 , V 3 , v 4 ) ~ G i ,  i • { 1 , 2 } ,  and there exist 
x , y •  V(G) \V(C)  such that  Fi~- {(x, vl),(x, v3),(y, v2),(y, v4)} then F1 := El, 

F 2 := F2,  F 3 :=  F 3 u E(C). 
(9) If H(Wr) is an even cycle C = (vl . . . .  v2t) and C does not satisfy conditions (8) then 

put Fa :-- f lu{(vzj-~,v2j)l l <~ j <<. t}, F2 := F2u{(v21, Vzj+~)t l <<.j <~ t - 1} u{(vEt, V~)}, 
F3 := F3 . 

After all steps have been made, s tatement  (1) of Lemma  5 follows from the fact that  
we kept equality (8) obtained in Procedure  1 on every step. Since any componen t  of 
(G(VOuG(V2))c~H is contained in some H(W,), it is easy to check Lemma 5(2) on 
each step. Statement  (3) of Lemma  5 holds because F3 changed only in cases (4), (8) 
and (9). N o w  Lemma  5(4) and (5) follow from (8) and Procedure  1 (4). The validity of 
(6), (7) and (8) have been noted in the description of Procedure  2. [ ]  

5 Proof of Theorem 2 

Let n, [1/1, V2] and F1, F2 and F 3 satisfy Lemma 5 and V3 = {v e V(G)I degG(F~ (V) 
>~ 1}. Fo r  each v • V(G) with dega(v,~(v) = 1, i •  {1, 2}, let e~(v) denote  the edge in 

F~ incident to v. Due to Lemma  5(5) we may choose the direction of each bad path 

P = (vl, v2,v3,v4) c_ Gic~G(F3) so that 

dege3 , (vl) = degF, (v4) = 1. (9) 

The coloring will be made  in 6 stages. First we list them. 
Stage 1. Color  the edges in n with color  7. 
Stage 2. Find a p roper  coloring f of F~ w F2 and V \  V3 such that  for i = 1, 2, 
(1) the elements of Fiu(Vi \  V3) are colored with colors 3i - 2, 3i - 1 and 3i; 
(2) for each odd  cycle C = (Vl, . . .  ,u2t+ 1) ~ G(F3)nG3-i,  

f(ei(vl)) :/: f(ei(v3)); 

(3) for each bad path P = (vl,v2,v3,v4) c_ G(Fa)c~G3_I, 

f(ei(vO) ¢: f(ei(v3)); 

(4) for each 4-cycle C = (Vl,1)2, V3,U4) C= G(F3)c-.,G3_i, 

f(ei(vl)) 4:f(ei(v3)), f(ei(v2)) ¢:f(ei(v4)). 

Stage 3. For  each odd cycle C = (v l, . . . ,  v2t + 1 )  C:: G(F3)c~ Gi, color  properly V(C) 
and edges (v3, v4), (v5, v6), . . . ,  (v2t+ 1, vl ) with colors 3i - 2, 3i - 1 and 3i with recolor- 
ing the set {ei(vj)l j = 1 . . . .  ,2 t  + 1}. 

Stage 4. Fo r  each bad path P = (vbv2,va,v4) c_ G(F3)r~GI, color  proper ly  V(P) 
and edge (v3,v4) with colors 3 i - 2 ,  3 i - 1  and 3i with recoloring the set 
{e,(vj)l j = 1, 2, 3, 4}. 
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Stage 5. For  each odd cycle C = (vl . . . . .  v2,+ 1) g G(F3) c~ Gi and for each bad path 
P=(vl,Vz,V3,v4)~_G(F3)c~Gi, color properly uncolored edges with colors 
3(3 - i ) -  2, 3(3 - i ) -  1 and 3(3 - i). 

Stage 6. Color the vertices and the edges of 4-cycles in G(F3). 
Stage 1 is trivial. The work on other stages will be described for i = 1; for i = 2 it is 

symmetrical. 
The most complicated stage is Stage 2. It needs two auxiliary multigraphs, Ra and 

Sx. First put RI := G(F1). By Lemma 5(1) and (2), 

A(Ra) <~ 2, A(RI(VakV3)) ~< 1. (10) 

For  a multigraph L and x ,y  ~ V(L), denote by T(L,x ,y )  the multigraph obtained 
from L by shrinking x and y into one vertex. 

Let C = (Vl, ... ,v2t+l) be an odd cycle in G(F3)c~G2. Due to Lemma 5(4), after 
putting, R1 := 7J(R1, vl, v3) the multigraph Rt still satisfies (10). Do this for each odd 
cycle C ~_G(F3)c~G2. Now let P =(vl,v2, v3,v4) be a bad path in G(F3))c~G2. 
According to (9), Rx := tP(Rl,Vl, V3) still satisfies (10). Do this for each bad path 
P~_G(F3)c~G2. Then for each 4-cycle C = ( v l ,  v2, v3,v4)~_G(F3)c~G2, we put 
Rx := 7J(~(Rl,Vl, V3)), v2,v4) and again by Lemma 5(4) R1 satisfies (10). Now R1 is 
constructed. 

Note that by construction of R1, any proper coloring of its edges induces a proper 
coloring of edges in F1 satisfying stage 2(2)-(4). Let W1 := V1 \ V3, W2 := V(RI) \  W1. 
In order to find an (R1, W1)-good 3-coloring of W1, we construct multigraph $1 by 
adding to RI(W1) the set of edges (v,w) such that in R1 there is a [W1, W2]-path 
connecting vertices v and w. Because of (10), any vertex v 6 W1 is connected by 
a [W~, W/]-path with at most one vertex. Hence, the set of added edges forms 
a matching, and A(S1) ~< A(R1) + 1 <~ 3. Let W] denote the union of the vertex-sets of 
components of $1 isomorphic to K4. By Brooks Theorem, there exists a proper 
coloring ~0 of vertices in $1 \ W~. 

Put for each v ~ W I \  W~, f(v) := (p(v). Then we need to color W]. Let 

{vl, v2,v3,v4} ~ W'I ~- Vl k V3 (11) 

and $1 ({Vl, v2, v3, v4 }) = K4. The only possibility (up to renumbering the vertices) for 
this situation to arise is that C := R1 ( { v l, v2, v 3, v4 } ) is a 4-cycle and (vb v3 ), (v2, v4) are 
added while constructing $1. In other words, there are paths 

P1 = (vl, xl ,x2,  ... ,x2k-l ,v3) and P2 = (v2,Yl,Y2 . . . . .  yzl- l ,v4) in R 1 such that 

(V(P1)~ V(P2))c~ W; = {Xz,X4 . . . . .  x2k- z, Y2, Y4 . . . .  ,Y2l- 2} . 

Since V(C) ~_ V1, C is a bad 4-cycle. 
Case 1. C is a 2-bad 4-cycle, (vl,v4), (v2,v3) e re. Since Va and v3 are connected by 

P1 in R1, they lie in the same component of G\n.  By Lemma 5(6), one of the edges 
(Vl,/')2 ) and (v3, v4) (say, (/)1, /)2 )) belongs to F 2 . Since (Vl, xl ) e FI we obtain xl ¢ v2,/)4 
and degG, (v~) ~> 3. But this contradicts Lemma 4(1). 
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Case 2. C is a 1-bad 4-cycle, (vl, v4) ~ n. If (Vl, v2, v3, v4) is marked bad path in 
H then by Lemma 5 (7), (vl, v2), (v3, v4) e F2 and we have dega, (vl)/> 3 for the same 
reasons as in Case 1. And if (vl, v2, v3,v4) is non-marked then, by definition, 
V(C) ~_ V3, a contradiction to (11). 

Case 3. C is a 0-bad 4-cycle, E(C)c~Fi= {(vi, vi+l),(Vi+a,Vi+3)}, i= 1,2. Then 
xl = v2, Yl = vl, x2k- 1 = v4, Yal- 1 = v3. Suppose that k ~> 3. Then by definition, x3 is 
not an end-vertex of a [W1, W2]-path in Rx. Hence, x3 s WI\W'~ and is already 

colored. Let for definiteness, f(x3)--= 1. We put f ( v 3 ) = f ( v x )  = 1, f ( v 2 ) =  2, 
f(v4) = 3. If l ~> 3 we do analogously. 

Let k = l = 2, i.e. let (Vl, V2,X2, V4, v3,y2) be a cycle in R1. Show that x2 ~ 1/2. 
Suppose to the contrary that x2 is the result of shrinking some zl and z2 which lay 
before on some bad cycle or path in G(F3)c~ G2. Then at least one of them, say z2, has 
degree 2 in Gakn. By Lemma 4(3), z2 should not be adjacent in Gkn to vertices of C, 
but either vl or v3 is adjacent to z2 in F1. Consequently, x2 e 1/2. Analogously, Y2 e V:. 
Then V(C) ~_ V3, a contradiction to (11). 

Thus, all vertices in VlkV3 are colored and, due to the construction of S1, the 
resulting coloring is (R1, W1)-good. Applying Lemma 3 finishes this stage. After this 
stage has been completed for i = 1,2, go to Stage 3. 

Let C = (Vx, ... ,v2t+l) be an odd cycle in G(F3)c~G1. F o r j  = 1 . . . .  ,2t + 1, denote 
by e'l(vj) the edge in E(R1) adjacent to el(vj) (if such edge exists). Now, Step j, 
j = 1 . . . .  , t is as follows (assuming v2t+2 = vl). 

(1) If ei(v2j+ l) =7/= el(vZj+ 2 ) then choose f (v2j+ 1) e {1,2 ,3}  \ { f (v2j) , f (e ' l (Vzj+ 2))}, 
f(v2j+ 2) e { 1, 2, 3} \ { f(v2j+l ), f(e'a (v2j+ 1 ))}. 

(2) If e'l(Vzj÷ 1) = el(vzj+2) then choose f(v2j+ 1) e {1,2, 3} \{/(Vzj)}, f(v2j+2) = 
f(v2j). 

(3) In both cases put f(et(vz~+l)) =f(vzj+2), f(el(v2j+2)) =f(v2~+l), 

f ((v2j+ l, Vzj+ 2)) e {1,2,3} \ { f (v2j+ x), f (v2i+ z) }. 
After Step t choose f ( v 2 ) e  {1, 2, 3} \{  f(vl),  f(v3)}. Note that after recoloring the 

edges el (v~-) the inequalities (2)-(4) of Stage 2 still hold, since we obtain a proper edge 
coloring of R1. We do this for each odd cycle in G(F3)c~ Ga, then for each odd cycle in 
G(F3)c~G2 and go to Stage 4. 

Let P = (vt, v2, v3, v4) be a bad path in G(F3) c~ Ga. Choose f (v l )  in {1, 2, 3} distinct 
from the colors of the edges in F~ incident with Vl. Then choose f(v4) 
{1,2,3}k{f(vl),f(e'~(v3))}, f ( v z ) e  {1,2,3}\{f(v4),f(ei(v4))},  f(e~(v4)) =f(v3),  
f ( e l ( v 3 ) )  = f ( v 4 ) ,  f ( ( v 3 ,  v ~ ) )  e { 1, 2 ,  3} \ { f ( v 3 ) ,  f ( v 4 ) } ,  
f(v2) e {1, 2, 3} \{ f(vl), f(v3)}. After fulfillment of the described procedure for each 
bad path in G(F3) go to Stage 5. 

Let P = (Vl, v2, v3, v4) be a bad path in G(F3)c~ G1. Because of (3) of Stage 2, it is 
possible to choose f((vl, Vz)) and f((v2,v3)) from {4,5,6}\{f(e2(v2))} so that 

f((vl, v2)) # f ( (v2 ,  v3)), f((vl, vz)) #f(ez(vl)), f((v2, v3)) ¢:f(e2(v3)). Now, all vertices 
and edges of P are colored. 

Let C=(vl  . . . .  ,vzt+l) be an odd cycle in G(Fz)c~G1. Because of (2) of 
Stage 2, it is possible to choose f((vl,vz)),f((v2,v3)) with the same properties 
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as it was made for bad paths. Further, for j =  2, 3, . . . , t ,  choose 
f((v2s, v21+1)) e {4, 5, 6} \ { f(e2(v2j), f(e2(v2j+l))}. Since there were no recolorings, 
(3) and (4) of Stage 2 still hold. We do this for each bad path and for each bad odd 
cycle in G(F3) and go to Stage 6. 

Let C = (vl, v2, v3, v4) be a 4-cycle in G(F3)c~ Gx, and x, y e V(G) \  V(C) be such that 
el(v1) = (x, Vl), el(v3) = (x, v3), el(v2) = (y, v2), el(v4) = (y, v4). If x¢ V3 then colors 1, 
2 and 3 were not used to color the edges incident with x distinct from el (vl) and el (v3). 
I fx  e V3 then due to Lemma 5(4) and (5), x is an end of a bad path in G(F3)c~G2 and 
again colors 1, 2 and 3 were not used to color the edges incident with x distinct from 
el(v1) and el(v3). That means that recoloring el(v1) and el(v3) with colors 1, 2 and 
3 would not affect coloring 'outside' our configuration. The same is true for y and 

e 2 and e 4. 
Because of (4) Stage 2 there arc two possible cases (up to renumbering vertices 

and/or  colors): 
(1) f(e2(vl))  = f(e2(v2)) = 4, f(e2(v3)) = f(e2(v,~)) = 5; 
(2) f (ez(vl))  =f(e2(v2)) = 4, f(e2(v3)) = 5, f(ez(v4)) = 6. 
In both cases put f ( ( v 4 , v O ) = f ( ( v 2 , y ) ) = f ( v a , x ) ) = l ,  f ( v l ) = f ( v 3 ) =  

f ( (v4,y))  = 2, f (v2)  =f(v4)  = f ( ( v l , x ) )  = 3, f((va,v4)) = 4, f ( (v , ,v2))  = 5, 
f ((v2,v3) ) = 6. [] 

6 General case 

Assume that there exists a multigraph G with A(G) ~< 5 and z2(G)/> 8. We can 
choose such G with the smallest possible number of vertices. Lemmas below list some 
properties of G. 

Lemma 6. G has no cut-vertices. 

Lemma 7. Let [V1, V2] be a cut of G and its edges be (vl,wl), (V2, W2), (V3,W3), where 
{vl, v2, v3 } ~ 111, {wl, w2, w3 } ~ 112 (some v,-s and~or wj-s can coincide). Suppose that 
there exists a 7-coloring f of G which is proper except that possibly f (vi) = f (wl) for 
several i e  {1,2, 3}. I f  

f (v j )  = f (wi )  =~f(vi) ¢ { f((v,, wi))l i e { 1, 2, 3} }, (12) 

then there exists a proper 7-coloring of G. 

Proof. Assume that there exists a 7-coloring f of G satisfying the conditions of the 
lemma. 

L e t j  be the smallest index such that f(vs) =f(ws). For i e {1,2,3}, i # j ,  let 

q~(i, j )  = ~ f(vi)  if f (v ,)  # f(vs), 
[ f (w i )  if f ( v i ) = f ( v j ) .  
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Choose 

~b(j) ~ {1 . . . . .  7} \ ( { f (v j ) , tp ( j  -- 1, j), (p(j + 1, j ) } w { T ( ( V k , W k ) ) [  1 <~ k <~ 3}), 

(13) 

where indices are taken modulo 3. Consider f '  obtained from f by switching in 
f(G(V2)) the colors f(v~) and ip( j ). By the choice of ~b( j ) and by (12), f '  also satisfies 
the conditions of our lemma and f(vi) :/:f(wi) for i ~< i ~<j - 1. Moreover, because of 

(12) and (13) we have f ' (wf l  = ~ ( j )  :/:f(vj) =f ' (vf l .  
Repeating this procedure at most three times, we obtain a proper coloring of G. []  

Let f be a partial coloring of G with colors in {1 . . . . .  7}. For  v ~ V(G), denote by 
Or(v) (sometimes, simply by O(v)) the subset of { I, . . . ,  7} whose elements are not used 
in f to color v and the edges incident with v. 

Lemma 8. No cut IV1, V2] of G with IV l[ >/2, [V El ~> 2 contains exactly three edges. 

Proof. Suppose that [V1, V2] = {el, e2, e3 }, ei -- (xi, Yl), i -- 1, 2, 3, X = {xl, x2, x3 } - 
V1, Y = {Yl,Y2,Y3} -- V2 and [VI[ ~> 2, [V2[ >/2. By Lemma 6, IX[ >/2, [Y[/> 2. So 
we may assume 

x3 4: x2, Y3 4: Y2. (14) 

Denote G1 = G(V1)w { (xa,x2) }, G2 = G(V2)u { (y2, ya) }, G' = Gl u G2. Due to the 
minimality of G, there exists a proper 7-coloring f '  of G'. Then the restriction f o f  f '  
on G(V1)w G(V2) is a partial 7-coloring of G with the following properties: 

(a) the only non-colored elements of G are el, e2 and e3; 

(b) f (x3)  ~ f (x2) ,  f(Y3) :~f(Y2); 
(c) 3~1 ~ O(x3)nO(x2), 3ill ~ O(y3)c~O(y2); 
(d) f is proper except that possibly f (x i)  =f(Yi)  for several i e { 1, 2, 3}. 
Now we show that the colors used to color G(V2) can be renumbered, and edges 

ex,e2 and es can be colored in such a way that the obtained coloring would satisfy 
conditions of Lemma 7. 

Case 1. f ( x l )  :/: ~x or f(Yl) ~ fix. 
Subcase 1.1. 3~t2 ~ O(Xl) \{~l , f (xE) , f (x3)} .  Choose fiE e O(yl ) \{  fix}. Renumber 

the colors in f(G(V2)) so that fix = ~a, fiE = ~t2, and put f ( e 2 ) = f ( e 3 ) =  ~tx, 
f(e~) = ~2. Under the conditions of this case and by the choice of ct2, the resulting 
coloring satisfies the conditions of Lemma 7. 

Subcase 1.2. O(xl) ~- {al , f (x2) , f (x3)} ,  O(yl) ~- { f l l , f (Y2) , f (Y3)} .  Because x2 and 
x3 are symmetrical for us, we may assume that f (x3)  ~ O(xl). 

If there exists f12 ¢ O(y l ) \ { f l l , f ( y3 )}  then renumbering the colors in f(G(V2)) so 
that fll = ~tl, f12 =f (x3) ,  and putting f ( e 2 ) = f ( e 3 ) =  at, f ( e l ) = f ( x 3 ) ,  we obtain 
a coloring f such that f (xa): / : f (y3) ,  f (yl)q~{~l, f (x3)l .  And by (b) above, 
f(XE)~{~Xl, f(x3) }. But such a coloring statistics the conditions of Lemma 7. Thus, we 
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may assume 

O(yl) = {/31,f(Y3)}. 

N o w  switching the roles of  1/1 and 1/2 and applying the symmetrical  a rgument  to that  

above we derive 

O(xx) = {el, f (x3 )} .  

Since [O(x01 = IO(y0[  = 2, we have xl¢{xz,x3}, Yl¢{Y2,Y3}. Hence, we can renum- 

ber colors in f(G(Vz)) so that/31 = el and put  f(el) =f(ez) = f ( e 3 )  = ex- 
Since Case 1 is complete,  we consider below only the possibility 

f(x,) = oq, f(Yl) = f l , .  (15) 

F r o m  (15), (14) and (c) above we obtain IX[ = [YI = 3. In view of(15) we may  assume 
that  

o(x2) _= O(x3) =_ 

O(y2) =- O(y3) =- {#i,#3}, #2 #3. 

Case 2. There exists ~4~ 0(x0\{~2,o~3}. Because of  (b) above and in view of  

symmetry  of  x2 and x3, we may  assume that  

e4 C f ( x 3 ) .  (16) 

If  there exists /34 e O(yO\{/3z,f(y2)} then renumber  colors in f(G(V2)) so that  

/31 = e3,/3z = el and/34 = cq and put  f(el) = ~4, f(e2) = el, f (e3)  = e3. By (15), (16) 
and the definition of/34, the resulting coloring satisfies the condit ions of  Lemma 7. 

Thus, below we assume O(yl) = {/3z,f(Y2)}. N o w  suppose that e,~ Cf(x2) .  Then 

renumber  colors in f(G(V2)) so that/31 = e3,/32 = ~1 and f(Y2) = e4 and again put 
f(el) = ~4, f(e2) = cq, f (e3)  = e3. By (15), (16) and a4 ¢f(x2),  the resulting coloring 
satisfies the condit ions of  L e m m a  7. 

Let e4 =f(x2). Consider  7 e O(xl)\ {e4}. I fy  = e3 and/3 =f(Y2) then we have Case 
1 with x2 replaced by Xx and Y2 replaced by Yl. If  7 = e3 and /33 Cf(Yz) then 

renumber  colors in f(G(V2)) so that  /31 = e2, /33 = el and f ( Y 2 ) =  e3 and put  

f(el) = ~3, f (e2)  = e2, f (e3)  = Ca. I f7  ¢ e3 then renumber  colors in f(G(V2)) so that 

/31 = e3,/32 = el and f(Y2) = ? and put  f(el) = ?, f (e2)  = el, f (e3)  = c~3. In both of  
the last cases the resulting coloring satisfies the condit ions of L e m m a  7. 

Thus, Case 2 is complete and we may  assume O(xO = {e2,a3}. By symmetry  of  

111 and 112, we get O(yx) = {/32,/33}. Renumber  colors in f(G(V2)) so that/31 = e2, 

//2 = ~3 and/33 = el and put  f(eO = e3, f ( e : )  = el, f (e3)  = e : .  We obtain a total 
7-coloring of  G. [ ]  

Theorem 3. For each multigraph G with maximum degree at most five, 

z2(G) ~ 7. 
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Proof .  Suppose  tha t  the theorem is false. Choose  a m o n g  coun te rexamples  to the 

theorem with the smallest  poss ible  n u m b e r  of  vertices a mu l t i g r aph  G with the largest  

poss ible  number  of edges. By this choice, there  is a vertex s ~ V(G) such tha t  all the 

o ther  vertices have degree 5 in G. 

Cons t ruc t  a 5-regular  mu l t i g r aph  H as follows. If degG(s) = 5 then put  H = G. 

Otherwise  take  a copy  G' of G and  connect  s with its copy s' in G' by 5 - dega(s )  

edges. If H has a perfect ma tch ing  then by T h e o r e m  2 it is to ta l ly  7-colorable  and 

hence so is G, a cont rad ic t ion .  Thus,  H has no perfect matching,  and  by Tut te ' s  

T h e o r e m  [-12, T h e o r e m  3.1.1-], for some X c V(H), there  exist IX I + 2 c ompone n t s  of 

H - X each having  odd  n u m b e r  of vertices. Since each of these c ompone n t s  is j o ined  

with X by an odd  n u m b e r  of edges and  I [X,  V ( H ) \ X ] I  <~ 51xI, there  are  three 

componen t s  C1, C2 and  C3 such that  

I [ V ( C ~ ) , V ( H ) \ V ( C ~ ) ] I ~ { 1 , 3 } ,  i = 1 , 2 , 3 .  

At  mos t  one of these three cuts separa tes  s and  s'. Let  cuts Ui = [V(Ci),  V(H ) \  V(Ci)]  

for i = 1, 2 not  to separa te  s and  s'. By L e m m a  6, U~ for i = 1,2 conta ins  ei ther  3 or  

0 edges of G and  ei ther  3 or  0 edges of G'. Let, for definiteness,  U1 con ta in  3 edges of G. 

Then by L e m m a  8, UIIG = [{s}, V(G)\{s}] .  F o r  U2 there remains  only the poss ibi l i ty  

that  U2 = [ V(G)u  {s' }, V(G') \  {s'} ]. F o r  U2 there remains  only the poss ibi l i ty  that  

Uz = [V(G)u{s ' } ,  V(G') \{s '}] .  But in this case I[V(G),  V(G' ) ] I  = 2 and  there is no 

r o o m  for cut [V(C3),  V ( H ) \  V(C3)].  This is a cont rad ic t ion .  [ ]  
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