Note
 The colour theorems of Brooks and Gallai extended

A.V. Kostochka ${ }^{\text {a,1 }}$, M. Stiebitz ${ }^{\text {b,* }}$, B. Wirth ${ }^{\text {c }}$
${ }^{\text {a }}$ Novosibirsk State University, 630090 Novosibirsk, Russia
${ }^{\mathrm{b}}$ Institute of Math., Technische Universität Ilmenau, D-98684 Ilmenau, Germany
${ }^{\text {c Institute of Math., Universität Köln, Weyertal 86, D-50931 Köln, Germany }}$

Received 27 June 1995

Abstract

One of the basic results in graph colouring is Brooks' theorem [4] which asserts that the chromatic number of every connected graph, that is not a complete graph or an odd cycle, does not exceed its maximum degree. As an extension of this result, Gallai [6] characterized the subgraphs of k-colour-critical graphs induced by the set of all vertices of degree $k-1$. The choosability version of Brooks' theorem was proved, independently, by Vizing [9] and by Erdös et al. [5]. As Thomassen pointed out in his talk at the Graph Theory Conference held at Oberwolfach, July 1994, one can also prove a choosability version of Gallai's result.

All these theorems can be easily derived from a result of Borodin [2, 3] and Erdös et al. [5] which enables a characterization of connected graphs G admitting a color scheme L such that $|L(x)| \geqslant d_{G}(x)$ for all $x \in V(G)$ and there is no L-colouring of G. In this note, we use a reduction idea in order to give a new short proof of this result and to extend it to hypergraphs.

A hypergraph $G=(V, E)$ consists of a finite set $V=V(G)$ of vertices and a set $E=E(G)$ of subsets of V, called edges, each having cardinality at least two. An edge e with $|e| \geqslant 3$ is called a hyperedge and an edge e with $|e|=2$ is called an ordinary edge. The degree $d_{G}(x)$ of a vertex x in G is the number of the edges in G containing x. Let $\Delta(G)$ and $\delta(G)$ denote the maximum degree and the minimum degree of G, respectively. If $\Delta(G)=\delta(G)=r$, then G is called r-regular. Let $X \subseteq V(G)$. The subhypergraph $G[X]$ of G induced by X is defined as follows: $V(G[X])=X$ and $E(G[X])=$ $\{e \in E(G) \mid e \subseteq X\}$; further, $G-X=G[V(G)-X]$. For $x \in V(G)$, let $G \backslash x$ denote the subhypergraph of G with $V(G \backslash x)=V(G)-\{x\}$ and $E(G \backslash x)=E(G-\{x\}) \cup$ $\{e-\{x\}|x \in e \in E(G) \&| e \mid \geqslant 3\}$. For a hyperedge e, let $\langle e\rangle$ denote the hypergraph (e, $\{e\}$).

[^0]Let G be a connected hypergraph. A vertex x of G is called a separating vertex of G iff $G \backslash x$ is disconnected. An edge e of G is called a bridge of G iff $G-\{e\}=(V(G)$, $E(G)-\{e\})$ has precisely $|e|$ components. By a block of G we mean a maximal connected subhypergraph B of G such that no vertex of B is a separating vertex of B. Any two blocks of G have at most one vertex in common and, obviously, a vertex of G is a separating vertex of G iff it is contained in more than one block of G. An end-block of G is a block that contains at most one separating vertex of G.

By a brick we mean a hypergraph of the form $\langle e\rangle$ for some hyperedge e, or an odd cycle consisting only of ordinary edges, or a complete graph. A connected hypergraph all of whose blocks are bricks is called a Gallai tree; a Gallai forest is a hypergraph whose components are Gallai trees.

Consider a hypergraph G and assign to each vertex x of G a set $L(x)$ of colours (positive integers). Such an assignment L of sets to vertices in G is referred to as a colour scheme (or briefly, a list) for G. An L-colouring of G is a mapping f of $V(G)$ into the set of colours such that $f(x) \in L(x)$ for all $x \in V(G)$ and $|\{f(x) \mid x \in e\}| \geqslant 2$ for each $e \in E(G)$. If G admits an L-colouring, then G is said to be L-colourable. In case of $L(x)=\{1, \ldots, k\}$ for all $x \in V(G)$, we also use the terms k-colouring and k-colourable, respectively. A hypergraph G is called k-choosable iff G is L-colourable for every list L of G satisfying $|L(x)|=k$ for all $x \in V(G)$. The chromatic number $\chi(G)$ (choice number $\chi_{l}(G)$) of G is the least integer k such that G is k-colourable (k-choosable).

The choosability concept was introduced, independently, by Vizing [9] and Erdös et al. [5].

We call a pair (G, L) consisting of a connected hypergraph G and a list L for G a bad pair of order n iff $\sum_{x \in V(G)} d_{G}(x)=n,|L(x)| \geqslant d_{G}(x)$ for all $x \in V(G)$ and G is not L-colourable.

Reduction. Let (G, L) be a bad pair of order $n \geqslant 1, y$ a non-separating vertex of G, and $\alpha \in L(y)$. For the connected hypergraph $G^{\prime}=G \backslash y$ define a list $L^{\prime}=L_{y}^{\alpha}$ by setting $L^{\prime}(x)=L(x)-\{\alpha\}$ if $\{x, y\} \in E(G)$ and $L^{\prime}(x)=L(x)$ otherwise.

Then, clearly, $\left|L^{\prime}(x)\right| \geqslant d_{G^{\prime}}(x)$ for all $x \in V\left(G^{\prime}\right)$ and $\left(G^{\prime}, L^{\prime}\right)$ is a bad pair of some order k with $k<n$.

Lemma 1. Let (G, L) be a bad pair of order $n \geqslant 0$. Then the following statements hold.
(1) $|L(x)|=d_{G}(x)$ for all $x \in V(G)$.
(2) Every hyperedge e of G is a bridge of G and, therefore, $\langle e\rangle$ is a block of G.
(3) If G has no separating vertex, then $L(x)$ is the same for all $x \in V(G)$ and G is regular.
(4) G is a Gallai tree.

Proof (By induction on n). If (G, L) is a bad pair of order $n=0$, then $L(x)=\emptyset$ where x is the only vertex of G and the statements (1)-(4) are obviously true. In what follows, let (G, L) be a bad pair of order $n \geqslant 1$.

For the proof of (1) consider an arbitrary vertex x of G. Since G is connected, there is a non-separating vertex $y \neq x$ in G. Now, consider the bad pair (G^{\prime}, L^{\prime}) where $G^{\prime}=G \backslash y$ and $L^{\prime}=L_{y}^{\alpha}$ for some $\alpha \in L(y)$. Note that $L(y) \neq \emptyset$. Then, by the induction hypothesis, $\left|L^{\prime}(x)\right|=d_{G^{\prime}}(x)$ which implies immediately that $|L(x)|=d_{G}(x)$. This proves (1).

To prove (2) suppose that some hyperedge e of G is not a bridge of G. Then, for some vertex $x \in e$, the hypergraph $G^{\prime}=(V(G), E(G)-\{e\} \cup\{e-\{x\}\})$ is connected and. therefore, $\left(G^{\prime}, L\right)$ is a bad pair with $|L(x)| \geqslant d_{G}(x)>d_{G^{\prime}}(x)$, a contradiction to (1). This proves (2).

For the proof of (3) assume that G has no separating vertex. If G contains a hyperedge e, then, because of (2), $G=\langle e\rangle$ and (3) is obviously true. Otherwise G is a graph, i.e. G has only ordinary edges, and, for proving (3), it suffices to show that $L(x)=L(y)$ for all $x, y \in V(G)$. Suppose that this is not true. Then there are two adjacent vertices x, y in G such that $L(x) \neq L(y)$. W.l.o.g. assume that $\alpha \in L(y)-L(x)$. Set $G^{\prime}=G \backslash y=G-\{y\}$ and $L^{\prime}=L_{y}^{x}$. Then, clearly, $\left(G^{\prime}, L^{\prime}\right)$ is a bad pair with $\left|L^{\prime}(x)\right|>d_{G^{\prime}}(x)$, a contradiction to (1). This proves (3).

For the proof of (4), we consider two possible cases.
Case 1: G has a separating vertex. Then G has at least two end-blocks, say B_{1} and B_{2}. For $i=1,2$, there is a non-separating vertex y_{i} of G contained in B_{i}. Then, by induction (using the reduction operation), $G \backslash y_{i}$ is a Gallai tree and, clearly, every block $B \neq B_{i}$ of G is a block of $G \backslash y_{i}$, too. This implies that G is a Gallai tree.

Case 2: G has no separating vertex, i.e. G is a block. Because of (2) and (3), we may assume that G is a graph which is regular of some degree $r \geqslant 1$ and $L(x)=C$ for all $x \in V(G)$ where C is a set of r colours. Let y be a vertex of G and set $G^{\prime}=G \backslash y=G-\{y\}$. Then, by induction, G^{\prime} is a Gallai tree and every block of the graph G^{\prime} is a complete graph or an odd cycle. If G^{\prime} consists of a single block, then, clearly, both G^{\prime} and G are complete graphs. So, let G^{\prime} have at least two blocks. Since every end-block of G^{\prime} must be $(r-1)$-regular, the degree of y in G is at least $2(r-1)$ which yields $r=2$, and, therefore, the graph G is a cycle. Since G is not L-colourable and the same two colours are available at each vertex of the cycle G, we conclude that G is an odd cycle.

This proves (4).

Lemma 1 is not quite new. In particular, its graph version was proved independently by Borodin [2, 3] and Erdös et al. [5]. However, their proofs use different ideas and are longer. Proofs of statements (1) and (3) in the graph version based on a sequential colouring argument were given by Vizing [9] and Lovász [7].

The next result is a simple consequence of Lemma 1. A different proof of its graph version has recently been given by Thomassen [8].

Theorem 2. Let L be an arbitrary list for a given hypergraph G. Furthermore, let X be a subset of $V(G)$ such that $G[X]$ is connected and $|L(x)| \geqslant d_{G}(x)$ for all $x \in X$. Assume that $G-X$ is L^{*}-colourable where L^{*} is the restriction of L to $V(G)-X$. If G is not L-colourable, then $G[X]$ is a Gallai tree and $|L(x)|=d_{G}(x)$ for each $x \in X$.

Proof. Consider an arbitrary L^{*}-colouring f of $G-X$ and choose for each edge $e \in E(G)$ with $e-X \neq \emptyset$, a vertex $v(e) \in e-X$. For the connected hypergraph $G^{\prime}=G[X]$, define a list L^{\prime} by

$$
L^{\prime}(x)=L(x)-\{f(v(e)) \mid x \in e \in E(G) \& e-X \neq \emptyset\}
$$

for each $x \in X$. Then $\left|L^{\prime}(x)\right| \geqslant d_{G^{\prime}}(x)$ for every vertex x of G^{\prime} and, clearly, every L^{\prime}-colouring of G^{\prime} yields an L-colouring of G. Therefore, if G is not L-colourable, then $\left(G^{\prime}, L^{\prime}\right)$ is a bad pair and, by Lemma $1, G^{\prime}$ is a Gallai tree and $\left|L^{\prime}(x)\right|=d_{G^{\prime}}(x)$ for all $x \in X$ implying that $|L(x)|=d_{G}(x)$ for all $x \in X$. This proves Theorem 2 .

Let G be a connected hypergraph. Clearly, $\chi(G) \leqslant \chi_{l}(G)$ and Theorem 2 implies that

$$
\chi(G) \leqslant \chi_{l}(G) \leqslant \Delta(G)+1 .
$$

If G is a brick, i.e., if $|E(G)|=1$ or G is a complete graph or an odd cycle, then

$$
\chi(G)=\chi_{l}(G)=\Delta(G)+1
$$

Brooks [4] proved that the complete graphs and the odd cycles are the only connected graphs whose chromatic number is larger than their maximum degree. This famous result has a number of different proofs. Some of them are listed in [1]. That a similar result is true also for the choice number, was proved, independently, by Vizing [9] and Erdös et al. [5].

Theorem 3. If G is a connected hypergraph that is not a brick, then $\chi(G) \leqslant \chi_{l}(G) \leqslant \Delta(G)$.

Proof. Suppose that G is not L-colourable for some list L for G where $|L(x)|=\Delta(G)$ for each $x \in V(G)$. Then, by Theorem 2, G is a Gallai tree which is regular of degree $\Delta(G)$. This implies that G is a brick, i.e., a connected hypergraph consisting of exactly one hyperedge, or an odd cycle consisting only of ordinary edges, or a complete graph. This proves Theorem 3.

Another consequence of Theorem 2 is the following result stated for the chromatic number as well as for the choice number.

Theorem 4. Let ξ stand for χ or χ. Let G be a hypergraph with $\xi(G) \geqslant k$ for some $k \geqslant 2$. Furthermore, let X be a subset of $V(G)$ such that $G[X]$ is connected and $d_{G}(x) \leqslant k-1$ for each $x \in X$. If $\xi(G-X) \leqslant k-1$, then the following statements hold.
(1) $\xi(G)=k$,
(2) $d_{G}(x)=k-1$ for each $x \in X$, and
(3) $G[X]$ is a Gallai tree.

Proof. We prove Theorem 4 only for the choice number. Since $\chi_{l}(G) \geqslant k, G$ is not L-colourable for some list L for G where $|L(y)|=k-1$ for each $y \in V(G)$. Then $|L(x)| \geqslant d_{G}(x)$ for all $x \in X$. Let $L^{*}=\left.L\right|_{G-x}$. The hypergraph $G-X$ being $L^{*}-$ colourable, (2) and (3) are consequences of Theorem 2. Furthermore, Theorem 2 implies that G is L-colourable for every list L satisfying $|L(y)|=k$ for each $y \in V(G)$, i.e. $\chi_{l}(G)=k$.

A hypergraph G is called k-colour-critical (k-choice-critical) iff $\chi(H)<\chi(G)=k$ $\left(\chi_{l}(H)<\chi_{l}(G)=k\right)$ for every proper subhypergraph H of G.

Clearly, if G is k-colour-critical (k-choice-critical) for some $k \geqslant 2$, then $\delta(G) \geqslant k-1$. The vertices of G whose degrees are equal to $k-1$ are called the low vertices of G and the subhypergraph of G induced by the set of low vertices is called the low-vertex subhypergraph of G.

Theorem 4 immediately implies the following result.
Theorem 5. If a hypergraph G is k-colour-critical or k-choice-critical for some $k \geqslant 2$, then the low-vertex subhypergraph of G is a Gallai forest (possibly empty).

For colour-critical graphs the above Theorem was proved by Gallai [6]. Moreover, using his result, Gallai established a lower bound for the number of edges of a k-colour-critical graph. Since Gallai's proof can be applied also to k-choice-critical graphs, we obtain the following.

Theorem 6. Let G be a k-colour-critical or k-choice-critical graph for some $k \geqslant 4$. If G is not a complete graph, then $\left.2 \cdot|E(G)| \geqslant\left((k-1)+((k-3))\left(k^{2}-3\right)\right)\right)|V(G)|$.

References

[1] B. Bollobás, Extremal Graph Theory (Academic Press, New York, 1978).
[2] O.V. Borodin, Criterion of chromaticity of a degree prescription, in: Abstracts of IV All-Union Conf. on Theoretical Cybernetics (Novosibirsk) (1977) 127-128 (in Russian).
[3] O.V. Borodin, Problems of colouring and of covering the vertex set of a graph by induced subgraphs. Ph.D. Thesis, Novosibirsk State University, Novosibirsk, 1979 (in Russian).
[4] R.L. Brooks, On colouring the nodes of a network, Proc. Cambridge Phil. Soc. 37 (1941) 194-197.
[5] P. Erdös, A.L. Rubin and H. Taylor, Choosability in graphs, Proc. West Coast Conf. on Combinatorics, Graph Theory and Computing, Congressus Numerantium XXVI (1979) 125-157.
[6] T. Gallai, Kritische Graphen I, Publ. Math. Inst. Hung. Acad. Sci. 8 (1963) 373-395.
[7] L. Lovász, Combinatorial Problems and Exercises (Problem 9.12) (Akad. Kiadó, Budapest, 1979).
[8] C. Thomassen, Color-critical graphs on a fixed surface, Report, Technical University of Denmark, Lyngby, 1995.
[9] V.G. Vizing, Colouring the vertices of a graph with prescribed colours, Metody Diskretnogo Analiza Teorii Kodov i Skhem No 29 (1976) 3-10 (in Russian).

[^0]: * Corresponding author.
 ${ }^{1}$ Partially supported by the International Science Foundation, grant RPY 300.

