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Abstract

One of the basic results in graph colouring is Brooks’ theorem [4] which asserts that the
chromatic number of every connected graph, that is not a complete graph or an odd cycle, does
not exceed its maximum degree. As an extension of this result, Gallai [6] characterized the
subgraphs of k-colour-critical graphs induced by the set of all vertices of degree k — 1. The
choosability version of Brooks’ theorem was proved, independently, by Vizing [9] and by
Erdos et al. [5]. As Thomassen pointed out in his talk at the Graph Theory Conference held at
Oberwolfach, July 1994, one can also prove a choosability version of Gallai’s result.

All these theorems can be easily derived from a resuit of Borodin [2, 3] and Erdos et al. [5]
which enables a characterization of connected graphs G admitting a color scheme L such that
IL(x)| = dg(x) for all x € V(G) and there is no L-colouring of G. In this note, we use a reduction
idea in order to give a new short proof of this result and to extend it to hypergraphs.

A hypergraph G = (V, E) consists of a finite set V = V(G) of vertices and a set
E = E(G) of subsets of V, called edges, each having cardinality at least two. An edge
e with |e| = 3 is called a hyperedge and an edge e with |e| = 2 is called an ordinary edge.
The degree dg(x) of a vertex x in G is the number of the edges in G containing x. Let
A(G) and 6(G) denote the maximum degree and the minimum degree of G, respective-
ly. If 4(G) = 8(G) =r, then G is called r-regular. Let X < V(G). The subhypergraph
G[X] of G induced by X is defined as follows: V(G[X])= X and E(G[X]) =
{e e E(G)|e < X }; further, G — X == G[V(G) — X]. For x € V(G), let G\ x denote the
subhypergraph of G with V(G\x)=V(G) — {x} and E(G\x)= E(G — {x})u
{e — {x}|x ee € E(G) & |e| = 3}. For a hyperedge e, let (e) denote the hypergraph
(e, {e}).
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Let G be a connected hypergraph. A vertex x of G is called a separating vertex of
G iff G\ x is disconnected. An edge e of G is called a bridge of G iff G — {e} = (V(G),
E(G) — {e}) has precisely |e| components. By a block of G we mean a maximal
connected subhypergraph B of G such that no vertex of B is a separating vertex of B.
Any two blocks of G have at most one vertex in common and, obviously, a vertex of
G is a separating vertex of G iff it is contained in more than one block of G. An
end-block of G is a block that contains at most one separating vertex of G.

By a brick we mean a hypergraph of the form {e) for some hyperedge e, or an odd
cycle consisting only of ordinary edges, or a complete graph. A connected hypergraph
all of whose blocks are bricks is called a Gallai tree; a Gallai forest is a hypergraph
whose components are Gallai trees.

Consider a hypergraph G and assign to each vertex x of G a set L(x) of colours
(positive integers). Such an assignment L of sets to vertices in G is referred to
as a colour scheme (or briefly, a list) for G. An L-colouring of G is a mapping f
of V(G) into the set of colours such that f(x) eL(x) for all x eV (G) and
|{f(x)|x ee}| =2 for each e € E(G). If G admits an L-colouring, then G is said to be
L-colourable. In case of L(x) = {1, ... ,k} for all x e V(G), we also use the terms
k-colouring and k-colourable, respectively. A hypergraph G is called k-choosable iff G is
L-colourable for every list L of G satisfying | L(x)] = & for all x € V(G). The chromatic
number y(G) (choice number x,(G)) of G is the least integer k such that G is k-colourable
{k-choosable).

The choosability concept was introduced, independently, by Vizing [9] and Erdos
et al. [5].

We call a pair (G, L) consisting of a connected hypergraph G and a list L for G a bad
pair of order n iff ¥, _y g dg(x) = n, |L(x)| = dg(x) for all x e V(G) and G is not
L-colourable.

Reduction. Let (G, L) be a bad pair of order n > 1, y a non-separating vertex of G,
and « € L(y). For the connected hypergraph G’ = G\ y define a list L" = L] by setting
L'(x) = L(x) — {a} if {x, y} € E(G) and L’(x) = L(x) otherwise.

Then, clearly, |L'(x)| = dg (x) for all x e V(G') and (G', L’) is a bad pair of some
order k with k<n.

Lemma 1. Let (G, L) be a bad pair of order n 20. Then the following statements hold.
(1) |L(x)| = dg(x) for all x e V(G).
(2) Every hyperedge e of G is a bridge of G and, therefore, {e) is a block of G.
(3) If G has no separating vertex, then L(x) is the same for all x e V(G) and G is
regular.
(4) G is a Gallai tree.

Proof (By induction on n). If (G, L) is a bad pair of order n = 0, then L(x) = ¢ where x is
the only vertex of G and the statements (1)—(4) are obviously true. In what follows, let
(G, L) be a bad pair of order n> 1.
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For the proof of (1) consider an arbitrary vertex x of G. Since G 1s connected, there is
a non-separating vertex y # x in G. Now, consider the bad pair (G, L') where
G =G\ y and L' = L} for some a € L(y). Note that L(y) # 0. Then, by the induction
hypothesis, | L' (x)| = dg-(x) which implies immediately that | L(x)| = d(x). This proves (1).

To prove (2) suppose that some hyperedge ¢ of G is not a bridge of G. Then, for some
vertex x ee, the hypergraph G' = (V(G), E(G) — {e}uie — {x}}) is connected and.
therefore, (G, L) is a bad pair with | L(x)| = dg(x) > dg-(x), a contradiction to (1). This
proves (2).

For the proof of (3) assume that G has no separating vertex. If G contains
a hyperedge e, then, because of (2), G = {e) and (3) is obviously true. Otherwise G is
a graph, i.e. G has only ordinary edges, and, for proving (3), it suffices to show that
L(x) = L(y) for all x, y € V(G). Suppose that this is not true. Then there are two
adjacent vertices x, y in G such that L(x) # L(y). W.Lo.g. assume that « € L(y) — L(x).
Set G'=G\y=G —{y} and L' = L}. Then, clearly, (G, L) is a bad pair with
|L'(x)} > dg(x), a contradiction to (1). This proves (3).

For the proof of (4), we consider two possible cases.

Case 1: G has a separating vertex. Then G has at least two end-blocks, say B, and
B,. For i =1, 2, there is a non-separating vertex y; of G contained in B;. Then, by
induction (using the reduction operation), G\ y; is a Gallai tree and, clearly, every
block B # B; of G is a block of G\ y;, too. This implies that G is a Gallai tree.

Case 2: G has no separating vertex, 1.e. G is a block. Because of (2) and (3), we may
assume that G 1s a graph which is regular of some degree r > 1 and L(x) = C for all
x € V(Gy where C is a set of r colours. Let y be a vertex of G and set
G' = G\y = G — {y}. Then, by induction, G’ is a Gallai tree and every block of the
graph G’ is a complete graph or an odd cycle. If G’ consists of a single block, then,
clearly, both G" and G are complete graphs. So, let G’ have at least two blocks. Since
every end-block of G’ must be (r — 1)-regular, the degree of y in G is at least 2(r — 1)
which yields r = 2, and, therefore, the graph G is a cycle. Since G is not L-colourable
and the same two colours are available at each vertex of the cycle G, we conclude that
G is an odd cycle.

This proves (4). O

Lemma 1 is not quite new. In particular, its graph version was proved independent-
ly by Borodin [2, 3] and Erdos et al. [S]. However, their proofs use different ideas and
are longer. Proofs of statements (1) and (3) in the graph version based on a sequential
colouring argument were given by Vizing [9] and Lovasz [7].

The next result is a simple consequence of Lemma 1. A different proof of its graph
version has recently been given by Thomassen [8].

Theorem 2. Let L be an arbitrary list for a given hypergraph G. Furthermore, let X be
a subset of V(G) such that G[ X] is connected and | L(x)| = dg(x) for all x € X. Assume
that G — X is L*-colourable where L* is the restriction of L to V(G) — X. If G is not
L-colourable, then G[X] is a Gallai tree and |L(x)| = dg(x) for each x € X.
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Proof. Consider an arbitrary L*-colouring f of G — X and choose for each edge
e €E(G) with e — X # 0, a vertex v(e)e e — X. For the connected hypergraph
G' = G[X], define a list L’ by

L'(x)=L(x) — {f(v(e))|x ee eE(G) & e — X # 0}

for each x € X. Then |L'(x)| = dg (x) for every vertex x of G’ and, clearly, every
L'-colouring of G’ yields an L-colouring of G. Therefore, if G is not L-colourable, then
{G', L'} is a bad pair and, by Lemma 1, G’ is a Gallai tree and |L'(x)| = d¢ (x) for all
x € X implying that | L(x)| = dg(x) for all x € X. This proves Theorem 2. [

Let G be a connected hypergraph. Clearly, x(G) < y;(G) and Theorem 2 implies that
216 <u(G)<4(6) + 1.
If G is a brick, i.e, if |[E(G)| = 1 or G is a complete graph or an odd cycle, then
2(G) = 1(G) = 4(G) + 1.

Brooks [4] proved that the complete graphs and the odd cycles are the only connected
graphs whose chromatic number is larger than their maximum degree. This famous
result has a number of different proofs. Some of them are listed in [1]. That a similar
result is true also for the choice number, was proved, independently, by Vizing [9] and
Erdos et al. [5].

Theorem 3. If G is a connected hypergraph that is not a brick, then x(G) < y,(G) < 4(G).

Proof. Suppose that G is not L-colourable for some list L for G where |L(x)| = 4(G)
for each x € V(G). Then, by Theorem 2, G is a Gallai tree which is regular of degree
A(G). This implies that G is a brick, i.e., a connected hypergraph consisting of exactly
one hyperedge, or an odd cycle consisting only of ordinary edges, or a complete graph.
This proves Theorem 3. [

Another consequence of Theorem 2 is the following result stated for the chromatic
number as well as for the choice number.

Theorem 4. Let & stand for y or y;. Let G be a hypergraph with £(G) = k for some k = 2.
Furthermore, let X be a subset of V(G) such that G[ X] is connected and dg{x) < k — 1
for each x € X. If £(G — X) < k — 1, then the following statements hold.

(1) &(G) =k,

(2) dg(x) =k — 1 for each x € X, and

(3) G[X] is a Gallai tree.
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Proof. We prove Theorem 4 only for the choice number. Since x,(G) = k, G is not
L-colourable for some list L for G where |L(y)| = k — 1 for each y e V(G). Then
|L(x}] = dg(x) for all xeX. Let L* = L |g-x. The hypergraph G — X being L*-
colourable, (2} and (3) are consequences of Theorem 2. Furthermore, Theorem 2
implies that G 1s L-colourable for every list L satisfying | L(y}| = k for each y € V{(G),
re. p(G)y=k 0O

A hypergraph G is called k-colour-critical (k-choice-critical) iff y(H) < x(G) =k
(x(H) < x,{G) = k) for every proper subhypergraph H of G.

Clearly, if G 1s k-colour-critical (k-choice-critical) for some k = 2, then §(G) =k — 1.
The vertices of G whose degrees are equal to k — 1 are called the low vertices of G and
the subhypergraph of G induced by the set of low vertices is called the low-vertex
subhypergraph of G.

Theorem 4 immediately implies the following result.

Theorem 5. If a hypergraph G is k-colour-critical or k-choice-critical for some k = 2,
then the low-vertex subhypergraph of G is a Gallai forest (possibly empty).

For colour-critical graphs the above Theorem was proved by Gallai [6]. Moreover,
using his result, Gallai established a lower bound for the number of edges of
a k-colour-critical graph. Since Gallai’s proof can be applied also to k-choice-critical
graphs, we obtain the following.

Theorem 6. Let G be a k-colour-critical or k-choice-critical graph for some k = 4. If G is
not a complete graph, then 2 |E(G)| = ((k — 1) + ((k — 3)/(k® = 3 V(G)i.
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