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Abstract 

One of the basic results in graph colouring is Brooks' theorem [-4] which asserts that the 
chromatic number of every connected graph, that is not a complete graph or an odd cycle, does 
not exceed its maximum degree. As an extension of this result, Gallai [6] characterized the 
subgraphs of k-colour-critical graphs induced by the set of all vertices of degree k - 1. The 
choosability version of Brooks' theorem was proved, independently, by Vizing [9] and by 
ErdiSs et al. [5]. As Thomassen pointed out in his talk at the Graph Theory Conference held at 
Oberwolfach, July 1994, one can also prove a choosability version of Gallai's result. 

All these theorems can be easily derived from a result of Borodin [2, 3] and Erd6s et al. [-5] 
which enables a characterization of connected graphs G admitting a color scheme L such that 
IL(x)l ~> d~(x) for all x ~ V(G) and there is no L-colouring of G. In this note, we use a reduction 
idea in order to give a new short proof of this result and to extend it to hypergraphs. 

A hypergraph G = (V, E) consists of a finite set V = V(G) of vertices and a set 
E = E(G) of subsets of V, called edges, each having cardinality at least two. An edge 
e with I el >/3 is called a hyperedge and an edge e with l el = 2 is called an ordinary edge. 
The degree d~(x) of a vertex x in G is the number  of the edges in G containing x. Let 
A (G) and 6(G) denote the maximum degree and the minimum degree of G, respective- 
ly. If A(G) = 6(G) = r, then G is cal led r-regular. Let X ~_ V(G). The s u b h y p e r g r a p h  

GEX] of G induced  by  X is defined as follows: V ( G [ X ] ) =  X and  E ( G [ X ] ) =  

{e ~ E(G)Ie ~_ X}; further,  G - X = G[V(G)  - X] .  F o r  x ~ V(G), let G \  x deno te  the 

s u b h y p e r g r a p h  of G with V ( G \ x )  = V ( G ) -  {x} and  E ( G \ x )  = E ( G -  {x})w 

{e - {x}[x e e  eE(G)  & lel >~ 3}. F o r  a hyperedge  e, let ( e )  denote  the hype rg ra ph  

(e, {e}). 
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Let G be a connected hypergraph. A vertex x of G is called a separating vertex of 
G iff G \ x  is disconnected. An edge e of G is called a bridge of G iff G - {e} = (V(G), 
E ( G ) -  {e}) has precisely lel components.  By a block of G we mean a maximal 
connected subhypergraph B of G such that no vertex of B is a separating vertex of B. 
Any two blocks of G have at most one vertex in common and, obviously, a vertex of 
G is a separating vertex of G iff it is contained in more than one block of G. An 

end-block of G is a block that contains at most one separating vertex of G. 
By a brick we mean a hypergraph of the form ( e )  for some hyperedge e, or an odd 

cycle consisting only of ordinary edges, or a complete graph. A connected hypergraph 
all of whose blocks are bricks is called a Gallai tree; a Gallai forest is a hypergraph 
whose components  are Gallai trees. 

Consider a hypergraph G and assign to each vertex x of G a set L(x) of colours 
(positive integers). Such an assignment L of sets to vertices in G is referred to 

as a colour scheme (or briefly, a list) for G. An L-colourin 9 of G is a mapping f 
of V(G) into the set of colours such that f ( x ) • L ( x )  for all x •V(G)  and 
I{ f (x) lx  •e}l /> 2 for each e •E(G). If G admits an L-colouring, then G is said to be 
L-colourable. In case of L ( x ) =  {1 . . . .  ,k} for all x • V(G), we also use the terms 
k-colouring and k-colourable, respectively. A hypergraph G is called k-choosable iff G is 
L-colourable for every list L of G satisfying IL(x)l = k for all x • V(G). The chromatic 
number ;g(G) (choice number )&(G)) of G is the least integer k such that G is k-colourable 

(k-choosable). 
The choosability concept was introduced, independently, by Vizing [9] and ErdSs 

et al. [5]. 
We call a pair (G, L) consisting of a connected hypergraph G and a list L for G a bad 

pair of order n iff Zx~V~G)d~(x) = n, [L(x)] ~> de(x) for all x • V(G) and G is not 
L-colourable. 

Reduction. Let (G, L) be a bad pair of order n ~> 1, y a non-separating vertex of G, 
and e • L(y). For  the connected hypergraph G' = G \ y  define a list L'  = L~ by setting 
L'(x) = L(x) - {c~} if {x, y} • E(G) and L'(x) = L(x) otherwise. 

Then, clearly, IL'(x)l ~> dw(x) for all x • V(G') and (G', L') is a bad pair of some 

order k with k < n. 

Lemma 1. Let (G, L) be a bad pair of order n >t0. Then the following statements hold. 
(1) ]L(x)[ = d~(x) for all x • V(G). 
(2) Every hyperedge e of G is a bridge of G and, therefore, ( e )  is a block of G. 
(3) I f  G has no separating vertex, then L(x) is the same for all x • V(G) and G is 

regular. 
(4) G is a Gallai tree. 

Proof(By induction on n). If(G, L) is a bad pair of order n = 0, then L(x) = 0 where x is 
the only vertex of G and the statements (1)-(4) are obviously true. In what follows, let 
(G, L) be a bad pair of order n i> 1. 
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For  the p roof  o f ( l )  consider  an a rb i t ra ry  vertex x of G. Since G is connected,  there is 
a non-separa t ing  vertex y ~ x in G. Now,  consider the bad pair  (G', L')  where 
G' = G \ y  and L' = L~ for some ~ eL(y) .  Note  that L(y) ¢ 0. Then, by the induction 
hypothesis, [ L' (x) L = dG,(x) which implies immediately that [ L (x)] = d~ (x). This proves (1). 

To  prove  (2) suppose  that  some hyperedge e of  G is not a bridge of G. Then, for some 

vertex x ee ,  the hyperg raph  G ' =  (V(G), E ( G ) -  { e } w [ e -  ~tx}})is connected and. 
therefore, (G', L) is a bad  pair  with ]L(x)L t> de(x) > da,(x), a contradic t ion  to (l). This 
proves  (2). 

Fo r  the p roof  of (3) assume that  G has no separat ing vertex. If G contains  
a hyperedge  e, then, because of (2), G = {e)  and (3) is obviously true. Otherwise  G is 

a graph,  i.e. G has only ord inary  edges, and, for proving  (3), it suffices to show that  
L(x)  = L(y) for all x, y e V(G). Suppose  that  this is not  true. Then  there are two 
adjacent  vertices x, y in G such that  L(x)  ¢ L(y). W.l.o.g. assume that  ~ e L ( y )  - L(xt. 

Set G ' - - G \ y  = G - { y }  and L ' =  L~. Then,  clearly, (G',L')  is a bad pair  with 
]L'(x)L > dG,(x), a contradic t ion  to (1). This proves  (3). 

For  the p roo f  of (4), we consider two possible cases. 

Case 1: G has a separa t ing vertex. Then  G has at least two end-blocks,  say B1 and 
B2. For  i = 1, 2, there is a non-separa t ing  vertex Yi of G conta ined in Bi. Then, by 

induct ion (using the reduct ion operat ion),  G \ y i  is a Gal lai  tree and, clearly, every 
block B va Bi of G is a block of G \ y i ,  too. This implies that  G is a Gal lai  tree. 

Case 2: G has no separa t ing  vertex, i.e. G is a block. Because of (2) and  (3), we may  
assume that  G is a g raph  which is regular of some degree r ~> 1 and L(x)  -- C for all 
x e V ( G )  where C is a set of r colours. Let y be a vertex of G and set 

G' = G \ y  = G - {y}. Then,  by induction,  G' is a Gal lai  tree and every block of the 
graph  G' is a complete  graph  or an odd cycle. If G' consists of a single block, then, 
clearly, bo th  G' and G are comple te  graphs.  So, let G' have at least two blocks. Since 
every end-block of G' must  be (r - 1)-regular, the degree of y in G is at least 2(r - 1 t 
which yields r = 2, and, therefore, the graph  G is a cycle. Since G is not L-colourable  
and the same two colours are available at each vertex of the cycle G, we conclude that  
G is an odd cycle. 

This proves  (4). [] 

L e m m a  1 is not  quite new. In part icular ,  its g raph  version was proved  independent-  
ly by Borodin  [2, 3] and Erd6s  et al. I-5]. However ,  their proofs use different ideas and 
are longer. Proofs  of s ta tements  (1) and (3) in the graph version based on a sequential  
colour ing a rgumen t  were given by Vizing [-9] and Lov~sz [-7]. 

The  next result is a simple consequence of L e m m a  1. A different p roof  of its graph 
version has recently been given by T h o m a s s e n  [8]. 

Theorem 2. Let  L be an arbitrary list.['or a 9iven hypergraph G. Furthermore, let X be 
a subset o f  V(G) such that G [ X ]  is connected and IL(x)[ ~> d6(x) for  all x e X .  Assume 

that G - X is L*-colourable where L* is the restriction of  L to V(G) - X.  U G is not 
L-colourable, then G [ X ]  is a Gallai tree and JL(x)l = dG(x) J~)r each x e X .  
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Proof. Consider an arbitrary L*-colouring f of G -  X and choose for each edge 
e ~E(G)  with e -  X ¢ O, a vertex v(e)E e -  X.  For the connected hypergraph 
G' = G IX], define a list L' by 

L'(x) = L(x)  - { f (v (e ) ) lx  e e  e E(G)  & e -  X ~ 0} 

for each x eX.  Then [L'(x)[/> da,(x) for every vertex x of G' and, clearly, every 
L'-colouring of G' yields an L-colouring of G. Therefore, if G is not L-colourable, then 
(G', L') is a bad pair and, by Lemma 1, G' is a Gallai tree and [L'(x)[ = dG,(x) for all 
x e X  implying that [L(x)[ = de(x) for all x eX.  This proves Theorem 2. [] 

Let G be a connected hypergraph. Clearly, z(G) ~< )0(G) and Theorem 2 implies that 

z(G) <~ z,(G) <~ A (G) + 1. 

If G is a brick, i.e., if [E(G)I -- 1 or G is a complete graph or an odd cycle, then 

z(G) = z~(G) = A(G) + 1. 

Brooks [4] proved that the complete graphs and the odd cycles are the only connected 
graphs whose chromatic number is larger than their maximum degree. This famous 
result has a number of different proofs. Some of them are listed in [1]. That a similar 
result is true also for the choice number, was proved, independently, by Vizing [9] and 
Erd6s et al. [5]. 

Theorem 3. I f  G is a connected hypergraph that is not a brick, then z(G) <~ zt(G) <~ A(G). 

Proof. Suppose that G is not L-colourable for some list L for G where [L(x)[ = A(G) 

for each x ~ V(G). Then, by Theorem 2, G is a Gallai tree which is regular of degree 
A (G). This implies that G is a brick, i.e., a connected hypergraph consisting of exactly 
one hyperedge, or an odd cycle consisting only of ordinary edges, or a complete graph. 
This proves Theorem 3. [] 

Another consequence of Theorem 2 is the following result stated for the chromatic 
number as well as for the choice number. 

Theorem 4. Let  ~ stand for  Z or Zt. Le t  G be a hypergraph with ~(G) >>- k for  some k >>. 2. 

Furthermore, let X be a subset o f  V(G) such that G [ X ]  is connected and dG(X) ~ k -- 1 

for  each x ~ X .  I f  ~(G - X )  <~ k - 1, then the followin9 statements hold. 
(1) ~(G) = k, 
(2) de(x) = k - l for  each x ~ X ,  and 
(3) G [-X] is a Gallai tree. 
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Proof .  We  prove  T h e o r e m  4 only  for the choice number .  Since )~t(G) >~ k, G is not  

L -co lou rab l e  for some list L for G where  IL(y)[ = k - 1 for each y ~ V(G). Then 

LL(x)I 1> dG(x) for all x e X .  Let  L* = L [G-x. The  h y p e r g r a p h  G - X being L*- 

co lourable ,  (2) and  (3) are consequences  of T he o re m 2. Fu r the rmore ,  T he o re m 2 

implies  tha t  G is L -co lou rab l e  for every list L sat isfying IL(y)I = k for each y ~ V(G), 

i.e. zt(G) = k. [] 

A h y p e r g r a p h  G is cal led k-colour-critical (k-choice-critical) iff Z(H) < z(G) = k 

(zz(H) < zz(G) = k) for every p r o p e r  s u b h y p e r g r a p h  H of  G. 

Clearly,  if G is k-colour-cr i t ica l  (k-choice-cri t ical)  for some k >/2, then 6(G) >>,k - 1. 

The vertices of G whose degrees are equal  to k - 1 are cal led the low vertices of G and  

the s u b h y p e r g r a p h  of G induced  by  the set of  low vertices is cal led the low-vertex 

subhypergraph of G. 

Theo rem 4 immedia t e ly  implies  the fol lowing result.  

Theorem 5. I f  a hypergraph G is k-colour-critical or k-choice-critical for  some k >~ 2, 

then the low-vertex subhypergraph o f  G is a Gallai forest  (possibly empty). 

F o r  colour-cr i t ica l  g raphs  the above  T h e o r e m  was p roved  by Gal la i  [6]. Moreover ,  

using his result,  Ga l l a i  es tabl i shed  a lower  b o u n d  for the number  of  edges of 

a k-colour-cr i t ica l  graph.  Since Ga l l a i ' s  p r o o f  can be app l ied  also to k-choice-cr i t ical  

graphs ,  we ob t a in  the following. 

Theorem 6. Let  G be a k-colour-critical or k-choice-critical graph for  some k >1 4. I f  G is 

not a complete graph, then 2" IE(G)[ >/((k - 1) + ((k - 3)/(k 2 - 3)))[ V(G)I. 

References 

I-1] B. Bollob~s, Extremal Graph Theory (Academic Press, New York, 1978). 
[-2] O.V. Borodin, Criterion of chromaticity of a degree prescription, in: Abstracts of IV All-Union Conf. 

on Theoretical Cybernetics (Novosibirsk) (1977) 127-128 (in Russian). 
[-3] O.V. Borodin, Problems of colouring and of covering the vertex set of a graph by induced subgraphs. 

Ph.D. Thesis, Novosibirsk State University, Novosibirsk, 1979 (in Russian). 
[41 R.L. Brooks, On colouring the nodes of a network, Proc. Cambridge Phil. Soc. 37 (1941) 194~197. 
[5] P. Erd6s, A.L. Rubin and H. Taylor, Choosability in graphs, Proc. West Coast Conf. on Combina- 

torics, Graph Theory and Computing, Congressus Numerantium XXV! (1979) 125 157. 
[-6] T. Gallai, Kritische Graphen I, Publ. Math. Inst. Hung. Acad. Sci. 8 (1963) 373-395. 
[7] L. Lov/tsz, Combinatorial Problems and Exercises (Problem 9.12) (Akad. Kiad6, Budapest, 1979). 
1-8] C. Thomassen, Color-critical graphs on a fixed surface, Report, Technical University of Denmark, 

Lyngby, 1995. 
[9] V.G. Vizing, Colouring the vertices of a graph with prescribed colours, Metody Diskretnogo Analiza 

Teorii Kodov i Skhem No 29 (1976) 3-10 (in Russian). 


