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Abstract 

A spanning tree of a connected graph G is said to be an independency tree if all its endvertices 
are pairwise nonadjacent in G. We prove that a connected graph G has no independency tree 
if and only if G is a cycle, a complete graph or a complete bipartite graph the color classes of 
which have equal cardinality. 

Keywords: Spanning tree with pairwise nonadjacent endvertices; Depth-first-search tree 

I. Introduction 

We use [1] for basic terminology and notation not defined here. In this paper, among 

other things, we are interested in the existence of  spanning trees with pairwise non- 

adjacent endvertices in finite connected graphs. 

The motivation o f  the first three authors is related to cycles in graphs and can be 

described as follows. 

Suppose G is a finite connected graph on at least three vertices, and T is an arbitrary 

spanning tree o f  G. If  two of  the endvertices of  T are joined by an edge e o f  G, then 

the graph T + e obtained from T by adding e has a unique cycle C. If  C is not a 

hamiltonian cycle of  G, then at least one vertex v o f  C has degree at least three in 

T + e. Deleting one of  the edges of  C incident with v from T + e results in a spanning 
tree T' o f  G which has one endvertex less than T. We can repeat this procedure to a 
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newly found spanning tree as long as its endvertices are not pairwise nonadjacent in 

G, and as long as the tree is not a hamiltonian path of G with adjacent endvertices. 
In other words we either end up with a hamiltonian cycle or a spanning tree of G the 

endvertices of  which form an independent set of  G. We refer to such a spanning tree 

as an independency tree. So on one hand, independency trees are interesting 'blocking 
objects' in the context of  finding hamiltonian cycles. On the other hand, the concept of 

an independency tree generalizes the concept of  a hamiltonian path in a nonhamiltonian 
graph. 

The motivation of the last two authors comes from graph colorings. 

Stiebitz proved a theorem [5, Theorem 2] which implies the statement of  Brooks' 
theorem ([2], and [1, Theorem 11.2]) for graphs that contain an independency tree. 
Using our characterization in the next section of those graphs that do not contain an 

independency tree, a new proof of Brooks' theorem can be obtained. 
Our main result implies that a graph does not have an independency tree if  and 

only if it is either a cycle, a complete graph or a complete bipartite graph the color 
classes of which have equal cardinality. Furthermore it will be shown that if a graph 
has an independency tree, then it has an independency tree which is a depth-first- 

search tree, as well. Such a tree is defined as follows. Let G be a graph on n vertices. 
A numbering ~l of G is a bijection from V(G)  onto {1 . . . . .  n}. I f x  is a vertex of G, 

then q(x) is called the number of x. Now the depth-first-search tree (or D F S  tree) 
T(G, 7) of G with respect to r/ is defined by the following algorithm. In every step 
of the algorithm a pair (Ti, vi) consisting of a tree T, contained in G and a vertex 

vi of Ti is constructed. We start with the pair (To, vo) where v0 is the vertex with 

r/(V0) = 1 and To is the trivial tree consisting of v0 only. Suppose that the pair (Ti, vi) 
has already been constructed, then the pair (T,.+1, vi+l ) will be obtained as follows. If  

v~ has a neighbor outside T~, then we choose vi+l among the neighbors of  vi such that 
it is not contained in Ti and has minimal number under this condition, and define T,+I 
to be the tree obtained from Tg by adding vi+l and the edge 1)i13i+ 1. Otherwise, vi+~ is 

chosen to be the predecessor of vi on the unique path connecting v0 with vi in T,., and 
Ti+l is defined to be Ti. It is not hard to see that this algorithm terminates after a finite 
number of steps, and the tree obtained in the last step forms a spanning tree of G. 
Notice that if P: x~ . . . . .  xk is a path in G and the numbering q has been chosen such 

that rl(xi ) = i for iE {1 . . . . .  k}, then P is contained in T(G, rl). Finally, note that the 
endvertices of  the DFS tree T(G, 7) which are different from v0 form an independent 
set in G. 

The procedure described in the motivation of the first three authors yields a polyno- 
mially bounded algorithm that either finds an independency tree or a hamiltonian cycle. 
In the latter case one easily extracts from the proof of  our theorem in the next section 
a polynomially bounded algorithm that either finds an independency tree (in this case a 
hamiltonian path with nonadjacent endvertices) or shows that no such tree exists. The 
graphs that do not contain an independency tree tum out to be easily recognizable. The 
related decision problem, whether a given graph contains an independency tree with at 
most k endvertices, can be proved to be NP-complete for any fixed k ~> 2, as follows. 
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Let G be a graph, x a vertex of  G and k ~> 2 an integer. Define G'  to be the graph 

obtained from G by adding k - 1 new vertices xl . . . . .  Xk-1 each of  which is adjacent to 

x and to no other vertex. Then every independency tree of  G ~ contains xl . . . .  ,xk-1 as 
endvertices. Consequently, G ~ has an independency tree with at most k endvertices if  

and only if  G has a hamiltonian path starting at x. Since the hamiltonian path problem 

is NP-complete (see [4, p. 199]) the result follows. 

2. The main theorem 

Now we are ready to prove the following theorem. We denote by Kn/2,n/2 the com- 

plete bipartite graph both color classes of  which have cardinality n/2. 

Theorem. Let  G be a connected graph on n >~3 vertices. Then the following state- 

ments are equivalent. 

(i) 

(ii) 
(iii) 

(iv) 

tonian 

G is isomorphic to Cn, K,,  or n is even and G is isomorphic to Kn/2,n/2. 

G has no independency tree. 

G has no D F S  tree in which all endvertices are pairwise nonadjacent in G. 

G has a hamiltonian path and every hamiltonian path is contained in a hamil- 

cycle. 

Proof .  Obviously (ii) implies (iii), thus it suffices to prove (i) =~ (ii), (iii) ==> (iv) 

and (iv) =~ (i). 
(i) =~ (ii) This is obvious if G is isomorphic to Cn or Kn. Suppose T would be 

a spanning tree of  K~/2,n/2 in which all endvertices are pairwise nonadjacent. Then all 

the endvertices of  T would belong to the same color class and the vertices in the other 
color class would all have degree at least two in T. Consequently, T would have at 

least n edges, a contradiction. 
(iii) =:> (iv) I f  G does not satisfy (iv) then it has a path P: xl . . . . .  xk such that 

xl is not adjacent to xk and all neighbors of  Xl and xk are in V(P).  We consider a 

numbering q subject to 

~(xi) = i for i E { I  . . . . .  k}, 

r/(y) arbitrary for y f~ V(P).  

Then xl is not adjacent to any endvertex of  T(G, rl) and, therefore, the endvertices of  
T(G, rl) are pairwise nonadjacent. 

(iv) =~ (i) Let C: xl . . . . .  x,  be a hamiltonian cycle of  G, then an edge e E E ( G ) \ E ( C )  

is called a k-chord if  the shortest cycle formed by e and edges of  C has length k. We 

distinguish two cases. 
(1) G contains a hamiltonian cycle C: Xl . . . . .  x~ with a 3-chord, say xlx3. Then 

x2,x I ,x3,x 4 . . . . .  x n is a hamiltonian path of  G and, consequently, x2xn EE(G) .  By similar 

arguments xixi+ 2 E E ( G )  for l<~i<~n-  2 and X~-lXl E E(G) ,  i.e., G contains all 3- 
chords of  C. Now x4,x5 . . . . .  Xn,X2,X3,Xl is a hamiltonian path of  G, hence xlx4 CE(G) .  
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If  n ~> 5, then x5 . . . . .  Xn,X2,X3,X4,Xl is a hamiltonian path and xlx5 EE(G).  By repeating 
this argument we see that x l y E E ( G )  for all y E  V ( G ) \ { x l } .  Similar arguments for the 
other vertices show that G is isomorphic to K~. 

(2) G contains no hamiltonian cycle with 3-chords. Let C: Xl . . . . .  Xn be a hamil- 

tonian cycle of G. I f  G is not a cycle, then C has a chord and without loss of 
generality we may assume xlxi  E E ( G )  for some i with 4<<,i<~n - 2. Then n~>6, 

and both x2,x3 . . . .  , x i , x l ,Xn ,Xn- l , . . . ,X i+ l  and X n , X n _ l , . . . , x i , x l , x 2 , . . .  ,Xi-- 1 are hamil- 
tonian paths of  G. Hence we obtain that x2xi+l,XnXi_ 1 EE(G).  Now x i -z ,xg-3  . . . . .  x2, 

Xi+l,Xi+ 2 . . . . .  Xn,Xi- l ,Xi ,X 1 is a hamiltonian path of G. This implies XlXi-2 E E ( G ) .  

Since C has no 3-chords, by symmetry arguments and by repeating the argument, we 

conclude that i is even and that XlXj E E ( G )  for all even numbers j E { 1,2 . . . . .  n}. 
Hence n is even. Similar arguments for the other vertices show that G is isomorphic 

to Kn/z,n/2. [] 

Chartrand and Kronk [3] showed that the graphs in (i) are exactly the so-called 

randomly traceable graphs. Since every randomly traceable graph satisfies (iv) (by 
[3, Lemma 1]), their theorem follows from ours. Similar questions have also been 

discussed by Yhomassen [6]. 
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