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Abstract 

Polygon-circle graphs are intersection graphs of polygons inscribed in a circle. This class 
of graphs includes circle graphs (intersection graphs of chords of a circle), circular arc graphs 
(intersection graphs of arcs on a circle), chordal graphs and outerplanar graphs. We investigate 
binding functions for chromatic number and clique covering number of polygon-circle graphs 
in terms of their clique and independence numbers. The bound ~ log ~, for the clique covering 
number is asymptotically best possible. For chromatic number, the upper bound we prove is of 
order 2 ~, which is better than previously known upper bounds for circle graphs. 

1. Introduction 

We will consider simple undirected graphs without loops or multiple edges. The 
vertex set and edge set of  a graph G will be denoted by V(G) and E(G),  respectively. 
The subgraph of  a graph G induced by a set o f  vertices U will be denoted by GIU. 

The independence number (the maximum size of  a stable set), the clique number (the 
maximum size of  a complete subgraph), the chromatic number (tbe minimum number 
of  classes of  a partition of  ~ ?  vertex set into stable sets) and the clique covering 
number (the minimum number of  classes of  a partition o f  the vertex set into complete 
subgraphs) of  a graph G are denoted by , ,(G),oJ(G),x(G) and ~(G), respectively. 

1.1. Polygon-circle graphs 

A well-known class of  intersection graphs is the class o f  circle graphs which we 
denote by CIR. Circle graphs arc defined as intersection graphs of  chords o f  a circle, 
or, equivalently, as overlap graphs of  intervals on a line (in the overlap graph, two 
vertices are adjacent i f  and only if  the corresponding intervals are not disjoint and 
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none of them is a subinterval of  the other one). They can be recognized in polyno- 
mial time [1], a nontrivial and elegant characterization by three obstructions is given 
in [2]. 

In 1989, M. Fellows (personal communication) suggested the following generaliza- 
tion of  circle graphs. Call a graph a polygon-circle graph if  it can be represented 
as the intersection graph of (convex) polygons inscribed in a circle. We denote this 
class of  graphs by PC. Obviously, every circle graph is polygon-circle, and in fact, 
polygon-circle graphs are exactly the graphs which can be obtained from circle graphs 
by edge contractions. It is also clear that circular arc graphs (intersection graphs of 
arcs on a circle) form a subclass of  PC, and one can also see that every chordal graph 
(i.e., graph with no induced cycle of  length greater than three) is polygon-circle [7]. 
Under a different nmne ('spider graphs'), polygon-circle graphs were considered by 
Koebe, who gave a polynomial time recognition algorithm for them in [8]. 

Similarly to circle graphs being viewed on as overlap graphs, we can derive the 
following equivalent definition of  polygon-circle graphs, using the fact that every PC 
graph has an intersection representation by polygons which have mutually distinct cor- 
ners. We say that a graph G has an alternating representation if the vertices of  G can 
be represented by pairs (Iv,My), where Iv is a dosed interval with integral endpoints 
on the real line and Mr is a finite subset of  Iv N Z which contains the endpoints of  Iv 
in such a way that (i) the sets My are mutually disjoint and (ii) for any two vertices 
u, v, uv is an edge of G if and only if there are integers a < b < c < d such that 
a, cEMu and b, dEMv (or a, cEMv and b, dEMu).  A graph has an alternating repre- 
sentation if and only if it is a polygon-circle graph. We will exploit this definition of 
polygon-circle graphs in Section 3. 

1.2. Binding functions 

Obviously, o(G)<<.z(G) for every graph G. It is well known that graphs without 
triangles (i.e., graphs that satisfy co(G) = 2) may have arbitrarily large chromatic 
number. This is, however, not the case for many special classes of  graphs. The other 
extreme are perfect graphs which satisfy x(G) = a)(G). Gyarffis defined the notion of  
binding function in the following way. A function f is a binding function for Z and 
a class of  graphs .~ / i f  z(G)<~f(co(G)) for any graph G E .~  (in this case we simply 
write y.~<f(~o) for .~/). Binding function for the clique covering number (7 is defined 
in a similar way (in this case as a function of ~(). It is always interesting to know if a 
class of  graphs under consideration admits a binding function for • or o'. Many results 
in this direction can be found in [6]. In the sequel, we will denote by fz and fa  the 
optimal binding functions, i.e., we set 

fL(.~l,k) = max{z(G) lG  E .~/, o(G)~<k}, 

f , ( .~/ ,k)  = max{o(G) lG E .~/, ~(G)~<k}. 
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For the class of  circle graphs, it was known that f a  = O(~ log ~) and we will prove 
in Section 2 that the same holds true for the wider class of  polygon-circle graphs. 
For chromatic number, so far the best published binding function was of  order 2~'~ "2 
[9]. We will improve this bound to 0 (2  °' ) by proving this bound even for polygon- 
circle graphs in Section 3. However, in the case of  chromatic number the best known 

lower bound for fx on circle graphs is ~(oJ log m) and we are not able to improve 
the lower bound for polygon-circle graphs, either. In fact, we propose the following 
problem: 

Problem 1.1. Is it true that fx(PC, k)  = O(fx(CIR, k))?  

2. Clique covering number 

The goal of  this section is to prove the following theorem: 

Theorem 2.1. For polygon-circle graphs, we have 

fa(PC, ~) = (! + o(l))~log0~. 

Since the same result is proved for circle graphs in [9], we only have to prove the 
upper bound. 

Let G = ( V , E )  be a PC graph, denote a = ~(G) and ~ = ~(G). Fix a representation 
P = { P v l v  E V} of G by polygons inscribed in a circle C. First we define some 
technical notions. 

A v-arc is any open arc on C determined by two consecutive vertices o f  Pv. I f  
U c V'Js a set of  vertices of  G, we say that a v-arc A is U-empty  i f  no Pu, for u E U, 
has all corners in A. An arc w'aich is not U-empty is called U-nonempty.  A polygon 
Pv (and the corresponding vertex v) is called U-separating i f  at least two of  the v-arcs 
are nonempty. If  v is not U-separating and determines one U-nonempty arc, we denote 
this arc by A(v, U).  

Next we define subsets Y °, V I, I/i, V 2, V2 . . . .  by means of  recursion as follows: 

V ° = V, 

V i = {v E V i-I  [ v is Vi-l-separating}, i = 1,2 . . . . .  

Vi = V ~-I - V i, i = 1 , 2  . . . . .  

and we denote by Gi the subgraph of  G induced by Vi, i.e., Gi = GI~. 

Lemma 2.2. For e"ery i = 1,2 . . . . .  ~, we have ~(Gi)<~/i .  

Proof. The statement is obvious i f  i = ! or a(Gi) = 1. Hence sup?ose i~>2 and let 

{v I . . . . .  vlm}cV~ be an independent set in G, m~>2. Since v[ . . . . .  v~ are not 
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Vi-t-separating, for each j = 1,2 . . . . .  m, the arc A(vl, V i - I )  contains all comers of  
the polygons representing the other v]'s. Since v I . . . . .  Vim are Vi-2-separating, for every 
j = I . . . . .  m, there exist a vJ-arc B(j )  # A(vJ, l/~-~) and a vertex v~ E V *-2 such 
that all corners of  P~ lie in B(j) .  Because vJ is not Vi-Lseparating, v~ ¢ V ~-I and 

hence v~ E V~_t. Observe also that A(v~, v i -a)DA(vJ,  Vi-l) .  If  i -  1/>2, we construct 
in a similar way a sequence v~ . . . . .  v~ so that for every l = 3,4 . . . . .  i, v~ E V ~-t and 

A(v~, V i- t)  DA(t~ - I ,  Vi-t+l). It follows that the polygons which represent mi vertices 
v~ (1 = 1,2 . . . . .  i, j = 1,2 . . . . .  m) are pairwise disjoint and the statement of  the lemma 
follows. [] 

Lennna 2.3. For i > ½(~ + 1 ), V, = O. 

Proof. If  v E V,-, v is V i- I-separating, and thus there are two V i- I-nonempty v-arcs on 
C. Similar to the proof of  the preceeding lemma, we can find 2i - I pairwise disjoint 
polygons in the representation. Hence 2 i -  1 ~<~ and the statement follows. [] 

Lennna 2.4. For every i>~ l, we have ~(Gi)<<.~(Gi) + 1. 

Proof .  Set Ri = {v E V~ l all v-arcs are Vi-empty}, S~ = V~-Ri. It follows that for every 
v E R~, the polygon Pv intersects all polygons which represent the remaining vertices 
from V,-. Thus a(Gi) = ~(G[S~) and a(G~) = ~(GIS~) ifSi # 0 (and ¢(Gi) = a(G~) = 1 
otherwise). Now every polygon which represents a vertex v from Si determines exactly 
one V~-nonempty v-arc A(v, V~). Hence vertices u,v E S~ are adjacent in G[S~ if and 
only if d(u, V~)UA(v, V~) ~ C and GISi is a circular arc graph. It is well known that 
for circular arc graphs ~7~<a + 1 (cf. [6]). [] 

P r o o f  o f  T~eorem 2.1. Since V = U~__¢~ +l)/2J V~ (cf. Lemma 2.3), it follows from 
Lemmas 2.2 and 2.4 that 

[(~+ l )/2J 
~(G)~< ~ (7(G~)~< 

i=l 

L(~+I )/2J 
x + , )  - 
i=l 

3. Chromatic number 

The following theorem will be proved in this section. 

Theorem 3.1. For polygon-circle graphs, we have 

fx(PC, ~)  < 2 ~'+6. 

In the proof of  this theorem, we will lean on the alternating representations of  
polygon-circle graphs, as they were described in Section 1.1. Suppose G = (V,E) is 
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a PC graph. Fix an alternating representation of  G, say {(lv, M~)[ v E V} for the rest 
of  the proof. Let x0 G V be the vertex sncb that min Ixo < rain Iv for each v ¢ xo. Set 

Vo = {x0}, 

{ } ~ =  y l y ~ U ~ ^ ~ e ~ - , , z y s E  , i - - l , 2  . . . .  
j=0 

The sets V~ are called levels of  G. It is clear that x(G)~<2k provided every level can be 
colored by k colors. The following lemma is an analogue of  a lemma of  Gyaff~ [4]. 

Lemma 3.2. I f  U c V~ and z E V~ (i > O) are such that L C ["l,~v I,, then there is a 
y G Vi-, such that yu G E for  every u E U U {z} and ] y ¢  I~ for  any u G U. 

Proof. We will prove a slightly stronger statement that obviously implies the lemma: 
If  x0,xl . . . . .  xi = z is a shortest path from x0 to z in G and u E Vj,j>~i is such that 
Iz C lu, then xi- l u E E and Ix,_, ~ 1,. 

Indeed, xi- lz  G E implies that Mx,_, N Iz ~ 0, and hence xi- lu  ~ E would yield 
Ix,_, c lu. Since Ixo ~ lu, we have i > 0 and we conclude by induction (.~,~.plying the 
statement to z' = xi_! and u) that xi_2u G E, i.e., u G V~_b a contradiction. [] 

Lemma 3.3. Let U C V be such that ~u~u lu ~ 0. Then l (G[U)  = oJ(G[U~ 

Proof. In this case uv ~ E implies that either lu C Iv or I~ C I ,  and it follows that the 
complement of  G[ U is transitively orientable, i.e., a comr~"ability graph. Comparability 
graphs (and their complements) are perfect (cf. e.g. [3]). [] 

The following technical lemma will be used further on. 

Lenuna 3.4. Let A and B be two families o f  closed real intervals such that any 
two intervals from B are disjoint while any two intervals f rom A have a nonempty 
intersection. Moreover, every interval f rom A contains at least two intervals f rom B. 
I f  w : d ~ Z + is a weight function on A such that ~'~a~A w(a)>~2m -- 1 for  some 
positive inteoer m, then there exist a subfamily A' C A and an interval b E B such 
that ~'~a¢a' w(a)>~m and b C ~aea' a. 

Proof. We prove the statement by induction on the number of  intervals in ,4. I f  [A [ = 1, 
A' = A suffices. 

Let [A[ > 1. If  there are two intervals a ,a '  E A which are in inclusion, say a C a ~, 
we set A! = A- {a'},Wl(X) = w(x) for x ~ a and w|(a) = w(a) + w(al). By 

induction hypothesis, there is an A~ CA~ such that ["[~¢/~xDb, for some b ~ B, and 

Y~x~A' w | ( x )~m.  Set A' =A~ i f a  ~A~ and A' =A~ U {d} otherwise. 
! 

If  no two intervals of  ~ are in "nclusion, then the intervals can be numbered 
a|,a2 . . . . .  a~ so that, with ai = [li, ri], we have 1| < 12 < . . .  < !~ < r |  <r~ < . - -  <r~. 
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• k Let j be the first index such that )-~Ji=l w(ai)>.m (it follows that ~i=jw(ai)>~m as 
well). The interval ay contains two disjoint intervals b~,b~ ~ B. If  the right one, b2, is 

k contained neither in ~/=1 ai nor in [']i=j ai, then lk,r~ ~ b2 and b~ ~ f~=i ai. [] 

Definition. Let m be a positive integer. We say that an alternative representation is 

m-good i f  for any clique C of  size m, the intersection [-)~,~clv contains no other 
lu, u E V(G). By M:(m) we denote the subfamily o f  polygon--circle graphs G which 
have an m-good alternating representation and which satisfy to(G)~<2m. Let h(m) = 
max{z(G) I G E ./f(m)}. 

Lemma 3.5. For each positive integer m, 

h(m)~<25 • 2 m - 16m - 32. 

Proof. We use induction on m. Any graph from . ~ ( 1 )  is an interval graph, and hence 
It(1) = 2. 

Suppose the inequality holds for every m < k. Consider a graph G E .Yf(k) and fix 

a k-good alternating representation {(I~.,M~.), v E V} of G. Partition G into levels and 

consider a level H = G[Vh (h>~ I). Let U = {vl,v2 ..... vr} be a set of vertices of H 
such that for any i = 1,2 ..... r - I, max Iv, < rain I~,,.,. We choose U of maximum 

possible size, and subject to this constraint, we pick the vertices v~ so that the right 

endpoints of the corresponding intervals are lefimost possible. Set P~ = maxlv3,, i -- 

1,2 ..... s = L~rJ and choose Po, Ps+l so that P0 < minlv, and Ps+l > maxl~,. Denote 

P = {PbP2 ..... Ps}, and partition the set of vertices of H into 3 s~ibsets Ul --- {v E 

~, l / t .  n P I  = l } , a 2  = { r E  V h , l v n P = O }  and /./3 = { v E  Vh, ll~,rPl>~2}. We will 
show that z(HIU~)<~ 4k, z(HIU2)<~ 4k and HIU3 E .~(k  - 1). 

(1)  By Lemma 3.3, z(HIUI. , )= co(e lUI . ) .<2k  for Ut,~ = {v ~ U~,It.nP = (P~}}. 
Since lunlt. = (3 for ,, E Ui,i and v E Ut.j such that l i - j l  > I, we may use 2k colors 

to color the vertices from U:~'l 2] Ui.2i and other 2k colors to color the vertices from 
U~'~, -1~/2j ui.2~÷,. 

(2)  The intervals which lie within P/ and P~+l do not intersect intervals which lie 
outside [Pi, Pi+t] and we may use the same collection of  colors for every set U2,i = 
{v E U2,1v C(Pi.P~+I)}, i = 0, l . . . . .  s. Consider a particular i. By the choice of  U 
and P, every interval which represents a vertex from U2.~ contains the right endpoint 
of/, . , , . ,  or the right endpoint o f  I,,,.:. Thus, by Lemma 3.3, 4k colors suffice to color 
nlu2.i. 

(3) We show first tha!I to(HIU3)~<2k- 2. To obtain a contradiction, suppose that 
there is a clique CCU.~ of  size 2k - 1 in HIU3. The families A = {1~,, v E C} and 
B = {/~,, v i E U} (toget'aer with a weight function w(l,.) = i )  satisfy the assumptions 
of  Lemma 3.4. it follows that there are vertices v I, v 2 . . . . .  v k E C and vj E U such that 
1,., C nik=t 1,.,, contradicting G E M ( k ) .  

Now suppose that there is a clique C of  size k -  ! in HIU 3 such that/w C nt,~clv for 
some w E U~. S ince / , ,  D[Pi,P~.~] for some i,/,,, contains 3 disjoint intervals 1~. ..... !~,,,., 
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and L,.,,÷~. Apply Lemma 3.2 to C and z = v3i+2. For y E V(tT), which we get by this 
lemma, C '  = C U {y} is a clique of  size k in G and either lv~,~, or Iv~3 is contained 
in Nv~C, Iv, contradicting G E ~ ( k ) .  

It follows that x(GIU3)<~h(k- 1) and we have x(G)<~2(4k+4k+h(k-  1))~<2(8k+ 
2 5 . 2  k- l  - 1 6 ( k -  1 ) - 3 2 ) = 2 5 . 2  k -  1 6 k - 3 2 .  [] 

Proof  of Theorem 3.1. Consider an alternating representation of  G, partitioned into 
levels. By Leinma 3.2, each graph H = GI Vi induced by a level V/belongs to ~f~ (oJ). 
Hence x(G) ~<2h(~o) < 5 0 . 2  ~'. [] 
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