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Abstract

Polygon-circle graphs are intersection graphs of polygons inscribed in a circle. This class
of graphs includes circle graphs (intersection graphs of chords of a circle), circular arc graphs
(mtersectlon gmphs of arcs ona circle), chordal graphs and outerplanar graphs. We investigate

for ber and clique covering number of polygon—circle graphs

in terms of their cllque and independence numbcrs The bound azloga for the clique covering

ber is asy ically best possible. For ch ber, the upper bound we prove is of
order 2%, whlch is better than prevxously known upper bounds for circle graphs.

1. Introduction

We will consider simple undirected graphs without loops or multiple edges. The
vertex set and edge set of a graph G will be denoted by ¥ (G) and E(G), respectively.
The subgraph of a graph G induced by a set of vertices U will be denoted by GiU.

The independence number (the maximum size of a stable set), the clique number (the
maximum size of a complete subgraph), the chromatic number (the minimum number
of classes of a partition of ;= vertex set into stable sets) and the clique covering
number (the minimum number of classes of a partition of the vertex set into complete
subgraphs) of a graph G are denoted by a(G),(G), x(G) and 6(G), respectively.

1.1. Polygon-circle graphs

A well-known class of intersection graphs is the class of circle graphs which we
denote by CIR. Circle graphs are defined as inter ion graphs of chords of a circle,
or, equivalently, as overlap graphs of intervals on a line (in the overlap graph, two
vertices are adjacent if and only if the corresponding intervals are not disjoint and
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none of them is a subinterval of the other one). They can be recognized in polyno-
mial time [1], a nontrivial and elegant characterization by three obstructions is given
in [2].

In 1989, M. Fellows (personal communication) suggested the following generaliza-
tion of circle graphs. Call a graph a polygon—circle graph if it can be represented
as the intersection graph of (convex) polygons inscribed in a circle. We denote this
class of graphs by PC. Obviously, every circle graph is polygon-circle, and in fact,
polygon—circle graphs are exactly the graphs which can be obtained from circle graphs
by edge contractions. It is also clear that circular arc graphs (intersection graphs of
arcs on a circle) form a subclass of PC, and one can also see that every chordal graph
(i.e., graph with no induced cycle of lcngth greater than three) is polygon-circle [7].
Under a different name (‘spider graphs’), polygon—circle graphs were considered by
Koebe, who gave a polynomial time recognition algorithm for them in [8].

Similarly to circle graphs being viewed on as overlap graphs, we can derive the
following equivalent definition of polygon—circle graphs, using the fact that every PC
graph has an intersection representation by polygons which have mutually distinct cor-
ners. We say that a graph G has an alternating representation if the vertices of G can
be represented by pairs ([, M,), where I, is a closed interval with integral endpoints
on the real line and M, is a finite subset of I, N Z which contains the endpoints of I,
in such a way that (i) the sets M, are mutually disjoint and (ii) for any two vertices
u,v, uv is an edge of G if and only if there are integers @ < b < ¢ < d such that
a,c€M, and b,d eM, (or a,ce M, and b,d € M,). A graph has an alternating repre-
sentation if and only if it is a polygon—circle graph. We will exploit this definition of
polygon—circle graphs in Section 3.

1.2. Binding functions

Obviously, w(G)<y(G) for every graph G. It is well known that graphs without
triangles (i.e., graphs that satisfy w(G) = 2) may have arbitrarily large chromatic
number. This is, however, not the case for many special classes of graphs. The other
2xtreme are perfect graphs which satisfy (G) = w(G). Gyarfis defined the notion of
binding function in the following way. A function f is a binding function for y and
a class of graphs ./ if y(G)< f(«(G)) for any graph G € ./ (in this case we simply
write 1< f(w) for o/). Binding function for the clique covering number o is defined
in a similar way (in this case as a function of ). It is always interesting to know if a
class of graphs under consideration admits a bi for x or ¢. Many results
in this direction can be found in [6]. In the sequel, we will denote by f, and f, the
optimal binding functions, i.e., we set

i funeti
'S

At k) = max{(G)| G € o, i(G)<k},

S/ k) = max{6(G)|G € o, «(G)<k}.
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For the class of circle graphs, it was known that f; = ©(xlog«) and we will prove
in Section 2 that the same holds true for the wider class of polygon-circle graphs.
For chromatic number, so far the best published binding function was of order 292
[9]. We will improve this bound to 0(2"’) by proving thls bound even for polygon—
circle graphs in Section 3. However, in the case of chromatic number the best known
lower bound for f, on circle graphs is Q(wlogw) and we are not able to improve
the lower bound for polygon-circle graphs, either. In fact, we propose the following
problem:

Problem 1.1. Is it true that f,(PC,k) = ©(f,(CIR,k))?

2. Clique covering number
The goal of this section is to prove the following theorem:

Theorem 2.1. For polygon—circle graphs, we have
Jo(PC,2) = (1 4+ o(1))zloga.

Since the same result is proved for circle graphs in [9], we only have to prove the
upper bound.

Let G = (V,E) be a PC graph, denote 0 = 0(G) and « = a(G). Fix a representation
P = {P,|veV} of G by polygons inscribed in a circle C. First we define some
technical notions.

A v-arc is any open arc on C determined by two consecutive vertices of P,. If
U C V1s a set of vertices of G, we say that a v-arc 4 is U-empty if no P, foru e U,
has all comners in 4. An arc wiich is not U-empty is called U-nonempty. A polygon
P, (and the corresponding vertex v) is called U-separating if at least two of the v-arcs
are nonempty. If v is not U-separating and determines one U-nonempty arc, we denote
this arc by A(v,U).

Next we define subsets VO, V', V|, ¥2,V5,... by means of recursion as follows:

=y,
Vi={ve V"' vis Vi-l-separating}, i=1.2,...,
Vi=Vi-l-vi, i=12,...,
and we denote by G; the subgraph of G induced by V;, ie., G; = G|V.
Lemma 2.2. For every i = 1,2,...,a, we have 2(G;)<a/i.

Proof. The statement is obvious if i = 1 or a(G;) = 1. Hence suppose i=>2 and let
{v},....08}C¥; be an independent set in G, m>2. Since v},...,v, are not
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Vi=!_separating, for each j = 1,2,...,m, the arc A(v},¥*~') contains all comers of
the polygons representing the other v}’s. Since v},...,v}, are V*~2-separating, for every
J = 1,...,m, there exist a v}-arc B(j) # A(v},V""') and a vertex v? € V=2 such
that all comers of Py lie in B(j). Because v} is not ¥'~}.separating, »? ¢ V'~ and
hence v? € V;_;. Observe also that A(v7, V*=2) D A(v}, V'="). If i — 12, we construct
in a similar way a sequence v},...,v} so that for every / = 3,4,...,i, v,’- cVi-! and
A}, V=) > A}, i=+1). It follows that the polygons which represent mi vertices
vj’- (I =1,2,...,i j=1,2,...,m) are pairwise disjoint and the statement of the lemma
follows. O

Lemma 2.3. For i>(a+1), V; = 0.

Proof. If v € V}, v is V'~'-separating, and thus there are two V*~!-nonempty v-arcs on
C. Similar to the proof of the preceeding lemma, we can find 2/ — 1 pairwise disjoint
polygons in the representation. Hence 2i — 1 <« and the statement follows. O

Lemma 2.4. For every i>1, we have 6(G;)<o(G;) + 1.

Proof. Set R; = {v € ¥;|all v-arcs are V;-empty}, S; = V;—R;. It follows that for every
v € R;, the polygon P, intersects all polygons which represent the remaining vertices
from V;. Thus o(G;) = 6(G|S;) and «(G;) = a(G|S;) if S; # O (and o(G;) = A(G;) = |
otherwise). Now every polygon which represents a vertex v from S; determines exactly
one V;-nonempty v-arc A(v,V;). Hence vertices u,v € S; are adjacent in G|S; if and
only if A(u, V;) UA(v,V;) # C and GJS; is a circular arc graph. It is well known that
for circular arc graphs o<a+1 (cf. [6]). O

Proof of Theorem 2.1. Since V = U}L’:‘””’ZJ V; (cf. Lemma 2.3), it follows from
Lemmas 2.2 and 2.4 that

f(a+1)/2) Lx+1)2]
7(G)< J{Z o(Gi)< +Z (l%j + l) =(1+o(1)xloge. O
=l

i=1

3. Chromatic number
The following theorem will be proved in this section.
Theorem 3.1. For polygon—circle graphs, we have
Sf4(PC,w) <29+,

In the proof of this theorem, we will lean on the alternating representations of
polygon-circle graphs, as they were described in Section 1.1. Suppose G = (V,E) is
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a PC graph. Fix an alternating representation of G, say {(/;,M.)|v € ¥} for the rest
of the proof. Let xo € ¥ be the vertex such that min/,, <min/, for each v # xo. Set

Vo = {xo},
i—1

V= {y|y¢ UVinZze Vi, zyeE}, i=12,...
j=0

The sets V; are called levels of G. It is clear that y(G)<2k provided every level can be
colored by & colors. The following lemma is an analogue of a lemma of Gyarfas [4].

Lemma 3.2. If UCV; andz € V; (i>0) are such that I C(\,cy L, then there is a
y € Vi_y such that yu € E for every uc UU {z} and I, ¢ I, for any u € U.

Proof. We will prove a slightly stronger statement that obviously implies the lemma:
If xo,x1,...,% = z is a shortest path from xp to z in G and u € Vj,j>i is such that
Lclh,thenx,_jucEand I,_, Z1,

Indeed, x;_ 1z € E implies that M, _, NI # 0, and hence x;_,u ¢ E would yield
I,_, Cl,. Since I, ¢ 1I,, we have i >0 and we conclude by induction (applying the

statement to z’ = x;_; and u) that x;_,u € E, i.e., u € ¥;_,, a contradiction. O
Lemma 3.3. Let UCV be such that (\,cy I # 0. Then y(G|U) = o(G|U).

Proof. In this case uv ¢ E implies that either I, CI, or I, C 1, and it follows that the
complement of G|U is transitively orientable, i.e., a comnarability graph. Comparability
graphs (and their complements) are perfect (cf. e.g. [3]). O

The following technical lemma will be used further on.

Lemma 3.4. Let A and B be two families of closed real intervals such that any
two intervals from B are disjoint while any two intervals from A have a nonempty
intersection. Moreover, every interval from A contains at least two intervals from B.
If w: A — Z* is a weight function on A such that y,.,w(a)=2m — 1 for some
positive integer m, then there exist a subfamily A' CA and an interval b € B such
that 3, o w(@)2m and bC ey a

Proof. We prove the statement by induction on the number of intervals in 4. If |4] = 1,
A’ = 4 suffices.

Let |4| > 1. If there are two intervals a,2’ € 4 which are in inclusion, say aCd’,
we set 4 = A — {d'},mi(x) = w(x) for x # a and wi(a) = w(a) + w(a’). By
induction hypothesis, there is an 4] C 4, such that (¢ 4 X Db, for some b € B, and
zxeA{ wi(x)=m. Set A' = 4} if a ¢ 4] and 4’ = A] U {a’} otherwise.

If no two intervals of 4 are in inclusion, then the intervals can be numbered
a1,a2,...,a; so that, with @; = [l;,r;], we have ) < <--- < <r <n <. <r.
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Let j be the first index such that Y_, w(a;)=m (it follows that Zf=j w(a;)=m as
well). The interval a; contains two disjoint intervals 6,5, € B. If the right one, by, is
contained neither in {}/_, @ nor in ﬂf; ; @i, then ly,ry € by and by € (Y_;a;. O

Definition. Let m be a positive integer. We say that an alternative representation is
m-good if for any clique C of size m, the intersection [\,. 1, contains no other
1,, u € V(G). By 5#(m) we denote the subfamily of polygon-circle graphs G which
have an m-good alternating representation and which satisfy w(G)<2m. Let h(m) =
max{x(G)|G € #(m)}.

Lemma 3.5. For each positive integer m,
h(m)<25-2" — 16m — 32.

Proof. We use induction on m. Any graph from .#°(1) is an interval graph, and hence
h(1)=2.

Suppose the inequality holds for every m < k. Consider a graph G € #'(k) and fix
a k-good alternating representation {(/,,M,), v € V'} of G. Partition G into levels and
consider a level H = G|V, (h=1). Let U = {v),v2,...,0,} be a set of vertices of H
such that for any i = 1,2,...,7 — I, max/, < minl, . We choose U of maximum
possible size, and subject to this constraint, we pick the vertices v; so that the right
endpoints of the corresponding intervals are leftmost possible. Set P; = max/,,, i =
1,2,...,s = [%rj and choose Po, P,y so that Py <min/,, and Py, > max/, . Denote
P = {Py,Ps,...,P;}, and pattition the set of vertices of H into 3 subsets U = {v €
Villy NPl = 1},Uz = {v € Vi, NP = 0} and Us = {v € Vj, L. 0 P|22}. We will
show that y(H|U,) <4k, y(H|U;)<4k and H|Us € #(k — 1).

(1) By Lemma 3.3, ((H|U, ;) = o(H|U\;)<2k for Uy; = {v € U),[, NP = {P;}}.
Since /,N1, =0 for u € U, ; and v € Uy such that |i — j| > 1, we may use 2k colors
to color the vertices from U,-l:,z 1 U, 5 and other 2k colors to color the vertices from
U Uy i

(2) The intervals which lie within P; and P;;, do not intersect intervals which lie
outside [P;, Pi4i] and we may use the same collection of colors for every set U,; =
{v € Uy, [, C(Pi.Piy1)}, i = 0,1,...,s. Consider a particular i. By the choice of U
and P, every interval which represents a vertex from U,; contains the right endpoint
of I,,., or the right endpoint of I, ,. Thus, by Lemma 3.3, 4k colors suffice to color
H|Uz,;.

(3) We show first that w(H|U;)<2k — 2. To obtain a contradiction, suppose that
there is a clique C C U of size 2k — 1 in H|U;. The famiiies 4 = {I,, v € C} and
B={l,, v; € U} (togetrer with a weight function w(/.) = 1) satisfy the assumptions
of Lemma 3.4. It follows that there are vertices ¢'.t?,...,0* € C and v; € U such that
I, C ﬂf;, 1., contradicting G € .#(k).

Now suppose that there is a clique C of size k-1 in H{Us such that /,, C,¢c /v for
some w € Us. Since 1, D[P;, Pi.1] for some i, /,; contains 3 disjoint intervals 1, .,/ .
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and I,,,,. Apply Lemma 3.2 to C and z = v3;;2. For y € ¥V(G), which we get by this
lemma, C' = CU {y} is a clique of size k in G and either I, or I, , is contained
in (,¢cr 1> contradicting G € (k).

It follows that x(G|Us)<h(k—1) and we have y(G)<2(4k+4k+h(k—1))<2(8k+
25.28-1 —16(k —1)~32)=25-2F - 16k -32. O

3iel

Proof of Theorem 3.1. Consider an alternating representation of G, partitioned into
levels. By Lemma 3.2, each graph H = G|V; induced by a level ¥; belongs to #(w).
Hence y(G)<2h(w)<50-2°. O
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