The 7/5-Conjecture Strengthens Itself

A. V. Kostochka
institute of mathematics
SIBERIAN BRANCH
RUSSIAN ACADEMY OF SCIENCES
NOVOSIBIRSK, RUSSIA

Abstract

The following is proved: if every bridgeless graph G has a cycle cover of length at most $7 / 5 \mid E(G)$, then every bridgeless graph G has a cycle cover of length at most $7 / 5|E(G)|$ such that any edge of G is covered once or twice. © 1995 John Wiley \& Sons, Inc.

1. INTRODUCTION

A cycle cover C of a graph $G=(V, E)$ is a collection of cycles $\left\{C_{1}, \ldots, C_{t}\right\}$ covering E. Its length is $l(C)=\left|C_{1}\right|+\cdots+\left|C_{t}\right|$. The cycle covering ratio $r(G)$ of graph $G=(V, E)$ with no cutedges is defined as the minimum of $l(C) /|E|$ over all the cycle coverings C of G. It was remarked $[1,2,3]$ that there were many 2 -edge-connected graphs with covering ratio equal to $7 / 5$. There exists a folklore conjecture that

$$
r(G) \leq 7 / 5 \text { for any 2-edge-connected graph } G .
$$

Call a cycle covering C of G good if any edge of G is covered by at most two cycles. The well-known Cycle Double Cover (CDC) Conjecture is equivalent to the statement that any 2 -edge-connected graph has a good covering. U. Jamshy and M. Tarsi [4] showed that the validity of the $7 / 5$-conjecture above implies the CDC-conjecture. Here we use their approach to show the following:

Theorem. The $7 / 5$-conjecture implies that for any 2 -edge-connected graph G there exists a good cycle covering of G of length at most $7 / 5|E(G)|$.

Journal of Graph Theory, Vol. 19, No. 1, 65-67 (1995)
(c) 1995 John Wiley \& Sons, Inc.

ССС 0364-9024/95/010065-03

2. PROOF OF THE THEOREM

Let $c(G)$ (respectively, $p(G)$) denote the length of the shortest cycle covering (respectively, the length of the shortest postman tour) of G. The following fact is obvious.

Observation. If $c(G) \leq p(G)+1$, then any cycle covering of $E(G)$ of length $c(G)$ is a good covering.

The observation may be applied to the Peterson graph P since $c(P)=$ $21=1+p(P)$. Denote by $k P$ the result of replacing every edge of P by a path of length k. Let $e=(x, y)$ be an edge in $k P$. Denote by R_{k} the graph obtained from $k P$ by deleting e and adding two vertices x^{\prime} and y^{\prime} and two edges $\left(x, x^{\prime}\right)$ and $\left(y, y^{\prime}\right)$. Then R_{k} has $15 k-3$ vertices and $15 k+1$ edges.

Now, let G be an arbitrary 2-edge-connected graph and $k=2|E(G)|$. Our aim is to prove that there exists a good cycle covering of G of length at most $7 k / 10$ provided the $7 / 5$-conjecture is true. Construct the graph H from G by replacing each edge (a, b) of G by a copy $R_{k}(a, b)$ of R_{k} so that x^{\prime} coincides with a and y^{\prime} coincides with b. Then H has $|V(G)|+(15 k-5)|E(G)|$ vertices and $|E(G)|(15 k+1)=k(15 k+1) / 2$ edges. By the $7 / 5$-conjecture, there is a cycle covering $C=\left\{C_{1}, \ldots, C_{t}\right\}$ of H of length at most $7 k(15 k+1) / 10$. Remark that for any copy R_{k} the edges $\left(x, x^{\prime}\right)$ and $\left(y, y^{\prime}\right)$ belong to the same cycles of C. This implies that
(1) C induces a cycle covering $C(a, b)$ on the copy of $k P$ from which $R_{k}(a, b)$ was obtained, and
(2) C induces a cycle covering $C(G)=\left\{C_{1}^{\prime}, \ldots, C_{t}^{\prime}\right\}$ of G in the following way: $(a, b) \in C_{i}^{\prime}$ if and only if the edge $\left(x^{\prime}, x\right)$ in $R_{k}(a, b)$ belongs to C_{i}.

Since $c(P)=21$, the length of $C(a, b)$ is at least $21 k$, and, in view of the Observation, if $C(a, b)$ is not a good covering then its length is at least $22 k$. Hence assuming that C is not good, we deduce that

$$
\begin{aligned}
l(C) & \geq 21 k(|E(G)|-1)+22 k=21 k(k / 2-1+22 / 21) \\
& =10.5 k(k+2 / 21)>(7 / 5) k(15 k+1) / 2=(7 / 5)|E(H)|,
\end{aligned}
$$

a contradiction. Thus, C is a good covering. For every copy $R_{k}(a, b)$, we may consider the edge $\left(x, x^{\prime}\right)$ as belonging to G and the edge $\left(y, y^{\prime}\right)$ as the edge completing $R_{k}(a, b)$ to R_{k}. As remarked, $l(C(a, b)) \geq 21 k$ for each $(a, b) \in E(G)$ and so, to cover all the edges of H except the edges of the kind $\left(x, x^{\prime}\right)$ we spend at least $21 k^{2} / 2$ edges of cycles of C. Hence the length
of the covering $C(G)$ is equal to

$$
\begin{aligned}
l(C)-\sum_{(a, b) \in E(G)} l(C(a, b)) & \leq 7 k(15 k+1) / 10-21 k^{2} / 2 \\
& \leq 7 / 10 k=7 / 5 \mid E(G)
\end{aligned}
$$

and this covering is good, as C is good.

3. DISCUSSION

Conjecture. For any 2 -edge-connected graph G there exists a good cycle covering of G of length at most $|E(G)|+|V(G)|-1$.

It can be shown that the minimal counterexample to the conjecture is 3 -connected and has no 3 - and 4 -cycles.

ACKNOWLEDGMENT

The author thanks H. Fleischner, the host of the Workshop on CDC Conjecture (Vienna, 1991), during which this article was carried out. This work was partly supported by a grant within the program "Universities of Russia" and by Grant 93-011-1486 of the Russian Foundation of Fundamental Research.

References

[1] N. Alon and M. Tarsi, Covering multigraphs by simple circuits. SIAM J. Alg. Discrete Methods 6 (1985) 345-350.
[2] J. C. Bermond, B. Jackson, and F. Jaeger, Shortest covering of graphs with cycles. J. Combinat. Theory B 35 (1983) 297-308.
[3] A. Itai, R. J. Lipton, C.H. Papadimitriou, and M. Rodeh, Covering graphs by simple circuits. SIAM J. Comput. 10 (1981) 746-750.
[4] U. Jamshy and M. Tarsi, Short cycle covers and the Cycle Double Cover Conjecture. J. Combinat. Theory B 56 (1992) 197-204.

