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ABSTRACT 

The following is proved: if every bridgeless graph G has a cycle cover 
of length at most 7/51€(G)I, then every bridgeless graph G has a cycle 
cover of length at  most 7/51€(G)I such that any edge of G is covered 
once or twice. 0 1995 John Wiley & Sons, Inc. 

1. INTRODUCTION 

A cycle cover C of a graph G = ( V ,  E )  is a collection of cycles {CI, . . . , C,} 
covering E .  Its length i s  1(C) = lCll + . . .  + IC,I. The cycle covering ratio 
r ( G )  of graph G = ( V , E )  with no cutedges is defined as the minimum of 
l (C) / IEI  over all the cycle coverings C of G .  It was remarked [ l ,  2,3] that 
there were many 2-edge-connected graphs with covering ratio equal to 7/5. 
There exists a folklore conjecture that 

r ( G )  I 7/5 for any 2-edge-connected graph G . 

Call a cycle covering C of G good if any edge of G is covered by at 
most two cycles. The well-known Cycle Double Cover (CDC) Conjecture is 
equivalent to the statement that any 2-edge-connected graph has a good 
covering. U. Jamshy and M. Tarsi [4] showed that the validity of the 
7/5-conjecture above implies the CDC-conjecture. Here we use their ap- 
proach to show the following: 

Theorem. 
G there exists a good cycle covering of G of length at most 7/5)E(G)I. 
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The 7/5-conJecture implies that for any 2-edge-connected graph 
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2. PROOF OF THE THEOREM 

Let c ( G )  (respectively, p ( G ) )  denote the length of the shortest cycle covering 
(respectively, the length of the shortest postman tour) of G. The following 
fact is obvious. 

Observation. 
length c ( G )  is a good covering. 

If c(G) I p ( G )  + 1, then any cycle covering of E ( G )  of 
I 

The observation may be applied to the Peterson graph P since c(P)  = 

21 = 1 + p(P). Denote by kP the result of replacing every edge of P by a 
path of length k .  Let e = ( x , y )  be an edge in k P .  Denote by Rk the graph 
obtained from k P  by deleting e and adding two vertices x‘ and y’ and two 
edges (x,x’) and ( y . ~ ’ ) .  Then Rk has 15k - 3 vertices and 15k + 1 edges. 

Now, let G be an arbitrary 2-edge-connected graph and k = 21E(G)I. 
Our aim is to prove that there exists a good cycle covering of G of 
length at most 7k/ 10 provided the 7/5-conjecture is true. Construct the 
graph H from C by replacing each edge ( a , b )  of G by a copy R k ( a , b )  
of Rk so that x’ coincides with a and j’ coincides with b.  Then H has 
IV(G)l + (15k - 5)IE(G)I vertices and JE(G)I(lSk + 1) = k ( 1 5 k  + 1)/2 
edges. By the 7/5-conjecture, there is a cycle covering C ={C,, . . . , C,} of 
H of length at most 7k( 15k + l)/lO. Remark that for any copy Rk the edges 
(x, x’) and ( y ,  y ’ )  belong to the same cycles of C. This implies that 

(1) C induces a cycle covering C(a,  b )  on the copy of k P  from which 
Rk(a ,b)  was obtained, and 

(2) C induces a cycle covering C(G) = {C;, . . . , C:} of G in the fol- 
lowing way: ( a , b )  E C: if and only if the edge (x’,x) in R k ( a , b )  
belongs to C,. 

Since c ( P )  = 21, the length of C ( a , b )  is at least 21k, and, in view of 
the Observation, if C(a, 6 )  is not a good covering then its length is at least 
22k. Hence assuming that C is not good, we deduce that 

I (C)  2 2lk(lE(G)I - 1) + 22k = 21k(k/2 - 1 + 22/21) 
= 10.5k(k + 2/21) > (7/5)k(15k + 1)/2 = (7/5)IE(H)I, 

a contradiction. Thus, C is a good covering. For every copy Rk(a ,b ) ,  we 
may consider the edge (x,x’) as belonging to G and the edge ( y , y ’ )  as the 
edge completing R k ( a , b )  to R k .  As remarked, I (C(a ,b ) )  I 2 1 k  for each 
( a , b )  E E(G)  and so, to cover all the edges of H except the edges of the 
kind (x, x’) we spend at least 2 1 k2/2 edges of cycles of C . Hence the length 
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of the covering C(G) is equal to 

l ( C )  - I ( C ( a , b ) )  I7k (15k  + 1)/10 - 21k2/2 
(a ,  b ) E E ( G )  

5 7/10k = 7/51E(G)I 

and this covering is good, as C is good. I 

3. DISCUSSION 

Conjecture. 
covering of G of length at most IE(G)I + IV(G)l - 1. 

3-connected and has no 3- and 4-cycles. 

For any 2-edge-connected graph G there exists a good cycle 

It can be shown that the minimal counterexample to the conjecture is 
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