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Abstract: The total interval number of an n-vertex graph with maximum degree A is
atmost (A+1/A)n/2, with equality if and only if every component of the graph is Ka a.
If the graph is also required to be connected, then the maximum is An/2+1 when A is
even, but when A is odd it exceeds [A 4+ 1/(2.5A 4 7.7)|n/2 for infinitely many n. © 1997
John Wiley & Sons, Inc. J Graph Theory 25: 79-84, 1997
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Given sets {S,, : v € V'}, the intersection graph of the collection of sets is the simple graph
with vertex set V' such that u is adjacent to v if and only if S, NS, # (. The family of sets is
an intersection representation of its intersection graph. The interval graphs are the intersection
graphs representable by assigning each vertex a single interval on the real line. More generally,
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we allow a representation f to assign each vertex a union of intervals on the real line; if G is the
intersection graph of this collection, then f is a multiple-interval representation of G. Let # f (v)
be the number of disjoint intervals whose union is f(v). If #f(v) = k, we say that f(v) consists
of k intervals or that v is assigned k intervals.

We may try to make the representation of G *‘efficient’” by minimizing max,cy #f(v) or
> wev #f(v). The interval number i(G) of a graph G is the minimum of max,cy () #.f(v)
over all multiple-interval representations of GG. Interval number has been studied since 1979,
beginning with [7] and [2]. The fotal interval number I(G) of a graph G is the minimum of
Do ev(e) 7 f(v) over all multiple-interval representations of G. Although introduced in [2],
total interval number was not studied until Aigner and Andreae [1] obtained extremal results for
some fundamental families. Further results appear in [3, 4, 5, 6].

In this paper we prove that I(G) < (A + 1/A)n/2 for graphs with maximum degree at most
A, which is best possible. The proof yields a polynomial algorithm for producing a representation
that satisfies the bound. Kratzke and West [5] proved that if G contains a collection of ¢ pairwise
edge-disjoint trails that together contain an endpoint of every edge of G, then I(G) < e(G) + ¢,
where e(G) = |E(G)|. Such a collection of trails is a trail cover of size t, generalizing the
notion of vertex cover; in this paper, ‘‘covering e’ means ‘‘containing an endpoint of ¢’’. Let
t(G) denote the minimum size of a trail cover. If G is triangle-free, then I(G) = e(G) + t(G); a
simple counting argument [5] establishes the lower bound. The graph m K A A has m components
that are complete bipartite graphs; it is regular and triangle-free, with n = 2mA vertices, and its
minimum trail covers have size m. Hence I(mKa o) = mA% +m = (A +1/A)n/2, and our
bound is best possible. We also prove that these are the only graphs achieving the bound. The
proof yields a polynomial-time algorithm to achieve the bound.

CONNECTED GRAPHS

Before proving the bound for general graphs, we discuss the more restricted class of connected
graphs. For A even, the maximum of I(G) in terms of n and A is An/2 4+ 1. For A odd, we
provide constructions where the excess over An/2 is linear in n.

Proposition. Suppose A is even. Among connected n-vertex graphs with maximum degree A,
the maximum of the total interval number is An /2 + 1.

Proof. Suppose G is connected and has maximum degree A. If G is Eulerian, then I(G) <
e(G)+1 < An/2+1, with equality if G is triangle-free and regular. If G is not Eulerian, suppose
G has 2k vertices of odd degree. Since G is connected, we can decompose F(G) into k trails, so
t(G) < k. Since each vertex of odd degree has degree less than A, we have 2e(G) < An — 2k,
and hence I(G) < e(G) + k < An/2. ]

In addition to the A-regular triangle-free graphs, equality holds also for A-regular graphs in
which every vertex belonging to a triangle is a cut-vertex. When A is odd, the bound of An/2+1
no longer holds; we provide a construction.

Proposition. Suppose A isodd and atleast 3. Among connected n-vertex graphs with maximum
degree A, the maximum total interval number exceeds [A + 1/(2.5A 4 7.7)]n/2 for infinitely
many n.

Proof. We prove the claim by using copies of a triangle-free graph H with degree sequence
(A,...,A A —1) to construct a A-regular triangle-free connected graph G with n vertices such
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that ¢(G) > [1/(2.5A + 7.7)]n/2. Begin with a caterpillar C' consisting of a path with k + 2
vertices and A — 2 leaves attached to each interior vertex of the path. For each of the k(A —2) +2
leaves of C', we provide a copy of H and identify its vertex of degree A — 1 with that leaf.

The resulting graph G is triangle-free and A-regular, so I(G) = An/2 + t(G). Because
each edge of C is a cut-edge of G, every trail cover of G has an endpoint in each copy of
H. Hence t(G) > [k(A — 2) + 2]/2, and in fact ¢(G) = [[k(A — 2) + 2]/2]. If H has n/
vertices, then n = [k(A — 2) + 2]n’ + k. We obtain n < 2t[n’ + 1/(A — 2)], and hence
t(G) > 1/(n/2)/[n' +1/(A - 2)].

It remains to construct a suitable H with n’ as small as possible. When A = 3, we form H
by subdividing one edge of K3 3; here n’ = 7 and t(G) > £(n/2). For larger A, consider the
lexicographic composition Fy = C5[K], expanding each vertex of a 5-cycle into an independent
set of size s. The graph F is 2s-regular and triangle-free, and for s > 2 it has a pair of easily
described edge-disjoint Hamiltonian cycles. When (A 4 1)/2 is odd, we form H by deleting
from F{a1)/2 the odd-indexed edges on one Hamiltonian cycle. Since n’ = 2.5(A + 1) is odd,
this reduces one vertex degree from A + 1 to A — 1 and the others to A. When (A 4 1)/2is
even, we form H by deleting from F(a3),2 the odd-indexed edges on one Hamiltonian cycle
and all edges on another Hamiltonian cycle. Since n’ = 2.5(A + 3) is odd, we again obtain the
desired degree sequence. Here A > 7, which yields the 7.7 in the statement of the result. [

THE MAIN RESULT

We consider an n-vertex graph G with maximum degree A and wish to prove that I(G) <
(A +1/A)n/2. We may assume that G has no isolated vertices, because such vertices require
no intervals; when f(v) = () and the intersection graph is taken, v becomes an isolated vertex.

Our approach is to select a set of edge-disjoint trails 77, . .., T}, to cover E(G), in a greedy
manner subject to various conditions; each new trail contains some previously uncovered edge.
We partition E(G) into sets associated with the trails; the set E; associated with T; consists of
E(T;) and the newly covered edges that do not belong to later trails. We will also associate a set
S; C V(@) with each trail (the union of closed neighborhoods of certain vertices of the trail);
these sets will be pairwise disjoint. We can represent E; using |F;| + 1 intervals, fewer if E;
contains a triangle with at most one edge on 7T;.

When G has maximum degree A, we have e(G) < An/2. If e(G) = An/2 — k, we will use
|E;| + 1 intervals for at most k + n/(2A) trails T;. We do this by ensuring that we use an extra
interval for T; only when there exists o; € {0, 1,2} such that |.S;| > (2 — ;) A and the degrees
of two new vertices of T; sum to at most 2A — «;. If the values of «; over the s trails using
an extra interval sum to r, then we have I(G) < e(G) + s and e(G) < An/2 — r/2. Hence
I(G) < An/2+ (2s —r)/2. Also we have associated (2s — ) A vertices with these trails. Since
(2s —r)A < n, we have the desired bound. The remainder of the proof consists of showing that
we can choose the trails to ensure these conditions.

We use ‘‘open’’ trails; these are trails with two distinct endpoints. We say that a trail is closable
if its endpoints are adjacent via an edge not belonging to the trail. When T is closable, we let 7"
denote the closed trail formed by adding the edge between the endpoints of 7.

Theorem. Every simple graph with n vertices and maximum degree A has total interval
number at most (A + 1/A)n/2. Furthermore, equality holds only when every component
is K A,A-
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Proof. We select a sequence of pairwise edge-disjoint open trails 77, ..., T in a greedy
manner. The new vertices of T; are the vertices in 7} that do not appear in 77,...,7;_; and
that cover at least one edge not covered by vertices of earlier trails. The new edges of T; are the
previously uncovered edges that are covered by new vertices of 7;. Note that an edge of 7T; is
new (for 7T;) if and only if both its endpoints are new.

We choose each T; to be an open trail having endpoints that are new. Among these, we choose
T; with maximum number of new vertices. Among these, we choose T; to be closable if such
a candidate is available. Among the remaining candidates for T;, we choose T; with minimum
length.

The sequence ends when all edges are covered. The set E; of edges associated with T} is
E(T;) together with the new edges that do not belong to later trails. By construction, these edge
sets are disjoint. We postpone the definition of the vertex set S; associated with 7.

Claim 1. IfT; is not closable and has endpoint v, then only one edge incident to v belongs to
T;. Otherwise, we delete the initial portion of T; up to the next appearance of a new vertex other
than the other endpoint of 7; (this may be v again). The shorter trail 7" is open and has the same
new set as 7T;; it may be closable, but since 7; is not closable, we would in either case choose T’
in preference to T;.

Claim 2.  If the vertices of T; are not all new, then T} is not closable and the end edges of
T; are new. Let x be the first vertex of T; that is not new, belonging to an earlier trail 7). If T; is
closable, then T} can absorb the closed trail Ti’ to enlarge its new set. If T} is not closable, then
the first edge of 7; is new unless it is uz. By the maximality of the new set, every neighbor of
u along a new edge belongs to 7;. If v is the first such vertex on 73, then the u, v-portion of T}
together with the edge wv forms a closed trail containing x that can be absorbed by T’ to enlarge
its new set.

Claim 3. IfT; is closable, then no vertex of T;; appears in another trail or has a neighbor in
a later trail. By Claim 2, every vertex of T; is new. If w is a vertex of T; that equals or is adjacent
to a vertex w’ of a later trail T}, then we can traverse Ti’ starting at w, enter T at w’, and continue
to an end of T7, replacing T} by a trail with at least two more new vertices.

Claim 4. If T; is not closable, then there is no edge to a later trail from an endpoint of T; or
from its neighbor along T;;. Any such edge permits an extension of 7} (or of 7; minus its endpoint)
using a portion of T that has at least two new vertices, thereby creating a trail with more new
vertices than Tj.

The start vertices of T; are its endpoints if 7T; is not closable, or all of its vertices if T; is
closable. By Claim 3, every start vertex of 7; is a new vertex of 7;.

Claim 5. No vertex of T; is adjacent to two start vertices of later trails, or to a start
vertex of T; and a start vertex of a later trail. Suppose w € V(T;) has neighbors z,y that
are start vertices of 17, T}, respectively, with i < j < kand i # k. By Claim 3, T; is not closable.
By the ‘‘newness’’ of start vertices (and by Claim 4 if i = j), wz, wy do not belong to E(T;).
If 7 = k,T; could thus absorb a portion of 7 that contains a new vertex, giving 7; more new
vertices. Hence we may assume ¢ < j < k. In this case, wy ¢ E(T}), since y is new in Tj,. If
T is closable, then j > 7 and Claim 3 yields wz & E(Tj). If T7 is not closable, then Claim 1,
Claim 4 and the edge wy imply that wx ¢ E(T}). Now T}, which we can view as ending at y,
can be extended via w to absorb at least two new vertices from 7.

Claim 6. Ifu,v are start vertices of Ty, T with 1 < j, then u, v are nonadjacent and have no
common neighbor. By Claims 3 and 4, a start vertex of 7; has no neighbor in a later trail. No start
vertex of T; has a neighbor outside all trails, because such a neighbor could be used to enlarge
the new set of T;. By Claim 5, u and v have no common neighbor in trail T} or earlier.
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Claim 7. If E; contains a triangle with at most one edge on T}, then E; can be represented
using | E;| intervals. If the vertices of T; are vy, . . . , v, in order (with repetition), then we represent
T; by assigning the interval (j — %, j + 2) to v;. This uses e(T};) + 1 intervals. For each additional
edge e € F; that is not in the triangle, suppose e = zv; where v; is a new vertex of T;. We
represent e by adding a small interval for 2 within (j — %, 7+ %) (intersecting only the interval for
v;). If the triangle in E; contains an edge v;v;41 of T}, then we add an interval for their common
neighbor in F; within (5 + %, J+ %), gaining two edges for one interval. If it contains no edge
of T;, we select some v; € V(T;) on the triangle and add a common interval for the other two
vertices of the triangle within (5 — %, 7+ %), gaining three edges for two intervals. In total, we
have used | F;| intervals.

Having proved these claims, we let .S; consist of the start vertices of 7; and their neighbors. By
Claim 6, the sets .S; are pairwise disjoint. Choose two start vertices u, v in T; with the minimum
degree sum. If d(u) + d(v) < 2A — 2, then by the discussion before the theorem statement we
do not need to save an interval for T;. If d(u) + d(v) = 2A — 1, then one of u, v has degree A
and we have |S;| > A.

Hence we may assume that every start vertex of 7; has degree A. By the computation before
the theorem statement, it remains only to show that |S;| > 2A if F; does not contain a triangle
with at most one edge on 7;. If some pair of start vertices on 7; has no common neighbor, then
|S;| > 2A, so we may assume that every pair of start vertices has a common neighbor.

Suppose first that T; is not closable. Let u, v be the endpoints of T}, and let w be a common
neighbor; by Claim 5, w does not belong to an earlier trail. If neither of {uw,vw} belongs to
T;, then T; can be extended by uw to obtain a closable trail with the same new set as 7;, which
would be preferred to 7;. This includes the case where u, v are adjacent and 7; has length 1.
In the remaining case, u, v are nonadjacent and any common neighbor of them is adjacent to
one of them using an end edge of 7;. There are at most two such common neighbors. Hence
|S;| > 2 +2A — 2 =2A, as desired.

Finally, suppose that T is closable, which requires at least three vertices, each pair of which
has a common neighbor. By Claims 3 and 5, the common neighbors of vertices in 7; also lie in
T;. Furthermore, every edge of 7] forms a triangle only using two other edges of T7; otherwise,
we can use the endpoints of that edge as the endpoints of 7; and use the common neighbor to
form a triangle having at most one edge on 7;.

Since T} forms a connected subgraph of G, it has a vertex w that is not a cut-vertex of T7.
Deleting from 77 any set of edges incident to w leaves a connected subgraph, except possibly for
isolating w. Every edge wv incident to w in T lies on a triangle in T7; let u be a third vertex of
this triangle. Deleting {wv, wu} from 7T leaves a subgraph having a u, v-Eulerian trail 7. Now
u, v, w form a triangle with only one edge on 7T'. Furthermore, every edge of F; is incident to at
least one vertex of 7', because when 7; is closable every edge of E; has both endpoints on 7.
By the construction in Claim 7, we can represent E; using only |E;| intervals, saving one for the
edges {wv, wu}.

We have resolved all cases, and the proof of the bound is complete. Next we consider how
equality may be achieved. We may assume that G is connected. It suffices to show that if
G # Ka A, then we save an extra interval for 77.

If T is closable, then Claim 3 implies that V(71) = V(G), and hence E; = E(G). If G
is not A-regular or if n > 2A, then |E(G)| + 1 < (A + 1/A)n/2, and we are done. If G is
A-regular and A > n/2, then G is Hamiltonian, by Dirac's Theorem. If G # K A.A, then G
has a triangle, by Turdn's Theorem. By the choice of 7} to minimize length, 77 is a Hamiltonian
cycle. If T} uses any edge of the triangle, then we delete that edge from 77 to obtain 7;. Hence
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we can choose 77 so that we have a triangle with at most one edge on 7;. By Claim 7, we can
now represent F(G) using |E(G)| = An/2 edges.

If T} is not closable, recall the computation of our bound on I(G). We have I(G) < An/2 +
(2s — r)/2, where there are s trails T; using |E;| + 1 intervals and r» = Y «;, with 2A — o
being the sum of the degrees of the chosen vertices on 7;. We proved the bound by associating
(2s — r)A vertices with these trails, since then (2s — r)A < n. We have strict inequality if some
T; uses only | E; | intervals (since its start vertices are not in the sets S; associated with other trails)
or if for some T; the associated set S; has more than 2A — «; vertices.

Now consider T3, with endpoints u, v. If d(u) 4+ d(v) < 2A, then |S;| > (2 — ;) A immedi-
ately, so we may assume d(u) 4+ d(v) = 2A. By Claim 4, all neighbors of v lie in 7. By Claim
1, only one edge incident to v belongs to 73. Since our greedy selection prefers closable trails,
this implies that u, v are not adjacent (unless uv = E(T}), in which case A = 1 and G = Ka a).
Suppose the vertices of T3 are u = z1, %2, ..., T, = v in order. If v is adjacent to both x; and
x;+1 for some ¢ < m — 2, then it forms a triangle with one edge on 7}, and Claim 7 applies. If
1 = m — 2, then because v has no neighbors on later trails, we can again save an interval for this
triangle. Hence we may assume that v does not have consecutive neighbors on 7;. If v is adjacent
to x; for © < m — 1, then x;11 has no neighbor w in another trail T}. Otherwise, we could
follow x1,...,%;,V,Tm—1,...,T44+1,w and continue in 7T} to enlarge the new set of T7. Since
the successors on 77 of neighbors of v have no neighbors in later trails, they appear in no later
S;, and we can add them to S;. Now S consists of at least the neighbors of v, their successors
on 77, and w, which totals 2A + 1 vertices. [

The alterations that are used to improve trails always increase the new set or decrease the length
(or make it closed); there can be at most n? of these changes for each trail. Also the search for
whether a change is needed takes polynomial time. Hence this proof can be implemented as a
polynomial algorithm to produce a representation that satisfies the bound.
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