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Abstract: The total interval number of an n-vertex graph with maximum degree ∆ is
at most (∆+1/∆)n/2, with equality if and only if every component of the graph is K∆,∆.
If the graph is also required to be connected, then the maximum is ∆n/2 + 1 when ∆ is
even, but when ∆ is odd it exceeds [∆+1/(2.5∆+7.7)]n/2 for infinitely many n. c© 1997
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Given sets {Sv : v ∈ V }, the intersection graph of the collection of sets is the simple graph
with vertex set V such that u is adjacent to v if and only if Su ∩ Sv 6= ∅. The family of sets is
an intersection representation of its intersection graph. The interval graphs are the intersection
graphs representable by assigning each vertex a single interval on the real line. More generally,
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we allow a representation f to assign each vertex a union of intervals on the real line; if G is the
intersection graph of this collection, then f is a multiple-interval representation of G. Let #f(v)
be the number of disjoint intervals whose union is f(v). If #f(v) = k, we say that f(v) consists
of k intervals or that v is assigned k intervals.

We may try to make the representation of G ‘‘efficient’’ by minimizing maxv∈V #f(v) or∑
v∈V #f(v). The interval number i(G) of a graph G is the minimum of maxv∈V (G) #f(v)

over all multiple-interval representations of G. Interval number has been studied since 1979,
beginning with [7] and [2]. The total interval number I(G) of a graph G is the minimum of∑

v∈V (G) #f(v) over all multiple-interval representations of G. Although introduced in [2],
total interval number was not studied until Aigner and Andreae [1] obtained extremal results for
some fundamental families. Further results appear in [3, 4, 5, 6].

In this paper we prove that I(G) ≤ (∆ + 1/∆)n/2 for graphs with maximum degree at most
∆, which is best possible. The proof yields a polynomial algorithm for producing a representation
that satisfies the bound. Kratzke and West [5] proved that if G contains a collection of t pairwise
edge-disjoint trails that together contain an endpoint of every edge of G, then I(G) ≤ e(G) + t,
where e(G) = |E(G)|. Such a collection of trails is a trail cover of size t, generalizing the
notion of vertex cover; in this paper, ‘‘covering e’’means ‘‘containing an endpoint of e’’. Let
t(G) denote the minimum size of a trail cover. If G is triangle-free, then I(G) = e(G) + t(G); a
simple counting argument [5] establishes the lower bound. The graphmK∆,∆ hasm components
that are complete bipartite graphs; it is regular and triangle-free, with n = 2m∆ vertices, and its
minimum trail covers have size m. Hence I(mK∆,∆) = m∆2 + m = (∆ + 1/∆)n/2, and our
bound is best possible. We also prove that these are the only graphs achieving the bound. The
proof yields a polynomial-time algorithm to achieve the bound.

CONNECTED GRAPHS

Before proving the bound for general graphs, we discuss the more restricted class of connected
graphs. For ∆ even, the maximum of I(G) in terms of n and ∆ is ∆n/2 + 1. For ∆ odd, we
provide constructions where the excess over ∆n/2 is linear in n.

Proposition. Suppose ∆ is even. Among connected n-vertex graphs with maximum degree ∆,
the maximum of the total interval number is ∆n/2 + 1.

Proof. Suppose G is connected and has maximum degree ∆. If G is Eulerian, then I(G) ≤
e(G)+1 ≤ ∆n/2+1, with equality ifG is triangle-free and regular. IfG is not Eulerian, suppose
G has 2k vertices of odd degree. Since G is connected, we can decompose E(G) into k trails, so
t(G) ≤ k. Since each vertex of odd degree has degree less than ∆, we have 2e(G) ≤ ∆n− 2k,
and hence I(G) ≤ e(G) + k ≤ ∆n/2.

In addition to the ∆-regular triangle-free graphs, equality holds also for ∆-regular graphs in
which every vertex belonging to a triangle is a cut-vertex. When ∆ is odd, the bound of ∆n/2+1
no longer holds; we provide a construction.

Proposition. Suppose ∆ is odd and at least 3. Among connectedn-vertex graphs with maximum
degree ∆, the maximum total interval number exceeds [∆ + 1/(2.5∆ + 7.7)]n/2 for infinitely
many n.

Proof. We prove the claim by using copies of a triangle-free graph H with degree sequence
(∆, . . . ,∆,∆− 1) to construct a ∆-regular triangle-free connected graph G with n vertices such
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that t(G) ≥ [1/(2.5∆ + 7.7)]n/2. Begin with a caterpillar C consisting of a path with k + 2
vertices and ∆−2 leaves attached to each interior vertex of the path. For each of the k(∆−2)+2
leaves of C, we provide a copy of H and identify its vertex of degree ∆ − 1 with that leaf.

The resulting graph G is triangle-free and ∆-regular, so I(G) = ∆n/2 + t(G). Because
each edge of C is a cut-edge of G, every trail cover of G has an endpoint in each copy of
H . Hence t(G) ≥ [k(∆ − 2) + 2]/2, and in fact t(G) = d[k(∆ − 2) + 2]/2e. If H has n′

vertices, then n = [k(∆ − 2) + 2]n′ + k. We obtain n < 2t[n′ + 1/(∆ − 2)], and hence
t(G) > 1/(n/2)/[n′ + 1/(∆ − 2)].

It remains to construct a suitable H with n′ as small as possible. When ∆ = 3, we form H
by subdividing one edge of K3,3; here n′ = 7 and t(G) > 1

8 (n/2). For larger ∆, consider the
lexicographic composition Fs = C5[K̄s], expanding each vertex of a 5-cycle into an independent
set of size s. The graph Fs is 2s-regular and triangle-free, and for s ≥ 2 it has a pair of easily
described edge-disjoint Hamiltonian cycles. When (∆ + 1)/2 is odd, we form H by deleting
from F(∆+1)/2 the odd-indexed edges on one Hamiltonian cycle. Since n′ = 2.5(∆ + 1) is odd,
this reduces one vertex degree from ∆ + 1 to ∆ − 1 and the others to ∆. When (∆ + 1)/2 is
even, we form H by deleting from F(∆+3)/2 the odd-indexed edges on one Hamiltonian cycle
and all edges on another Hamiltonian cycle. Since n′ = 2.5(∆ + 3) is odd, we again obtain the
desired degree sequence. Here ∆ ≥ 7, which yields the 7.7 in the statement of the result.

THE MAIN RESULT

We consider an n-vertex graph G with maximum degree ∆ and wish to prove that I(G) ≤
(∆ + 1/∆)n/2. We may assume that G has no isolated vertices, because such vertices require
no intervals; when f(v) = ∅ and the intersection graph is taken, v becomes an isolated vertex.

Our approach is to select a set of edge-disjoint trails T1, . . . , Tk to cover E(G), in a greedy
manner subject to various conditions; each new trail contains some previously uncovered edge.
We partition E(G) into sets associated with the trails; the set Ei associated with Ti consists of
E(Ti) and the newly covered edges that do not belong to later trails. We will also associate a set
Si ⊆ V (G) with each trail (the union of closed neighborhoods of certain vertices of the trail);
these sets will be pairwise disjoint. We can represent Ei using |Ei| + 1 intervals, fewer if Ei

contains a triangle with at most one edge on Ti.
When G has maximum degree ∆, we have e(G) ≤ ∆n/2. If e(G) = ∆n/2 − k, we will use

|Ei| + 1 intervals for at most k + n/(2∆) trails Ti. We do this by ensuring that we use an extra
interval for Ti only when there exists αi ∈ {0, 1, 2} such that |Si| ≥ (2 − αi)∆ and the degrees
of two new vertices of Ti sum to at most 2∆ − αi. If the values of αi over the s trails using
an extra interval sum to r, then we have I(G) ≤ e(G) + s and e(G) ≤ ∆n/2 − r/2. Hence
I(G) ≤ ∆n/2+(2s− r)/2. Also we have associated (2s− r)∆ vertices with these trails. Since
(2s− r)∆ ≤ n, we have the desired bound. The remainder of the proof consists of showing that
we can choose the trails to ensure these conditions.

We use ‘‘open’’ trails; these are trails with two distinct endpoints. We say that a trail is closable
if its endpoints are adjacent via an edge not belonging to the trail. When T is closable, we let T ′

denote the closed trail formed by adding the edge between the endpoints of T .

Theorem. Every simple graph with n vertices and maximum degree ∆ has total interval
number at most (∆ + 1/∆)n/2. Furthermore, equality holds only when every component
is K∆,∆.
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Proof. We select a sequence of pairwise edge-disjoint open trails T1, . . . , Tk in a greedy
manner. The new vertices of Ti are the vertices in Ti that do not appear in T1, . . . , Ti−1 and
that cover at least one edge not covered by vertices of earlier trails. The new edges of Ti are the
previously uncovered edges that are covered by new vertices of Ti. Note that an edge of Ti is
new (for Ti) if and only if both its endpoints are new.

We choose each Ti to be an open trail having endpoints that are new. Among these, we choose
Ti with maximum number of new vertices. Among these, we choose Ti to be closable if such
a candidate is available. Among the remaining candidates for Ti, we choose Ti with minimum
length.

The sequence ends when all edges are covered. The set Ei of edges associated with Ti is
E(Ti) together with the new edges that do not belong to later trails. By construction, these edge
sets are disjoint. We postpone the definition of the vertex set Si associated with Ti.

Claim 1. If Ti is not closable and has endpoint v, then only one edge incident to v belongs to
Ti. Otherwise, we delete the initial portion of Ti up to the next appearance of a new vertex other
than the other endpoint of Ti (this may be v again). The shorter trail T is open and has the same
new set as Ti; it may be closable, but since Ti is not closable, we would in either case choose T
in preference to Ti.

Claim 2. If the vertices of Ti are not all new, then Ti is not closable and the end edges of
Ti are new. Let x be the first vertex of Ti that is not new, belonging to an earlier trail Tj . If Ti is
closable, then Tj can absorb the closed trail T ′

i to enlarge its new set. If Ti is not closable, then
the first edge of Ti is new unless it is ux. By the maximality of the new set, every neighbor of
u along a new edge belongs to Ti. If v is the first such vertex on Ti, then the u, v-portion of Ti

together with the edge uv forms a closed trail containing x that can be absorbed by Tj to enlarge
its new set.

Claim 3. If Ti is closable, then no vertex of Ti appears in another trail or has a neighbor in
a later trail. By Claim 2, every vertex of Ti is new. If w is a vertex of Ti that equals or is adjacent
to a vertex w′ of a later trail Tj , then we can traverse T ′

i starting at w, enter Tj at w′, and continue
to an end of Tj , replacing Ti by a trail with at least two more new vertices.

Claim 4. If Ti is not closable, then there is no edge to a later trail from an endpoint of Ti or
from its neighbor along Ti. Any such edge permits an extension of Ti (or of Ti minus its endpoint)
using a portion of Tj that has at least two new vertices, thereby creating a trail with more new
vertices than Ti.

The start vertices of Ti are its endpoints if Ti is not closable, or all of its vertices if Ti is
closable. By Claim 3, every start vertex of Ti is a new vertex of Ti.

Claim 5. No vertex of Ti is adjacent to two start vertices of later trails, or to a start
vertex of Ti and a start vertex of a later trail. Suppose w ∈ V (Ti) has neighbors x, y that
are start vertices of Tj , Tk, respectively, with i ≤ j ≤ k and i 6= k. By Claim 3, Ti is not closable.
By the ‘‘newness’’ of start vertices (and by Claim 4 if i = j), wx,wy do not belong to E(Ti).
If j = k, Ti could thus absorb a portion of Tj that contains a new vertex, giving Ti more new
vertices. Hence we may assume i ≤ j < k. In this case, wy 6∈ E(Tj), since y is new in Tk. If
Tj is closable, then j > i and Claim 3 yields wx 6∈ E(Tj). If Tj is not closable, then Claim 1,
Claim 4 and the edge wy imply that wx 6∈ E(Tj). Now Tj , which we can view as ending at y,
can be extended via w to absorb at least two new vertices from Tk.

Claim 6. If u, v are start vertices of Ti, Tj with i < j, then u, v are nonadjacent and have no
common neighbor. By Claims 3 and 4, a start vertex of Ti has no neighbor in a later trail. No start
vertex of Ti has a neighbor outside all trails, because such a neighbor could be used to enlarge
the new set of Ti. By Claim 5, u and v have no common neighbor in trail Ti or earlier.



TOTAL INTERVAL NUMBER 83

Claim 7. If Ei contains a triangle with at most one edge on Ti, then Ei can be represented
using |Ei| intervals. If the vertices ofTi are v1, . . . , vn in order (with repetition), then we represent
Ti by assigning the interval (j− 2

3 , j+ 2
3 ) to vj . This uses e(Ti)+1 intervals. For each additional

edge e ∈ Ei that is not in the triangle, suppose e = xvj where vj is a new vertex of Ti. We
represent e by adding a small interval for x within (j− 1

3 , j+ 1
3 ) (intersecting only the interval for

vj). If the triangle in Ei contains an edge vjvj+1 of Ti, then we add an interval for their common
neighbor in Ei within (j + 1

3 , j + 2
3 ), gaining two edges for one interval. If it contains no edge

of Ti, we select some vj ∈ V (Ti) on the triangle and add a common interval for the other two
vertices of the triangle within (j − 1

3 , j + 1
3 ), gaining three edges for two intervals. In total, we

have used |Ei| intervals.

Having proved these claims, we let Si consist of the start vertices of Ti and their neighbors. By
Claim 6, the sets Si are pairwise disjoint. Choose two start vertices u, v in Ti with the minimum
degree sum. If d(u) + d(v) ≤ 2∆ − 2, then by the discussion before the theorem statement we
do not need to save an interval for Ti. If d(u) + d(v) = 2∆ − 1, then one of u, v has degree ∆
and we have |Si| > ∆.

Hence we may assume that every start vertex of Ti has degree ∆. By the computation before
the theorem statement, it remains only to show that |Si| ≥ 2∆ if Ei does not contain a triangle
with at most one edge on Ti. If some pair of start vertices on Ti has no common neighbor, then
|Si| ≥ 2∆, so we may assume that every pair of start vertices has a common neighbor.

Suppose first that Ti is not closable. Let u, v be the endpoints of Ti, and let w be a common
neighbor; by Claim 5, w does not belong to an earlier trail. If neither of {uw, vw} belongs to
Ti, then Ti can be extended by uw to obtain a closable trail with the same new set as Ti, which
would be preferred to Ti. This includes the case where u, v are adjacent and Ti has length 1.
In the remaining case, u, v are nonadjacent and any common neighbor of them is adjacent to
one of them using an end edge of Ti. There are at most two such common neighbors. Hence
|Si| ≥ 2 + 2∆ − 2 = 2∆, as desired.

Finally, suppose that Ti is closable, which requires at least three vertices, each pair of which
has a common neighbor. By Claims 3 and 5, the common neighbors of vertices in Ti also lie in
Ti. Furthermore, every edge of T ′

i forms a triangle only using two other edges of T ′
i ; otherwise,

we can use the endpoints of that edge as the endpoints of Ti and use the common neighbor to
form a triangle having at most one edge on Ti.

Since T ′
i forms a connected subgraph of G, it has a vertex w that is not a cut-vertex of T ′

i .
Deleting from T ′

i any set of edges incident to w leaves a connected subgraph, except possibly for
isolating w. Every edge wv incident to w in T ′

i lies on a triangle in T ′
i ; let u be a third vertex of

this triangle. Deleting {wv,wu} from T ′
i leaves a subgraph having a u, v-Eulerian trail T . Now

u, v, w form a triangle with only one edge on T . Furthermore, every edge of Ei is incident to at
least one vertex of T , because when Ti is closable every edge of Ei has both endpoints on Ti.
By the construction in Claim 7, we can represent Ei using only |Ei| intervals, saving one for the
edges {wv,wu}.

We have resolved all cases, and the proof of the bound is complete. Next we consider how
equality may be achieved. We may assume that G is connected. It suffices to show that if
G 6= K∆,∆, then we save an extra interval for T1.

If T1 is closable, then Claim 3 implies that V (T1) = V (G), and hence E1 = E(G). If G
is not ∆-regular or if n > 2∆, then |E(G)| + 1 < (∆ + 1/∆)n/2, and we are done. If G is
∆-regular and ∆ ≥ n/2, then G is Hamiltonian, by Dirac's Theorem. If G 6= K∆,∆, then G
has a triangle, by Turán's Theorem. By the choice of T1 to minimize length, T ′

1 is a Hamiltonian
cycle. If T ′

1 uses any edge of the triangle, then we delete that edge from T ′
1 to obtain T1. Hence
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we can choose T1 so that we have a triangle with at most one edge on T1. By Claim 7, we can
now represent E(G) using |E(G)| = ∆n/2 edges.

If T1 is not closable, recall the computation of our bound on I(G). We have I(G) ≤ ∆n/2 +
(2s − r)/2, where there are s trails Ti using |Ei| + 1 intervals and r =

∑
αi, with 2∆ − αi

being the sum of the degrees of the chosen vertices on Ti. We proved the bound by associating
(2s− r)∆ vertices with these trails, since then (2s− r)∆ ≤ n. We have strict inequality if some
Ti uses only |Ei| intervals (since its start vertices are not in the sets Sj associated with other trails)
or if for some Ti the associated set Si has more than 2∆ − αi vertices.

Now consider T1, with endpoints u, v. If d(u) + d(v) < 2∆, then |Si| > (2− αi)∆ immedi-
ately, so we may assume d(u) + d(v) = 2∆. By Claim 4, all neighbors of v lie in T1. By Claim
1, only one edge incident to v belongs to T1. Since our greedy selection prefers closable trails,
this implies that u, v are not adjacent (unless uv = E(T1), in which case ∆ = 1 and G = K∆,∆).
Suppose the vertices of T1 are u = x1, x2, . . . , xm = v in order. If v is adjacent to both xi and
xi+1 for some i < m − 2, then it forms a triangle with one edge on Ti, and Claim 7 applies. If
i = m− 2, then because v has no neighbors on later trails, we can again save an interval for this
triangle. Hence we may assume that v does not have consecutive neighbors on Ti. If v is adjacent
to xi for i < m − 1, then xi+1 has no neighbor w in another trail Tj . Otherwise, we could
follow x1, . . . , xi, v, xm−1, . . . , xi+1, w and continue in Tj to enlarge the new set of T1. Since
the successors on T1 of neighbors of v have no neighbors in later trails, they appear in no later
Sj , and we can add them to S1. Now S1 consists of at least the neighbors of v, their successors
on T1, and u, which totals 2∆ + 1 vertices.

The alterations that are used to improve trails always increase the new set or decrease the length
(or make it closed); there can be at most n2 of these changes for each trail. Also the search for
whether a change is needed takes polynomial time. Hence this proof can be implemented as a
polynomial algorithm to produce a representation that satisfies the bound.
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