## Total Interval Number for Graphs with Bounded Degree

Alexander V. Kostochka<sup>1,\*</sup>
Douglas B. West<sup>2,†</sup>

<sup>1</sup>INSTITUTE OF MATHEMATICS, RUSSIAN ACADEMY OF SCIENCES, NOVOSIBIRSK, RUSSIA E-mail address: sasha@math.nsc.ru <sup>2</sup>DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ILLINOIS, URBANA, IL 61801-2975

E-mail address: west@math.uiuc.edu

Received March 12, 1995

**Abstract:** The total interval number of an n-vertex graph with maximum degree  $\Delta$  is at most  $(\Delta+1/\Delta)n/2$ , with equality if and only if every component of the graph is  $K_{\Delta,\Delta}$ . If the graph is also required to be connected, then the maximum is  $\Delta n/2+1$  when  $\Delta$  is even, but when  $\Delta$  is odd it exceeds  $[\Delta+1/(2.5\Delta+7.7)]n/2$  for infinitely many n. © 1997 John Wiley & Sons, Inc. J Graph Theory **25**: 79–84, 1997

Keywords: total interval number, intersection representation, maximum degree

Given sets  $\{S_v : v \in V\}$ , the *intersection graph* of the collection of sets is the simple graph with vertex set V such that u is adjacent to v if and only if  $S_u \cap S_v \neq \emptyset$ . The family of sets is an *intersection representation* of its intersection graph. The *interval graphs* are the intersection graphs representable by assigning each vertex a single interval on the real line. More generally,

© 1997 John Wiley & Sons, Inc.

CCC 0364-9024/97/010079-06

<sup>\*</sup> Research supported in part by Grant 93-01-01486 of the Russian Foundation for Fundamental Research and Grant RPY300 of the International Science Foundation and Russian Government. † Research supported in part by NSA/MSP Grants MDA904-90-H-4011 and MDA904-93-H-3040.

we allow a representation f to assign each vertex a union of intervals on the real line; if G is the intersection graph of this collection, then f is a multiple-interval representation of G. Let #f(v) be the number of disjoint intervals whose union is f(v). If #f(v) = k, we say that f(v) consists of k intervals or that v is assigned k intervals.

We may try to make the representation of G "efficient" by minimizing  $\max_{v \in V} \# f(v)$  or  $\sum_{v \in V} \# f(v)$ . The *interval number* i(G) of a graph G is the minimum of  $\max_{v \in V(G)} \# f(v)$  over all multiple-interval representations of G. Interval number has been studied since 1979, beginning with [7] and [2]. The *total interval number* I(G) of a graph G is the minimum of  $\sum_{v \in V(G)} \# f(v)$  over all multiple-interval representations of G. Although introduced in [2], total interval number was not studied until Aigner and Andreae [1] obtained extremal results for some fundamental families. Further results appear in [3, 4, 5, 6].

In this paper we prove that  $I(G) \leq (\Delta + 1/\Delta)n/2$  for graphs with maximum degree at most  $\Delta$ , which is best possible. The proof yields a polynomial algorithm for producing a representation that satisfies the bound. Kratzke and West [5] proved that if G contains a collection of t pairwise edge-disjoint trails that together contain an endpoint of every edge of G, then  $I(G) \leq e(G) + t$ , where e(G) = |E(G)|. Such a collection of trails is a *trail cover* of size t, generalizing the notion of vertex cover; in this paper, "covering e" means "containing an endpoint of e". Let t(G) denote the minimum size of a trail cover. If G is triangle-free, then I(G) = e(G) + t(G); a simple counting argument [5] establishes the lower bound. The graph  $mK_{\Delta,\Delta}$  has m components that are complete bipartite graphs; it is regular and triangle-free, with  $n = 2m\Delta$  vertices, and its minimum trail covers have size m. Hence  $I(mK_{\Delta,\Delta}) = m\Delta^2 + m = (\Delta + 1/\Delta)n/2$ , and our bound is best possible. We also prove that these are the only graphs achieving the bound. The proof yields a polynomial-time algorithm to achieve the bound.

## **CONNECTED GRAPHS**

Before proving the bound for general graphs, we discuss the more restricted class of connected graphs. For  $\Delta$  even, the maximum of I(G) in terms of n and  $\Delta$  is  $\Delta n/2 + 1$ . For  $\Delta$  odd, we provide constructions where the excess over  $\Delta n/2$  is linear in n.

**Proposition.** Suppose  $\Delta$  is even. Among connected n-vertex graphs with maximum degree  $\Delta$ , the maximum of the total interval number is  $\Delta n/2 + 1$ .

**Proof.** Suppose G is connected and has maximum degree  $\Delta$ . If G is Eulerian, then  $I(G) \leq e(G)+1 \leq \Delta n/2+1$ , with equality if G is triangle-free and regular. If G is not Eulerian, suppose G has 2k vertices of odd degree. Since G is connected, we can decompose E(G) into k trails, so  $t(G) \leq k$ . Since each vertex of odd degree has degree less than  $\Delta$ , we have  $2e(G) \leq \Delta n - 2k$ , and hence  $I(G) \leq e(G) + k \leq \Delta n/2$ .

In addition to the  $\Delta$ -regular triangle-free graphs, equality holds also for  $\Delta$ -regular graphs in which every vertex belonging to a triangle is a cut-vertex. When  $\Delta$  is odd, the bound of  $\Delta n/2+1$  no longer holds; we provide a construction.

**Proposition.** Suppose  $\Delta$  is odd and at least 3. Among connected n-vertex graphs with maximum degree  $\Delta$ , the maximum total interval number exceeds  $[\Delta + 1/(2.5\Delta + 7.7)]n/2$  for infinitely many n.

**Proof.** We prove the claim by using copies of a triangle-free graph H with degree sequence  $(\Delta, \ldots, \Delta, \Delta - 1)$  to construct a  $\Delta$ -regular triangle-free connected graph G with n vertices such

that  $t(G) \ge [1/(2.5\Delta + 7.7)]n/2$ . Begin with a caterpillar C consisting of a path with k+2 vertices and  $\Delta - 2$  leaves attached to each interior vertex of the path. For each of the  $k(\Delta - 2) + 2$  leaves of C, we provide a copy of H and identify its vertex of degree  $\Delta - 1$  with that leaf.

The resulting graph G is triangle-free and  $\Delta$ -regular, so  $I(G) = \Delta n/2 + t(G)$ . Because each edge of G is a cut-edge of G, every trail cover of G has an endpoint in each copy of G. Hence  $f(G) \geq \lfloor k(\Delta-2)+2 \rfloor/2$ , and in fact  $f(G) = \lfloor k(\Delta-2)+2 \rfloor/2$ . If G has an endpoint in each copy of G vertices, then G is G and in fact G in G is triangle-free and G in G i

It remains to construct a suitable H with n' as small as possible. When  $\Delta=3$ , we form H by subdividing one edge of  $K_{3,3}$ ; here n'=7 and  $t(G)>\frac{1}{8}(n/2)$ . For larger  $\Delta$ , consider the lexicographic composition  $F_s=C_5[\bar{K}_s]$ , expanding each vertex of a 5-cycle into an independent set of size s. The graph  $F_s$  is 2s-regular and triangle-free, and for  $s\geq 2$  it has a pair of easily described edge-disjoint Hamiltonian cycles. When  $(\Delta+1)/2$  is odd, we form H by deleting from  $F_{(\Delta+1)/2}$  the odd-indexed edges on one Hamiltonian cycle. Since  $n'=2.5(\Delta+1)$  is odd, this reduces one vertex degree from  $\Delta+1$  to  $\Delta-1$  and the others to  $\Delta$ . When  $(\Delta+1)/2$  is even, we form H by deleting from  $F_{(\Delta+3)/2}$  the odd-indexed edges on one Hamiltonian cycle and all edges on another Hamiltonian cycle. Since  $n'=2.5(\Delta+3)$  is odd, we again obtain the desired degree sequence. Here  $\Delta\geq 7$ , which yields the 7.7 in the statement of the result.

## THE MAIN RESULT

We consider an *n*-vertex graph G with maximum degree  $\Delta$  and wish to prove that  $I(G) \leq (\Delta + 1/\Delta)n/2$ . We may assume that G has no isolated vertices, because such vertices require no intervals; when  $f(v) = \emptyset$  and the intersection graph is taken, v becomes an isolated vertex.

Our approach is to select a set of edge-disjoint trails  $T_1, \ldots, T_k$  to cover E(G), in a greedy manner subject to various conditions; each new trail contains some previously uncovered edge. We partition E(G) into sets associated with the trails; the set  $E_i$  associated with  $T_i$  consists of  $E(T_i)$  and the newly covered edges that do not belong to later trails. We will also associate a set  $S_i \subseteq V(G)$  with each trail (the union of closed neighborhoods of certain vertices of the trail); these sets will be pairwise disjoint. We can represent  $E_i$  using  $|E_i|+1$  intervals, fewer if  $E_i$  contains a triangle with at most one edge on  $T_i$ .

When G has maximum degree  $\Delta$ , we have  $e(G) \leq \Delta n/2$ . If  $e(G) = \Delta n/2 - k$ , we will use  $|E_i| + 1$  intervals for at most  $k + n/(2\Delta)$  trails  $T_i$ . We do this by ensuring that we use an extra interval for  $T_i$  only when there exists  $\alpha_i \in \{0,1,2\}$  such that  $|S_i| \geq (2-\alpha_i)\Delta$  and the degrees of two new vertices of  $T_i$  sum to at most  $2\Delta - \alpha_i$ . If the values of  $\alpha_i$  over the s trails using an extra interval sum to r, then we have  $I(G) \leq e(G) + s$  and  $e(G) \leq \Delta n/2 - r/2$ . Hence  $I(G) \leq \Delta n/2 + (2s-r)/2$ . Also we have associated  $(2s-r)\Delta$  vertices with these trails. Since  $(2s-r)\Delta \leq n$ , we have the desired bound. The remainder of the proof consists of showing that we can choose the trails to ensure these conditions.

We use "open" trails; these are trails with two distinct endpoints. We say that a trail is *closable* if its endpoints are adjacent via an edge not belonging to the trail. When T is closable, we let T' denote the closed trail formed by adding the edge between the endpoints of T.

**Theorem.** Every simple graph with n vertices and maximum degree  $\Delta$  has total interval number at most  $(\Delta + 1/\Delta)n/2$ . Furthermore, equality holds only when every component is  $K_{\Delta,\Delta}$ .

**Proof.** We select a sequence of pairwise edge-disjoint open trails  $T_1, \ldots, T_k$  in a greedy manner. The *new vertices* of  $T_i$  are the vertices in  $T_i$  that do not appear in  $T_1, \ldots, T_{i-1}$  and that cover at least one edge not covered by vertices of earlier trails. The *new edges* of  $T_i$  are the previously uncovered edges that are covered by new vertices of  $T_i$ . Note that an edge of  $T_i$  is new (for  $T_i$ ) if and only if both its endpoints are new.

We choose each  $T_i$  to be an open trail having endpoints that are new. Among these, we choose  $T_i$  with maximum number of new vertices. Among these, we choose  $T_i$  to be closable if such a candidate is available. Among the remaining candidates for  $T_i$ , we choose  $T_i$  with minimum length.

The sequence ends when all edges are covered. The set  $E_i$  of edges associated with  $T_i$  is  $E(T_i)$  together with the new edges that do not belong to later trails. By construction, these edge sets are disjoint. We postpone the definition of the vertex set  $S_i$  associated with  $T_i$ .

Claim 1. If  $T_i$  is not closable and has endpoint v, then only one edge incident to v belongs to  $T_i$ . Otherwise, we delete the initial portion of  $T_i$  up to the next appearance of a new vertex other than the other endpoint of  $T_i$  (this may be v again). The shorter trail T is open and has the same new set as  $T_i$ ; it may be closable, but since  $T_i$  is not closable, we would in either case choose T in preference to  $T_i$ .

Claim 2. If the vertices of  $T_i$  are not all new, then  $T_i$  is not closable and the end edges of  $T_i$  are new. Let x be the first vertex of  $T_i$  that is not new, belonging to an earlier trail  $T_j$ . If  $T_i$  is closable, then  $T_j$  can absorb the closed trail  $T_i'$  to enlarge its new set. If  $T_i$  is not closable, then the first edge of  $T_i$  is new unless it is ux. By the maximality of the new set, every neighbor of u along a new edge belongs to  $T_i$ . If v is the first such vertex on  $T_i$ , then the u, v-portion of  $T_i$  together with the edge uv forms a closed trail containing x that can be absorbed by  $T_j$  to enlarge its new set.

Claim 3. If  $T_i$  is closable, then no vertex of  $T_i$  appears in another trail or has a neighbor in a later trail. By Claim 2, every vertex of  $T_i$  is new. If w is a vertex of  $T_i$  that equals or is adjacent to a vertex w' of a later trail  $T_j$ , then we can traverse  $T_i'$  starting at w, enter  $T_j$  at w', and continue to an end of  $T_j$ , replacing  $T_i$  by a trail with at least two more new vertices.

Claim 4. If  $T_i$  is not closable, then there is no edge to a later trail from an endpoint of  $T_i$  or from its neighbor along  $T_i$ . Any such edge permits an extension of  $T_i$  (or of  $T_i$  minus its endpoint) using a portion of  $T_j$  that has at least two new vertices, thereby creating a trail with more new vertices than  $T_i$ .

The *start vertices* of  $T_i$  are its endpoints if  $T_i$  is not closable, or all of its vertices if  $T_i$  is closable. By Claim 3, every start vertex of  $T_i$  is a new vertex of  $T_i$ .

Claim 5. No vertex of  $T_i$  is adjacent to two start vertices of later trails, or to a start vertex of  $T_i$  and a start vertex of a later trail. Suppose  $w \in V(T_i)$  has neighbors x, y that are start vertices of  $T_j, T_k$ , respectively, with  $i \le j \le k$  and  $i \ne k$ . By Claim 3,  $T_i$  is not closable. By the "newness" of start vertices (and by Claim 4 if i = j), wx, wy do not belong to  $E(T_i)$ . If  $j = k, T_i$  could thus absorb a portion of  $T_j$  that contains a new vertex, giving  $T_i$  more new vertices. Hence we may assume  $i \le j < k$ . In this case,  $wy \notin E(T_j)$ , since y is new in  $T_k$ . If  $T_j$  is closable, then j > i and Claim 3 yields  $wx \notin E(T_j)$ . If  $T_j$  is not closable, then Claim 1, Claim 4 and the edge wy imply that  $wx \notin E(T_j)$ . Now  $T_j$ , which we can view as ending at y, can be extended via w to absorb at least two new vertices from  $T_k$ .

Claim 6. If u, v are start vertices of  $T_i, T_j$  with i < j, then u, v are nonadjacent and have no common neighbor. By Claims 3 and 4, a start vertex of  $T_i$  has no neighbor in a later trail. No start vertex of  $T_i$  has a neighbor outside all trails, because such a neighbor could be used to enlarge the new set of  $T_i$ . By Claim 5, u and v have no common neighbor in trail  $T_i$  or earlier.

Claim 7. If  $E_i$  contains a triangle with at most one edge on  $T_i$ , then  $E_i$  can be represented using  $|E_i|$  intervals. If the vertices of  $T_i$  are  $v_1,\ldots,v_n$  in order (with repetition), then we represent  $T_i$  by assigning the interval  $(j-\frac{2}{3},j+\frac{2}{3})$  to  $v_j$ . This uses  $e(T_i)+1$  intervals. For each additional edge  $e\in E_i$  that is not in the triangle, suppose  $e=xv_j$  where  $v_j$  is a new vertex of  $T_i$ . We represent e by adding a small interval for x within  $(j-\frac{1}{3},j+\frac{1}{3})$  (intersecting only the interval for  $v_j$ ). If the triangle in  $E_i$  contains an edge  $v_jv_{j+1}$  of  $T_i$ , then we add an interval for their common neighbor in  $E_i$  within  $(j+\frac{1}{3},j+\frac{2}{3})$ , gaining two edges for one interval. If it contains no edge of  $T_i$ , we select some  $v_j\in V(T_i)$  on the triangle and add a common interval for the other two vertices of the triangle within  $(j-\frac{1}{3},j+\frac{1}{3})$ , gaining three edges for two intervals. In total, we have used  $|E_i|$  intervals.

Having proved these claims, we let  $S_i$  consist of the start vertices of  $T_i$  and their neighbors. By Claim 6, the sets  $S_i$  are pairwise disjoint. Choose two start vertices u,v in  $T_i$  with the minimum degree sum. If  $d(u)+d(v)\leq 2\Delta-2$ , then by the discussion before the theorem statement we do not need to save an interval for  $T_i$ . If  $d(u)+d(v)=2\Delta-1$ , then one of u,v has degree  $\Delta$  and we have  $|S_i|>\Delta$ .

Hence we may assume that every start vertex of  $T_i$  has degree  $\Delta$ . By the computation before the theorem statement, it remains only to show that  $|S_i| \geq 2\Delta$  if  $E_i$  does not contain a triangle with at most one edge on  $T_i$ . If some pair of start vertices on  $T_i$  has no common neighbor, then  $|S_i| \geq 2\Delta$ , so we may assume that every pair of start vertices has a common neighbor.

Suppose first that  $T_i$  is not closable. Let u,v be the endpoints of  $T_i$ , and let w be a common neighbor; by Claim 5, w does not belong to an earlier trail. If neither of  $\{uw,vw\}$  belongs to  $T_i$ , then  $T_i$  can be extended by uw to obtain a closable trail with the same new set as  $T_i$ , which would be preferred to  $T_i$ . This includes the case where u,v are adjacent and  $T_i$  has length 1. In the remaining case, u,v are nonadjacent and any common neighbor of them is adjacent to one of them using an end edge of  $T_i$ . There are at most two such common neighbors. Hence  $|S_i| \geq 2 + 2\Delta - 2 = 2\Delta$ , as desired.

Finally, suppose that  $T_i$  is closable, which requires at least three vertices, each pair of which has a common neighbor. By Claims 3 and 5, the common neighbors of vertices in  $T_i$  also lie in  $T_i$ . Furthermore, every edge of  $T_i'$  forms a triangle only using two other edges of  $T_i'$ ; otherwise, we can use the endpoints of that edge as the endpoints of  $T_i$  and use the common neighbor to form a triangle having at most one edge on  $T_i$ .

Since  $T_i'$  forms a connected subgraph of G, it has a vertex w that is not a cut-vertex of  $T_i'$ . Deleting from  $T_i'$  any set of edges incident to w leaves a connected subgraph, except possibly for isolating w. Every edge wv incident to w in  $T_i'$  lies on a triangle in  $T_i'$ ; let u be a third vertex of this triangle. Deleting  $\{wv, wu\}$  from  $T_i'$  leaves a subgraph having a u, v-Eulerian trail T. Now u, v, w form a triangle with only one edge on T. Furthermore, every edge of  $E_i$  is incident to at least one vertex of T, because when  $T_i$  is closable every edge of  $E_i$  has both endpoints on  $T_i$ . By the construction in Claim 7, we can represent  $E_i$  using only  $|E_i|$  intervals, saving one for the edges  $\{wv, wu\}$ .

We have resolved all cases, and the proof of the bound is complete. Next we consider how equality may be achieved. We may assume that G is connected. It suffices to show that if  $G \neq K_{\Delta,\Delta}$ , then we save an extra interval for  $T_1$ .

If  $T_1$  is closable, then Claim 3 implies that  $V(T_1)=V(G)$ , and hence  $E_1=E(G)$ . If G is not  $\Delta$ -regular or if  $n>2\Delta$ , then  $|E(G)|+1<(\Delta+1/\Delta)n/2$ , and we are done. If G is  $\Delta$ -regular and  $\Delta\geq n/2$ , then G is Hamiltonian, by Dirac's Theorem. If  $G\neq K_{\Delta,\Delta}$ , then G has a triangle, by Turán's Theorem. By the choice of  $T_1$  to minimize length,  $T_1'$  is a Hamiltonian cycle. If  $T_1'$  uses any edge of the triangle, then we delete that edge from  $T_1'$  to obtain  $T_1$ . Hence

we can choose  $T_1$  so that we have a triangle with at most one edge on  $T_1$ . By Claim 7, we can now represent E(G) using  $|E(G)| = \Delta n/2$  edges.

If  $T_1$  is not closable, recall the computation of our bound on I(G). We have  $I(G) \leq \Delta n/2 + (2s-r)/2$ , where there are s trails  $T_i$  using  $|E_i|+1$  intervals and  $r=\sum \alpha_i$ , with  $2\Delta-\alpha_i$  being the sum of the degrees of the chosen vertices on  $T_i$ . We proved the bound by associating  $(2s-r)\Delta$  vertices with these trails, since then  $(2s-r)\Delta \leq n$ . We have strict inequality if some  $T_i$  uses only  $|E_i|$  intervals (since its start vertices are not in the sets  $S_j$  associated with other trails) or if for some  $T_i$  the associated set  $S_i$  has more than  $2\Delta-\alpha_i$  vertices.

Now consider  $T_1$ , with endpoints u,v. If  $d(u)+d(v)<2\Delta$ , then  $|S_i|>(2-\alpha_i)\Delta$  immediately, so we may assume  $d(u)+d(v)=2\Delta$ . By Claim 4, all neighbors of v lie in  $T_1$ . By Claim 1, only one edge incident to v belongs to  $T_1$ . Since our greedy selection prefers closable trails, this implies that u,v are not adjacent (unless  $uv=E(T_1)$ , in which case  $\Delta=1$  and  $G=K_{\Delta,\Delta}$ ). Suppose the vertices of  $T_1$  are  $u=x_1,x_2,\ldots,x_m=v$  in order. If v is adjacent to both  $x_i$  and  $x_{i+1}$  for some i< m-2, then it forms a triangle with one edge on  $T_i$ , and Claim 7 applies. If i=m-2, then because v has no neighbors on later trails, we can again save an interval for this triangle. Hence we may assume that v does not have consecutive neighbors on  $T_i$ . If v is adjacent to  $x_i$  for i< m-1, then  $x_{i+1}$  has no neighbor w in another trail  $T_j$ . Otherwise, we could follow  $x_1,\ldots,x_i,v,x_{m-1},\ldots,x_{i+1},w$  and continue in  $T_j$  to enlarge the new set of  $T_1$ . Since the successors on  $T_1$  of neighbors of v have no neighbors in later trails, they appear in no later  $S_j$ , and we can add them to  $S_1$ . Now  $S_1$  consists of at least the neighbors of v, their successors on  $T_1$ , and v, which totals v0 here the vertices.

The alterations that are used to improve trails always increase the new set or decrease the length (or make it closed); there can be at most  $n^2$  of these changes for each trail. Also the search for whether a change is needed takes polynomial time. Hence this proof can be implemented as a polynomial algorithm to produce a representation that satisfies the bound.

## References

- [1] M. Aigner and T. Andreae, The total interval number of a graph, J. Comb. Theory (B) 46 (1989), 7–21.
- [2] J. R. Griggs and D. B. West, Extremal values of the interval number of a graph, I, SIAM J. Algeb. Disc. Meth. 1 (1980), 1–7.
- [3] A. V. Kostochka, in *Abstracts of 8th All-Union Conference on Theoretical Cybernetics, Gorkii*, Part 1 1988, p. 174 (in Russian).
- [4] T. M. Kratzke, The total interval number of a graph. Ph.D. Thesis, Univ. of Illinois (1987), Coordinated Science Laboratory Research Report UILU-ENG-88-2202.
- [5] T. M. Kratzke and D. B. West, The total interval number of a graph I: Fundamental classes, *Discrete Math.* **118** (1993), 145–156.
- [6] T. M. Kratzke and D. B. West, The total interval number of a graph II: Trees and complexity, SIAM J. Discr. Math. 9 (1996), 339–348.
- [7] W. T. Trotter and F. Harary, On double and multiple interval graphs, J. Graph Theory 2 (1978), 137–142.