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ABSTRACT 

Erdos and Rado defined a A-system, as a family in which every two members have the 
same intersection. Here we obtain a new upper bound on the maximum cardinality q ( n ,  q )  
of an n-uniform family not containing any A-system of cardinality q. Namely, we prove 
that, for any a > 1 and q ,  there exists C = C(a, q )  such that, for any n ,  
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1. INTRODUCTION 

Erdos and Rado [3]  introduced the notion of a A-system. They called a family X 
of finite sets a A-system if every two members of X have the same intersection. 

Let q ( n ,  q )  (respectively, q ( n ,  q ,  p ) )  denote the maximum cardinality of an 
n-uniform family not containing any A-system of cardinality q (respectively, 
a-uniform family not containing any A-system of cardinality q such that there are 
no p pairwise disjoint sets). 

Erdos and Rado [3] proved that 
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1 { " - l  , = I  (t + l ) ! (q  - 1)' 
t 

( q  - 1)" 5 q ( n ,  q)  5 ( q  - l)"n! 1 - c 
and conjectured that 

q ( n ,  3)  < c" for some absolute constant c . 

Abbott, Hanson, and Sauer [1] improved the upper bound in (1) down to 

We are interested in asymptotic bounds on q ( n ,  q )  for fixed q.  The best 
published upper bound of this kind is due to Spencer [5]: For fixed q ,  E > 0, there 
exists C = C ( q ,  6) such that 

q(n, q )  < C(1+ €)"n! , 

q(n,  3) < ecr13'411! . 

q ( n , 3 ) < e  < d i ,  n . .  

and 

Furedi and Kahn (see [2]) proved that 

In [4], it was proved that, for any integer a > 1, there exists C = C(a)  such that, 
for any n ,  

q ( n ,  3) 5 C n!a-" . 
It appeared that the bound can be extended from q = 3 to any fixed q (using 

ideas of Spencer [ 5 ] ) .  The aim of the present paper is to prove: 

Theorem 1. Let n e 1  and q 2 p 2 2  be integer and a(n,  q )  = 
max(20, Z,,q',~;~g;;:,gn}. Then there exists C ( q )  such that for all n ,  

q ( n ,  q ,  p)  5 C(q)n! [log log n ]  4"af".q)a(n, q)-" . 
Maybe more visual is the following immediate consequence of Theorem 1. 

Corollary 2. 
all n ,  

For each integers q > 2 and a > 1, there exists D( q ,  a )  such that, for 

To derive Corollary 2 from Theorem 1, consider arbitrary integers q > 2 and 
a > 1. Let n,, = min{ I log log log n > 4OOqa). Then a(n, q )  = 2(,q',';;','zyogn, and, 
by Theorem 1, 

log log n q(n,  q )  = q ( n ,  q ,  q )  5 C(q)n!(log log 
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Choosing D(n, a )  = max{C(q), cp(no, q ) } ,  we get Corollary 2.  
The proof of Theorem 1 almost completely repeats that in [4]. In particular, in 

the course of proofs some inequalities are true when n is large in comparison with 
q. We choose C(q)  so that the statement of the theorem holds for smaller n. 

All the logarithms throughout the paper are taken to  the base e.  

2. PRELIMINARY LEMMAS 

Call a family 9 of sets a (4, n,  k, p)-family if it is an n-uniform family not 
containing any A-system of cardinality q such that the cardinality of the 
intersection of each two members of 9 is at most n - k and there are no p 
pairwise disjoint members of 9. 

Lemma 1. For any ( q ,  n ,  k, q)-family 9, 

Proof. We use induction on n - k. Any (q, k, k, q)-family has at most q - 1 
members. Hence the lemma is true for n - k = 0. 

Let the lemma be valid for n - k 5 m - 1 and 9 be a ( q ,  m + k ,  k ,  q)-family. 
Choose q - 1 members A . . . , A q - *  of 9 with maximum cardinality of their 
union and let 2 = u 8:: A , .  Then each A E 9 has a nonempty intersection with 
Z .  

For any x E Z ,  let 9 ( x )  = { A  E 9 Ix E A } ,  @(x) = {A\{x} I A E 9 ( x ) } .  Then, 
for all x E Z ,  @(x) is a ( q ,  m + k - 1, k, q)-family. Thus, 

(m - 1 + k ) !  
k !  

(m + k ) !  
0 k !  ' 

I ( q  - l ) m + l  191 5 c &)I 5 IZl(q - 1)" 
X E Z  

From now on, we suppose that for each m 5 n - 1 and 1 < p '  < p ,  

a(m, q ) - " ,  (2) 

4% q ) - " .  ( 3 )  

4qo(nz.q) cp(m, 4) 5 C(q)m! 11% log mJ 

cp(n7 4, P ' )  5 C(q)n!  llog log nl  4 p ' a ( n ,  4 )  

The following observation from [5]  will be used throughout the paper. Let 
B , ,  . . . , B, be pairwise disjoint finite sets and 9 be a ( q ,  rz, 1, q)-family such that 
IA f l  Bjl 2 b, for each A E 9. Then 

Lemma 2. Let Q < r s k ~ n / 2  and for  any members A , ,  . . . ,  A r  of a 
(4, n,  1, q)-family 9, 

[ A  , U . . . U A , ~ s  rn - kr2/2. ( 5 )  

Then 
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Proof. For r = 1 the lemma is valid since (5) is impossible as r = 1. Suppose that 
the lemma is true for r 5 s  - 1 and 191 > C ( q ) n ! / k ! .  By the induction hypothesis, 
there exist A ,, . . . , A, -  E 9 such that for the set B = A U - - U A,*- we have 
IBI > (s - 1)n - k(s - 1 ) 2 / 2 .  If the lemma does not hold for 9, then, for all 
A E 9, 

\ A  f l  BI > b + ((s - l ) n  - k(s - 1 ) 2 / 2 )  - (sn - ks2/2)  = k(s - 1 / 2 )  , 

and there is an i ,  1 5  i 5 s  - 1 such that IA n Ail > k .  Thus, by (4), 

191 (s - l ) ( k :  l)’P(n - - ‘ 9  4 )  

5 (S - l ) ( k  1> [log log(n - k - l)1 4 y a ( n - k - ’ , y  ) 

- n + k + l  x C(q)(n - k - 1)!a(n - k - 1 ,  q )  

4 q a ( n - k - l . q  s - 1 
(k  + 1)! ‘ 5 C(q)n!a(n - k - 1 ,  q )  - n + k + l  [log log(n - k - 1)] 

Note that for sufficiently large n - k - 1 ,  we have [loglog(n - k - 
I ) ]  Q a ( n - k - 1 . q )  5 (log(n - k - 1))”5 and hence 191 < C ( q ) n ! / k ! .  

Lemma 3. 
Cs!(-”. Then there exist 9’ C 9 and X such that 

Let 5 2 2 ,  1 5  t < s  ~n and 9 be a ( q ,  S, 1 ,  q)-family with 191 2 

(I) 1x1 = s - t ,  
(2) for all A E 9’, A 3 X ;  
(3) 19’1 2 Ct!p -‘, where p = (2q5)””. 

Proof. Case 1. For any A € 9, I{B E 9 I IB n A\  2 s  - t } l s  Ct!2”P-‘ - 1. Let 5’Z 
be a maximal (9 ,  s, t + 1, q)-subfamily of 9. By the choice of 2, for each 
B E ,9\X, there is an A E X with IB n A (  2 s  - t. Thus, 19\215 IX\(Ct!2”P-‘ - 
l) ,  and 

But the existence of such a big (q,  s, t + 1 ,  9)-family contradicts Lemma 1. 
There exists A E 9 such that I { B  E 9 I IB f l  A1 2 s - t}l 2 [Ct!2”p-‘J. 

If [Ct!2”P -‘] 5 1 then the statement is trivial. Otherwise, for some X C A with 
Case 2. 

I X I = s - t ,  

This is the family we need. 0 
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3. MAIN CONSTRUCTION 

Let F be a (4, n,  1 ,  p)-family with IF1 = q ( n ,  q ,  p ) .  Assume that 

191 > C(q)n! Llog log nl 4 p a ( n , y ) a ( n ,  q)-" . 
The idea is to find a (not too large) family of collections of pairwise disjoint (and 
considerably small) sets such that most members of 9 intersect each set from at 
least one of these collections and then apply (4). We put 

a = La(n, q)J , y = Ln/3a] , m = 3a - 1 , 

k = [+ (log log n)31 , r = Llog log nJ . 

Lemma 4. For all s = O , 1 ,  . . . , m and for i,, = 1 and any i , ,  . . . , is E { 1, . . . , r }  
there are subfamilies s(1, i , ,  . . . , i s )  of the family 9 and sets X ( i , ,  . . . , is) and 
Z(l, i ,  , . . . ,  i , , - , ) such that, f o r s Z O a n d f o r a n y i ,  , . . . ,  i,, i f E ( 1  , . . . ,  I } ,  

(i) 9 ( l , i , , .  . . , i s ) C 9 ( l , i l , .  . . , i , - , ) ,  
(ii) for all A E F(1, i , ,  . . . , i s ) ,  A 3 X ( i , )  U X ( i , ,  i,) U . . . U X ( i , ,  i,, . . . , i s ) ,  

(iii) the sets X ( i , ) ,  X ( i , ,  i,), . . . , X ( i , ,  i,, . . . , i , )  are pairwise disjoint, 
fiv) l ~ ( i , ,  i,, . . . , i s ) ]  = y ,  
(v)  lZ( 1 ,  i,, i,, . . . , is- , ) I  5 kr(r + 1 ) / 2 ,  
(vi) X ( i , ,  i,, . . . , i , - , ,  i,) n X ( i , ,  i,, . . . , i>- , ,  i l )  c Z(1, i , ,  i,, . . . , i s - , ) ,  

(viii) IS(1, i,, . . . , i,)l 2 C(n -sy)!(?-",  where 

Proof, 
Steps (05s <m). We have at hand 9 ( 1 ,  i , ,  . . . , i s )  for any i , ,  . . . , i,T E 

(1, . . . , r }  and if s > O  we also have sets X ( i , ,  . . . , i s )  and Z(1, i , ,  . . . , i s - , )  as 
needed. Consider 

We use induction on s. Put 9( 1 )  : = 9, to : = 2a. 

* . . .  
9= F(1, i,, . . . , i s )  

= {A\(X(i,) UX(i,, i2) U - U X ( i , ,  i,, . . . , is)) 1 A E 9(1, i , ,  . . . , is )}  . 
According to the statements of the lemma, % is a (4, n - sy ,  1, q)-family. Note 
that n - my 2 n - (3a - l )n / (3a)  = n / ( 3 a )  and hence for each 0 9 s  5 m,  

mm 
(ns -S(S - l ) y /2 ) / (n  - s y ) s n s / ( n  -my) s -  nl(3a)) < ( 3 a ) 2  . 

Therefore, for each 0 IS 5 m. 

5,s (2a)3a(4q)9a2 5 (8q)9a2 (6) 

and due to Statement (vii) of the lemma, we can use Lemma 3. This Lemma 3 
provides that there exists XI of ca$inality y and XI C @ with I XI I 2 C(n - (s + 
1)y) ! p  (7  + 1 ) y  - n  (where p = (2q5,)n-(r+:)y) such that each A E XI contains XI. We 

Suppose that (4, n - sy, 1, q)-families XI, . . . , X, and sets X , ,  . . . , X,,  
put 2, := 0. 

2, , . . . , 2, are constructed and that, for each 1 5 j 5 1, 1 5 j '  5 I, j # j ' ,  
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Ix,l = Y ,  

0 x, nx,. c z,, 
lZ,l i- kl(1- 1 ) / 2 ,  

for all A E 2(, X, C A ,  

0 lHil 2 C(n - (s + l ) y ) ! ( $ y "  . 

KOSTOCHKA 

(7) 

If 1 < r ,  then we construct 
A € @ ,  we have 

and Z,,, as follows. Note that, for each 

IAl= n - SY 2 2y > Ik + y , 

and by (4) the number N(s,  I )  of A E @ with IA f l  (XI U . . . U X,)l? f k  does not 
exceed 

5 (L)C( q)(n - sy - f k ) !  [log log(n - sy - Ik)J 4 y a ( " - ' y - ' k , y )  

\ y + IX - n x a(11 - SJJ - Ik, 4) 

Since n - sy - Ik > y ,  for large n we have 
\ y + / k  - n  [log log(n - sy - lk)l 4Ycr ( rz - i j - ' k ,4 )  ( ~ ( n  - SY - lk ,  4)  

i- (log(n - sy - Ik))"*a(n - sy - f k ,  q) ry+ 'k -n  < 1 .  

Consequently, 

But for large n we have 

In view of (6) ,  we obtain 

k !  2 ( k / e ) k  2 ( 2 5 , ) "  , (8) 

and for the family 2 e , : = { A E @ ~ ~ A n ( X l U . . . U X , ) ~ < I k }  we have IX' l?  
- C(q)(n - ~ y ) ! ( 2 5 , ) " ~ "  2 C(q)(n ~ ~ y ) ! ( 2 5 , ) " ~ " .  Then by Lemma 3 there 

exist X,+, C 2' and with [X,+ll = y  such that each A E X,+, contains X,+,  
and lX,+ll 2 C(q)(n - (s + l ) y ) !p ' " ' l )Y -n  , where 

91 - $ Y  p = (2q x 2(J- = (4q x ( ( 2 c y ) n ( 4 q ) n s - s ( s - l ) ~ ' *  

- ( ( 2 a ) 1 1 ( 4 q ) n ( s + l ) - s ( ~ + l ) ~ / z  & = ) [ , + I  * 
- 

By definition of X', 
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Ix,,, n (x, u . . . u xi)] < ik . 

Putting Z,+, := Z, U (X,,,  n (XI U . . . U X,)), we have lZ,+,l 5 lZ,l + f k  5 kl( l+ 
1 ) / 2  and conditions (7) are fulfilled for 1 + 1. Thus we can proceed till I = r .  

After constructing X r ,  X , ,  and Z,, we put, for j = 1 , .  . . , r ,  
X(i,,i,,. . . , i s , j ) : = X ,  and 

9(1, i, , . . . , i,, j )  := { A  U X ( i , )  U X ( i , ,  iz) U . . . U X(i , ,  i,, . . . , i,, j )  I A E q} , 
and 

Z(1, i , ,  . . . , i,) := z, . 
By construction, the statements (i)-(vii) of the lemma will be fulfilled for s + 1 L] 

Lemma 5 .  For all s = 0,1,  . . . , m + 1 and for all i,, . . . , is E { 1, . . . , r } ,  there 
are sets X ( i , , .  . . ,is) and Z(1, i,, . . . , is-,) and for all i,, . . . , i,,, E (1, . . . , r } ,  
there are sets A(i , ,  . . . , i,+,) E 9 such that 

(i) the sets X(il), X(i,, i2), . . . , X ( i , ,  i,, . . . , i,,, , )  are pairwise disjoint; 
(ii) IX(i , ,  i,, . . . , is)l = y if 1 5 s 5 m, 
(iii) IX(i,, i,, . . . , i,+,)l = n -my,  
(iv) A(i, ,  . . . , i,+,) = X(i,) U X(i,, i,) U . . . U X ( i , ,  i,, . . . , i,+,), for all s = 

(v) x(iI,iz,. . . , i f - , , i s )nx(i1, i2 , .  . . ,is-l,j~)~Z(l,~,,i2,. . . ,is-,), 
1 , .  . . , m and for all i,, . . . , i s ,  i l  E (1, .  . . , r } ,  

(vi) lZ(1, i,, i,, . . . , i3-])1 s k ( r  + 1 ) / 2 .  

Proof. For s = 0,1,  . . . , rn and for any i,, . . . , i ,  E (1, . . . , r } ,  consider 
B(1, i , ,  . . . ,is), X(i,,. . . ,is), and Z(1, i,, . . . , is-,) from Lemma 4. 

Now, for an arbitrary (rn + 1)-tuple (1, i,, . . . , i,), consider 

x= X ( l , i , ,  . . . ,i,) 

:= {A\(X(i,)UX(i,,i,)U...UX(i,,i,, . . . , i , ) ) l A € F ( l , i 1 , .  . . , i , ) } .  

By construction, 5Y is a (4, n - my, 1, q)-family and, by Lemma 4, IXl? C(n - 

Recall that n - my e nl(3a). By (8), for large n ,  [%'I > C(q)(n  - m y ) ! / k !  and 
by Lemma 2 [note that 0 < r < k < (n - m y ) / 2 ] ,  there exist A ,, . . . , A,  E 2 such 
that 

my)!( :Y - n. 

[ A  , U . * * U A,I > r(n - my) - k r 2 / 2 .  

Z( l , i , , .  . . , i , ) := u A , n A , ,  

(9) 

Let 

I s l ' h s r  

and for j = 1, . . . , r ,  X ( i , ,  i,, . . . , i,, j )  := A,, and 

A ( i , ,  . . . , i,,, j )  =X(i,) UX(i,, i 2 )  U.. . UX(il,i2, . . . , i,) U A, . 

In view of (9), lZ(1, i , ,  . . . , i,)l5 k r 2 / 2 .  Now, by Lemma 4 and the construc- 
tion. all the statements of the lemma are fulfilled. 0 
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Lemma 6. If A € 9  and A n A ( i , ,  . . . , i ,+l)#O for all i , ,  . . . , i m + l  E 
{ 1 ,  . . . , r } ,  then there exist s, 0 5 s 5 m and i , ,  . . . , is E { 1, . . . , r }  such that 

A n X ( i  , , i, , . . . , i s ,  j )  # 0 vj E { 1, . . . , I }  . (10) 

Proof. 
{ 1, . . . , r } ,  there exists j * (  1, . . . , i s )  such that 

Assume that for some B E 9 for each s, 0 5 s 5 m and each i , ,  . . . , i,9 E 

B n X ( i , ,  i,, . . . , i,?, j*(l, . . . , i,?)) = 0 .  

Let further qo = 1 and for s = 1 ,  . . . , m + 1 ,  q, = j * ( q o ,  . . . , q,-,). Then B has 
empty intersection with every member of the sequence 
X ( q , ) , X ( q , ,  q 2 ) ,  . . . , X ( q , ,  q,, . . . , qm+ l ) .  But this means that B is disjoint 

0 from A( q , , q 2 ,  . . . , q, + I ), and we are done 

Completion of the Proof of the Theorem. Consider 

Clearly, 121 5 ( 1  + r + r2  + . . . + r")kr(r + 1) /2  5 krm+2 = k r 3 a + ' .  
Denote by %(i,, . . . , i m + , )  the collection { A  E 9 I A f l  4(i1,. . . , i m + , )  = 0} .  
Let % ' = { A E B I A n Z # 0 }  and 

% ( l , i , , .  . . ,i,) = {AE9\8  i A f l X ( i , , i , , .  . . ,i,, j ) # 0  V j E ( 1 , .  . . , r } }  . 

By Lemma 5 ,  for each s, 0 5 s  c m  and i , ,  . . . , i s  E (1,. . . , r } ,  the sets 
X ( i , ,  i,, . . . , i,, j)\Z for distinct j are pairwise disjoint. Hence by Lemma 6, we 
can write 9 in the form 

Then. 

181s Izlcp(n - 1, q)  5 / J u + l  c ( ~ ) ( ~  - 1)!~4qu(n-l.q) a(n - 1 ,  q)'-" . 

Note that each A E X( 1 ,  i , ,  . . . , i,) must intersect each of r pairwise disjoint sets 
X ( i , ,  i,, . . . , i,, l ) \ Z ,  X ( i l ,  i,, . . . ,is, 2)\2, . . . , X( i , ,  i,, . . . ,is, r ) Z .  The car- 
dinalities of these sets for s < m are at most y and for s = m are less than 2y. 
Consequently, by (4), 

1 ~ ( 1 ,  i,, . . . , i,>ls (2y)'cp(n - r ,  q )  5 (')'c(q)(n - r ) ! r 4 q a ( n - ' , q )  a(n - r ,  q)r-n . 

Observe that, for n > 20 and 1 5 i 5 0.5 log n, 
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a(n - i, q)  log log@ - i) log(1og n - i/(n - i)) 
2 > 

4) log log n - log log n 

log((1- l / (n  + 1)) logn) loglogn - l / n  1 z z 2 1 - - .  log log n log log n n 

Therefore, 

191 5 C( q)n !r(4p-l)'(n.q) a(n,  4)-" + kr'"+'C(q)(n - I ) ! r 4 4 a ( " - ' , 4 )  

x ((n - 1)a(n, q)/n)'-" 

3(log log n)4ya('t' 4 ,  

1.4 llog fog n l  + 
But for large n the expression in big parentheses does not exceed 

(log n)-"l('q + 3(log log n)4(log n)-4's + 4/2(log n)o.2-'0g ' < I  

Thus, the theorem is proved. 
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