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Abstract 

A collection of sets is called a weak A-system if sizes of all pairwise intersections of these sets 
coincide. We prove a new upper bound on the function ./~,.(n), the maximal size of a collection of 
n-element sets no three of which form a weak A-system. Namely, we prove that, for every 6 > 0. 
L,(n) = o(n!1"2 +~). 

We say that  three sets A , B , C  form a (3-)A-system if A ~ B = B c~ C = C c~ A. If 

a weaker  cond i t ion  IA c~ BI = IB ~ CI = IC c~ AI is satisfied then these sets are said 

to form a weak (3-)A-system. 

A long-s tand ing  quest ion,  widely adver t i sed  by Erd6s,  asks how large a col lect ion 

of n-element  sets can be if no three of its members  form a A-system. Two prob lems  are 

closely related with this one: its ana logue  for weak A-systems, and  the p rob lem of 

f inding the max imal  size r(n) of a comple te  g raph  whose edges can be co loured  by 

n colours  wi thout  m o n o c h r o m a t i c  triangles.  

Denote  by f(n), resp. by fw(n), the max ima l  size of a col lect ion of n-element sets no 

three of which form a A-system, resp. a weak A-system. 

No te  that  the col lect ion of N n-element  sets wi thout  weak A-systems gives rise to 

a co lour ing  of  a comple te  g raph  on N vertices into n colours  wi thout  m o n o c h r o m a t i c  

triangles;  with elements  of the system as vertices, and  their  intersect ion sizes as edge 

colours.  Therefore  fw(n) <~ r(n); and  obvious ly  ji,.(w) <~ f (n ) .  

The p rob lem of de te rmin ing  the exact  g rowth  rate of f in)  was first raised in [4]. 

Since then it has become one of the most  famous unsolved prob lems  in combina tor ics ,  

and  one of the favouri te  p rob lems  of Erd6s.  It a t t rac ted  much a t tent ion,  as well as 
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similar problems on the growth rate of the functions fw(n) and r(n), which are also 
unsolved. In all three cases, examples show that the functions grow at least exponenti- 
ally. But, up to now, the best known upper bounds for them are hyperexponential. 

Here are, to our knowledge, the best lower and upper bounds for these functions 

obtained so far, and the relevant references: 
c" 10 "/2 < f ( n )  < (1 + o(1))"n! (the lower bound by Abbott  and Hanson, the upper 

bound by Spencer; cf. [-3]); 

c. 315 "/5 < r(n) < (e - 2~)n! [7, Theorem 2.19]; 

c. 5 "/2 < f~(n)  < c'(n - d)! for any d. 

In the latter case, the lower bound is by Abbott  [1]. We have been unable to find 
this upper bound in the literature; and Erd6s [3] writes that he does not know if 
anybody proved that fw(n) < n!; but it can easily be proved by a standard Ram- 
sey-type argument. Indeed, in any collection of n-sets without weak 3-A-systems the 
sets intersecting a given one by at least n - d elements mutually intersect by at least 
n - 2d elements; hence their number  does not exceed r(2d). So we have inequality 

fw(n) <~ 1 + (n - d)fw(n - 1) + r(2d), and the upper bound follows. 
Erd6s conjectures that all these functions are of exponential growth. But it is stated 

in [-2, 6] that it is still not proved (and would be very desirable to prove) that 

f ( n )  < Cn!, and that fw(n) < Cn! 1-~ for some ~ > 0. 
Recently Kostochka [8] proved that, for any C > 0, f ( n )  = o(n!/C"). 

In this paper we present a proof of the following theorem. 

Theorem 1. For any ~ < ½, there exists a constant C such that fw(n) < Cn! 1-~ 

Proof. Fix e. The proof  proceeds by induction on n. First we carry out the induction 
step, and make sure that the argument holds for n large enough, n i> no, no matter  
what value of C is (in particular, the value no does not depend on C). Then we choose 

fw(n) 
C > max - -  

n<~non! 1 - e '  

thus providing the induction base. 
So now we fix an arbitrary C > O. Let ~" be a collection of n-sets without weak 

3-A-subsystems such that I~-I =fw(n),  and suppose that for n' < n the inequality 

fw(n')  < Cn'! ~ ~ holds. 
The following easy lemma will be used throughout the proof without further notice. 

Lemma 1. Let  X be any subset o f  size m < n o f  the ground set. Then the collection o f  

(n - m)-sets 

{ F \ X I F  +~,~,X = F} 

has no weak 3-A-subsystems. 
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Proof of Theorem 1 (continued). Choose  real numbers  2, L, and positive integers R, M 

so that the following inequalities be satisfied: 

g,, 
> s + - -  (1) 

M - - I '  

L > 2R, (2j 

1 m e  
< s + - - ,  (3) 

R 

M ( 1 - s ) + 2 e -  1 
> e + (4) 

M R -  1 

For  this to be possible, it is sufficient to choose M and R to satisfy the inequalities 

c, 1 - e  
< - -  (5) 

M - 1  R ' 

M ( 1 - s ) + 2 e -  1 1 - e  
< - - ,  (6) 

M R -  1 R 

Indeed, after this, the choice of ~ and L becomes easy. 

Since e < ½, the inequality (6) is equivalent to 

1 --?, ,  

R > l _ 2 e '  

and the inequality (5) can be rewritten as 

R~ 
M > I + - -  

1 - c .  

Thus, we can satisfy the inequalities (1) -(4) by choosing first the value of R, then of 

M, and then of ~ and L. 
Let k = n °, I = Ln ~. We may suppose that k is integer. 

The following lemma will be used in the proof  to deal with intersections of 

comparat ively large size. 

Lemma 2. For any A ~ ~ ,  

k k l { X  ~ • IX ~ A[ >1 M k } l  
C n !  1 - e  

i~ °(n') + zn=, 

where z = eM - ~(M - -1)  < O. 

Proof. Denote  by P the quant i ty  we want  to estimate• By Lemma 1, we can apply the 
induct ion hypothesis to estimate the number  of sets X with any given intersection 
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A c~ X of size at least Mk: 

I { X ~ : l X c ~ A l > ~ M k } r < ~  ~" ( ' / - )C(n - i ) !  ~-~ 
i ~ M k  

Thus, 

P <~ n~"~.n!-l+~.n . max (,".)(n- i)!1-~ 
i>~Mk 

To determine the value of i at which the maximum is attained, consider the ratio 

( i ~ l ) ( n  - -  i - -  1 ) !  1 ~ n - -  i n ' 
< - - < 1 ,  

( '~)(n--i)!x ~ ( i +  1 ) ( n - - 0 1 - ~  Mn ~ 

since e < ~. So, the max imum is at tained at i = Mn ~, and we have 

p ~ nO(n°)nan~n(1 -~)Mn' l , l (  - 1 +e)Mn ~ 

no(n')nn°(ct+ M(1 - c O + M (  1 +e)) 

~_ nO(n')nZn"" 

The inequality (1) asserts that  z < 0, so the lemma is proved. [] 

P roof  of  Theorem 1 (continued). N o w  we proceed to the p roof  of the induction step. 

Cont ruc t  inductively a sequence ~ 0  . . . . .  ~',, of subcollections of  o ~ and a sequence 

Io . . . . .  Im of  subsets of  I = {0 . . . . .  k - l} by the following rules: 

~ 0 = ~ ,  I o = I .  

For  i = 0, 1 . . . . .  if one can find a set F~ ~ ~ and a number  xi El i  such that 

[{X ~ :  IX m F~t = x~}[ > / I ~ ]  
l 

then let 

I ~ + , = I i \ { x , } ;  ~ + ,  = { X + ~ : l X n V , [ = x ~ } .  

Otherwise stop; let X = ~ .  

Note  that intersection sizes excluded from I during this process cannot  appear  in 

the collection X- Indeed, if we had ]X c~ Y] = xj for some X, Y e  Z then the sets 

F j, X, Y would form a weak 3-A-system. This is the only place in the p roof  in which 
absence of  weak 3-A-systems is used at its full strength. 

The process stops after at most  k steps; we have 

IXI >1 lk --  L k k k .  (7) 

Also we have that at most  I Z I k/l = I z I /L  sets from Z intersect any given A e Z by less 
than k elements. 
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N o w  choose R sets A1 . . . . .  A R e Z  such that  [Ai ~ Aj[ < M k  for all i C j .  We can 
choose them one by one, s tar t ing with an arb i t ra ry  A 1. If, at a certain moment ,  there is 

no appropr ia te  set Aj then it means  that  

j - 1  

Z ~- ~ { X : [ X c ~ A i I > ~ M k }  • 
i 1 

But then L e m m a  2 together  with the inequali ty (7) imply 

I ~ [  <~ LkRn°~n'~+~"'Cn!l ~ < Cn! 1-~ 

and the induction step is proved.  
So we suppose that  the sets Ai are chosen. N o w  we will use them to est imate [Z [. To  

this end, we par t i t ion ~ into three collections ~(o, Z1, ~z and deal with them separately. 

Let 

z0 = { x e z :  IX ~ A~I < k for some i}; 

Ze = { X e z: i X  c~ All >~ M k  for some i}; 

Z~ = { X e z: k <~ l X  r~ Ai[ < M k  for all i}. 

We have 1~[ ~< L k ' k k ( [ z o  I + [Zll + ]Z2[). 
It is easy to deal with Zo and Z2. Indeed, 

[Zo[ ~< R I z [ / L  < IZ[/2 (from the inequali ty (2)); 

Lkkklz21 <~ L'en°t"=~+z"'Cn! 1-~ = o (Cn!  1-~) (by L e m m a  2). 

We shall est imate I xll by considering all possible intersections of A~ . . . . .  A R with 
sets f rom this collection. 

Let B = [._)i~j(Ai n Aj); A'i = A i \ B .  We have [B[ ~< R 2 M k ,  and IZ}[ ~< n. 
For  each X e ;(1, define b = b ( X )  = IX ~ BI, ai = a i (X )  = IX ~ A}I. These num- 

bers obviously satisfy the inequalities 0 ~< ai < M k ,  and b + ai >~ k. 

Given b, a~ . . . . .  aR, let us est imate the number  of sets X with such parameters .  This 

number  does not  exceed 

( [ B l ) ( n )  . . . . . . . . . .  ( n ) c ( n  ol aR b)! 1 ~  
N = b aa ag 

Let s = ~ ~ a i / R ~ ;  mina i  <<. s <~ M k .  

F r o m  the inequalities a~ + ... + aR >~ Rs  - R,  b + mina~ ~> k, and mina~ ~< s we 
find that  

n - a  1 . . . . .  a R - b < ~  n - k -  Rs  + s + R. 

The factor (~ ) . - .  (f,) is bounded  f rom above  by (7)g. So, we have 

N <~ 2 R~M"~ C(n  - k - Rs  + s + R)! 1 

~< n°~"'~(s), 

where qS(s) = C(7)g(n  - (R  - 1)s - k)! 1 -~ 
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As in the  p r o o f  of  L e m m a  2, we shal l  n o w  d e t e r m i n e  the m a x i m u m  va lue  of  q~(s) 

when  0 <<, s <<, Mk. 

c~(s+cb(s) 1 ) - ( n - s ~ R (  ( n - k - ( R - \ s  + l J  t - n - -  k (R---1)s- (R-l~_)i 1 ) ) ' )  1-~ 

= (1 + o(1)) s ~  n(1-R)(1 ~) 

~> (1 + o(1) )n  t l-~)Rn(1 RI(1-~) > 1, 

s ince (1 - c~)R + (1 - R)(1 - e) > 0 ( i nequa l i t y  (3)). 

T h u s  the  m a x i m u m  is a t t a i n e d  at  s = Mk ,  a n d  we have  

Iz l l  ~< (IB[ + 1)(IA'~[ + 1 ) . . . ( I Z ~ l  + 1)n°t")~(Mk) 

= n°("~)C Mn ~ (n--  n~(MR - M + 1))!~-~; 

Lkkklz1] ( n ~MR." 
C n ! ~  -- n °t"') \ ~ n ~ j  n n'(MR-M+ 1)(1-e)nctn" 

= nO(n')nn'(MRtl  o t ) + ~ t - ( M R - M + 1 ) t 1 - e ) )  = o(I), 

by  the i n e q u a l i t y  (4). 

C o m b i n i n g  these  e s t ima te s  for  lZ0], ]~(i l, a n d  I~(21, we get  t ha t  l ~ l  = o(Cn! I -~) a n d  

tht /s  p r o v e  the i n d u c t i o n  step.  The  t h e o r e m  is p roved .  [ ]  
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