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Abstract

A collection of sets is called a weak A-system if sizes of all pairwise intersections of these sets
coincide. We prove a new upper bound on the function f,.(»), the maximal size of a collection of
n-element sets no three of which form a weak 4-system. Namely, we prove that. for every & > 0.
foln) = o(n!1279).

We say that three sets 4, B, C form a (3-)4-systemif AnB=BnC=Cn A. If
a weaker condition |A n B| = |B n C| = |C n A] is satisfied then these sets are said
to form a weak (3-)4-system.

A long-standing question, widely advertised by Erdds, asks how large a collection
of n-element sets can be if no three of its members form a A-system. Two problems are
closely related with this one: its analogue for weak A-systems, and the problem of
finding the maximal size r(n) of a complete graph whose edges can be coloured by
n colours without monochromatic triangles.

Denote by f(n), resp. by f,,(n), the maximal size of a collection of n-element sets no
three of which form a A-system, resp. a weak A-system.

Note that the collection of N n-element sets without weak A-systems gives rise to
a colouring of a complete graph on N vertices into n colours without monochromatic
triangles; with elements of the system as vertices, and their intersection sizes as edge
colours. Therefore f,(n) < r(n), and obviously f,.(w) < f(n).

The problem of determining the exact growth rate of f(n) was first raised in [4].
Since then it has become one of the most famous unsolved problems in combinatorics,
and one of the favourite problems of Erdds. It attracted much attention, as well as
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similar problems on the growth rate of the functions f,,(n) and r(n), which are also
unsolved. In all three cases, examples show that the functions grow at least exponenti-
ally. But, up to now, the best known upper bounds for them are hyperexponential.
Here are, to our knowledge, the best lower and upper bounds for these functions
obtained so far, and the relevant references:
¢-10"? < f(n) < (1 + o(1))"n! (the lower bound by Abbott and Hanson, the upper
bound by Spencer; cf. [3])

¢ 315"% < r(n) < (e — &)n! [7, Theorem 2.197;
¢ 5" < f(n) < c'(n—d)! forany d.

In the latter case, the lower bound is by Abbott [1]. We have been unable to find
this upper bound in the literature; and Erdds [3] writes that he does not know if
anybody proved that f,,(n) < n!; but it can easily be proved by a standard Ram-
sey-type argument. Indeed, in any collection of n-sets without weak 3-4-systems the
sets intersecting a given one by at least n — d elements mutually intersect by at least
n — 2d elements; hence their number does not exceed r(2d). So we have inequality
fo(n}< 1+ (n—d)f,(n— 1)+ r(2d), and the upper bound follows.

Erdés conjectures that all these functions are of exponential growth. But it is stated
in [2,6] that it is still not proved (and would be very desirable to prove) that
f{(n) < Cn!, and that f,.(n) < Cn!* "¢ for some ¢ > 0.

Recently Kostochka [8] proved that, for any C > 0, f(n) = o(n!/C").

In this paper we present a proof of the following theorem.

Theorem 1. For any ¢ < %, there exists a constant C such that f,,(n) < Cn!?* "%

Proof. Fix &. The proof proceeds by induction on n. First we carry out the induction

step, and make sure that the argument holds for n large enough, n > n,, no matter

what value of C is (in particular, the value ny does not depend on C). Then we choose
C > inga")g %—f@s

thus providing the induction base.

So now we fix an arbitrary C > 0. Let & be a collection of n-sets without weak
3-A-subsystems such that |#| = f,,(n), and suppose that for n' < n the inequality
fu(n') < Cn’1* % holds.

The following easy lemma will be used throughout the proof without further notice.

Lemma 1. Let X be any subset of size m < n of the ground set. Then the collection of
(n — m)-sets

(F\X|Fe#,X c F}

has no weak 3-A-subsystems.
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Proof of Theorem 1 (continued). Choose real numbers «, L, and positive integers R, M
so that the following inequalities be satisfied:

o >¢e+

M-1
L > 2R, (2)
o4 lTf (3)
o< R
R
M —¢)+2e—1
: . 4
x>e+ MR — 1 (4)

For this to be possible, it is sufficient to choose M and R to satisfy the inequalities

I 1 —¢
< k]
M-—1 R

(5)

M(1—8)+2£—1<1—£
MR — 1 R’

Indeed, after this, the choice of « and L becomes easy.
Since ¢ < 4, the inequality (6) is equivalent to

l—¢

R>——:
1 —2¢

and the inequality (5) can be rewritten as

Re
M>1+ .
1 —¢

Thus, we can satisfy the inequalities (1)—(4) by choosing first the value of R, then of
M, and then of « and L.

Let k = n® | = Ln*. We may suppose that k is integer.

The following lemma will be used in the proof to deal with intersections of
comparatively large size.

Lemma 2. For any Ae %,

K{XeF:|X nAl =Mk} -
Cn!l™e h

no(n')+zn‘

where z =eM — a(M — 1) < 0.

Proof. Denote by P the quantity we want to estimate. By Lemma 1, we can apply the
induction hypothesis to estimate the number of sets X with any given intersection
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A N X of size at least Mk:
H{XeZF: | XAl >2Mk} < Z (HCn —int—e

i> Mk

Thus,

a

e max (D — it e
iz Mk

Pgnam

To determine the value of i at which the maximum is attained, consider the ratio

Gf)m—i— e n—i n’
M F G D) M b

since ¢ < a. So, the maximum is attained at i = Mn* and we have
P < no(n")nan’n(l —-az)Mn"‘n( —1+&eMn*
— no(n’)nn“(a(+M(1 —a)+M(—1+g))
— no(n’)nzn°'

The inequality (1) asserts that z < 0, so the lemma is proved. 0

Proof of Theorem 1 (continued). Now we proceed to the proof of the induction step.
Contruct inductively a sequence &y, ..., &, of subcollections of # and a sequence
Io, ..., I, of subsets of I = {0, ...,k — 1} by the following rules:

Fo=%, Iy=1
Fori=0,1,..., if one can find a set F; € #; and a number x; € I; such that

|Zl
!

X eF:|X nFl=x}|>

then let
Loy =IN\{xi}; Fini={XeF:|XnF]|= X}

Otherwise stop; let y = £;.

Note that intersection sizes excluded from I during this process cannot appear in
the collection y. Indeed, if we had |X n Y| = x; for some X, Y €y then the sets
F;, X, Y would form a weak 3-4-system. This is the only place in the proof in which
absence of weak 3-A-systems is used at its full strength.

The process stops after at most k steps; we have

|Z#| |F|
T= LK

(7

x| =

Also we have that at most |y|k/l = |x|/L sets from y intersect any given A € y by less
than k elements. )
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Now choose R sets A;,...,Ag € x such that |4; n A;| < Mk for all i #j. We can
choose them one by one, starting with an arbitrary A, . If, at a certain moment, there is
no appropriate set 4; then it means that

j—1
r S U {X:1X n 4] = Mk}
i=1
But then Lemma 2 together with the inequality (7) imply
|F| < LKRn°™ = Cpll ¢ < Cnlt e

and the induction step is proved.
So we suppose that the sets 4; are chosen. Now we will use them to estimate |x|. To

this end, we partition y into three collections y¢, x1, z2 and deal with them separately.
Let

xo={X€ex|X n A4l <k for some i};
2 ={X ey |X n Al = Mk for some i};
1 =1{Xeprk<|X n A< Mkfor all i}.

We have [#| < L* k*(|x0| + [21] + 221}
It is easy to deal with y, and y,. Indeed,

lxol < Rly|/L <1x|/2 (from the inequality (2));
LEKF y, ) < LPne™ e Cntt~¢ = o(Cn!' %) (by Lemma 2).

We shall estimate |y, | by considering all possible intersections of 4,,..., A with
sets from this collection.
Let B={J,, (Ai " A;) A; = A;\B. We have | B| < R*Mk, and |4i| < n.

For each X €y, define b= b(X)=|X n B|, a; = a;(X) = | X n Aj|. These num-
bers obviously satisfy the inequalities 0 < a; < Mk, and b + a; = k.

Given b,a,, ..., ag, let us estimate the number of sets X with such parameters. This
number does not exceed

N=<|B|><n>...<n>C(n—01 e —ag—b)e
b 23] agr

Let s=[ Ya;/R|; ming; < s < Mk.
From the inequalities a, + .- + ag = Rs — R, b + ming; > k, and ming; < s we
find that
n—a, —-—ag—b<n—k—Rs+s+ R

The factor () ---(*) is bounded from above by (7)R. So, we have
g B R
N 2R M"( > Cn—k—Rs+s+ RN ¢
s

< n°(s),

where ¢(s) = C(")%(n — (R — 1)s — k)!' 7=
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As in the proof of Lemma 2, we shall now determine the maximum value of ¢(s)
when 0 < s < Mk.

ps+1) (n—s\*((n—k—(R—1s—(R—1)\'"*
b(s) _<s+1 < (n—k — (R — 1)s)! >

(1-R)(1—¢)
=(1 +0 1 R— n €

> (1 + o(1))n! ~0Rp-RA -0 5 1

since (1 — )R + (1 — R)(1 — ¢) > 0 (inequality (3)).
Thus the maximum is attained at s = Mk, and we have

l21) < (IBl + (A1 + 1) - (|1 4R] + Dn°" $(Mk)

R
= n°‘"’>c< ! > (n—n* (MR —M + 1)) "5
Mn

ki k MRn*

LYk x| oy [ 1 —n*(MR—M+1)(1 - ¢),,an*

n T n n
n

Cn!'~*
nMR( -0 +x—(MR=M + H(1=0) _ (1),

=n°"p

by the inequality (4).
Combining these estimates for | %o/, |11/, and |y, |, we get that | % | = o(Cn!' ~¢) and
thus prove the induction step. The theorem is proved. [
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