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Abstract. Let k ≥ 3 be an integer, hk(G) be the number of vertices of degree at least 2k
in a graph G, and `k(G) be the number of vertices of degree at most 2k − 2 in G. Dirac
and Erdős proved in 1963 that if hk(G) − `k(G) ≥ k2 + 2k − 4, then G contains k vertex-
disjoint cycles. For each k ≥ 2, they also showed an infinite sequence of graphs Gk(n) with
hk(Gk(n))− `k(Gk(n)) = 2k − 1 such that Gk(n) does not have k disjoint cycles. Recently,
the authors proved that, for k ≥ 2, a bound of 3k is sufficient to guarantee the existence of k
disjoint cycles and presented for every k a graph G0(k) with hk(G0(k))−`k(G0(k)) = 3k−1
and no k disjoint cycles. The goal of this paper is to refine and sharpen this result: We show
that the Dirac–Erdős construction is optimal in the sense that for every k ≥ 2, there are
only finitely many graphs G with hk(G)−`k(G) ≥ 2k but no k disjoint cycles. In particular,
every graph G with |V (G)| ≥ 19k and hk(G)− `k(G) ≥ 2k contains k disjoint cycles.
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1. Introduction6

For a graph G, let |G| = |V (G)|, ‖G‖ = |E(G)|, and δ(G) be the minimum degree of a7

vertex in G. For a positive integer k and a graph G, define Hk(G) to be the subset of vertices8

with degree at least 2k and Lk(G) to be the subset of vertices of degree at most 2k − 2 in9

G. Two graphs are disjoint if they have no common vertices.10

Every graph with minimum degree at least 2 contains a cycle. The following seminal result11

of Corrádi and Hajnal [2] generalizes this fact.12

Theorem 1.1. [2] Let G be a graph and k a positive integer. If |G| ≥ 3k and δ(G) ≥ 2k,13

then G contains k disjoint cycles.14

Both conditions in Theorem 1.1 are sharp. The condition |G| ≥ 3k is necessary as every15

cycle contains at least 3 vertices. Further, there are infinitely many graphs that satisfy16

|G| ≥ 3k and δ(G) = 2k− 1, but contain at most k− 1 disjoint cycles. For example, for any17

n ≥ 3k, let Gn = Kn − E(Kn−2k+1) where Kn−2k+1 ⊆ Kn.18

The Corrádi-Hajnal Theorem inspired several results related to the existence of disjoint19

cycles in a graph (e.g. [3, 4, 7, 5, 13, 11, 1, 12, 10, 9]). This paper focuses on the following20

theorem of Dirac and Erdős [3], one of the first attempts to generalize Theorem 1.1.21

Theorem 1.2. [3] Let k ≥ 3 be an integer and G be a graph with |Hk(G)| − |Lk(G)| ≥22

k2 + 2k − 4. Then G contains k disjoint cycles.23
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Dirac and Erdős suggested that the bound k2 + 2k − 4 is not best possible and also24

constructed an infinite sequence of graphs Gk(n) with hk(Gk(n))− `k(Gk(n)) = 2k− 1 such25

that Gk(n) does not have k disjoint cycles. They did not explicitly pose problems, and26

it seems that Erdős regretted not doing so, as later in [6] he remarked (about [3]): “This27

paper was perhaps undeservedly neglected; one reason was that we have few easily quotable28

theorems there, and do not state any unsolved problems.” Here we consider questions that29

are implicit in [3].30

For small graphs, the bound of |Hk(G)| − |Lk(G)| ≥ 2k is not sufficient to guarantee the31

existence of k disjoint cycles. Indeed, K3k−1 contains at most k − 1 disjoint cycles, so for32

small graphs, a bound of at least 3k is necessary. The authors [8] recently proved that 3k is33

also sufficient.34

Theorem 1.3. [8] Let k ≥ 2 be an integer and G be a graph with |Hk(G)| − |Lk(G)| ≥ 3k.35

Then G contains k disjoint cycles.36

There exist graphs G with at least 3k vertices and |Hk(G)| − |Lk(G)| ≥ 2k that do not37

contain k disjoint cycles. For example, consider the graph G0(k) obtained from K3k−1 by38

selecting a subset S ⊆ V (K3k−1) with |S| = k, removing all edges in G[S], adding an extra39

vertex x and the edges from x to each vertex in S. Then |Hk(G0(k))|− |Lk(G0(k))| = 3k− 240

and |G0(k)| = 3k, but x is not in a triangle, so G0(k) contains at most k − 1 disjoint cycles.41

In [8], the authors describe another graph G1(k), obtained from G0(k) by adding k vertices42

of degree 1, each adjacent to x. The graph G1(k) still contains only k − 1 disjoint cycles,43

but has 4k vertices and |Hk(G1(k))| − |Lk(G1(k))| = 2k. However, in the special case that44

G is planar, it is shown in [8] that the bound of 2k is sufficient.45

Theorem 1.4. [8] Let k ≥ 2 be an integer and G be a planar graph. If46

|Hk(G)| − |Lk(G)| ≥ 2k,

then G contains k disjoint cycles.47

Further, when k ≥ 3, a bound of 2k is also sufficient for graphs with no two disjoint48

triangles.49

Theorem 1.5. [8] Let k ≥ 3 be an integer and G be a graph such that G does not contain50

two disjoint triangles. If51

|Hk(G)| − |Lk(G)| ≥ 2k,

then G contains k disjoint cycles.52

In general, the bound of 2k is the best we may hope for, as witnessed by Kn−2k+1,2k−153

for n ≥ 4k. Further, the graph G1(k) described above shows that a difference of 2k is not54

sufficient when |G| is small. In [8], we were not able to determine whether for each k there55

are only finitely many such examples. In order to attract attention to this problem and56

based on known examples, we raised the following question.57

Question 1.6. [8] Is it true that every graph G with |G| ≥ 4k+1 and |Hk(G)|−|Lk(G)| ≥ 2k58

has k disjoint cycles?59

The goal of this paper is to confirm that indeed for every k ≥ 2, there are only finitely60

many graphs G with hk(G)− `k(G) ≥ 2k but no k disjoint cycles. We do this by answering61

Question 1.6 for graphs with at least 19k vertices.62
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Theorem 1.7. Let k ≥ 2 be an integer and G be a graph with |G| ≥ 19k and63

|Hk(G)| − |Lk(G)| ≥ 2k.

Then G contains k disjoint cycles.64

The remainder of this paper is organized as follows. The next two sections outline notation65

and previous results that will be used in the proof of Theorem 1.7. We also introduce66

Theorem 3.4, which is a more technical version of Theorem 1.7. Theorem 3.4 is proved in67

Section 4. The proof builds on the techniques of Dirac and Erdős [3] and uses Theorem 1.368

as the base case for our induction.69

2. Notation70

We mostly use standard notation. For a graph G and x ∈ V (G), NG(x) is the set of all71

vertices adjacent to x in G, and the degree of x, denoted dG(x), is |NG(x)|. When the choice72

of G is clear, we simplify the notation to N(x) and d(x), respectively. The complement of a73

graph G is denoted by G. For an edge xy ∈ E(G), G�xy denotes the graph obtained from74

G by contracting xy; the new vertex is denoted by vxy.75

For disjoint sets U,U ′ ⊆ V (G), we write ‖U,U ′‖G for the number of edges from U to76

U ′. When the choice of G is clear, we will write ‖U,U ′‖ instead. If U = {u}, then we will77

write ‖u, U ′‖ instead of ‖{u}, U ′‖. The join G ∨ G′ of two graphs is G ∪ G′ ∪ {xx′ : x ∈78

V (G) and x′ ∈ V (G′)}. Let SKm denote the graph obtained by subdividing one edge of the79

complete m-vertex graph Km.80

Given an integer k, we say a vertex in Hk(G) is high, and set hk(G) = |Hk(G)|. A vertex81

in Lk(G) is low. Set `k(G) = |Lk(G)|. A vertex v is in V i(G) if dG(v) = i. Similarly,82

v ∈ V ≤i(G) if dG(v) ≤ i and v ∈ V ≥i(G) if dG(v) ≥ i. In these terms, Hk(G) = V ≥2k(G)83

and Lk(G) = V ≤2k−2(G).84

We say that x, y, z ∈ V (G) form a triangle T = xyzx in G if G[{x, y, z}] is a triangle. If85

v ∈ {x, y, z}, then we say v ∈ T . A set T of disjoint triangles is a set of subgraphs of G86

such that each subgraph is a triangle and all the triangles are disjoint. For a set S of graphs,87

let
⋃
S =

⋃
{V (S) : S ∈ S}. For a graph G, let c(G) be the maximum number of disjoint88

cycles in G and t(G) be the maximum number of disjoint triangles in G. When the graph G89

and integer k are clear from the context, we use H and L for Hk(G) and Lk(G), respectively.90

The sizes of H and L will be denoted by h and `, respectively.91

3. Preliminaries92

As shown in [10], if a graph G with |G| ≥ 3k and δ(G) ≥ 2k − 1 does not contain a large93

independent set, then with two exceptions, G contains k disjoint cycles:94

Theorem 3.1. [10] Let k ≥ 2. Let G be a graph with |G| ≥ 3k and δ(G) ≥ 2k− 1 such that95

G does not contain k disjoint cycles. Then96

(1) G contains an independent set of size at least |G| − 2k + 1, or97

(2) k is odd and G = 2Kk ∨Kk, or98

(3) k = 2 and G is a wheel.99

The theorem gives the following corollary.100

Corollary 3.2. Let k ≥ 2 be an integer and G be a graph with |G| ≥ 3k. If h ≥ 2k and101

δ(G) ≥ 2k − 1 (i.e. L = ∅), then G contains k disjoint cycles.102
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This corollary, along with the following theorem from [8] will be used in the proof.103

Theorem 3.3. [8] Let k ≥ 2 be an integer and G be a graph such that |G| ≥ 3k. If104

h− ` ≥ 2k + t(G),

then G contains k disjoint cycles.105

We prove the following technical statement that implies Theorem 1.7, but is more amenable106

to induction.107

Theorem 3.4. Suppose i, k ∈ Z, k ≥ i and k ≥ 2. Let α = 16 be a constant. If G is a108

graph with |G| ≥ αk + 3i and h ≥ `+ 3k − i, then c(G) ≥ k.109

Theorem 1.7 is the special case of Theorem 3.4 for i = k. The heart of this paper will110

be a proof of Theorem 3.4. In the remainder of this section we organize the induction and111

establish some preliminary results.112

We argue by induction on i. The base case i ≤ 0 follows from Theorem 1.3. Now suppose113

i ≥ 1. The equations |G| ≥ h+ ` and h− ` ≥ 2k give114

(1) ` ≤ |G|
2
− k.

The 2-core of a graph G is the largest subgraph G′ ⊆ G with δ(G′) ≥ 2. It can be obtained115

from G by iterative deletion of vertices of degree at most 1. The following lemma was proved116

in [8].117

Lemma 3.5. [8] Suppose the 2-core of G contains at least 6 vertices and is not isomorphic118

to SK5. If h2(G)− `2(G) ≥ 4 then c(G) ≥ 2.119

Now, we prove a result regarding minimal counterexamples to Theorem 3.4. Call a triangle120

T good if T ∩ Lk(G) 6= ∅.121

Lemma 3.6. Suppose i, k ∈ Z, k ≥ i and k ≥ 2. Let α = 16. If a graph G satisfies all of:122

(a) |G| ≥ αk + 3i,123

(b) h ≥ `+ 3k − i,124

(c) c(G) < k, and125

(d) subject to (a–c), σ := (k, i, |G|+ ‖G‖) is lexicographically minimum,126

then all of the following hold:127

(i) G has no isolated vertices;128

(ii) k ≥ 3;129

(iii) L(G) ∪ V ≥2k+1(G) is independent;130

(iv) if x ∈ L(G), d(x) ≥ 2, and xy ∈ E, then xy is in a triangle; and131

(v) if T is a nonempty set of disjoint good triangles in G and X :=
⋃
T , then ‖v,X‖ ≥132

2|T |+ 1 for at least two vertices v ∈ V rX.133

Proof. Assume (a–d) hold. Using Theorem 1.3, (a–c) imply i ≥ 1; so the minimum in (d)134

is well defined. If (i) fails, then let v be an isolated vertex in G. Now G′ := G − v and135

i′ := i− 1 satisfy conditions (a–c), contradicting (d). Hence, (i) holds.136

For (ii), suppose k = 2. Then t(G) ≤ c(G) ≤ 1. If i = 1 then h− ` ≥ 3k − i ≥ 2k + t(G),
so c(G) ≥ 2 by Theorem 3.3. Thus i = 2 and h− ` = 4. Using (1) and (i),

‖G‖ ≥ 1

2
(`+ 3(|G| − `) + h) =

1

2
(3|G|+ h− 2`)
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=
1

2
(3|G| − `+ 4) ≥ 1

2

(
3|G| −

(
|G|
2
− 2

)
+ 4

)
= |G|+ |G|

4
+ 3 ≥ |G|+ α

2
+

3i

4
+ 3 = |G|+ α

2
+

9

2
.(2)

If G′ is the 2-core of G, then ‖G′‖−|G′| ≥ ‖G‖−|G|. Since α > 1, (2) yields ‖G′‖ > |G′|+5;137

so |G′| > 5 and G′ 6∼= SK5. By Lemma 3.5, c(G) ≥ 2, contradicting (c).138

For (iii), suppose e ∈ E(G[L ∪ V ≥2k+1(G)]), and set G′ := G− e. Since G′ is a spanning139

subgraph of G, it satisfies (a) and (c). Moreover, by the definition of G′, hk(G′) = h and140

`k(G′) = `, so (b) holds for G′, which means (d) fails for G.141

If (iv) fails, then let G′ = G�xy and i′ = i− 1. Since dG′(vxy) ≥ d(y) and the degrees of142

all other vertices in G′ are unchanged, G′ and i′ satisfy (a–c), contradicting (d).143

Finally, suppose (v) fails, and let u ∈ V rX with ‖u,X‖ maximum. Then ‖v,X‖ ≤ 2|T |144

for all v ∈ V r (X + u). Set G′ = G − X, k′ = k − |T |, and i′ = i − |T | ≤ k′. Then145

H ∩V (G′)−u ⊆ Hk′(G
′) and Lk′(G

′)−u ⊆ L∩V (G′). Since α ≥ 3, we have |G′| ≥ αk′+3i;146

so G′ satisfies (a). Let β1 = 1 if u ∈ H rHk′(G
′); else β1 = 0. Let β2 = 1 if u ∈ Lk′(G

′)rL;147

else β2 = 0. Then β1 + β2 ≤ |T | and so148

(3) hk′(G
′) ≥ h− 2|T | − β1 ≥ `+ 3k − i− 2|T | − β1.

Since T is a set of good triangles, there are |T | in X that are low in G. Also, by assumption,
there are at most 2|T | vertices in Lk′(G

′) − Lk(G). Hence, ` ≥ `k′(G
′) + |T | − β2, and

combining with (3) yields

hk′(G
′) ≥ (`k′(G

′) + |T | − β2) + 3k − i− 2|T | − β1
≥ `k′(G

′)− |T |+ 3(k′ + |T |)− (i′ + |T |)− β1 − β2
≥ `k′(G

′) + 3k′ − i′.

This means G′ satisfies (b). As c(G′) + |T | ≤ c(G) < k, c(G′) < k′. Thus G′ satisfies (c). If149

k′ ≥ 2, then this contradicts the choice of k in (d), so (v) holds.150

Otherwise, k′ = 1, i.e., |T | = k − 1 and so |X| = 3k − 3. Since each triangle in T has a151

low vertex, |L ∩X| ≥ |T |, and by (iii), dG(x) ≤ 2k for each x ∈ X. Thus152

(4) ‖X, V (G′)‖ < 2k|X| < 6k2.

By (b), |H ∩ V (G′)| − |L ∩ V (G′)| ≥ 3k − i− |H ∩X|+ |L ∩X| ≥ 2k − i. So,153 ∑
v∈V (G′)∩(H∪L)

dG(v) ≥ 2k|H ∩ V (G′)| ≥ 2k
|V (G′) ∩ (H ∪ L)|+ (2k − i)

2
.

By this and (4), we get154

(5) 2‖G′‖ =
∑

v∈V (G′)

dG(v)−‖X, V (G′)‖ ≥ k(|G′|+ 2k− i)−‖X, V (G′)‖ ≥ k(|G′| − 4k− i).

By (c), c(G) ≤ k − 1, so G′ has no cycle. Thus by (5),155

2|G′| > 2‖G′‖ ≥ k(|G′| − 4k − i).
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By (a), |G′| ≥ |G| − 3k ≥ (α− 3)k + 3i = 13k + 3i. Solving yields

k(4k + i) > (k − 2)|G′| ≥ (k − 2)(13k + 3i)

26k > 9k2 + i(2k − 6).

As i ≥ 0, and k ≥ 3 by (ii), this is a contradiction. �156

4. Proof of Theorem 3.4157

Fix k, i, and G = (V,E) satisfying the hypotheses of Lemma 3.6. First choose a set S158

of disjoint good triangles with s := |S| maximum, and put S =
⋃
S. Next choose a set159

S ′ of disjoint triangles, each contained in V ≤2k(G) r S, with s′ := |S ′| maximum, and put160

S ′ =
⋃
S ′. Say S = {T1, . . . , Ts} and S ′ = {Ts+1, . . . , Ts+s′}.161

Let H be the directed graph defined on vertex set S by CD ∈ E(H) if and only if there162

is v ∈ C with ‖v,D‖ = 3. Here we allow graphs with no vertices. A vertex C ′ is reachable163

from a vertex C if H contains a directed CC ′-path. In particular, each vertex C is reachable164

from itself via a CC-path of length 0.165

Fact 4.1. If x ∈ Lr S and d(x) ≥ 2 then N(x) ⊆ S.166

Proof. Suppose y ∈ N(x) r S. As x is low, x /∈ S ′. By Lemma 3.6(iv), xy is in a triangle167

xyzx. As S is maximal, z ∈ S, so z ∈ C for some C ∈ S. Let168

S0 = {C ′ ∈ S : C is reachable from C ′ inH}.

By Lemma 3.6(v), there is w ∈ (V r
⋃
S0)−y with ‖w,

⋃
S0‖ ≥ 2|S0|+ 1. Then ‖w,D‖ = 3169

for some D ∈ S0. By Lemma 3.6(iii), w 6= x. Further, w /∈ S as otherwise the triangle in S170

containing w is in S0, contradicting that w /∈
⋃
S0.171

Let D = C1, . . . , Cj = C be a DC-path in H, and for i ∈ [j − 1] let xi ∈ Ci with172

‖xi, Ci+1‖ = 3. Since each Ci+1 contains a low vertex, by Lemma 3.6(iii), xi is not a low173

vertex for each i ∈ [j − 1]. Define new trianges C ′1 = C1 − x1 + w, C ′j = Cj − z + xj−1 and174

C ′i = Ci− xi + xi−1 for i ∈ {2, . . . , j − 1} and observe that each of these triangles contains a175

low vertex. Then,
(
S r

⋃j
i=1Ci

)
∪
⋃j

i=1C
′
i ∪{xyzx} is a set of s+ 1 disjoint good triangles.176

This contradicts the maximality of S. �177

Fact 4.2. Each v ∈ V is adjacent to at most 2 leaves. Moreover, if v is adjacent to 2 leaves,178

then v ∈ V 2k.179

Proof. Let v be adjacent to a leaf. By Lemma 3.6(iii), v ∈ V 2k−1 ∪ V 2k. Let X be the set of
leaves adjacent to v, and put G′ = G−X. Let i′ = i− (|X| − 1− |{v} ∩ V 2k|). Observe

hk(G′)− `k(G′) ≥ (h− |{v} ∩ V 2k|)− (`+ 1− |X|)
= h− `− |{v} ∩ V 2k|+ |X| − 1

≥ 3k − i− |{v} ∩ V 2k|+ |X| − 1

= 3k − i′,

so (b) holds for G′, k and i′. Now, |G′| ≥ αk+3i−|X| = αk+3i′+2|X|−3(1+ |{v}∩V 2k|).180

If |X| ≥ 3, then 2|X| − 3(1 + |{v} ∩ V 2k|) ≥ 0, so |G′| ≥ αk + 3i′ and (a) holds. As i′181

is at most i and G′ ⊂ G, (d) does not hold for G, k, and i, a contradiction. Similarly, if182
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v ∈ V 2k−1 and |X| = 2, then |G′| ≥ αk + 3i′, so (a) still holds and G′, k and i′. Thus this183

also contradicts (d) for G. �184

Let G1 = G − V 1. Let H1 = V ≥2k(G1), R
1 = V 2k−1(G1), L

1 = Lk(G1) ∩ L, and M =185

Lk(G1)rL1. Then G1 = G[H1∪R1∪M ∪L1] and V ≥2k−1(G) = H1∪R1∪M . Since deleting186

a leaf does not decrease the difference h− `,187

(6) hk(G1)− `k(G1) ≥ 3k − i.

Fact 4.3. If x ∈M , then x is in a triangle xyzx in G with d(x), d(y), d(z) ≤ 2k.188

Proof. Suppose x ∈ M . By Fact 4.2, either (i) x ∈ V 2k−1 and is adjacent to one leaf or (ii)189

x ∈ V 2k and is adjacent to two leaves. Thus d(x) ≤ 2k. We first claim:190

(7) x has a neighbor y such that 2 ≤ d(y) ≤ 2k.

Suppose not. Let X be the set consisting of x and the leaves adjacent to x. For each191

vertex v 6∈ X, dG−X(v) ≥ d(v) − 1, with equality if v ∈ N(x). Moreover, if v ∈ N(x), then192

dG−X(v) ≥ 2k. Therefore, hk(G−X) = h− |{x} ∩ V 2k| and `k(G−X) = `− (|X| − 1). So193

hk(G−X)− `k(G−X) = h− `+ 1 ≥ 3k − (i− 1)

and |G−X| ≥ |G| − 3 ≥ αk + 3(i− 1), contradicting the minimality of i. So (7) holds.194

Now, suppose xy is not in a triangle. Let G′ be formed from G by removing the leaves195

adjacent to x and contracting xy. By Fact 4.2, |G′| ≥ |G|−3. Since d(x) ≥ 2k−1 and x does196

not share neighbors with y, dG′(vxy) ≥ d(y). Similarly, dG′(v) = d(v) for all v ∈ V (G′)− vxy.197

Now, hk(G′)− `k(G′) = h− `+ 1 ≥ 3k − (i− 1), contradicting the choice of i.198

Let xyzx be a triangle containing xy. If d(z) ≤ 2k, we are done. Otherwise, let G′′ be the199

graph obtained fromG by removing the leaves adjacent to x and deleting the vertices x, y, and200

z. Observe |G′′| ≥ |G| − 5 ≥ α(k− 1) + 3(i− 1). If there exists a vertex u ∈ H rHk−1(G
′′),201

then N(u) ⊇ {x, y, z}, and d(u) ≤ 2k, since d(z) ≥ 2k + 1. In this case xyux is the202

desired triangle. Similarly, if v ∈ Lk−1(G
′′) r L, then xyvx is the desired triangle. Thus203

h− hk−1(G′′) ≤ 2 + |{x} ∩ V 2k| and `− `k−1(G′′) ≥ 1 + |{x} ∩ V 2k|. Now,204

hk−1(G
′′)− `k−1(G′′) ≥ h− `− 1 ≥ 3k − i− 1 = 3(k − 1)− (i− 2).

By the minimality of G, c(G′′) ≥ k− 1. Hence c(G) ≥ k, a contradiction. We conclude that205

xyzx is a triangle with d(x), d(y), d(z) ≤ 2k. �206

Fact 4.4. s+ s′ ≥ 1.207

Proof. Suppose s + s′ = 0. In this case, Fact 4.3 implies M = ∅: indeed, if v ∈ M , there208

exists a triangle vuwv with d(v), d(u), d(w) ≤ 2k, contradicting the choice of S ′. By Fact 4.1209

and since S = ∅, all vertices in L have degree at most 1. By Lemma 3.6(i), all vertices in L210

are leaves in G and L1 = ∅.211

Now, for every x ∈ H − Hk(G1), there is a leaf y ∈ L − Lk(G1) such that xy ∈ E(G).212

Hence,213

hk(G1) ≥ hk(G1)− `k(G1) ≥ h− ` ≥ 2k.

By (1) and since α ≥ 4, |G1| ≥ |G| − ` ≥ |G|/2 + k ≥ αk/2 + k ≥ 3k. Finally, Lk(G1) =214

L1 ∪M = ∅, so Corollary 3.2 implies G1 (and also G) contains k disjoint cycles. �215
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Let G2 = G r (L r S). So |G2| = |G| − |L| + |S| and, using (1) and the assumption216

|G| ≥ αk + 3i, observe217

(8) |G2| ≥
α + 2

2
k +

3i

2
.

Proof of Theorem 3.4. Put s∗ = max{1, s}. Let S∗ = {T1, . . . , Ts∗}; by Fact 4.4, Ts∗ exists.218

Put S∗ =
⋃
S∗. Let W = V (G2) r S∗, F = G[W ] and k′ = k − s∗. It suffices to prove219

c(F ) ≥ k′.220

221

Case 1: s∗ = k − 1. Since k ≥ 3, s∗ ≥ 2. Thus, s = s∗ = k − 1. By Fact 4.2, all vertices in222

M have degree 2k − 2 in F . Let M ′ = M ∩W and H ′ = H(G2) ∩W . Fact 4.1 implies that223

if v ∈ W , then dG1(v) = dG2(v). Thus224

H ′ = H1 ∩W and L(G1) ∩W = L(G2) ∩W.

Hence, by (6),

2k ≤ h(G1)− `(G1) ≤ (|H(G1) ∩ S|+ |H ′|)− (|L(G1) ∩ S|+ |M ∩W |+ |L1 r S|)
= (|H(G1) ∩ S| − |L(G1) ∩ S|) + |H ′| − |M ′| − |L1 r S|(9)

≤ (k − 1) + |H ′| − |M ′|.

Here, the last inequality holds because S contains s = k − 1 low vertices and at most
2s = 2k − 2 high vertices. Equation (9) implies |H ′| − |M ′| ≥ k + 1. Further, if W does not
contain a cycle, then

‖W,S‖G2 ≥
∑
v∈W

dG2(v)− 2(|W | − 1)

≥ ((2k − 1)|W |+ |H ′| − |M ′|)− 2(|W | − 1)

≥ ((2k − 1)|W |+ k + 1)− 2(|W | − 1)(10)

≥ (2k − 3)|W |+ k + 3.

On the other hand, every triangle in S contains a low vertex. This fact, together with225

Lemma 3.6(iii) implies,226

(11) ‖W,S‖G2 ≤
∑
w∈S

(dG2(w)− 2) ≤ (k − 1)(6k − 8).

Therefore, combining (10) and (11), |W | ≤ 3(k − 1) − 4
2k−3 . Since |S| = 3(k − 1) and227

|G2| = |S|+ |W |, this contradicts (8) when α ≥ 10.228

229

Case 2: s∗ ≤ k− 2. Consider a vertex v in V ≤2k
′−2(F ). Since every vertex in F has degree230

at least 2k− 2 in G2, v must be adjacent to at least 2s∗ vertices in S∗. Further, every vertex231

in S∗ is adjacent to at most 2k − 2 vertices outside of S∗. Therefore,232

(12) 2s∗|V ≤2k′−2(F )| ≤ ‖V ≤2k′−2(F ), S∗‖ ≤ 3s∗(2k − 2),

and so233

(13) |V ≤2k′−2(F )| ≤ 3k − 3.
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Similarly, if u ∈ V 2k′−1(F ), then u is adjacent to at least 2s∗ − 1 vertices in S∗. Moreover,234

there are at most 3s∗(2k − 2)− ‖V ≤2k′−2(F ), S∗‖ edges from V 2k′−1(F ) to S∗. So,235

(2s∗ − 1)|V 2k′−1(F )| ≤ ‖V 2k′−1(F ), S∗‖ ≤ 3s∗(2k − 2)− ‖V ≤2k′−2(F ), S∗‖,
and, combining with (12) gives,

|V 2k′−1(F )| ≤ 2s∗(3k − 3)

2s∗ − 1
− 2s∗|V ≤2k′−2(F )|

2s∗ − 1

= 3k − 3 +
3k − 3

2s∗ − 1
− 2s∗|V ≤2k′−2(F )|

2s∗ − 1
.(14)

Using (13) and (14), we see that

hk′(F )− `k′(F ) = |W | − 2|V ≤2k′−2(F )| − |V 2k′−1(F )|

≥ |W | − 2|V ≤2k′−2(F )| −
(

3k − 3 +
3k − 3

2s∗ − 1
− 2s∗|V ≤2k′−2(F )|

2s∗ − 1

)
= |W | − (2s∗ − 2)|V ≤2k′−2(F )|

2s∗ − 1
− 3k + 3− 3k − 3

2s∗ − 1

≥ |W | − (2s∗ − 2)(3k − 3)

2s∗ − 1
− 3k + 3− 3k − 3

2s∗ − 1

= |W |+
(
−(3k − 3) +

3k − 3

2s∗ − 1

)
− 3k + 3− 3k − 3

2s∗ − 1

= |W | − 6k + 6

≥
(
α + 2

2
k +

3i

2
− 3s∗

)
− 6k + 6

≥ α + 2

2
k +

3i

2
− 9k + 6 + 3k′.

When α ≥ 16, this is at least 3k′. Further, k′ ≥ 2, since s∗ ≤ k− 2. Therefore, Theorem 1.3236

implies that F contains k′ disjoint cycles. �237
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