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a b s t r a c t

A packing k-coloring of a graph G is a partition of V (G) into sets V1, . . . , Vk such that for
each 1 ≤ i ≤ k the distance between any two distinct x, y ∈ Vi is at least i + 1. The
packing chromatic number, χp(G), of a graph G is the minimum k such that G has a packing
k-coloring. Sloper showed that there are 4-regular graphs with arbitrarily large packing
chromatic number. The question whether the packing chromatic number of subcubic
graphs is bounded appears in several papers. We answer this question in the negative.
Moreover, we show that for every fixed k and g ≥ 2k + 2, almost every n-vertex cubic
graph of girth at least g has the packing chromatic number greater than k.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

For a positive integer i, a set S of vertices in a graph G is i-independent if the distance in G between any two distinct
vertices of S is at least i + 1. In particular, a 1-independent set is simply an independent set.

A packing k-coloring of a graph G is a partition of V (G) into sets V1, . . . , Vk such that for each 1 ≤ i ≤ k, the set Vi is
i-independent. The packing chromatic number, χp(G), of a graph G, is the minimum k such that G has a packing k-coloring.
The notion of packing k-coloring was introduced in 2008 by Goddard, Hedetniemi, Hedetniemi, Harris and Rall [15] (under
the name broadcast coloring)motivated by frequency assignment problems in broadcast networks. The concept has attracted
a considerable attention recently: there aremore than 25 papers on the topic (see e.g. [1,5–12,14,21] and references in them).
In particular, Fiala and Golovach [10] proved that finding the packing chromatic number of a graph is NP-hard even in the
class of trees. Sloper [21] showed that there are graphs with maximum degree 4 and arbitrarily large packing chromatic
number.

The questionwhether the packing chromatic number of all subcubic graphs (i.e., the graphswithmaximumdegree atmost
3) is bounded by a constant was not resolved. For example, Brešar, Klavžar, Rall, and Wash [7] wrote: ‘One of the intriguing
problems related to the packing chromatic number is whether it is bounded by a constant in the class of all cubic graphs’. It was
proved in [7,17–19,21] that it is indeed bounded in some subclasses of subcubic graphs. On the other hand, Gastineau and
Togni [14] constructed a cubic graph G with χp(G) = 13, and asked whether there are cubic graphs with a larger packing
chromatic number. Brešar, Klavžar, Rall, andWash [8] answered this question in affirmative by constructing a cubic graph G′

with χp(G′) = 14. The main result of this paper answers the question in full: Indeed, there are cubic graphs with arbitrarily
large packing chromatic number. Moreover, we prove that ‘many’ cubic graphs have ‘high’ packing chromatic number:

Theorem 1. For each fixed integer k ≥ 12 and g ≥ 2k + 2, almost every n-vertex cubic graph G of girth at least g satisfies
χp(G) > k.
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The theorem will be proved in the language of the so-called Configuration model, F3(n). We will discuss this concept and
some important facts on it in the next section. In Section 3 we give upper bounds on the sizes ci of maximum i-independent
sets in almost all cubic n-vertex graphs of large girth. The original plan was to show that for a fixed k and large n, the sum
c1 +· · ·+ ck is less than n. But wewere not able to prove it (andmaybe this is not true). In Section 4, we give an upper bound
on the size of the union of an 1-independent, a 2-independent, and a 4-independent sets which is less than c1 + c2 + c4. This
allows us to prove Theorem 1 in the last section.

2. Preliminaries

2.1. Notation

We mostly use standard notation. If G is a (multi)graph and v, u ∈ V (G), then EG(v, u) denotes the set of all edges in G
connecting v and u, eG(v, u) := |EG(v, u)|, and degG(v) :=

∑
u∈V (G)\{v}

eG(v, u). ForA ⊆ V (G),G[A]denotes the sub(multi)graph
of G induced by A. The independence number of G is denoted by α(G). For k ∈ Z>0, [k] denotes the set {1, . . . , k}.

2.2. The configuration model

The configuration model is due in different versions to Bender and Canfield [2] and Bollobás [3,4]. Our work is based on
the version of Bollobás. Let V be the vertex set of the graph, we are going to associate a 3-element set to each vertex in V .
Let n be an even positive integer. Let Vn = [n] and consider the Cartesian productWn = Vn × [3]. A configuration/pairing (of
order n and degree 3) is a partition ofWn into 3n/2 pairs, i.e., a perfect matching of elements inWn. There are( 3n

2

)
·
( 3n−2

2

)
· . . . ·

( 2
2

)
(3n/2)!

= (3n − 1)!!

such matchings. Let F3(n) denote the collection of all (3n − 1)!! possible pairings on Wn. We project each pairing F ∈ F3(n)
to a multigraph π (F ) on the vertex set Vn by ignoring the second coordinate. Then π (F ) is a 3-regular multigraph (which
may or may not contain loops and multi-edges). Let π (F3(n)) = {π (F ) : F ∈ F3(n)} be the set of 3-regular multigraphs on
Vn. By definition,

each simple graph G ∈ π (F3(n)) corresponds to (3!)n distinct pairings in F3(n). (1)

We will call the elements of Vn - vertices, and of Wn - points.

Definition 2. Let Gg (n) be the set of all cubic graphs with vertex set Vn = [n] and girth at least g and G′
g (n) = {F ∈ F3(n) :

π (F ) ∈ Gg (n)}.

We will use the following result:

Theorem 3 (Wormald [22], Bollobás [3]). For each fixed g ≥ 3,

lim
n→∞

|G′
g (n)|

|F3(n)|
= exp

{
−

g−1∑
k=1

2k−1

k

}
. (2)

Remark. When we say that a pairing F has a multigraph property A, we mean that π (F ) has property A.

Since dealing with pairings is simpler than working with labeled simple regular graphs, we need the following well-
known consequence of Theorem 3.

Corollary 4 ([20](Corollary 1.1), [16](Theorem 9.5)). For fixed g ≥ 3, any property that holds for π (F ) for almost all pairings
F ∈ F3(n) also holds for almost all graphs in Gg (n).

Proof. Suppose property A holds for π (F ) for almost all F ∈ F3(n). Let H(n) denote the set of graphs in Gg (n) that do not
have property A and H′(n) = {F ∈ F3(n) : π (F ) ∈ H(n)}. Let B(n) denote the set of pairings F ∈ F3(n) such that π (F ) does
not have property A. Then H′(n) ⊆ B(n). Hence by the choice of A,

|H′(n)|
|F3(n)|

≤
|B(n)|
|F3(n)|

→ 0 as n → ∞. (3)

By (1), we have

|H(n)|
|Gg (n)|

=
|H(n)|
|H′(n)|

·
|H′(n)|
|G′

g (n)|
·
|G′

g (n)|

|Gg (n)|
=

1
(3!)n

·
|H′(n)|
|G′

g (n)|
· (3!)n =

|H′(n)|
|G′

g (n)|
.
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Furthermore,

|H′(n)|
|G′

g (n)|
=

|H′(n)|
|F3(n)|

·
|F3(n)|
|G′

g (n)|
. (4)

By (3) and Theorem 3, the right-hand side of (4) tends to 0 as n tends to infinity. ■

3. Bounds for c1, c2, . . .

We will use the following theorem of McKay [20].

Theorem 5 (McKay [20]). For every ε > 0, there exists an N > 0 such that for each n > N,

|{F ∈ F3(n) : c1(π (F )) > 0.45537n}| < ε · (3n − 1)!!.

Definition 6. A 3-regular tree is a tree such that each vertex has degree 3 or 1. A (3, k, a)-tree is a rooted 3-regular tree T
with root a of degree 3 such that the distance in T from each of the leaves to a is k (see Fig. 1).

Definition 7. For a positive integer s and a vertex a in a graph G, the ball BG(a, s) in G of radius s with center a is {v ∈ V (G) :

dG(v, a) ≤ s}, where dG(v, a) denotes the distance in G from v to a.

We first prove simple bounds on c2k(G) and c2k+1(G) when G ∈ G2k+2(n).

Lemma 8. Let j be a fixed positive integer and n > g ≥ 2j + 2. Then for every G ∈ Gg (n),

(i) c2j(G) ≤
n

3 · 2j − 2
,

and

(ii) c2j+1(G) ≤
c1(G)

2j+1 − 1
.

Proof. (i) Let C2j be a 2j-independent set in Gwith |C2j| = c2j(G). Since the distance between any distinct a, b ∈ C2j is at least
2j+1, the balls BG(a, j) for all distinct a ∈ C2j are disjoint. Moreover, since g ≥ 2j+2, each ball BG(a, j) induces a (3, j, a)-tree
Ta, and hence has

1 + 3 + 3 · 2 + 3 · 22
+ · · · + 3 · 2j−1

= 3 · 2j
− 2

vertices. This proves (i).
(ii) Let C2j+1 be a (2j + 1)-independent set in G with |C2j+1| = c2j+1(G). As in the proof of (i), the balls BG(a, j) for distinct

a ∈ C2j are disjoint, and each BG(a, j) induces a (3, j, a)-tree Ta. But in this case, in addition, the balls with centers in distinct
vertices of C2j+1 are at distance at least 2 from each other. Let Si be the set of vertices in Ta at distance i from a. Then |S0| = 1,
and for each 1 ≤ i ≤ j, |Si| = 3 · 2i−1. If follows that the set Ia =

⋃⌊j/2⌋
i=0 Sj−2i is independent, and

|Ia| =

⌊j/2⌋∑
i=0

|Sj−2i| = 2j+1
− 1.

Therefore I :=
⋃

a∈C2j+1
Ia is an independent set in G and |I| = (2j+1

− 1)c2j+1(G). This implies (ii). ■

Lemma 9. Let k be a fixed positive integer and x be a real number with 0 < x < 1
3·2k−2

. The number of pairings F ∈ G′

2k+2(n)
such that π (F ) has a 2k-independent vertex set of size xn is at most

q(n, k, x) :=

( n
xn

)
· (3n − (6 · 2k

− 6)xn − 1)!! ·
k−1∏
i=0

(
(1 − (3 · 2i

− 2)x)n
3 · 2ixn

)
· (3 · 2ixn)! · 33·2ixn.

Proof. To prove the lemma,wewill show that the total number of 2k-independent sets of size xn inπ (F ) over all F ∈ G′

2k+2(n)
does not exceed q(n, k, x). Below we describe a procedure of constructing for every C ⊂ [n] with |C | = xn all pairings
F ∈ G′

2k+2(n) for which C is 2k-independent in π (F ). Not every obtained pairing will be in G′

2k+2(n), but every F ∈ G′

2k+2(n)
such that C is a 2k-independent set in π (F ) will be a result of this procedure:

1. We choose a vertex set C of size xn from [n]. There are
( n
xn

)
ways to do it.
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Fig. 1. A (3, 3, a)-tree Ta .

2. In order C to be 2k-independent andπ (F ) to have girth at least 2k+2, all the balls of radius kwith the centers in C must
be disjoint, and for each a ∈ C , the ball Bπ (F )(a, k) must induce a (3, k, a)-tree. Thus, we have

( (1−x)n
3xn

)
ways to choose

the neighbors of C , call it N(C), (3xn)! ways to determine which vertex in N(C) will be the neighbor for each point in
π−1(C), and 33xn ways to decide which point of each vertex in N(C) is adjacent to the corresponding point in π−1(C).
Each vertex of N(C) will have 2 free points left at this moment, and in total the set π−1(N(C)) has now 2 · 3xn = 6xn
free points.

3. Similarly to the previous step, consecutively for i = 1, 2, . . . , k−1, we will decide which vertices and points are in the
set π−1(N i+1(C)) of the vertices at distance i from C , as follows. Before the ith iteration, we have 3x · 2in free points in
the 3x · 2i−1n vertices of π−1(N i(C)), and

|C ∪ N1(C) ∪ · · · ∪ N i(C)| = xn
(
1 + 3(1 + 2 + · · · + 2i−1)

)
= (3 · 2i

− 2)xn.

We choose 3x · 2in vertices out of the remaining
(
1 − (3 · 2i

− 2)x
)
n vertices to include into N i+1(C), then we have

(3x · 2in)! ways to determine which vertex in N i+1(C) will be the neighbor for each free point in π−1(N i(C)), and 33x·2in

ways to decide which point of each vertex in N i+1(C) is adjacent to the corresponding point in π−1(N i(C)).
4. Finally, there are 3n − (6 · 2k

− 6)xn free points left and we have (3n − (6 · 2k
− 6)xn − 1)!! ways to pair them.

Multiplying the quantities in 1–4 above, we obtain q(n, k, x). This proves the bound. ■

In the proofs below we will use Stirling’s formula: For every n ≥ 1,

√
2πn

(n
e

)n
≤ n! ≤

√
2πn

(n
e

)n
e1/12n. (5)

Corollary 10. Let g ≥ 22 be fixed. For every ε > 0, there exists an N > 0 such that for each n > N,

|{G ∈ Gg (n) : c2(G) > 0.236n =: b2n}| < ε · |Gg (n)|, (6)

|{G ∈ Gg (n) : c4(G) > 0.082n =: b4n}| < ε · |Gg (n)|, (7)

|{G ∈ Gg (n) : c6(G) > 0.03n =: b6n}| < ε · |Gg (n)|, (8)

|{G ∈ Gg (n) : c8(G) > 0.011n =: b8n}| < ε · |Gg (n)|, (9)

and

|{G ∈ Gg (n) : c10(G) > 0.004n =: b10n}| < ε · |Gg (n)|. (10)
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Proof. By Lemma 9,

q(n, k, x) =

( n
xn

)
· ((3n − (6 · 2k

− 6)xn − 1)!!)
k−1∏
i=0

(
(1 − (3 · 2i

− 2)x)n
3 · 2ixn

)
· ((3 · 2ixn)!)(33·2ixn)

=
(3n − (6 · 2k

− 6)xn − 1)!! · n!
(xn)! · ((1 − x)n)!

· 33xn+6xn+···+3·2k−1xn

·
((1 − x)n)! · (3xn)!
(3xn)! · ((1 − 4x)n)!

·
((1 − 4x)n)! · (6xn)!
(6xn)! · ((1 − 10x)n)!

· · · · ·
((1 − (3 · 2k−1

− 2)x)n)! · (3 · 2k−1xn)!
(3 · 2k−1xn)! · ((1 − (3 · 2k − 2)x)n)!

=
(3n − (6 · 2k

− 6)xn − 1)!! · n!
(xn)! · ((1 − (3 · 2k − 2)x)n)!

· 3(3·2k−3)xn.

We know that

(3n − 1)!! =
(3n)!!
3n

≥

√
(3n)!
3n

and

(3n − (6 · 2k
− 6)xn − 1)!! ≤

√
(3n − (6 · 2k − 6)xn)!.

Therefore,

q(n, k, x)
(3n − 1)!!

≤ (3n) ·

(
(3n − (6 · 2k

− 6)xn)!
(3n)!

) 1
2

·
n!

(xn)! · ((1 − (3 · 2k − 2)x)n)!
· 3(3·2k−3)xn.

Using Stirling’s formula (5), we have

q(n, k, x)
(3n − 1)!!

= O(n2) ·

( n
e

) 1
2 ·(3n−(6·2k−6)xn)

·
( n
e

)n( n
e

) 3n
2 ·
( n
e

)xn
·
( n
e

)(1−(3·2k−2)x)n
·

(
(1 − (2k+1

− 2)x)1.5−(3·2k−3)x

xx(1 − (3 · 2k − 2)x)1−(3·2k−2)x

)n

= O(n2) ·

(
(1 − (2k+1

− 2)x)1.5−(3·2k−3)x

xx(1 − (3 · 2k − 2)x)1−(3·2k−2)x

)n

.

Let

f (x, k) =
(1 − (2k+1

− 2)x)1.5−(3·2k−3)x

xx(1 − (3 · 2k − 2)x)1−(3·2k−2)x
, (11)

so that
q(n, k, x)
|F3(n)|

=
q(n, k, x)
(3n − 1)!!

= O(n2) (f (x, k))n. (12)

By plugging x = 0.236 and k = 1 into (11) (using a computer or a good calculator), we see that 0 < f (0.236, 1) < 0.9964.
Since f (x, 1) is a smooth function for 0 < x < 1, there exists δ1 such that f (x, 1) < 0.9964 for all x ∈ [0.236 − δ1, 0.236]. If
n > 1/δ1, then there exists an x1 = x1(n) ∈ [0.236 − δ1, 0.236] such that x1n is an integer. By (12),

q(n, 1, x1n)
|F3(n)|

= O(n2) (0.9964)n → 0 as n → ∞.

By the definition of q(n, k, x), (2) and Corollary 4, this implies (6).
Similarly, by plugging the corresponding values of x and k into (11), one can check that 0 < f (0.082, 2) < 0.9977,

0 < f (0.03, 3) < 0.9981, 0 < f (0.011, 4) < 0.996, and 0 < f (0.004, 5) < 0.995. Thus repeating the argument of the
previous paragraph, we obtain that (7), (8), (9), (10) also hold. ■

Lemma 11. Let k be a fixed positive integer and 0 < x < 0.45537
2k+1−1

. The number of pairings F ∈ G′

2k+2(n) such that π (F ) has a
(2k + 1)-independent vertex set of size xn is at most

r(n, k, x) :=

( n
xn

)
· (3(n − (3 · 2k

− 2)xn))! · (3(n − (4 · 2k
− 2)xn) − 1)!!

(3(n − (4 · 2k − 2)xn))!

×

k−1∏
i=0

(
(1 − (3 · 2i

− 2)x)n
3 · 2ixn

)
· (3 · 2ixn)! · 33·2ixn. (13)

Proof. We will show that the total number of (2k + 1)-independent sets of size xn in π (F ) over all F ∈ G′

2k+2(n) does not
exceed r(n, k, x). Below we describe a procedure of constructing for every set C of size xn in [n] all pairings in G′

2k+2(n) for
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which C is (2k + 1)-independent. Not every obtained pairing will be in G′

2k+2(n), but every F ∈ G′

2k+2(n) such that C is a
(2k + 1)-independent set in π (F ) will be a result of this procedure:

1. We choose a vertex set C of size xn from [n]. There are
( n
xn

)
ways to do it.

2. In order C to be (2k + 1)-independent and π (F ) to have girth at least 2k + 2, all the balls of radius k with the centers
in C must be disjoint, and for each a ∈ C , the ball Bπ (F )(a, k) must induce a (3, k, a)-tree. Thus, we have

( (1−x)n
3xn

)
ways

to choose the neighbors of C , call it N(C), (3xn)! ways to determine which vertex in N(C) will be the neighbor for each
point in π−1(C), and 33xn ways to decide which point of each vertex in N(C) is adjacent to the corresponding point
in π−1(C). Each vertex of N(C) will have 2 free points left at this moment, and in total the set π−1(N(C)) has now
2 · 3xn = 6xn free points.

3. Similarly to the previous step, consecutively for i = 1, 2, . . . , k−1, we will decide which vertices and points are in the
set π−1(N i+1(C)) of the vertices at distance i from C , as follows. Before the ith iteration, we have 3x · 2in free points in
the 3x · 2i−1n vertices of π−1(N i(C)), and

|C ∪ N1(C) ∪ · · · ∪ N i(C)| = xn
(
1 + 3(1 + 2 + · · · + 2i−1)

)
= (3 · 2i

− 2)xn.

We choose 3x · 2in vertices out of the remaining
(
1 − (3 · 2i

− 2)x
)
n vertices to include into N i+1(C), then we have

(3x · 2in)! ways to determine which vertex in N i+1(C) will be the neighbor for each free point in π−1(N i(C)), and 33x·2in

ways to decide which point of each vertex in N i+1(C) is adjacent to the corresponding point in π−1(N i(C)).
4. Let N0(C) := C and S := ∪

k
i=0N

i(C). In order the distance between each pair of vertices in C to be at least 2k+ 2, Nk(C)
has to be an independent set. Therefore, each of the 3x · 2kn free points in the 3x · 2k−1n vertices of π−1(Nk(C)) has to
be paired with one of the remaining 3(n − (3 · 2k

− 2)xn) free points of π−1([n] − S) and we have

(3(n − (3 · 2k
− 2)xn))!

(3(n − (4 · 2k − 2)xn))!
ways to do that.

5. Finally, there are 3(n − (4 · 2k
− 2)xn) free points left and we have (3(n − (4 · 2k

− 2)xn) − 1)!! ways to pair them.

The product of the numbers of choices in the above Steps 1–5 equals r(n, k, x), which proves the lemma. ■

Corollary 12. Let g ≥ 24 be fixed. For every ε > 0, there exists an N > 0 such that for each n > N,

|{G ∈ Gg (n) : c3(G) > 0.1394n =: b3n}| < ε · |Gg (n)|, (14)

|{G ∈ Gg (n) : c5(G) > 0.05n =: b5n}| < ε · |Gg (n)|, (15)

|{G ∈ Gg (n) : c7(G) > 0.0182n =: b7n}| < ε · |Gg (n)|, (16)

|{G ∈ Gg (n) : c9(G) > 0.0063n =: b9n}| < ε · |Gg (n)|, (17)

and

|{G ∈ Gg (n) : c11(G) > 0.0022n =: b11n}| < ε · |Gg (n)|. (18)

Proof. By Lemma 11,

r(n, k, x) =

( n
xn

)
· (3(n − (3 · 2k

− 2)xn))! · (3(n − (4 · 2k
− 2)xn) − 1)!!

(3(n − (4 · 2k − 2)xn))!

×

k−1∏
i=0

(
(1 − (3 · 2i

− 2)x)n
3 · 2ixn

)
· (3 · 2ixn)! · 33·2ixn (19)

=
(3(n − (3 · 2k

− 2)xn))! · (3(n − (4 · 2k
− 2)xn) − 1)!!

(3(n − (4 · 2k − 2)xn))!
·

n!
(xn)! · ((1 − x)n)!

· 33xn+6xn+···+3·2k−1xn

·
((1 − x)n)! · (3xn)!
(3xn)! · ((1 − 4x)n)!

·
((1 − 4x)n)! · (6xn)!
(6xn)! · ((1 − 10x)n)!

· · · · ·
((1 − (3 · 2k−1

− 2)x)n)! · (3 · 2k−1xn)!
(3 · 2k−1xn)! · ((1 − (3 · 2k − 2)x)n)!

=
(3(n − (3 · 2k

− 2)xn))! · (3(n − (4 · 2k
− 2)xn) − 1)!!

(3(n − (4 · 2k − 2)xn))!
·

n!
(xn)! · ((1 − (3 · 2k − 2)x)n)!

· 3(3·2k−3)xn.
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By the definition of the double factorial,

(3n − 1)!! ≥
(3n)!!
3n

≥

√
(3n)!
3n

and

(3(n − (4 · 2k
− 2)xn) − 1)!! ≤

√
(3(n − (4 · 2k − 2)xn))!.

Therefore,

r(n, k, x)
(3n − 1)!!

≤ (3n) ·

(
(3(n − (4 · 2k

− 2)xn))!
(3n)!

) 1
2

·
(3(n − (3 · 2k

− 2)xn))!
(3(n − (4 · 2k − 2)xn))!

·
n!

(xn)! · ((1 − (3 · 2k − 2)x)n)!
· 3(3·2k−3)xn.

By Stirling’s formula (5),

r(n, k, x)
(3n − 1)!!

= O(n3) ·

( n
e

) 3
2 ·(n−(4·2k−2)xn)

·
( n
e

)3(n−(3·2k−2)xn)
·
( n
e

)n( n
e

) 3n
2 ·
( n
e

)3(n−(4·2k−2)xn)
·
( n
e

)xn
·
( n
e

)(1−(3·2k−2)x)n

·

(
(1 − (3 · 2k

− 2)x)2−(6·2k−4)x

xx(1 − (4 · 2k − 2)x)1.5−(6·2k−3)x

)n

= O(n3) ·

(
(1 − (3 · 2k

− 2)x)2−(6·2k−4)x

xx(1 − (4 · 2k − 2)x)1.5−(6·2k−3)x

)n

.

Let

h(x, k) =
(1 − (3 · 2k

− 2)x)2−(6·2k−4)x

xx(1 − (4 · 2k − 2)x)1.5−(6·2k−3)x
, (20)

so that
r(n, k, x)
|F3(n)|

=
r(n, k, x)
(3n − 1)!!

= O(n3)(h(x, k))n. (21)

By plugging x = 0.1394 and k = 1 into (20) (using a computer or a calculator), we see that 0 < h(0.1394, 1) < 0.9974.
Since h(x, 1) is a smooth function for 0 < x < 1, there exists ν1 such that h(x, 1) < 0.9974 for all x ∈ [0.1394 − ν1, 0.1394].
If n > 1/ν1, then there exists an x1 = x1(n) ∈ [0.1394 − ν1, 0.1394] such that x1n is an integer. By (21),

r(n, 1, x1n)
|F3(n)|

= O(n3)(0.9974)n → 0 as n → ∞.

By the definition of r(n, k, x), (2) and Corollary 4, this implies (14).
Similarly, by plugging the corresponding values of x and k into (20), one can check that 0 < h(0.05, 2) < 0.9985,

0 < h(0.0182, 3) < 0.9973, 0 < h(0.0063, 4) < 0.9986, and 0 < h(0.0022, 5) < 0.9979. Thus repeating the argument of
the previous paragraph, we obtain that (15), (16), (17), (18) also hold. ■

4. Bound on |C1 ∪ C2 ∪ C4|

Definition 13. For a graph G, let c1,2,4(G) be the maximum size of |C1 ∪ C2 ∪ C4|, where C1, C2 and C4 are disjoint subsets of
V (G) such that Ci is i-independent for all i ∈ {1, 2, 4}.

In this sectionweprove anupper bound on c1,2,4(G) in terms of c1(G) for cubic graphsG of girth at least 9. For every vertex a
in such a graphG, the ball BG(a, 2) induces a (3, 2, a)-tree Ta. When handling such a tree Ta, wewill use the following notation
(see Fig. 2):

V (Ta) = {a} ∪ N1(a) ∪ N2(a), whereN1(a) = {a1, a2, a3}, N2(a) = {a1,1, a1,2, a2,1, a2,2, a3,1, a3,2},

and

E(T ) = {aa1, aa2, aa3, a1a1,1, a1a1,2, a2a2,1, a2a2,2, a3a3,1, a3a3,2}.
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Fig. 2. A (3, 2, a)-tree Ta .

Lemma 14. Let G be an n-vertex cubic graph with girth at least 9 and

c1(G) < 0.456n. (22)

Then c1,2,4(G) ≤ 0.7174n =: b1,2,4n.

Proof. Let G satisfy the conditions of the lemma, and let C1, C2 and C4 be disjoint subsets of V (G) such that Ci is i-independent
for i ∈ {1, 2, 4} and |C1 ∪ C2 ∪ C4| = c1,2,4(G).

The idea of the proof uses the fact that for a typical vertex a ∈ C4, the tree Ta contains several vertices not in C1 ∪ C2. For
example, each vertex inG has atmost one neighbor in C2. Also for distinct a1, a2 ∈ C4, the trees Ta1 and Ta2 are vertex-disjoint.
For more accurate counting, we need a couple of new notions. Let Q be the set of vertices in C1 that do not have neighbors
in C2, and q = |Q |. Let L be the set of edges in G− C1 − C2, and ℓ = |L|. For brevity, the vertices in Q will be called Q -vertices,
and the edges in L will be called L-edges. Let s = |C1| + |C2|. It will turn out that q + ℓ is a convenient parameter helping to
bound |C4| in terms of s and |C2|. We will prove the lemma in a series of claims. Our first claim is:

s < 0.652n. (23)

To show (23), we count the edges connecting C1 ∪ C2 with C1 ∪ C2 in two ways:

3(n − s) − 2ℓ = e[C1 ∪ C2, C1 ∪ C2] = 3s − 2(|C1| − q). (24)

Solving for s, we get s =
n
2 −

1
3 (ℓ − |C1| + q). Since q, ℓ ≥ 0 and |C1| ≤ c1, this together with (22) yields

s ≤
n
2

−
1
3
(0 − |C1| + 0) ≤

n
2

+
c1
3

< 0.652n,

as claimed. ■

For j ∈ {0, 1, 2}, let

Sj = {a ∈ C4 : the total number of L-edges and Q -vertices in Ta is j},

and let U = C4 −
⋃2

j=0Sj.
Our next claim is:

For each 0 ≤ j ≤ 2 and every a ∈ Sj, |V (Ta) ∩ C2| ≥ 3 − j. (25)

Indeed, let 0 ≤ j ≤ 2 and a ∈ Sj. If a vertex ai ∈ N1(a) is not in (C1 ∪ C2) − Q , then either ai ∈ Q or aai ∈ L. Thus, by the
definition of Sj, |N1(a)∩((C1∪C2)−Q )| ≥ 3− j. Since each ai ∈ (C1∪C2)−Q either is in C2 or has a neighbor in C2∩{ai,1, ai,2},
we get at least 3 − j vertices in C2 ∩ V (Ta). This proves (25).

For 0 ≤ j ≤ 2, let |Sj| = αjn, and let |U | = βn. Then

(α1 + α2 + α3 + β)n = |C4|. (26)

By the definition of 4-independent sets, for all a ∈ C4 the balls BG(a, 2) are disjoint and not adjacent to each other. For
0 ≤ j ≤ 2 and every a ∈ Sj, the tree Ta contributes j to ℓ + q, and for every a ∈ U , Ta contributes at least 3 to ℓ + q. Therefore

α1n + 2α2n + 3βn ≤ ℓ + q. (27)
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Also, (25) yields a lower bound on |C2|:

3α0n + 2α1n + α2n ≤ |C2|. (28)

Now (26), (27), and (28) yield

3|C4| = (α1n + 2α2n + 3βn) + (3α0n + 2α1n + α2n) ≤ ℓ + q + |C2|. (29)

On the other hand, by (24)

2(ℓ + q) = 3n − 6s + 2|C1| = 3n − 4s − 2|C2|,

so 2(ℓ + q + |C2|) = 3n − 4s. Comparing with (29), we get

|C4| ≤
3n − 4s

6
=

3n + 2s
6

− s.

Hence by the definition of s and (23),

|C1 ∪ C2 ∪ C4| = |C4| + s ≤
3n + 2s

6
≤

n
2

+
0.652n

3
≤ 0.7174n. ■

5. Proof of Theorem 1

For each fixed integer k ≥ 12 and g ≥ 2k + 2, let J := {3, 5, 6, 7, . . . , 11} and

Bg (n) =

⎧⎨⎩G ∈ Gg (n) : c1,2,4(G) +

∑
j∈J

cj(G) > 0.9785n or
⌈k/2⌉−1∑

j=6

c2j+1(G) >
2 · 0.45537n

127

⎫⎬⎭ . (30)

Lemma 15. Let k ≥ 12 be a fixed integer and g ≥ 2k + 2. For every ε > 0, there exists an N = N(ε) > 0 such that for each
n > N,

|Bg (n)| < ε · |Gg (n)|. (31)

Proof. Let ε > 0 be given. By Lemma 14, Theorem 5, and Corollary 4, there exists an N1,2,4 > 0 such that for each n > N1,2,4,

|{G ∈ Gg (n) : c1,2,4(G) > b1,2,4n}| <
ε

10
· |Gg (n)|.

Let

M1,2,4(n) := {G ∈ Gg (n) : c1,2,4(G) > b1,2,4n}.

For each j ∈ J and the constants bj defined in Corollaries 10 and 12, let

Mj(n) := {G ∈ Gg (n) : cj(G) > bjn}.

Let

B′

g (n) =

⎧⎨⎩G ∈ Gg (n) : c1,2,4(G) +

∑
j∈J

cj(G) > 0.9785n

⎫⎬⎭
and B′′

g (n) =
{
G ∈ Gg (n) : c1(G) > 0.45537n

}
.

If G ∈ B′
g (n), then

G ∈ M1,2,4(n) ∪

⋃
j∈J

Mj(n),

because b1,2,4n +
∑

j∈Jbjn = 0.9785n and c1,2,4 +
∑

j∈Jcj > 0.9785n.
Corollaries 10 and 12 imply that for each j ∈ J , there exists an Nj > 0 such that for each n > Nj,

|{G ∈ Gg (n) : cj(G) > bjn}| <
ε

10
· |Gg (n)|.

By Theorem 5, there exists an N1 > 0 such that for each n > N1, |B′′
g (n)| < ε

10 · |Gg (n)|.
Let N = max{N1,2,4,N1,N3,N5,N6, . . .,N11}. By the definition of N , for each n > N ,

|B′

g (n)| + |B′′

g (n)| < (1 + |J| + 1)
ε

10
· |Gg (n)| = ε · |Gg (n)|. (32)
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Every graph G ∈ Gg (n) \ B′′
g (n) satisfies c1(G) ≤ 0.45537n. Using this, Lemma 8(ii) implies that such a graph G satisfies

⌈k/2⌉−1∑
j=6

c2j+1(G) <

⌈k/2⌉−1∑
j=6

c1(G)
2j+1 − 1

<

∞∑
j=6

0.45537n
2j+1 − 1

≤
0.45537n

127
·

∞∑
s=0

1
2s =

2 · 0.45537n
127

.

It follows that Bg (n) ⊆ B′
g (n) ∪ B′′

g (n). Thus (32) implies (31). ■

Now we are prepared to prove our main result.

Proof of Theorem 1. Let k ≥ 12 be a fixed integer and g ≥ 2k + 2. We need to show that for every ε > 0, there exists an
N > 0 such that for each n > N ,

|{G ∈ Gg (n) : χp(G) ≤ k}| < ε · |Gg (n)|. (33)

Let ε > 0 be given and G ∈ Gg (n) satisfy χp(G) ≤ k. Then there is a partition of V (G) into C1, C2, . . . , Ck such that for each
i = 1, 2, . . . , k, Ci is i-independent. In particular, |C1| + |C2| + · · · + |Ck| = n. By Lemma 8(i),

⌊k/2⌋∑
j=6

|C2j| <

∞∑
k=6

n
3 · 2k − 2

<
n

190
·

∞∑
k=0

1
2k =

n
95

. (34)

Since n −
n
95 > 0.9785n +

2·0.45537n
127 , this implies that G ∈ Bg (n), where Bg (n) is defined by (30). Thus, Lemma 15

implies (33). ■

6. Concluding remarks

1. It seems that with more sophisticated calculations, one can prove the claim of Theorem 1 not only for almost all cubic
graphs with girth at least 2k + 2, but for almost all cubic n-vertex graphs. But we cannot prove (and maybe this is not true)
that for each k every cubic graph Gwith sufficiently large (with respect to k) girth satisfies χp(G) > k.
2. Our approach does not yield cubic planar graphs with high packing chromatic number. Gastineau, Holub and Togni [13]
showed that χp(G) is bounded for graphs G in some subclasses of cubic outerplanar graphs.
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