AN ALGORITHMIC ANSWER TO THE ORE-TYPE VERSION OF DIRAC'S QUESTION ON DISJOINT CYCLES IN MULTIGRAPHS

H.A. KIERSTEAD* ${ }^{*}$ A.V. KOSTOCHKA ${ }^{\dagger}$, T. MOLLA, AND D. YAGER ${ }^{\ddagger}$

Abstract

For the $N P$-complete problem on the existence of k disjoint cycles in an n vertex graph G, Corrádi and Hajnal in 1963 gave sufficient conditions: For all $k \geq 1$ and $n \geq 3 k$, every (simple) n-vertex graph G with minimum degree $\delta(G) \geq 2 k$ contains k disjoint cycles. The same year, Dirac described the 3 -connected multigraphs not containing two disjoint cycles and asked the more general question: Which $(2 k-1)$-connected multigraphs do not contain k disjoint cycles? Recently, Kierstead, Kostochka and Yeager resolved this question. In this paper, we sharpen this result by presenting a description that can be checked in polynomial time of all multigraphs G with no k disjoint cycles for which the underlying simple graph \underline{G} satisfies the following Ore-type condition: $d_{\underline{G}}(v)+d_{\underline{G}}(u) \geq 4 k-3$ for all nonadjacent $u, v \in V(G)$.

Mathematics Subject Classification: 05C15, 05C85, 05C35, 68R10. Keywords: Disjoint cycles, polynomial-time algorithm, Ore-type conditions, minimum degree.

Dedicated to Gregory Gutin on the occasion of his 60th Birthday

1. Introduction

For a multigraph $G=(V, E)$, let $|G|=|V|,\|G\|=|E|, \delta(G)$ be the minimum degree of G, and $\alpha(G)$ be the independence number of G. For a simple graph G, let \bar{G} denote the complement of G. For multigraphs G and H, let $G \cup H$ denote the multigraph with $V(G \cup H)=V(G) \cup V(H)$ and $E(G \cup H)=E(G) \cup E(H)$. For disjoint graphs G and H, let $G \vee H$ denote $G \cup H$ together with all edges from $V(G)$ to $V(H)$.

Let $K(X)$ be the complete graph with vertex set X, and $K_{t}(X)=K(X)$ indicate that $|X|=t$.

The problem of finding the maximum number of disjoint cycles in a graph is $N P$-hard, since even some partial cases of it are:

Theorem 1 ([7], p. 68). Determining whether a $3 n$-vertex graph has n disjoint triangles is an NP-complete problem.

On the other hand, Bodlaender [1] and independently Downey and Fellows [5] showed that this problem is fixed parameter tractable:

Theorem 2 ([1, 5]). For every fixed k, the question whether an n-vertex graph has k disjoint can be resolved in linear (in n) time.

[^0]Since the general problem is hard, it is natural to look for sufficient conditions that ensure the existence of "many" disjoint cycles in a graph. One of well-known results of this type is the following theorem of Corrádi and Hajnal [2] from 1963:

Theorem 3 ([2]). Let $k \in \mathbb{Z}^{+}$. Every graph G with $|G| \geq 3 k$ and $\delta(G) \geq 2 k$ contains k disjoint cycles.

The hypothesis $\delta(G) \geq 2 k$ is best possible, as shown by the $3 k$-vertex graph $H=\bar{K}_{k+1} \vee$ $K_{2 k-1}$, which has $\delta(H)=2 k-1$ but does not contain k disjoint cycles. The proof yields a polynomial algorithm for finding k disjoint cycles in the graphs satifying the conditions of the theorem.

Theorem 3 was refined and generalized in several directions. Enomoto [6] and Wang [16] generalized the Corrádi-Hajnal Theorem in terms of the minimum Ore-degree $\sigma_{2}(G):=$ $\min \{d(x)+d(y): x y \notin E(G)\}:$

Theorem 4 ([6],[16]). Let $k \in \mathbb{Z}^{+}$. Every graph G with (i) $|G| \geq 3 k$ and

$$
\begin{equation*}
\sigma_{2}(G) \geq 4 k-1 \tag{1.1}
\end{equation*}
$$

contains k disjoint cycles.
Kierstead, Kostochka and Yeager [11] refined Theorem 3 by characterizing all simple graphs that fulfill the weaker hypothesis $\delta(G) \geq 2 k-1$ and contain k disjoint cycles. This refinement depends on an extremal graph $\mathbf{Y}_{\mathbf{k}, \mathbf{k}, \mathbf{k}}$ where $\mathbf{Y}_{\mathbf{h}, \mathbf{s}, \mathbf{t}}=\overline{K_{h}} \vee\left(K_{s} \cup K_{t}\right)$ and $\mathbf{Y}_{\mathbf{h}, \mathbf{s}, \mathbf{t}}\left(X_{0}, X_{1}, X_{2}\right)=$ $\overline{K_{h}}\left(X_{0}\right) \vee\left(K_{s}\left(X_{1}\right) \cup K_{t}\left(X_{2}\right)\right)$.

Figure 1.1. $\mathbf{Y}_{\mathbf{h}, \mathrm{t}, \mathbf{s}}$, shown with $h=3$ and $t=s=4$.

Theorem 5 ([11]). Let $k \geq 2$. Every simple graph G with $|G| \geq 3 k$ and $\delta(G) \geq 2 k-1$ contains k disjoint cycles if and only if:
(i) $\alpha(G) \leq|G|-2 k$;
(ii) if k is odd and $|G|=3 k$, then $G \neq \mathbf{Y}_{\mathbf{k}, \mathbf{k}, \mathbf{k}}$; and
(iii) if $k=2$ then G is not a wheel.

Theorem 4 was refined in a similar way in [11] and [10] (see Theorem 16 in the next section).

Dirac [3] described all 3-connected multigraphs that do not have two disjoint cycles and posed the following question:

Question 6 ([3]). Which $(2 k-1)$-connected multigraph $\|^{1}$ do not have k disjoint cycles?
Kierstead, Kostochka and Yeager [12] used Theorem 5 to answer Question 6 (see Theorem 14 in Section 2). The goal of this paper is to resolve the Ore-type version of Question 6 for multigraphs in an algorithmic way. In Theorem 17 we describe all multigraphs G that do not have k disjoint cycles and for any two nonadjacent vertices x and y in the underlying simple graph \underline{G}, we have $d_{\underline{G}}(x)+d_{\underline{G}}(y) \geq 4 k-3$. Using this description we construct a polynomial time algorithm that for every multigraph satisfying the conditions of Theorem 17 either finds k disjoint cycles or shows that there are no such k cycles.

In the next section, we introduce notation and discuss existing results to be used later on. In Section 3 we state our main results, Theorem 17 and Theorem 18. In the next four sections, we prove Theorem 17, and in the last section prove Theorem 18.

2. Preliminaries and known results

2.1. Notation. For every multigraph G, let $V_{1}=V_{1}(G)$ be the set of vertices in G incident to loops, and $V_{2}=V_{2}(G)$ be the set of vertices in $G-V_{1}$ incident to strong edges. Let $F=F(G)$ be the simple graph with $V(F)=V_{2}$ formed by the multiple edges in $G-V_{1}$. We will call the edges of $F(G)$ the strong edges of G, and define $\alpha^{\prime}=\alpha^{\prime}(F)$ to be the size of a maximum matching in F. Let \underline{G} denote the underlying simple graph of G, i.e. the simple graph on $V(G)$ such that two vertices are adjacent in G if and only if they are adjacent in \underline{G}. Let G^{*} denote the result of making all edges of G strong. For $e \notin E(G)$, let $G+e$ denote the graph with $V(G+e)=V(G)$ and $E(G+e)=E(G) \cup\{e\}$. For a path $P \in\left\{P_{1}, P_{2}\right\}$ with $P \cap G=\emptyset$, let $\operatorname{sd}(G, e, P)$ be the result of subdividing e with P.

Recall that $K_{t}(X)=K(X)$ denotes the complete with vertex set X where $|X|=t$. If we only want to specify one vertex v of K_{t} we write $K_{t}(v)$. Similarly, $K(Y, Z)$ is the complete Y, Z-bigraph. We also extend this notation to the case that Y is a graph. Then $K(Y, Z)$ is $K(V(Y), Z) \cup Y$.

A set $S=\left\{v_{0}, \ldots, v_{s}\right\}$ of vertices in a graph H is a superstar with center v_{0} in H if $N_{H}\left(v_{i}\right)=\left\{v_{0}\right\}$ for each $1 \leq i \leq s$ and $H-S$ has a perfect matching. For a maximum matching M, set $W=W(M)=V(M), V^{\prime}=V^{\prime}(M)=V \backslash W$, and $G^{\prime}=G^{\prime}(M)=G\left[V^{\prime}(M)\right]$. If $|F|=2 \alpha^{\prime}$ then $G^{\prime}(M)=G^{\prime}\left(M^{\prime}\right)$ for all perfect matchings M and M^{\prime}.

For $v \in V$, we define $s(v)=|N(v)|$ to be the simple degree of v, and we say that $\mathcal{S}(G)=\min \{s(v): v \in V\}$ is the minimum simple degree of G. Similarly, $\mathcal{S} O(G)=$ $\min \{s(v)+s(u): v, u \in V, v \neq u$ and $u v \notin E(\underline{G})\}$. Let $c(G)$ be the maximum number of disjoint cycles contained in G.

We define \mathcal{D}_{k} to be the family of multigraphs G with $\mathcal{S}(G) \geq 2 k-1$ and $\mathcal{D} \mathcal{O}_{k}$ to be the family of multigraphs G with $\mathcal{S} O(G) \geq 4 k-3$. For a graph $G \in \mathcal{D} \mathcal{O}_{k}$, call a vertex $v \in V(G)$ low if $d_{G}(v) \leq 2 k-2$. Let \mathcal{D}_{k}^{0} be the set of simple graphs in \mathcal{D}_{k}. Let $\mathcal{B}_{k}=\{G \in$ $\left.\mathcal{D}_{k}: c(G)<k\right\}, \mathcal{B}_{k}^{0}=\mathcal{D}_{k}^{0} \cap \mathcal{B}_{k}, \mathcal{B}_{k}^{0}(e)$ be the set of graphs in \mathcal{B}_{k} whose only strong edge is e. Let $\mathcal{B} \mathcal{O}_{k}=\left\{G \in \mathcal{D} \mathcal{O}_{k}: c(G)<k\right\}$ and $\mathcal{B} \mathcal{O}_{k}^{0}$ be the set of simple graphs in $\mathcal{B} O_{k}$.

If $G \in \mathcal{D} \mathcal{O}_{k}$ is an n-vertex multigraph and $\alpha(G) \geq n-2 k+2$, then for any distinct v_{1}, v_{2} in a maximum independent set $I, s\left(v_{1}\right)+s\left(v_{2}\right) \leq(2 k-2)+(2 k-2)<4 k-3$. Thus $\alpha(G) \leq n-2 k+1$ for every n-vertex $G \in \mathcal{D} \mathcal{O}_{k}$; so we call $G \in \mathcal{D} \mathcal{O}_{k}$ extremal if $\alpha(G)=n-2 k+1$. If $G \in \mathcal{D} \mathcal{O}_{k}$ is extremal, and v_{1} and v_{2} are distinct vertices in a

[^1]maximum independent set I, then $s\left(v_{1}\right)+s\left(v_{2}\right) \leq(2 k-1)+(2 k-1)=4 k-2$. Since $\mathcal{S O}(G) \geq 4 k-3$, this means that for some $v \in\left\{v_{1}, v_{2}\right\}$ we have $s(v)=2 k-1$ and I is exactly $V(G)-N(v)$. Thus to check whether G is extremal it is enough to check for every $v \in V(G)$ with $s(v)=2 k-1$ whether the set $V(G)-N(v)$ is independent.

A big set in an extremal $G \in \mathcal{D} \mathcal{O}_{k}$ is an independent set of size $\alpha(G)$. If I is a big set in an extremal $G \in \mathcal{D} \mathcal{O}_{k}$, then since $\mathcal{S O}(G) \geq 4 k-3$, each but one vertex $v \in I$ is adjacent to each $w \in V(G)-I$, and one vertex in I may be not adjacent to one vertex in $V(G)-I$. On the other hand, if x is a common vertex of big sets I and J, then $s(x) \leq|G|-|I \cup J| \leq 2 k-1-|J-I|$. Hence for every $y \in I-x, s(x)+s(y) \leq 4 k-2-|J-I|$, and so $|J-I| \leq 1$. Furthermore, if $|J-I|=1$ and there is $x^{\prime} \in J \cap I-x$, then $s(x)+s\left(x^{\prime}\right) \leq 2(n-\alpha(G)-1)=4 k-4$, a contradiction. Thus in this case $\alpha(G)=2$. This yields the following.

$$
\begin{align*}
& \text { Let } G \text { be extremal. If }|G|>2 k+1 \text { then every two big sets in } G \text { are disjoint. If } \tag{2.1}\\
& |G|=2 k+1 \text {, sets } I, J \subset V(G) \text { are big and } x \in I \cap J \text {, then } s(x)=2 k-2 \text {. }
\end{align*}
$$

2.2. Gallai-Edmonds Theorem. We will use the classical Gallai-Edmonds Theorem on the structure of graphs without perfect matchings. Recall that a graph F is odd if $|F|$ is odd, and that $o(F)$ denotes the number of odd components of F. For a graph F and $S \subseteq V(F)$, the deficiency $\operatorname{def}(S)$ is $o(F-S)-|S|$. Next, $\operatorname{def}(F):=\max \{\operatorname{def}(S): S \subseteq V(F)\}$. For each graph $F, \operatorname{def}(F) \geq 0$, since $\operatorname{def}(\emptyset)=o(F) \geq 0$.

Theorem 7 (Gallai-Edmonds). Let F be a graph and D be the set of $v \in V(F)$ such that there is a maximum matching in F not covering v. Let A be the set of the vertices in $V(F)-D$ that have neighbors in D, and let $C=V(F)-D-A$. Let F_{1}, \ldots, F_{k} be the components of $F[D]$. If M is a maximum matching in F, then all of the following hold:
a) M covers C and matches A into distinct components of $F[D]$.
b) Each F_{i} is factor-critical and has a near-perfect matching in M.
c) If $\emptyset \neq S \subseteq A$, then $N(S)$ intersects at least $|S|+1$ components of $F[D]$.
d) $\operatorname{def}(F)=\operatorname{def}(A)=k-|A|$.

We refer to (D, A, C) as the Gallai-Edmonds decomposition (GE-decomposition) of F.
2.3. Results for \mathcal{D}_{k}. Since every cycle in a simple graph has at least 3 vertices, the condition $|G| \geq 3 k$ is necessary in Theorem 3. However, it is not necessary for multigraphs, since loops and multiple edges form cycles with fewer than three vertices. Theorem 3 can easily be extended to multigraphs, although the statement is no longer as simple:

Theorem 8. For $k \in \mathbb{Z}^{+}$, let G be a multigraph with $\mathcal{S}(G) \geq 2 k$, and set $F=F(G)$ and $\alpha^{\prime}=\alpha^{\prime}(F)$. Then G has no k disjoint cycles if and only if

$$
\begin{equation*}
|V(G)|-\left|V_{1}(G)\right|-2 \alpha^{\prime}<3\left(k-\left|V_{1}\right|-\alpha^{\prime}\right), \tag{2.2}
\end{equation*}
$$

i.e., $|V(G)|+2\left|V_{1}\right|+\alpha^{\prime}<3 k$.

Proof. If (2.2) holds, then G does not have enough vertices to contain k disjoint cycles. If (2.2) fails, then we choose $\left|V_{1}\right|$ cycles of length one and α^{\prime} cycles of length two from $V_{1} \cup V(F)$. By Theorem 3, the remaining (simple) graph contains $k-\left|V_{1}\right|-\alpha^{\prime}$ disjoint cycles.

Theorem 8 yields the following.

Corollary 9. Let G be a multigraph with $\mathcal{S}(G) \geq 2 k-1$ for some integer $k \geq 2$, and set $F=F(G)$ and $\alpha^{\prime}=\alpha^{\prime}(F)$. Suppose G contains at least one loop. Then G has no k disjoint cycles if and only if $|V(G)|+2\left|V_{1}\right|+\alpha^{\prime}<3 k$.

Since acyclic graphs are exactly forests, Theorem 5 can be restated as follows:
Theorem 10. For $k \in \mathbb{Z}^{+}$, let G be a simple graph in \mathcal{D}_{k}. Then G has no k disjoint cycles if and only if one of the following holds:
$(\alpha)|G| \leq 3 k-1$;
(β) $k=1$ and G is a forest with no isolated vertices;
$(\gamma) k=2$ and G is a wheel;
($\delta) ~ \alpha(G)=n-2 k+1$; or
(ϵ) $k>1$ is odd and $G=\mathbf{Y}_{\mathbf{k}, \mathbf{k}, \mathbf{k}}$.
Dirac [3] described all multigraphs in \mathcal{D}_{2} that do not have two disjoint cycles:
Theorem 11 ([3]). Let G be a 3-connected multigraph. Then G has no two disjoint cycles if and only if one of the following holds:
(A) $\underline{G}=K_{4}$ and the strong edges in G form either a star (possibly empty) or a 3-cycle;
(B) $G=K_{5}$;
(C) $\underline{G}=K_{5}-e$ and the strong edges in G are not incident to the ends of e;
(D) \underline{G} is a wheel, where some spokes could be strong edges; or
(E) G is obtained from $K_{3,|G|-3}$ by adding non-loop edges between the vertices of the (first) 3-class.

Going further, Lovász 14 described all multigraphs with no two disjoint cycles. To state his result, let a bud be a vertex incident to at most one edge. Also, let $W_{n}=K_{1} \vee C_{n}$ be the wheel and $\mathbf{W}_{\mathbf{n}}^{+}=W_{n} \cup K\left(V\left(K_{1}\right), V(C)\right)$ be the wheel with strong edges for spokes. Similarly, let $\mathbf{K}_{\mathbf{3 , n - 3}}^{+}=K_{3} \vee \bar{K}_{n-3}$ be the n-vertex multigraph obtained from $K_{3, n-3}$ by adding strong edges connecting all pairs of the vertices of the (first) 3-class. Then, each multigraph described by Theorem 11 (A) above is contained either in $\mathbf{W}_{\mathbf{3}}^{+}$or in $\mathbf{K}_{\mathbf{3}, \mathbf{1}}^{+}$.

Lovász [14] observed that any connected multigraph can be transformed into a multigraph with minimum degree at least 3 or a multigraph with exactly one vertex without affecting the maximum number of disjoint cycles in it by using a sequence of operations of the following two types: (i) deleting a bud; (ii) replacing a vertex v of degree 2 that has neighbors x and y (where $v \notin\{x, y\}$ but possibly $x=y$) by a new (possibly parallel) edge connecting x and y. He also proved the following:

Theorem 12 ([14). Let H be a multigraph with $\delta(H) \geq 3$. Then H has no two disjoint cycles if and only if :
(L1) $H=K_{5}$;
(L2) $H \subseteq \mathbf{W}_{|\mathbf{G}|-\mathbf{1}}^{+}$;
(L3) $H \subseteq \mathbf{K}_{\mathbf{3},|\mathbf{G}|-\mathbf{3}}^{+}$; or
(L4) H is obtained from a forest T and vertex x with possibly some loops at x by adding edges linking x to T.

Say that a multigraph G has a 2-property if the vertices of degree at most 2 form a clique $Q(G)$ (possibly with some multiple edges). Let $G \in \mathcal{D} O_{2}$ with no two disjoint cycles. Then G has a 2-property. By Lovász's observation above, G can be transformed to a multigraph
H that has exactly one vertex or is of type (L1)-(L4) by a sequence of deleting buds and/or contracting edges. Note that if a multigraph G^{\prime} has 2-property, then the multigraph obtained from G^{\prime} by deleting a bud or contracting an edge also has. Thus, H and all the intermediate multigraphs have 2-property. Reversing this transformation, G can be obtained from H by adding buds and subdividing edges. If H has exactly one vertex and at most one edge, then any multigraph with 2-property that can be obtained from H this way has maximum degree at most 2 . Hence G is either a K_{i} for $i \leq 3$ or forms a strong edge. If $\delta(H) \geq 3$, then the clique $Q:=Q(G)$ cannot have more than 2 vertices: by the definition of $Q(G),|Q| \leq 3$, and if $|Q|=3$ then Q induces a K_{3}-component of G and $\delta(G-Q) \geq 3$; thus $G-Q$ has another cycle. Let $Q^{\prime}:=V(G) \backslash V(H)$. By above, $Q \subseteq Q^{\prime}$. If $Q^{\prime} \neq Q$, then Q consists of a single leaf in G with a neighbor of degree 3 , so G is obtained from H by subdividing an edge and adding a leaf to the degree- 2 vertex. If $Q^{\prime}=Q$, then Q is a component of G, or $G=H+Q+e$ for some edge $e \in E(H, Q)$, or at least one vertex of Q subdivides an edge $e \in E(H)$. In the last case, when $|Q|=2, e$ is subdivided twice by Q.

In case (L4), because $\delta(H) \geq 3$, either T has at least two buds, each linked to x by multiple edges, or T has one bud linked to x by an edge of multiplicity at least 3 . So this case cannot arise from G. Also, $\delta(H)=3$, unless $H=K_{5}$, in which case $\delta(H)=4$. So Q is not an isolated vertex, lest deleting Q leave H with $\delta(H) \geq 5>4$; and if Q has a vertex of degree 1 then $H=K_{5}$. Else all vertices of Q have degree 2 , and Q consists of the subdivision vertices of one edge of H. This yields the following characterization of multigraphs in $G \in \mathcal{D} O_{2}$ with no two disjoint cycles.

Set $Z_{t}=\left\{z_{1}, \ldots, z_{t}\right\}$, and define $\mathbf{S}_{\mathbf{3}}=K\left(Z_{5}\right) \cup z_{1} x y, \mathbf{S}_{\mathbf{4}}=\operatorname{sd}\left(K\left(Z_{5}\right), z_{1} z_{2}, x\right) \cup x y$, and $\mathbf{S}_{\mathbf{5}}=\operatorname{sd}\left(K\left(Z_{5}\right), z_{1} z_{2}, x y\right)$ (See Figure 2.1).

(a) Graph $\mathbf{S}_{\mathbf{3}}$

(b) Graph \mathbf{S}_{4}

(c) Graph $\mathbf{S}_{\mathbf{5}}$

Figure 2.1. Graphs $\mathbf{S}_{\mathbf{3}}, \mathbf{S}_{\mathbf{4}}$, and $\mathbf{S}_{\mathbf{5}}$
Theorem 13. All $G \in \mathcal{B O}_{2}$ satisfy one of:
(Y1) $G \subseteq \mathbf{S}_{\mathbf{3}}$, the graph obtained from K_{5} by attaching a new subdivided edge;
(Y2) $G \subseteq \mathbf{S}_{\mathbf{4}}=\operatorname{sd}\left(K_{5}, e, x\right)+y+x y$;
(Y3) $G=\operatorname{sd}\left(K_{5}, e, x y\right)$;
(Y4) $G \subseteq H^{\prime}$, where $H=\mathbf{W}_{|\mathbf{H}|-\mathbf{1}}^{+}$and $H^{\prime} \in\{H, \operatorname{sd}(H, e, x), \operatorname{sd}(H, e, x y)\}$;
(Y5) $G \subseteq H^{\prime}$, where $H=\mathbf{K}_{\mathbf{3}, \mathbf{H} \mid-\mathbf{3}}^{+}$and $H^{\prime} \in\{H, \operatorname{sd}(H, e, x), \operatorname{sd}(H, e, x y)\}$.
By Corollary 9 , in order to describe the multigraphs in \mathcal{D}_{k} not containing k disjoint cycles, it is enough to describe such multigraphs with no loops. Recently, Kierstead, Kostochka, and Yeager [12] proved the following:

Theorem 14 ([12]). Let $k \geq 2$ and $n \geq k$ be integers. Let G be an n-vertex graph in \mathcal{D}_{k} with no loops. Set $F=F(G), \alpha^{\prime}=\alpha^{\prime}(F)$, and $k^{\prime}=k-\alpha^{\prime}$. Then G does not contain k disjoint cycles if and only if one of the following holds:
(a) $n+\alpha^{\prime}<3 k$;
(b) $|F|=2 \alpha^{\prime}$ (i.e., F has a perfect matching) and either
(i) k^{\prime} is odd and $G-F=\mathbf{Y}_{\mathbf{k}^{\prime}, \mathbf{k}^{\prime}, \mathbf{k}^{\prime}}$, or
(ii) $k^{\prime}=2<k$ and $G-F=W_{5}$;
(c) G is extremal and either
(i) some big set is not incident to any strong edge, or
(ii) for some two distinct big sets I_{j} and $I_{j^{\prime}}$, all strong edges intersecting $I_{j} \cup I_{j^{\prime}}$ have a common vertex outside of $I_{j} \cup I_{j^{\prime}}$ and if $v \in I_{j} \cap I_{j^{\prime}}$ (this may happen only if $k^{\prime}=2$), then v is not incident with a strong edge;
(d) $n=2 \alpha^{\prime}+3 k^{\prime}, k^{\prime}$ is odd, and F has a superstar $S=\left\{v_{0}, \ldots, v_{s}\right\}$ with center v_{0} such that either
(i) $G-\left(F-S+v_{0}\right)=\mathbf{Y}_{\mathbf{k}^{\prime}+\mathbf{1}, \mathbf{k}^{\prime}, \mathbf{k}^{\prime}}$, or
(ii) $s=2$, $v_{1} v_{2} \in E(G), G-F=\mathbf{Y}_{\mathbf{k}^{\prime}-\mathbf{1}, \mathbf{k}^{\prime}, \mathbf{k}^{\prime}}$ and G has no edges between $\left\{v_{1}, v_{2}\right\}$ and the set X_{0} in $G-F$;
(e) $k=2$ and $W_{n-1} \subseteq G \subseteq W_{n-1}^{*}$;
(f) $k^{\prime}=2,|F|=2 \alpha^{\prime}+1=n-5$, and $G-F=C_{5}$.
2.4. Results for $\mathcal{D} \mathcal{O}_{k}$. Theorem 4 can be restated as follows.

Theorem 15. For $k \in \mathbb{Z}^{+}$, let G be a simple graph with $\mathcal{S O}(G) \geq 4 k-1$ and $|G| \geq 3 k$. Then G has k disjoint cycles.

Theorem 12 implies a description of graphs in $\mathcal{D O}_{2}$ with no two disjoint cycles. To state it, we need some notation.

The next theorem summarizes the results of [11] and [10.
Theorem 16. For $k, n \in \mathbb{Z}^{+}$with $n \geq 3 k$, let G be an n-vertex simple graph in $\mathcal{D} \mathcal{O}_{k}$. Then G has no k disjoint cycles if and only if one of the following holds:
(S1) $k=1$ and G is a forest with at most one isolated vertex;
(S2) $k=2$ and and G satisfies the conditions of Theorem 13;
(S3) $\alpha(G)=n-2 k+1$;
(S4) $k=3$ and $G=\mathbf{F}_{\mathbf{1}}$ (see Fig. 2.2);
(S5) $k=3$ and $G=\mathbf{F}_{\mathbf{2}}$ where $\mathbf{F}_{\mathbf{2}}$ is obtained from the complement $\mathbf{F}_{\mathbf{2}}^{\prime}$ of the graph $\mathbf{O}_{\mathbf{5}}$ (see
Fig. 3.1) by adding an all-adjacent vertex;
(S6) $k=3$ and G is the graph $\mathbf{F}_{\mathbf{3}}$ in Fig. 3.2;
(S7) $k \geq 3, n=3 k, \alpha(G) \leq k$, and $\chi(\bar{G})>k$;
(S8) $k \geq 3, n=3 k$, and $G \subseteq \mathbf{Y}_{\mathbf{k}, \mathbf{s}, \mathbf{k}-\mathbf{s}}$ for some odd $1 \leq s \leq 2 k-1$;
(S9) $k \geq 3, n=3 k$, and $G=\mathbf{Y}_{\mathbf{k}-\mathbf{1 , 1 , 2 \mathbf { k }}}$.

Figure 2.2. Graph $\mathbf{F}_{\mathbf{1}}$.

Remark. The result of Rabern [15] (see also [9, 13]) implies that if (S7) holds then $k \leq 4$.

3. Main Results

Our first main result describes the loopless multigraphs in $\mathcal{D} \mathcal{O}_{k}$ with no k disjoint cycles. Our second main result uses this description to construct a polynomial-time algorithm that for every $G \in \mathcal{D} \mathcal{O}_{k}$ either finds k disjoint cycles in G or proves that G has no k such cycles .

Figure 3.1. Graphs \mathbf{O}_{5} and $\mathbf{F}_{\mathbf{2}}$ and multigraph $\mathbf{F}_{\mathbf{2}}^{+}$.

Figure 3.2. Graphs $\mathbf{F}_{\mathbf{3}}$ and \mathbf{B} and multigraph $\mathbf{F}_{\mathbf{3}}^{\prime}$.

Figure 3.3. Graphs $\mathbf{O}_{\mathbf{4}}$ and $\mathbf{F}_{\mathbf{4}}$.

Theorem 17. Let $k \geq 5$ and $n \geq k$ be integers. Let G be an n-vertex multigraph in $\mathcal{D} \mathcal{O}_{k}$ with no loops. Set $F=F(G), \alpha^{\prime}=\alpha^{\prime}(F)$, and $k^{\prime}=k-\alpha^{\prime}$. Let (D, A, C) be the $G E-$ decomposition of $V(F)$ and let $D^{\prime}=V(G)-V(F)$. If G does not contain k disjoint cycles then one of the following holds:
(Q1) $n<3 k-\alpha^{\prime}$;
(Q2) $3 k-\alpha^{\prime} \leq n \leq 3 k-\alpha^{\prime}+1,|F|=2 \alpha^{\prime}$ (i.e., F has a perfect matching) and either
(Q2a) $G-F$ is one of the graphs described in (S6)-(S9) of Theorem 16 with k^{\prime} in place k, or
(Q2b) $2 \leq k^{\prime} \leq 3$.
(Q3) $n>2 k+1, G$ is extremal and either
(Q3a) some big set is not incident to any strong edge, or
(Q3b) for some two distinct big sets J and J^{\prime}, all strong edges intersecting $J \cup J^{\prime}$ have a common vertex outside of $J \cup J^{\prime}$, and any vertex $x \in J \cap J^{\prime}$ (if exists) has no strong neighbors;
(Q4) $n=3 k-\alpha^{\prime}+1,\left|D^{\prime}\right|=9$ and $|F|-2 \alpha^{\prime} \in\{1,3\}$;
(Q5) $n=3 k-\alpha^{\prime}, k^{\prime} \leq 4$ and $n^{\prime}=3 k^{\prime}$;
(Q6) $n=3 k-\alpha^{\prime},\left|D^{\prime}\right|=7$ and $|F|-2 \alpha^{\prime}=2$;
(Q7) $n=2 k+1$ and $k^{\prime}=1$.
(Q8) $n>2 k+1, n=2 \alpha^{\prime}+3 k^{\prime}=3 k-\alpha^{\prime}$, and $\alpha^{\prime} \leq 1+(|A|+|C|) / 2$.
(Q9) $n=3 k-\alpha^{\prime}$, and G has a vertex $x \in D^{\prime}$ of degree $k+\alpha^{\prime}-1$ such that for each maximum matching M in F, the set $N(x)-V(M)$ is independent, and F has a maximum matching M^{*} such that $V\left(M^{*}\right) \subset N[x]$;
(Q10) $n \geq 3 k-\alpha^{\prime}, \alpha(G) \leq n-2 k, k^{\prime}=2$, and either $n^{\prime}=6$ or all of $n^{\prime}=7,|F|=2 \alpha^{\prime}$ and $G^{\prime}=F_{4}$.

Theorem 18. There is a polynomial time algorithm that for every multigraph $G \in \mathcal{D} \mathcal{O}_{k}$ either finds k disjoint cycles in G or shows that G has no k disjoint cycles.

4. Proof of Theorem 17: Simpler cases

Suppose G does not have k disjoint cycles and that none of (Q1) (Q10) holds.
Among the maximum matchings in F, choose a matching M such that
(i) $\alpha(G-W)$ minimum, where $W=V(M)$ and
(ii) modulo (i), the sum of simple degrees of the multigraph $G-W$ is maximum.

Then $|M|=\alpha^{\prime}, G^{\prime}:=G-W$ is simple, and $\mathcal{S} O\left(G^{\prime}\right) \geq 4 k-3-2 \alpha^{\prime}=4 k^{\prime}-3$. So $G^{\prime} \in \mathcal{D} O_{k^{\prime}}$. Let $n^{\prime}:=\left|V\left(G^{\prime}\right)\right|=n-2 \alpha^{\prime}$.

If $\left|G^{\prime}\right|=3 k^{\prime}$, then G^{\prime} is quite dense, so sometimes it will be convenient to consider the complement of \underline{G}. For $v \in V(G)$, let $\bar{N}(v)=V(G)-N[v]$ and $\bar{d}(v)=|\bar{N}(v)|=n-1-s(v)$. When $\left|G^{\prime}\right|=3 k^{\prime}$, we have $n=2 k+k^{\prime}$ and thus the inequality $d(v)+d(u) \geq 4 k-3$ can be written as

$$
\begin{equation*}
\bar{d}(v)+\bar{d}(u) \leq 2 k^{\prime}+1 \quad \text { for all } v u \notin E(G) \tag{4.1}
\end{equation*}
$$

Since G^{\prime} has no k^{\prime} disjoint cycles, either $n^{\prime}<3 k^{\prime}$ or one of (S1)-(S9) in Theorem 16 holds for G^{\prime} with k^{\prime} in place of k. If $n^{\prime}<3 k^{\prime}$, then (Q1) holds. So suppose $n^{\prime} \geq 3 k^{\prime}$.

The following observation will be sometimes helpful.
Lemma 19. If $u \in D-V\left(G^{\prime}\right)$, then F has a maximum matching M^{\prime} and G^{\prime} has a vertex w such that $M \cup M^{\prime}$ has a component that is a w,u-path in F and every other component of $M \cup M^{\prime}$ is a single edge. In particular, the set of vertices of G not covered by M^{\prime} is $V\left(G^{\prime}\right)-w+u$.

Proof. By the definition of D, F has a maximum matching M_{1} not covering u. Consider $M \cup M_{1}$. Every component of it is a single edge or an even cycle or a path of an even length. Since u is not covered by M, it is an end of a path P in $M \cup M_{1}$. The other end, say w, of P must be not covered by M, i.e., $w \in V\left(G^{\prime}\right)$. Furthermore, the intermediate vertices in P are not in $V\left(G^{\prime}\right)$, since they are covered by M. Let M^{\prime} be obtained from M by switching the edges along the alternating path P. Then M^{\prime} satisfies the lemma.

CASE 1: $n>2 k+1$ and (S3) holds for G^{\prime}, i.e. $\alpha\left(G^{\prime}\right)=n^{\prime}-2 k^{\prime}+1$. So G^{\prime} is extremal. Let J be a big set in G^{\prime}. Then $|J|=n^{\prime}-2 k^{\prime}+1=n-2 k+1 \geq 3$. So G is extremal and J is a big set in G. If (Q3a) fails then some $w \in J$ has a strong neighbor v. Let $v u$ be the edge in M containing v. In F, consider the maximum matching $M^{\prime}=M-v u+w v$, and set $G^{\prime \prime}=G-V\left(M^{\prime}\right)$. By the choice of $M, G^{\prime \prime}$ contains a big set J^{\prime}, and J^{\prime} is big in G. Since $w \notin J^{\prime}$ and $n-2 k+1 \geq 3$, (2.1) implies $J^{\prime} \cap J=\emptyset$ (possibly, $u \in J^{\prime}$). If (Q3b) fails then there is a strong edge $x y$ such that $x \in J \cup J^{\prime}$ and $y \neq v$. Moreover, by the symmetry between J and J^{\prime}, we may assume $x \in J^{\prime}$. Let $y z$ be the edge in M containing y. Since M is maximum, $z \neq u$. Let $M^{\prime \prime}=M^{\prime}-y z+x y$. Again by the case, $G-V\left(M^{\prime \prime}\right)$ contains a big set $J^{\prime \prime}$. Similarly to above, since $w, x \notin J^{\prime \prime}$ and $n>2 k+1,(2.1)$ implies that $J^{\prime \prime}$ is disjoint from $J \cup J^{\prime}$. So $n^{\prime} \geq 3|J|$. But $n^{\prime} \geq 3 k^{\prime}$ and thus $|J|=n^{\prime}-2 k^{\prime}+1 \geq n^{\prime}-2 n^{\prime} / 3+1$, a contradiction.

CASE 2: (S4) holds for G^{\prime}, i.e. $k^{\prime}=3$ and $G^{\prime}=\mathbf{F}_{\mathbf{1}}$ (see Fig. 2.2). Since for $i=1,2$ and $1 \leq j \leq 8, i \neq j, x_{i} z_{j} \notin E\left(G^{\prime}\right)$ and $d_{G^{\prime}}\left(x_{i}\right)+d_{G^{\prime}}\left(z_{j}\right)=9=4 k^{\prime}-3$, each vertex of G^{\prime} is adjacent in G to each vertex in $V(M)$.
If some $v u \in M$ is such that v has a strong neighbor $z_{j} \in V\left(G^{\prime}\right)-x_{1}-x_{2}$, then by (4.2), $u x_{1}, u x_{2} \in E(G)$. Then the $k-k^{\prime}-12$-cycles in $M-u v$ together with cycles $v z_{j} v, u x_{1} x_{2} u$ and two disjoint 3 -cycles in $G^{\prime}-x_{1}-x_{2}-z_{j}$ form k disjoint cycles in G. Similarly, if some $v u \in M$ is such that v has a strong neighbor $x_{i} \in V\left(G^{\prime}\right)$, say $v x_{1}$ is a strong edge, then by (4.2), $u x_{2}, u z_{2} \in E(G)$. So the $k-k^{\prime}-12$-cycles in $M-u v$ together with cycles $v x_{1} v, u x_{2} z_{2} u, z_{3} z_{4} z_{5} z_{3}$ and $z_{6} z_{7} z_{8} z_{6}$ form k disjoint cycles in G. Thus (Q2)(b) holds.

CASE 3: (S5) holds for G^{\prime}, i.e. $k^{\prime}=3$ and $G^{\prime}=\mathbf{F}_{\mathbf{2}}$ which is obtained from the complement $\mathbf{F}_{\mathbf{2}}^{\prime}$ of \mathbf{O}_{5} by adding a vertex t adjacent to all vertices in $\mathbf{F}_{\mathbf{2}}^{\prime}$ (see Fig. 3.1). Since each of the vertices $x_{1}, x_{2}, x_{3}, y_{1}, \ldots, y_{4}$ has degree 5 in $\mathbf{F}_{\mathbf{2}}$ and is not adjacent to z_{1} or z_{2} of degree 4 , and since $5+4=4 k^{\prime}-3$, similarly to (4.2) we get

$$
\begin{equation*}
\text { each vertex of } G^{\prime}-t \text { is adjacent in } G \text { to each vertex in } V(M) \text {. } \tag{4.3}
\end{equation*}
$$

Suppose some $v u \in M$ is such that v has a strong neighbor $w \in V\left(G^{\prime}\right)-t$. Then we find k disjoint cycles in G as follows. Certainly, we include into the set all $k-k^{\prime}-12$-cycles in $M-u v$ and the 2-cycle $v w v$. The remaining $k^{\prime}=3$ cycles will depend on the choice of w. By symmetry, we may assume that $w \in\left\{x_{1}, y_{1}, z_{1}\right\}$.
(i) If $w=x_{1}$, then by (4.3) we can take $u y_{1} x_{2} u, w y_{2} z_{1} w$ and $y_{3} x_{3} y_{4} z_{2} y_{3}$.
(ii) If $w=y_{1}$, then we can take $u y_{2} x_{1} u, w z_{1} z_{2} w$ and $y_{3} x_{2} y_{4} x_{3} y_{3}$.
(iii) If $w=z_{1}$, then we take $u y_{1} x_{1} u, w y_{2} x_{2} w$ and $y_{3} x_{3} y_{4} z_{2} y_{3}$.

Thus if $G^{\prime}=\mathbf{F}_{\mathbf{2}}$, then either (Q2) or (Q4) holds.

CASE 4: (S6) holds for G^{\prime}, i.e. $k^{\prime}=3$ and $G^{\prime}=\mathbf{F}_{\mathbf{3}}$ in Fig. 3.2. So, $n^{\prime}=9$ and (Q5) holds.

CASE 5: (S7) holds for G^{\prime}, i.e. $k^{\prime} \geq 3,\left|G^{\prime}\right|=3 k^{\prime}, \alpha\left(G^{\prime}\right) \leq k^{\prime}$, and $\chi\left(\overline{G^{\prime}}\right)>k^{\prime}$. Since $\left|G^{\prime}\right|=3 k^{\prime}$, (4.1) must hold. Since $\chi\left(\overline{G^{\prime}}\right)>k^{\prime}, G^{\prime}$ contains an induced subgraph G_{0} such that $\overline{G_{0}}$ is a vertex- $\left(k^{\prime}+1\right)$-critical graph. By (4.1),
(4.4) for every $x y \in E\left(\overline{G_{0}}\right)$, the sum of the degrees of x and y in $\overline{G_{0}}$ is at most $2 k^{\prime}+1$.

The $\left(k^{\prime}+1\right)$-critical graphs satisfying (4.4) were studied recently. If $k^{\prime} \geq 5$, then by results in [8] and [15], $\overline{G_{0}}=K_{k^{\prime}+1}$, which means $\alpha\left(G^{\prime}\right) \geq k^{\prime}+1$, a contradiction to the case. If $k^{\prime} \leq 4$, then (Q5) holds.

5. Proof of Theorem 17, Case 6: $k^{\prime}=1$

In this section, we consider the case that (S1) holds for G^{\prime}, i.e. $k^{\prime}=1$ and G^{\prime} is a forest with at most one isolated vertex. Since $k \geq 4$, there are strong edges $x z, x^{\prime} z^{\prime}, x^{\prime \prime} z^{\prime \prime} \in M$.

Call a vertex v low if $d_{G}(v) \leq 2 k-2$.
Case 6.1: $n>2 k+1$ and G^{\prime} has at least two non-singleton components, say H_{1} and H_{2}. Then $n^{\prime} \geq 4$. For $i=1,2$, let P_{i} be a longest path in H_{i}, and let u_{i} and w_{i} be the ends of P_{i}. As $\mathcal{S O}(G) \geq 4 k-3$, at most two edges between W and $\left\{u_{1}, u_{2}, w_{1}, w_{2}\right\}$ are missing in G. So we may assume that at most one edge between $\{x, z\}$ and $\left\{u_{1}, u_{2}, w_{1}, w_{2}\right\}$ is missing in G. By symmetry, we assume that among these edges only $x u_{1}$ could be missing in G. Then the $\alpha^{\prime}-1$ strong edges of $M-x z$ and the cycles $x u_{2} w_{2}$ and $z u_{1} w_{1}$ form k disjoint cycles in G, a contradiction.

Case 6.2: $n>2 k+1$ and G^{\prime} has a unique non-singleton component H, and this H is not a star. Let $P=y_{1}, \ldots, y_{t}$ be a longest path in H. Since H is not a star, $t \geq 4$. Then y_{1} is a leaf in G^{\prime}, and either $d_{G^{\prime}}\left(y_{2}\right)=2$ or y_{2} is adjacent to a leaf $l \neq y_{1}$. Let $y_{1}^{\prime}=y_{2}$ if
the number of missing edges between $\left\{y_{1}, y_{1}^{\prime}, y_{t}, y_{t}^{\prime}\right\}$ and W in G is at most $q+r$, where $q=\left|\left\{y_{1}^{\prime}, y_{t}^{\prime}\right\} \cap\left\{y_{2}, y_{t-1}\right\}\right|$ and r is the number of low vertices in $\left\{y_{1}, y_{1}^{\prime}, y_{t}, y_{t}^{\prime}\right\}$.
Since $q \leq 2, r \leq 2$ and $|M| \geq 3$, for some edge $a b \in M$ at most one edge between $\{a, b\}$ and $\left\{y_{1}, y_{1}^{\prime}, y_{t}, y_{t}^{\prime}\right\}$ is missing in G. So we get a contradiction as at the end of Case 6.1.

Case 6.3: $n>2 k+1$ and the unique non-singleton component H of G^{\prime} is a star. Let x be the center of this star. Then $J=V\left(G^{\prime}\right)-x$ is a big set and $|J|=n^{\prime}-1 \geq 3$. So we have Case 1

Case 6.4: $n=2 k+1$. Then (Q7) holds.

6. Proof of Theorem 17: Case 7: $G^{\prime} \subseteq \mathbf{Y}_{\mathbf{k}^{\prime}, \mathbf{c}, 2 \mathbf{k}^{\prime}-\mathbf{c}}$ And $k^{\prime}>2$

In this section we consider the case that (S8) holds for G^{\prime}, i.e. $n^{\prime}=3 k^{\prime}$ and $G^{\prime} \subseteq \mathbf{Y}_{\mathbf{k}^{\prime}, \mathbf{c}, 2 \mathbf{k}^{\prime}-\mathbf{c}}$ for $k^{\prime} \geq 3$ and some odd $1 \leq c \leq k^{\prime}$. If $k^{\prime} \leq 3$, then (Q5) holds. So below in this section we assume

$$
\begin{equation*}
k^{\prime} \geq 4 \tag{6.1}
\end{equation*}
$$

We view $V\left(G^{\prime}\right)$ in the form $V\left(G^{\prime}\right)=X \cup Z \cup Y$, where $|X|=c,|Z|=2 k^{\prime}-c,|Y|=k^{\prime}, Y$ is independent and there are no edges between X and Z. First, we digress a bit:
Lemma 20. Let $t \geq 2$ and $\epsilon \in\{0,1\}$. Let H be a graph with $V(H)=R \cup Q$ such that $|R|=2 t+\epsilon,|Q|=3 t-|R|=t-\epsilon$, and let $y_{0} \in Q$. If
(1) each $u \in R$ has at most one nonneighbor in H and
(2) each $y \in Q-y_{0}$ has at most $1+\epsilon$ nonneighbors in R and
(3) y_{0} has at most 2 nonneighbors in R and has only $1+\epsilon$ nonneighbors if $t=2$.
then H contains t vertex-disjoint triangles.
Proof. Using induction, note the lemma holds for $t=2$. If $t \geq 3$ then H has a triangle $T=y_{0} z_{1} z_{2} y_{0}$ with $z_{1}, z_{2} \in R$. By induction $H^{\prime}:=H-T$ has $t-1$ disjoint triangles.

Since $n^{\prime}=3 k^{\prime}$, we will often use 4.1). Since each $y \in Y$ has $k^{\prime}-1$ nonneighbors in Y, (4.1) yields

$$
\begin{equation*}
|\bar{N}(y)-Y|+\left|\bar{N}\left(y^{\prime}\right)-Y\right| \leq 3 \quad \text { for all } y, y^{\prime} \in Y \tag{6.2}
\end{equation*}
$$

By (6.2),

$$
\begin{equation*}
\text { there is } y_{0} \in Y \text { such that }|\bar{N}(y)| \leq 1 \text { for every } y \in Y-y_{0} \tag{6.3}
\end{equation*}
$$

$d_{H}\left(y_{2}\right)=2$ and $y_{1}^{\prime}=l$ otherwise. Similarly, either $d_{G^{\prime}}\left(y_{t-1}\right)=2$ or y_{t-1} is adjacent to a leaf $l^{\prime} \neq y_{t}$. Let $y_{t}^{\prime}=y_{t-1}$ if $d_{H}\left(y_{t-1}\right)=2$ and $y_{t}^{\prime}=l^{\prime}$ otherwise. Since $y_{1} y_{t}^{\prime}, y_{1}^{\prime} y_{t} \notin E(G)$ and $G \in \mathcal{D} \mathcal{O}_{k}$,

$$
\begin{equation*}
|\bar{N}(x) \cap W| \leq 1 \text { and } \bar{N}(x) \cap \bar{W}=Z \text { for each } x \in X \tag{6.4}
\end{equation*}
$$

and

$$
\begin{equation*}
|\bar{N}(z)-X| \leq 1 \text { for each } z \in Z, \text { and if } c=k^{\prime} \text { then } G[Z]=K_{c} . \tag{6.5}
\end{equation*}
$$

Lemma 21. Let $G^{\prime} \subseteq \mathbf{Y}_{\mathbf{k}^{\prime}, \mathbf{c}, 2 \mathbf{k}^{\prime}-\mathbf{c}}$ for $k^{\prime} \geq 4$ and an odd $c \leq k^{\prime}$. Suppose there are $w \in D^{\prime}$ and $u \in W$ such that F has an M-alternating u, w-path P
(A) If $w \in Y \cup Z$, then u has no neighbor in $Y-w$ or no neighbor in X.
(B) If $w \in X$, then u has no neighbor in Y or no neighbor in Z.

Proof. Let M^{\prime} be the matching obtained from M by switching edges on P. Then $W\left(M^{\prime}\right)=W(M)-w+u$. Set $t=\left(2 k^{\prime}-c-1\right) / 2$. Since $1 \leq c \leq k^{\prime}$ and is odd, by (6.1),

$$
\begin{equation*}
|Z|=2 k^{\prime}-c \geq 5 \text { and } k^{\prime}-1 \geq t \geq 2 \tag{6.6}
\end{equation*}
$$

Arguing by contradiction, we assume the lemma fails and construct k disjoint cycles.
Case 1: $w \in Y \cup Z$. Since (A) does not hold, u has a neighbors $x \in X$ and $y \in Y-w$. Pick $y \in N(u) \cap Y-w$ with $s(y)$ minimum. Then for y_{0} defined in (6.3), we have

$$
\begin{equation*}
\text { if } y_{0} \in Y-w-y \text {, then } y_{0} u \notin E(G) \text {, and so by (6.2), }\left|\bar{N}\left(y_{0}\right) \cap Z\right| \leq 2 \tag{6.7}
\end{equation*}
$$

By (6.4), $T:=u x y u \subseteq G$. Set $\epsilon:=0$ if $w \in Z$; else $\epsilon:=1$. Partition $Y-y-w$ as $\{Q, \bar{Q}\}$ so that $|Q|=t-\epsilon,|\bar{Q}|=\frac{c-1}{2}$, and $y_{0} \in \bar{Q} \cup\{w, y\}$ if $c>1$. So $t \geq 3$, if $y_{0} \in Q$. Regardless, by (6.3), (6.5) and (6.7), Q and $R:=Z-w$ satisfy the conditions of Lemma 20. Thus $Q \cup R$ contains t disjoint triangles. By (6.4), $(X-x) \cup \bar{Q}$ contains $\frac{c-1}{2}$ disjoint triangles. Counting these $k^{\prime}-1$ triangles, T, and $k-k^{\prime}$ strong edges of M^{\prime} gives k disjoint cycles.

Case 2: $w \in X$. Since (B) fails, there are $z \in N(u) \cap Z$ and $y \in N(u) \cap Y$. Our first goal is to show there is an edge with ends in $N(u) \cap Y$ and $N(u) \cap Z$. If $N(u) \cap N(z) \neq \emptyset$ then we are done. Else, by (6.5), $N(z) \cap Y=Y-y=\bar{N}(u) \cap Y$. Let $y^{\prime} \in Y-y$. By (6.2) applied to y and $y^{\prime},|\bar{N}(y) \cap Z| \leq 2$. By (4.1) applied to u and $y^{\prime},|\bar{N}(u) \cap Z| \leq 2$. By (6.6), $|Z| \geq 5$, so there is $z^{\prime} \in Z \cap N(u) \cap N(y)$, and we are done.

Pick $x y \in E$ with $y \in N(u) \cap Y$ and $z \in N(u) \cap Z$ so that $s(y)$ is minimum. Then for y_{0} defined in (6.3), using (6.2),

$$
\begin{equation*}
\text { if } y_{0} \in Y-y \text { then }\left|\bar{N}\left(y_{0}\right) \cap(Z-z)\right| \leq 2 \tag{6.8}
\end{equation*}
$$

since $y_{0} u \notin E(G)$ or $y_{0} z \notin E(G)$.
Partition $Y-y$ as $\{Q, \bar{Q}\}$ so that $|Q|=t,|\bar{Q}|=\frac{c-1}{2}$, and $y_{0} \in \bar{Q}+y$ if $c>1$. So $t \geq 3$, if $y_{0} \in Q$. Regardless, by (6.3), (6.5) and (6.8), Q and $R:=Z-z$ satisfy the conditions of Lemma 20. Thus $Q \cup R$ contains t disjoint triangles. By (6.4), $(X-w) \cup \bar{Q}$ contains $\frac{c-1}{2}$ disjoint triangles. Counting these $k^{\prime}-1$ triangles, T, and $k-k^{\prime}$ strong edges of M^{\prime} gives k disjoint cycles.

Lemma 22. Let $G^{\prime} \subseteq \mathbf{Y}_{\mathbf{k}^{\prime}, \mathbf{c}, 2 \mathbf{k}^{\prime}-\mathbf{c}}$ for $k^{\prime} \geq 4$ and an odd $c \leq k^{\prime}$. Then $|D \cap W| \leq 2$.
Proof. Suppose $u \in D \cap W$. Then there is a matching M^{\prime} and vertex $w_{u} \in V\left(G^{\prime}\right)$ such that $W\left(M^{\prime}\right)=W(M)+w_{u}-u$ and there is an M, M^{\prime}-alternating path from u to w_{u}. By Lemma 21, u has no neighbors in $Y-w_{u}$ or in X or in Z.

By degree condition (4.1), there is at most one $u \in D \cap W$ with no neighbor in X or no neighbor in Z : otherwise for any $x \in X$ and $z \in Z$ we have the contradiction

$$
\|\{x, z\}, W\| \leq 4 \alpha^{\prime}-2 \text { and so } s(x)+s(z) \leq 4 k^{\prime}-2+4 \alpha^{\prime}-2 \leq 4 k-4
$$

Similarly, there is at most one $u \in D \cap W$ with at most one neighbor in Y : otherwise, as $k^{\prime} \geq 4$, there are two $y, y^{\prime} \in Y$ with

$$
\left\|\left\{y, y^{\prime}\right\}, W\right\| \leq 4 \alpha^{\prime}-4 \text { and so } s(y)+s\left(y^{\prime}\right) \leq 4 k^{\prime}+4 \alpha^{\prime}-4 \leq 4 k-4
$$

Thus $|D \cap W| \leq 2$.
Lemma 22 yields that $|W| \leq 2+|A|+|C|$. Thus (Q8) holds.
7. Proof of Theorem 17: Case 8: $G^{\prime} \subseteq \mathbf{Y}_{\mathbf{k}^{\prime}-\mathbf{1}, \mathbf{1}, \mathbf{2} \mathbf{k}^{\prime}}$ and $k^{\prime}>2$

In this section we consider the case that (S9) holds for G^{\prime}, i.e. $n^{\prime}=3 k^{\prime}$ and $G^{\prime} \subseteq \mathbf{Y}_{\mathbf{k}^{\prime}-\mathbf{1}, \mathbf{1}, \mathbf{2} \mathbf{k}^{\prime}}$ for $k^{\prime} \geq 3$. We view $V\left(G^{\prime}\right)=\{x\} \cup Z \cup Y$, where $|Z|=2 k^{\prime},|Y|=k^{\prime}-1, Y$ is independent and there are no edges between x and Z. If $k^{\prime} \leq 3$, then (Q5) holds. So as in Section 6, we assume 6.1).

Since $n^{\prime}=3 k^{\prime}$, we will often use (4.1). Since each $y \in Y$ has $k^{\prime}-2$ nonneighbors in Y, (4.1) yields

$$
\begin{equation*}
|\bar{N}(y)-Y|+\left|\bar{N}\left(y^{\prime}\right)-Y\right| \leq 5 \quad \text { for all } y, y^{\prime} \in Y \tag{7.1}
\end{equation*}
$$

This in turn yields:
(7.2) at most one $y \in Y$ has at least three nonneighbors in $V(G)-Y$; call it y_{0}, if exists.

Since x is not adjacent to any of the $2 k^{\prime}$ vertices in Z, by (4.1)

$$
\begin{equation*}
N(x)=V(G)-Z-x \text { and } N(z)=V(G)-x-z \text { for each } z \in Z \tag{7.3}
\end{equation*}
$$

If x has a strong neighbor v_{0} with the M-mate u_{0}, then we construct k disjoint cycles in G as follows. First, take the α^{\prime} strong edges in $M-v_{0} u_{0}+v_{0} x$. By 7.3$], G[Z]=K_{2 k^{\prime}}$ and each $y \in Y+u_{0}$ is adjacent to all of Z. So, we take $k^{\prime} 3$-cycles each of which contains one vertex in $Y+u_{0}$ and two vertices in Z. This contradiction shows that $x \in D^{\prime}$.

Suppose (Q9) does not hold. Since $x \in D^{\prime}, d(x)=k+\alpha^{\prime}-1$ and M can play the role of M^{*} in the definition of (Q9), this means F has a maximum matching M^{\prime} such that

$$
\begin{equation*}
\text { there are } u_{1}, u_{2} \in V(G)-V\left(M^{\prime}\right)-Z \text { with } u_{1} u_{2} \in E(G) \tag{7.4}
\end{equation*}
$$

Similarly to the proof of Lemma 19, for $i=1,2$ the symmetric difference $M \triangle M^{\prime}$ contains a path P_{i} of an even length an end of which is u_{i}. Since the other end w_{i} of P_{i} is not covered by $M, w_{i} \in V\left(G^{\prime}\right) \cap D$. Also by definition, none of the vertices in G^{\prime} is an internal vertex in P_{i}. In particular, $x \notin V\left(P_{i}\right)$. Let $M^{\prime \prime}$ be the maximum matching in F such that $M \triangle M^{\prime \prime}=P_{1} \cup P_{2}$. Then $V(G)-V\left(M^{\prime \prime}\right)=V\left(G^{\prime}\right)-\left\{w_{1}, w_{2}\right\} \cup\left\{u_{1}, u_{2}\right\}$. If $\left|\left\{w_{1}, w_{2}\right\} \cap Z\right|=\ell_{Z}$ and $\left|\left\{w_{1}, w_{2}\right\} \cap Y\right|=\ell_{Y}$, then we can renumber the vertices in $Z-\left\{w_{1}, w_{2}\right\}$ and $Y-\left\{w_{1}, w_{2}\right\}$ as $z_{1}, \ldots, z_{2 k^{\prime}-\ell_{Z}}, y_{1}, \ldots, y_{k^{\prime}-1-\ell_{Y}}$ and construct k disjoint cycles in G as follows. Take the $k-k^{\prime}$ strong edges in $M^{\prime \prime}$, then take the cycle $x u_{1} u_{2} x$ and for $j=1, \ldots, k^{\prime}-1-\ell_{Y}$ take the cycle $\left(y_{j}, z_{2 j-1}, z_{2 j}\right)$. Finally, if $\ell_{Y} \geq 1$, then $\left|Z-\left\{z_{1}, \ldots, z_{2\left(k^{\prime}-1-\ell_{Y}\right)}, w_{1}, w_{2}\right\}\right|=3 \ell_{Y}$, then we simply take ℓ_{Y} triangles in the remaining complete graph $G\left[Z-\left\{z_{1}, \ldots, z_{2\left(k^{\prime}-1-\ell_{Y}\right)}, w_{1}, w_{2}\right\}\right]$. Hence (Q9) holds.

8. Proof of Theorem 17: Case 9: (S2) holds for G^{\prime}

Notation. WE NEED TO DECIDE WHERE THIS GOES. PROBABLY BEFORE THE THEOREM 13.

CHECK STATEMENT OF (Y4) AND (Y5) AND THEN CHANGE THEOREM 13.
WE USE $W=W(M)$ NOT $V(M)$. WHEN WE DEFINE $W(M)$ we should say, "Let $W=W(M)$ be the set of vertices of G that are saturated by $M .{ }^{\prime \prime}$ I RECOMMEND \bar{W} NOT V^{\prime}. SOMETIMES WE ALSO USE $V\left(G^{\prime}\right)$.
(Q7) AND (Q10) ARE NOT USED.
In this section we consider the case that (S2) holds for k^{\prime} and G^{\prime}, i.e., $n^{\prime} \geq 3 k^{\prime}$ and $k^{\prime}=2$ and G^{\prime} satisfies one of (Y1)-(Y5) from Theorem 13. If $n^{\prime}=6$ then (Q5) holds, so assume $n^{\prime} \geq 7$. As $k \geq 5,|M|=\alpha^{\prime}=k-k^{\prime} \geq 3$.

Define a vertex $v \in \bar{W}$ to be i-acceptable if $|N(v) \cap W| \geq 2 \alpha^{\prime}-i$, acceptable if it is 1 acceptable, and good if it is 0 -acceptable. Let $u, v \in \bar{W}$ with $u v \notin E$. If i and j are minimum natural numbers such that u is i-acceptable and v is j-acceptable, then

$$
\begin{equation*}
i+j \leq d_{G^{\prime}}(u)+d_{G^{\prime}}(v)-5 \tag{8.1}
\end{equation*}
$$

Case 9.1: $\quad G^{\prime}$ satisfies (Y1), i.e., $G^{\prime} \subseteq \mathbf{S}_{\mathbf{3}}$. As $n^{\prime} \geq 7$ and $G^{\prime} \in \mathcal{D} \mathcal{O}_{k}^{\prime}, G^{\prime} \in\left\{\mathbf{S}_{\mathbf{3}}, \mathbf{S}_{\mathbf{3}}-x z_{1}\right\}$. Regardless, by (8.1) x and z_{1} are acceptable and the other vertices are good, so there is $a b \in M$ with $a x \in E$. Thus G has k disjoint cycles, axya, $b z_{4} z_{5} b, z_{1} z_{2} z_{3} z_{1}$ and $|M-a b|$ strong edges, contradicting $G \in \mathcal{B} \mathcal{O}_{k}$.

Case 9.2: $\quad G^{\prime}$ satisfies (Y2), i.e., $G^{\prime} \subseteq \mathbf{S}_{\mathbf{4}}$. As $n^{\prime} \geq 7$ and $G^{\prime} \in \mathcal{D} \mathcal{O}_{k}^{\prime}, G^{\prime}=\mathbf{S}_{\mathbf{4}}$. By (8.1), all vertices except x are good, and x is 2-acceptable. As $|M| \geq 3$, there is an edge $a b \in M$ with $a x \in E$. Again, G has k disjoint cycles, axya, $b z_{1} z_{5} b, z_{4} z_{2} z_{3} z_{4}$, and $|M-a b|$ strong edges, contradicting $G \in \mathcal{B} \mathcal{O}_{k}$.

Case 9.3: G^{\prime} satisfies (Y3), i.e., $G^{\prime}=\mathbf{S}_{\mathbf{5}}$. By (8.1), all vertices are acceptable. As $|M| \geq 3$, there is an edge $a b \in M$ with $\left|(N(a) \cup N(b)) \cap\left\{z_{1}, z_{2}, x, y\right\}\right| \geq 7$. Choose notation so that at worst $b z_{1} \notin E$ or $b x \notin E$. Then $a z_{1} x a, b z_{2} y b, z_{3} z_{4} z_{5} z_{3}$ and $|M-a b|$ strong edges yield k disjoint cycles, contradicting $G \in \mathcal{B} \mathcal{O}_{k}$.

Case 9.4: $\quad G^{\prime}$ satisfies (Y4), i.e., $G^{\prime} \in\{H, \operatorname{sd}(H, e, x), \operatorname{sd}(H, e, x y)\}$, where $\mathbf{W}_{|\mathbf{H}|-\mathbf{1}} \subseteq$ $H \subseteq \mathbf{W}_{|\mathbf{H}|-1}^{+}$. Set $t=|H|-1$. Let H have center v_{0} and $\operatorname{rim} v_{1} \ldots v_{t} v_{1}$, and let $\mathbf{W}_{\mathbf{t}}^{\prime}=$ $\mathbf{W}_{\mathbf{t}} \cup \mathbf{K}^{*}\left(\left\{v_{0}, v_{1}\right\}\right)$ be the result of adding a parallel edge. Since G^{\prime} is simple, we may assume $H \in\left\{\mathbf{W}_{\mathbf{t}}, \mathbf{W}_{\mathbf{t}}^{\prime}\right\}$. If $G^{\prime} \neq H$ then let $e=v_{1} w$ be the subdivided edge. As $n^{\prime} \geq 7, t \geq 4$.

Case 9.4.1: $t=4$. Then $G^{\prime}=\operatorname{sd}\left(H, v_{1} w, x y\right)$. By (8.1), $v_{2}, v_{3}, v_{4}, x, y$ are all good, and v_{1} is acceptable (even if $v_{0} v_{1}$ is strong). Thus there is an edge $a b \in M$ with $a v_{1} \in E$. Then G contains k disjoint cycles $a v_{4} v_{1} a, b x y b, v_{0} v_{2} v_{3} v_{0}$ and $\alpha^{\prime}-1$ strong edges, contradicting $G \in \mathcal{B} \mathcal{O}_{k}$.

Case 9.4.2: $t=5$. The subdividing vertex x exists. By (8.1), the subdividing vertices and v_{3}, v_{4}, v_{5} are all good, v_{2} is acceptable, and v_{1} is 2 -acceptable. As $|M| \geq 3$, there is an edge $a b \in M$ with $a v_{1}, b v_{2} \in E$. Then there are k disjoint cycles $v_{0} v_{4} v_{5} v_{0}, a v_{1} x a, b v_{2} v_{2} b$, and $|M-a b|$ strong edges, contradicting $G \in \mathcal{B} \mathcal{O}_{k}$.

Case 9.4.3: $t \geq 6$. By (8.1), the rim vertices $v_{3}, v_{4}, v_{5}, v_{6}$ are all acceptable. As $|M| \geq 3$, there is an edge $a b \in M$ such that $a v_{3} v_{4} a$ and $b v_{5} v_{6} b$ are cycles. Let C be the smallest cycle containing v_{0}, v_{1}, v_{2} (and any subdividing vertices). Then there are k disjoint cycles C, $a v_{3} v_{4} a, b v_{5} v_{6} b$ and $\alpha^{\prime}-1$ strong edges, contradicting $G \in \mathcal{B} \mathcal{O}_{k}$.

Case 9.5: $\quad G^{\prime}$ satisfies (Y5), i.e., $G^{\prime} \in\{H, \operatorname{sd}(H, e, x), \operatorname{sd}(H, e, x y)\}$, where

$$
\mathbf{K}_{\mathbf{3},|\mathbf{H}|-\mathbf{3}}\left(Y, Z_{t}\right)-e^{\prime} \subseteq H \subseteq \mathbf{K}_{\mathbf{3}, \mathbf{H} \mid-\mathbf{3}}^{+} \text {and } Y=\left\{y_{1}, y_{2}, y_{3}\right\}
$$

As $n^{\prime} \geq 7, t \geq 2$. If $\alpha\left(G^{\prime}\right) \geq n^{\prime}-2 k^{\prime}+1$ then (Q3) holds by Case 1 . So assume the subdividing vertex x exists in G^{\prime}.

Case 9.5.1: $e=y_{h} y_{i}$, where $\{h, i, j\}=[3]$. Since $\alpha\left(G^{\prime}\right) \leq n^{\prime}-2 k^{\prime}$ and $Z+x$ is independent, e is subdivided twice. As $d_{G^{\prime}}(x)=2$, every vertex of Z is adjacent to every vertex of Y (and no other vertex of G^{\prime}). Thus $G^{\prime}=\operatorname{sd}(H, e, x y)$ and the vertices of $Z+x+y$ are all good.

Suppose $t=2$. As $y_{j} x \notin E, y_{j}$ has a neighbor, say y_{i}, in Y. Since $d_{y_{h}} \leq 5$ and $y_{h} y \notin E$, (8.1) implies y_{h} is 2 -acceptable. As $|M| \geq 3$, there is an edge $a b \in M$ with $a v_{h} \in E$. Thus there are k disjoint cycles $a y_{h} z_{1} a, b x y b, z_{2} y_{i} y_{j} z_{2}$, and $\alpha^{\prime}-1$ other strong edges, contradicting $G \in \mathcal{B O}_{k}$.

Suppose $t=3$. Then $d_{G^{\prime}}\left(y_{j}\right) \leq 5$. By (8.1), y_{j} is 2-acceptable. As $|M| \geq 3$, there is an edge $a b \in M$ with $a v_{j} \in E$. Thus there are k disjoint cycles $a v_{j} z_{1} a, b x y b, z_{2} y_{h} z_{3} y_{i} z_{2}$, and $\alpha^{\prime}-1$ strong edges, contradicting $G \in \mathcal{B O}_{k}$.

Otherwise $t \geq 4$. Then there are k disjoint cycles axya, $b z_{1} y_{1} z_{2} b, z_{3} y_{2} z_{4} y_{3} z_{3}$, and $\alpha^{\prime}-1$ other strong edges, contradicting $G \in \mathcal{B} \mathcal{O}_{k}$.

Case 9.5.2: $\quad e \in E\left(Y, Z_{t}\right)$. Now H is simple. Say $e=y_{1} z_{1}$ and $e^{\prime}=y^{\prime} z^{\prime}$. If $e^{\prime} \notin E(H)$ then $y^{\prime} \neq y_{1}$. By degree conditions $x z^{\prime} \in E$, so $z^{\prime}=z_{1}$. As $x z_{i}, z_{1} z_{i} \notin E$ for $i \geq 2$, (8.1) implies all vertices of $Z-z_{1}$ and all subdividing vertices are good, z_{1} is acceptable, and z_{1} is good if $e^{\prime} \notin H$.

Case 9.5.2.1: $t=2$. Since $n^{\prime} \geq 7, G^{\prime}=\operatorname{sd}\left(H, z_{1} y_{1}, x y\right)$. As $\alpha\left(G^{\prime}\right) \leq n^{\prime}-2 k^{\prime}, Y+x$ is not independent. So there is an edge $y_{h} y_{i}$, where $[3]=\{h, i, j\}$. By (8.1), all of x, y, z_{1}, z_{2} are good, and all of y_{1}, y_{2}, y_{3} are acceptable. So there is an edge $a b \in M$ with $a y_{j} \in E$. If $j=1$ then there are k disjoint cycles $a y_{1} z_{2} a, b x y b, z_{1} y_{2} y_{3} z_{1}$, and $\alpha^{\prime}-1$ strong edges; else $j \neq 1$ and there are k disjoint cycles $a y_{j} z_{1} a, b x y b, z_{2} y_{h} y_{i} z_{2}$, and $\alpha^{\prime}-1$ strong edges. Anyway this contradicts $G \in \mathcal{B} \mathcal{O}_{k}$.

Case 9.5.2.2: $t \geq 4$. Let $a b \in M$ with $a \in N\left(z_{1}\right)$. If $t \geq 5$ then there are k disjoint cycles, $a z_{1} x a, b z_{2} y_{1} z_{3} b, z_{4} y_{2} z_{5} y_{3} z_{4}$, and $\alpha^{\prime}-1$ strong edges, contradicting $G \in \mathcal{B} \mathcal{O}_{k}$. Else $t=4$. Since $d_{G^{\prime}}\left(y_{2}\right) \leq 6$ and $x y_{2} \notin E$, (8.1) implies y_{2} is 3 -acceptable. As z_{1} is acceptable and $|M| \geq 3$, there is an edge $a b \in M$ with $a z_{1}, b y_{2} \in E$. As x and z_{2} are good, this yields k disjoint cycles $a z_{1} x a, b y_{1} z_{2} b, z_{3} y_{1} z_{4} y_{3} z_{2}$, and $\alpha^{\prime}-1$ strong edges, contradicting $G \in \mathcal{B} \mathcal{O}_{k}$.

Case 9.5.2.3: $t=3$ and $z_{1} y_{1}$ is subdivided twice. Then x and y are both good. Since $d_{G^{\prime}}\left(y_{1}\right) \leq 5$ and $x y_{1} \notin E, y_{1}$ is 2-acceptable. As z_{1} is acceptable, there is an edge $a b \in M$ with $a x, b y_{1} \in E$. Thus there are k disjoint cycles $a z_{1} x a, b y_{1} y b, y_{2} z_{2} y_{3} z_{3} y_{2}$, and $\alpha^{\prime}-1$ strong edges, contradicting $G \in \mathcal{B O}_{k}$.

Case 9.5.2.4: $t=3$ and $z_{1} y_{1}$ is subdivided once. Suppose there is an edge $y_{i} y_{j} \in E$, where $[3]=\left\{y_{1}, y_{2}, y_{3}\right\}$. Then $d_{G^{\prime}}\left(y_{h}\right) \leq 5$ and either $y_{h} x \notin E$ or $y_{h} z_{1} \notin E$. By (8.1), y_{h} is 3-acceptable. As $|M| \geq 3$, there is an edge $a b \in M$ with $a z_{1}, b y_{h} \in M$. Thus there are k disjoint cycles $a z_{1} x a, b y_{h} z_{2} b, y_{i} z_{3} y_{j} z_{3}$, and $\alpha^{\prime}-1$ strong edges, contradicting $G \in \mathcal{B O}_{k}$. So assume $\|G[Y]\|=0$.

If $|F|=2 \alpha^{\prime}$ then (Q2b) holds. Else there are edges $a b, a^{\prime} b^{\prime} \in M$ and a vertex $u \in \bar{W}$ with $a u \in E(F)$. All vertices of G^{\prime} are good except one of y_{1}, z_{1} might only be acceptable. Choose notation so that $\left\{b, a^{\prime}, b^{\prime}\right\}=\left\{c_{1}, c_{2}, c_{3}\right\}$ and $\left|N\left(c_{1}\right) \cap \bar{W}\right| \geq 6$ and $\left|N\left(c_{2}\right) \cap \bar{W}\right|, \mid N\left(c_{3}\right) \cap$ $\bar{W} \mid \geq 7$. By inspection $G^{\prime}-u$ contains a perfect matching $\left\{e_{1}, e_{2}, e_{3}\right\}$ with $e_{1} \subseteq N\left(c_{1}\right)$.

Thus G contains k disjoint cycles, $c_{1} e_{1} c_{1}, c_{2} e_{2} c_{2}, c_{3} e_{3} c_{3}$, aua and $\alpha^{\prime}-2$ other strong edges, contradicting $G \in \mathcal{B} \mathcal{O}_{k}$.

9. Proof of Theorem 18

To be completed. We define our algorithm in steps.
Step 1. Find F (in $O\left(n^{2}\right)$ operations) and a maximum matching M (in $O\left(n^{3}\right)$ operations). Let $\alpha^{\prime}:=\alpha^{\prime}(F)=|M|$ and $n^{\prime}=n-2 \alpha^{\prime}$. If $n^{\prime}<3\left(k-\alpha^{\prime}\right)$, then G has no k disjoint cycles, otherwise go to Step 2.

Step 2. Construct a GE-decomposition (A, C, D) of $V(F)$ as follows: find the size $\alpha^{\prime}(F-$ v) of a maximum matching in $F-v$ for all $v \in V(F)$ (in $O\left(n^{4}\right)$ operations). Then $D=\{v \in$ $V(F): \nu(F-v)=\nu(F)\}, A=N(F)-F$ and $C=V(F)-D-A$.

References

[1] H. L. Bodlaender, On disjoint cycles, Int. J. of Foundations of Computer Science 5 (1994), 59-68.
[2] K. Corrádi and A. Hajnal, On the maximal number of independent circuits in a graph. Acta Math. Acad. Sci. Hungar. 14 (1963) 423-439.
[3] G. Dirac, Some results concerning the structure of graphs, Canad. Math. Bull. 6 (1963) 183-210.
[4] G. Dirac and P. Erdôs, On the maximal number of independent circuits in a graph, Acta Math. Acad. Sci. Hungar. 14 (1963) 79-94.
[5] R. G. Downey and M. R. Fellows, Fixed-parameter tractability and completeness, Congr. Numer. 87 (1992), 161-178.
[6] H. Enomoto, On the existence of disjoint cycles in a graph. Combinatorica 18(4) (1998) 487-492.
[7] M. R. Garey and D. S. Johnson, Computers and intractability. A guide to the theory of NPcompleteness. A Series of Books in the Mathematical Sciences. W. H. Freeman and Co., San Francisco, Calif., 1979. x +338 pp. (p. 68).
[8] H. A. Kierstead and A. V. Kostochka, An Ore-type theorem on equitable coloring, J. Combinatorial Theory Series B, 98 (2008) 226-234.
[9] H. A. Kierstead and A. V. Kostochka, Ore-type versions of Brooks' theorem, J. Combin. Theory Ser. B, 99 (2009) 298-305.
[10] H. A. Kierstead, A. V. Kostochka, T. Molla and E. C. Yeager, Sharpening an Ore-type version of the Corrádi-Hajnal theorem, https://math.la.asu.edu/ halk/Publications/118.pdf. Submitted.
[11] H. A. Kierstead, A. V. Kostochka, and E. C. Yeager, On the Corrádi-Hajnal Theorem and a question of Dirac, URL: http://arxiv.org/abs/1601.03791v1. Submitted.
[12] H. A. Kierstead, A. V. Kostochka, and E. C. Yeager, The ($2 k-1$)-connected multigraphs with at most $k-1$ disjoint cycles, to appear in Combinatorica.
[13] A. V. Kostochka, L. Rabern and M. Stiebitz, Graphs with chromatic number close to maximum degree, Discrete Math. 312 (2012), 1273-1281.
[14] L. Lovász, On graphs not containing independent circuits, (Hungarian. English summary) Mat. Lapok 16 (1965), 289-299.
[15] L. Rabern, A-critical graphs with small high vertex cliques, J. Combin. Theory Ser. B 102 (2012) 126-130.
[16] H. Wang, On the maximum number of disjoint cycles in a graph. Discrete Mathematics 205 (1999) 183-190.

Department of Mathematics and Statistics, Arizona State University, Tempe, AZ 85287, USA.

E-mail address: kierstead@asu.edu
Department of Mathematics, University of Illinois, Urbana, IL 61801, USA, and Sobolev Institute of Mathematics, Novosibirsk, Russia

E-mail address: kostochk@math.uiuc.edu
Department of Mathematics, University of Illinois, Urbana, IL 61801, USA E-mail address: molla@illinois.edu

Department of Mathematics, University of Illinois, Urbana, IL 61801, USA
E-mail address: yager2@illinois.edu

[^0]: *Research of this author is supported in part by NSA grant H98230-12-1-0212.
 ${ }^{\dagger}$ Research of this author is supported in part by NSF grant DMS-1600592 and by grants 15-01-05867 and 16-01-00499 of the Russian Foundation for Basic Research.
 ${ }^{\ddagger}$ This author gratefully acknowledges support from the Campus Research Board, University of Illinois.

[^1]: ${ }^{1}$ Dirac used the word graphs, but in 3] this appears to mean multigraphs.

