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Abstract. For the NP -complete problem on the existence of k disjoint cycles in an n-
vertex graph G, Corrádi and Hajnal in 1963 gave sufficient conditions: For all k ≥ 1 and
n ≥ 3k, every (simple) n-vertex graph G with minimum degree δ(G) ≥ 2k contains k disjoint
cycles. The same year, Dirac described the 3-connected multigraphs not containing two
disjoint cycles and asked the more general question: Which (2k− 1)-connected multigraphs
do not contain k disjoint cycles? Recently, Kierstead, Kostochka and Yeager resolved this
question. In this paper, we sharpen this result by presenting a description that can be
checked in polynomial time of all multigraphs G with no k disjoint cycles for which the
underlying simple graph G satisfies the following Ore-type condition: dG(v)+dG(u) ≥ 4k−3
for all nonadjacent u, v ∈ V (G).
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1. Introduction5

For a multigraph G = (V,E), let |G| = |V |, ‖G‖ = |E|, δ(G) be the minimum degree6

of G, and α(G) be the independence number of G. For a simple graph G, let G denote7

the complement of G. For multigraphs G and H, let G ∪ H denote the multigraph with8

V (G ∪H) = V (G) ∪ V (H) and E(G ∪H) = E(G) ∪ E(H). For disjoint graphs G and H,9

let G ∨H denote G ∪H together with all edges from V (G) to V (H).10

Let K(X) be the complete graph with vertex set X, and Kt(X) = K(X) indicate that11

|X| = t.12

The problem of finding the maximum number of disjoint cycles in a graph is NP -hard,13

since even some partial cases of it are:14

Theorem 1 ([7], p. 68). Determining whether a 3n-vertex graph has n disjoint triangles is15

an NP -complete problem.16

On the other hand, Bodlaender [1] and independently Downey and Fellows [5] showed that17

this problem is fixed parameter tractable:18

Theorem 2 ([1, 5]). For every fixed k, the question whether an n-vertex graph has k disjoint19

can be resolved in linear (in n) time.20
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16-01-00499 of the Russian Foundation for Basic Research.
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Since the general problem is hard, it is natural to look for sufficient conditions that ensure21

the existence of “many” disjoint cycles in a graph. One of well-known results of this type is22

the following theorem of Corrádi and Hajnal [2] from 1963:23

Theorem 3 ([2]). Let k ∈ Z+. Every graph G with |G| ≥ 3k and δ(G) ≥ 2k contains k24

disjoint cycles.25

The hypothesis δ(G) ≥ 2k is best possible, as shown by the 3k-vertex graph H = Kk+1 ∨26

K2k−1, which has δ(H) = 2k − 1 but does not contain k disjoint cycles. The proof yields a27

polynomial algorithm for finding k disjoint cycles in the graphs satifying the conditions of28

the theorem.29

Theorem 3 was refined and generalized in several directions. Enomoto [6] and Wang [16]30

generalized the Corrádi-Hajnal Theorem in terms of the minimum Ore-degree σ2(G) :=31

min{d(x) + d(y) : xy 6∈ E(G)}:32

Theorem 4 ([6],[16]). Let k ∈ Z+. Every graph G with (i) |G| ≥ 3k and33

(1.1) σ2(G) ≥ 4k − 1

contains k disjoint cycles.34

Kierstead, Kostochka and Yeager [11] refined Theorem 3 by characterizing all simple graphs35

that fulfill the weaker hypothesis δ(G) ≥ 2k−1 and contain k disjoint cycles. This refinement36

depends on an extremal graph Yk,k,k where Yh,s,t = Kh∨(Ks∪Kt) and Yh,s,t(X0, X1, X2) =37

Kh(X0) ∨ (Ks(X1) ∪Kt(X2)).38

X2

X0

X1

Figure 1.1. Yh,t,s, shown with h = 3 and t = s = 4.

Theorem 5 ([11]). Let k ≥ 2. Every simple graph G with |G| ≥ 3k and δ(G) ≥ 2k − 139

contains k disjoint cycles if and only if:40

(i) α(G) ≤ |G| − 2k;41

(ii) if k is odd and |G| = 3k, then G 6= Yk,k,k; and42

(iii) if k = 2 then G is not a wheel.43

Theorem 4 was refined in a similar way in [11] and [10] (see Theorem 16 in the next44

section).45

Dirac [3] described all 3-connected multigraphs that do not have two disjoint cycles and46

posed the following question:47
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Question 6 ([3]). Which (2k − 1)-connected multigraphs1 do not have k disjoint cycles?48

Kierstead, Kostochka and Yeager [12] used Theorem 5 to answer Question 6 (see Theo-49

rem 14 in Section 2). The goal of this paper is to resolve the Ore-type version of Question 650

for multigraphs in an algorithmic way. In Theorem 17 we describe all multigraphs G that do51

not have k disjoint cycles and for any two nonadjacent vertices x and y in the underlying52

simple graph G, we have dG(x)+dG(y) ≥ 4k−3. Using this description we construct a poly-53

nomial time algorithm that for every multigraph satisfying the conditions of Theorem 1754

either finds k disjoint cycles or shows that there are no such k cycles.55

In the next section, we introduce notation and discuss existing results to be used later56

on. In Section 3 we state our main results, Theorem 17 and Theorem 18 . In the next four57

sections, we prove Theorem 17, and in the last section prove Theorem 18 .58

2. Preliminaries and known results59

2.1. Notation. For every multigraph G, let V1 = V1(G) be the set of vertices in G incident60

to loops, and V2 = V2(G) be the set of vertices in G − V1 incident to strong edges. Let61

F = F (G) be the simple graph with V (F ) = V2 formed by the multiple edges in G−V1. We62

will call the edges of F (G) the strong edges of G, and define α′ = α′(F ) to be the size of a63

maximum matching in F . Let G denote the underlying simple graph of G, i.e. the simple64

graph on V (G) such that two vertices are adjacent in G if and only if they are adjacent in65

G. Let G∗ denote the result of making all edges of G strong. For e /∈ E(G), let G+ e denote66

the graph with V (G + e) = V (G) and E(G + e) = E(G) ∪ {e}. For a path P ∈ {P1, P2}67

with P ∩G = ∅, let sd(G, e, P ) be the result of subdividing e with P .68

Recall that Kt(X) = K(X) denotes the complete with vertex set X where |X| = t. If we69

only want to specify one vertex v of Kt we write Kt(v). Similarly, K(Y, Z) is the complete70

Y, Z-bigraph. We also extend this notation to the case that Y is a graph. Then K(Y, Z) is71

K(V (Y ), Z) ∪ Y .72

A set S = {v0, . . . , vs} of vertices in a graph H is a superstar with center v0 in H if73

NH(vi) = {v0} for each 1 ≤ i ≤ s and H − S has a perfect matching. For a maximum74

matchingM , setW = W (M) = V (M), V ′ = V ′(M) = VrW , andG′ = G′(M) = G[V ′(M)].75

If |F | = 2α′ then G′(M) = G′(M ′) for all perfect matchings M and M ′.76

For v ∈ V , we define s(v) = |N(v)| to be the simple degree of v, and we say that77

S(G) = min{s(v) : v ∈ V } is the minimum simple degree of G. Similarly, SO(G) =78

min{s(v) + s(u) : v, u ∈ V, v 6= u and uv /∈ E(G)}. Let c(G) be the maximum number of79

disjoint cycles contained in G.80

We define Dk to be the family of multigraphs G with S(G) ≥ 2k − 1 and DOk to be81

the family of multigraphs G with SO(G) ≥ 4k − 3. For a graph G ∈ DOk, call a vertex82

v ∈ V (G) low if dG(v) ≤ 2k − 2. Let D0
k be the set of simple graphs in Dk. Let Bk = {G ∈83

Dk : c(G) < k}, B0
k = D0

k ∩ Bk, B0
k(e) be the set of graphs in Bk whose only strong edge is e.84

Let BOk = {G ∈ DOk : c(G) < k} and BO0
k be the set of simple graphs in BOk.85

If G ∈ DOk is an n-vertex multigraph and α(G) ≥ n − 2k + 2, then for any distinct86

v1, v2 in a maximum independent set I, s(v1) + s(v2) ≤ (2k − 2) + (2k − 2) < 4k − 3.87

Thus α(G) ≤ n − 2k + 1 for every n-vertex G ∈ DOk; so we call G ∈ DOk extremal if88

α(G) = n − 2k + 1. If G ∈ DOk is extremal, and v1 and v2 are distinct vertices in a89

1Dirac used the word graphs, but in [3] this appears to mean multigraphs.
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maximum independent set I, then s(v1) + s(v2) ≤ (2k − 1) + (2k − 1) = 4k − 2. Since90

SO(G) ≥ 4k − 3, this means that for some v ∈ {v1, v2} we have s(v) = 2k − 1 and I is91

exactly V (G)−N(v). Thus to check whether G is extremal it is enough to check for every92

v ∈ V (G) with s(v) = 2k − 1 whether the set V (G)−N(v) is independent.93

A big set in an extremal G ∈ DOk is an independent set of size α(G). If I is a big set in an94

extremal G ∈ DOk, then since SO(G) ≥ 4k−3, each but one vertex v ∈ I is adjacent to each95

w ∈ V (G)−I, and one vertex in I may be not adjacent to one vertex in V (G)−I. On the other96

hand, if x is a common vertex of big sets I and J , then s(x) ≤ |G|−|I∪J | ≤ 2k−1−|J−I|.97

Hence for every y ∈ I − x, s(x) + s(y) ≤ 4k − 2− |J − I|, and so |J − I| ≤ 1. Furthermore,98

if |J − I| = 1 and there is x′ ∈ J ∩ I − x, then s(x) + s(x′) ≤ 2(n− α(G)− 1) = 4k − 4, a99

contradiction. Thus in this case α(G) = 2. This yields the following.100

(2.1) Let G be extremal. If |G| > 2k + 1 then every two big sets in G are disjoint. If
|G| = 2k + 1, sets I, J ⊂ V (G) are big and x ∈ I ∩ J , then s(x) = 2k − 2.

2.2. Gallai-Edmonds Theorem. We will use the classical Gallai-Edmonds Theorem on101

the structure of graphs without perfect matchings. Recall that a graph F is odd if |F | is odd,102

and that o(F ) denotes the number of odd components of F . For a graph F and S ⊆ V (F ),103

the deficiency def(S) is o(F − S) − |S|. Next, def(F ) := max{def(S) : S ⊆ V (F )}. For104

each graph F , def(F ) ≥ 0, since def(∅) = o(F ) ≥ 0.105

Theorem 7 (Gallai-Edmonds). Let F be a graph and D be the set of v ∈ V (F ) such that106

there is a maximum matching in F not covering v. Let A be the set of the vertices in107

V (F ) − D that have neighbors in D, and let C = V (F ) − D − A. Let F1, . . . , Fk be the108

components of F [D]. If M is a maximum matching in F , then all of the following hold:109

a) M covers C and matches A into distinct components of F [D].110

b) Each Fi is factor-critical and has a near-perfect matching in M .111

c) If ∅ 6= S ⊆ A, then N(S) intersects at least |S|+ 1 components of F [D].112

d) def(F ) = def(A) = k − |A|.113

We refer to (D,A,C) as the Gallai-Edmonds decomposition (GE-decomposition) of F .114

2.3. Results for Dk. Since every cycle in a simple graph has at least 3 vertices, the condition115

|G| ≥ 3k is necessary in Theorem 3. However, it is not necessary for multigraphs, since116

loops and multiple edges form cycles with fewer than three vertices. Theorem 3 can easily117

be extended to multigraphs, although the statement is no longer as simple:118

Theorem 8. For k ∈ Z+, let G be a multigraph with S(G) ≥ 2k, and set F = F (G) and119

α′ = α′(F ). Then G has no k disjoint cycles if and only if120

(2.2) |V (G)| − |V1(G)| − 2α′ < 3(k − |V1| − α′),

i.e., |V (G)|+ 2|V1|+ α′ < 3k.121

Proof. If (2.2) holds, then G does not have enough vertices to contain k disjoint cycles. If122

(2.2) fails, then we choose |V1| cycles of length one and α′ cycles of length two from V1∪V (F ).123

By Theorem 3, the remaining (simple) graph contains k − |V1| − α′ disjoint cycles. �124

Theorem 8 yields the following.125
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Corollary 9. Let G be a multigraph with S(G) ≥ 2k − 1 for some integer k ≥ 2, and set126

F = F (G) and α′ = α′(F ). Suppose G contains at least one loop. Then G has no k disjoint127

cycles if and only if |V (G)|+ 2|V1|+ α′ < 3k.128

Since acyclic graphs are exactly forests, Theorem 5 can be restated as follows:129

Theorem 10. For k ∈ Z+, let G be a simple graph in Dk. Then G has no k disjoint cycles130

if and only if one of the following holds:131

(α) |G| ≤ 3k − 1;132

(β) k = 1 and G is a forest with no isolated vertices;133

(γ) k = 2 and G is a wheel;134

(δ) α(G) = n− 2k + 1; or135

(ε) k > 1 is odd and G = Yk,k,k.136

Dirac [3] described all multigraphs in D2 that do not have two disjoint cycles:137

Theorem 11 ([3]). Let G be a 3-connected multigraph. Then G has no two disjoint cycles138

if and only if one of the following holds:139

(A) G = K4 and the strong edges in G form either a star (possibly empty) or a 3-cycle;140

(B) G = K5;141

(C) G = K5 − e and the strong edges in G are not incident to the ends of e;142

(D) G is a wheel, where some spokes could be strong edges; or143

(E) G is obtained from K3,|G|−3 by adding non-loop edges between the vertices of the (first)144

3-class.145

Going further, Lovász [14] described all multigraphs with no two disjoint cycles. To state146

his result, let a bud be a vertex incident to at most one edge. Also, let Wn = K1 ∨ Cn be147

the wheel and W+
n = Wn ∪ K(V (K1), V (C)) be the wheel with strong edges for spokes.148

Similarly, let K+
3,n−3 = K3 ∨ Kn−3 be the n-vertex multigraph obtained from K3,n−3 by149

adding strong edges connecting all pairs of the vertices of the (first) 3-class. Then, each150

multigraph described by Theorem 11(A) above is contained either in W+
3 or in K+

3,1.151

Lovász [14] observed that any connected multigraph can be transformed into a multigraph152

with minimum degree at least 3 or a multigraph with exactly one vertex without affecting the153

maximum number of disjoint cycles in it by using a sequence of operations of the following154

two types: (i) deleting a bud; (ii) replacing a vertex v of degree 2 that has neighbors x and155

y (where v /∈ {x, y} but possibly x = y) by a new (possibly parallel) edge connecting x and156

y. He also proved the following:157

Theorem 12 ([14]). Let H be a multigraph with δ(H) ≥ 3. Then H has no two disjoint158

cycles if and only if :159

(L1) H = K5;160

(L2) H ⊆W+
|G|−1;161

(L3) H ⊆ K+
3,|G|−3; or162

(L4) H is obtained from a forest T and vertex x with possibly some loops at x by adding163

edges linking x to T .164

Say that a multigraph G has a 2-property if the vertices of degree at most 2 form a clique165

Q(G) (possibly with some multiple edges). Let G ∈ DO2 with no two disjoint cycles. Then166

G has a 2-property. By Lovász’s observation above, G can be transformed to a multigraph167
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H that has exactly one vertex or is of type (L1)–(L4) by a sequence of deleting buds and/or168

contracting edges. Note that if a multigraph G′ has 2-property, then the multigraph obtained169

from G′ by deleting a bud or contracting an edge also has. Thus, H and all the intermediate170

multigraphs have 2-property. Reversing this transformation, G can be obtained from H by171

adding buds and subdividing edges. If H has exactly one vertex and at most one edge, then172

any multigraph with 2-property that can be obtained from H this way has maximum degree173

at most 2. Hence G is either a Ki for i ≤ 3 or forms a strong edge. If δ(H) ≥ 3, then the174

clique Q := Q(G) cannot have more than 2 vertices: by the definition of Q(G), |Q| ≤ 3,175

and if |Q| = 3 then Q induces a K3-component of G and δ(G − Q) ≥ 3; thus G − Q has176

another cycle. Let Q′ := V (G) r V (H). By above, Q ⊆ Q′. If Q′ 6= Q, then Q consists of177

a single leaf in G with a neighbor of degree 3, so G is obtained from H by subdividing an178

edge and adding a leaf to the degree-2 vertex. If Q′ = Q, then Q is a component of G, or179

G = H + Q + e for some edge e ∈ E(H,Q), or at least one vertex of Q subdivides an edge180

e ∈ E(H). In the last case, when |Q| = 2, e is subdivided twice by Q.181

In case (L4), because δ(H) ≥ 3, either T has at least two buds, each linked to x by multiple182

edges, or T has one bud linked to x by an edge of multiplicity at least 3. So this case cannot183

arise from G. Also, δ(H) = 3, unless H = K5, in which case δ(H) = 4. So Q is not an184

isolated vertex, lest deleting Q leave H with δ(H) ≥ 5 > 4; and if Q has a vertex of degree 1185

then H = K5. Else all vertices of Q have degree 2, and Q consists of the subdivision vertices186

of one edge of H. This yields the following characterization of multigraphs in G ∈ DO2 with187

no two disjoint cycles.188

Set Zt = {z1, . . . , zt}, and define S3 = K(Z5) ∪ z1xy, S4 = sd(K(Z5), z1z2, x) ∪ xy, and189

S5 = sd(K(Z5), z1z2, xy) (See Figure 2.1).190

1z1

2 z2

3 z34z4

5z5

x
x

y
y

(a) Graph S3

1z1

2 z2

3 z34z4

5z5

x
x

y
y

(b) Graph S4

1z1

2 z2

3 z34z4

5z5

x
x

y
y

(c) Graph S5

Figure 2.1. Graphs S3,S4, and S5

Theorem 13. All G ∈ BO2 satisfy one of:191

(Y1) G ⊆ S3, the graph obtained from K5 by attaching a new subdivided edge;192

(Y2) G ⊆ S4 = sd(K5, e, x) + y + xy;193

(Y3) G = sd(K5, e, xy);194

(Y4) G ⊆ H ′, where H = W+
|H|−1 and H ′ ∈ {H, sd(H, e, x), sd(H, e, xy)};195

(Y5) G ⊆ H ′, where H = K+
3,|H|−3 and H ′ ∈ {H, sd(H, e, x), sd(H, e, xy)}.196

By Corollary 9, in order to describe the multigraphs in Dk not containing k disjoint cycles,197

it is enough to describe such multigraphs with no loops. Recently, Kierstead, Kostochka,198

and Yeager [12] proved the following:199
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Theorem 14 ([12]). Let k ≥ 2 and n ≥ k be integers. Let G be an n-vertex graph in Dk200

with no loops. Set F = F (G), α′ = α′(F ), and k′ = k − α′. Then G does not contain k201

disjoint cycles if and only if one of the following holds:202

(a) n+ α′ < 3k;203

(b) |F | = 2α′ (i.e., F has a perfect matching) and either204

(i) k′ is odd and G− F = Yk′,k′,k′, or205

(ii) k′ = 2 < k and G− F = W5;206

(c) G is extremal and either207

(i) some big set is not incident to any strong edge, or208

(ii) for some two distinct big sets Ij and Ij′, all strong edges intersecting Ij ∪ Ij′ have209

a common vertex outside of Ij∪Ij′ and if v ∈ Ij∩Ij′ (this may happen only if k′ = 2),210

then v is not incident with a strong edge;211

(d) n = 2α′ + 3k′, k′ is odd, and F has a superstar S = {v0, . . . , vs} with center v0 such212

that either213

(i) G− (F − S + v0) = Yk′+1,k′,k′, or214

(ii) s = 2, v1v2 ∈ E(G), G − F = Yk′−1,k′,k′ and G has no edges between {v1, v2}215

and the set X0 in G− F ;216

(e) k = 2 and Wn−1 ⊆ G ⊆ W ∗
n−1;217

(f) k′ = 2, |F | = 2α′ + 1 = n− 5, and G− F = C5.218

2.4. Results for DOk. Theorem 4 can be restated as follows.219

Theorem 15. For k ∈ Z+, let G be a simple graph with SO(G) ≥ 4k − 1 and |G| ≥ 3k.220

Then G has k disjoint cycles.221

Theorem 12 implies a description of graphs in DO2 with no two disjoint cycles. To state222

it, we need some notation.223

The next theorem summarizes the results of [11] and [10].224

Theorem 16. For k, n ∈ Z+ with n ≥ 3k, let G be an n-vertex simple graph in DOk. Then225

G has no k disjoint cycles if and only if one of the following holds:226

(S1) k = 1 and G is a forest with at most one isolated vertex;227

(S2) k = 2 and and G satisfies the conditions of Theorem 13;228

(S3) α(G) = n− 2k + 1;229

(S4) k = 3 and G = F1 (see Fig. 2.2);230

(S5) k = 3 and G = F2 where F2 is obtained from the complement F′2 of the graph O5 (see231

Fig. 3.1) by adding an all-adjacent vertex;232

(S6) k = 3 and G is the graph F3 in Fig. 3.2;233

(S7) k ≥ 3, n = 3k, α(G) ≤ k, and χ(G) > k;234

(S8) k ≥ 3, n = 3k, and G ⊆ Yk,s,2k−s for some odd 1 ≤ s ≤ 2k − 1;235

(S9) k ≥ 3, n = 3k, and G = Yk−1,1,2k.236
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Figure 2.2. Graph F1.

Remark. The result of Rabern [15] (see also [9, 13]) implies that if (S7) holds then k ≤ 4.237

3. Main results238

Our first main result describes the loopless multigraphs in DOk with no k disjoint cycles.239

Our second main result uses this description to construct a polynomial-time algorithm that240

for every G ∈ DOk either finds k disjoint cycles in G or proves that G has no k such cycles .241
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Theorem 17. Let k ≥ 5 and n ≥ k be integers. Let G be an n-vertex multigraph in DOk242

with no loops. Set F = F (G), α′ = α′(F ), and k′ = k − α′. Let (D,A,C) be the GE-243

decomposition of V (F ) and let D′ = V (G) − V (F ). If G does not contain k disjoint cycles244

then one of the following holds:245

(Q1) n < 3k − α′;246

(Q2) 3k − α′ ≤ n ≤ 3k − α′ + 1, |F | = 2α′ (i.e., F has a perfect matching) and either247

(Q2a) G−F is one of the graphs described in (S6)–(S9) of Theorem 16 with k′ in place248

k, or249

(Q2b) 2 ≤ k′ ≤ 3.250

(Q3) n > 2k + 1, G is extremal and either251

(Q3a) some big set is not incident to any strong edge, or252

(Q3b) for some two distinct big sets J and J ′, all strong edges intersecting J ∪ J ′ have253

a common vertex outside of J ∪ J ′, and any vertex x ∈ J ∩ J ′ (if exists) has no254

strong neighbors;255

(Q4) n = 3k − α′ + 1, |D′| = 9 and |F | − 2α′ ∈ {1, 3};256

(Q5) n = 3k − α′, k′ ≤ 4 and n′ = 3k′;257

(Q6) n = 3k − α′, |D′| = 7 and |F | − 2α′ = 2;258

(Q7) n = 2k + 1 and k′ = 1.259

(Q8) n > 2k + 1, n = 2α′ + 3k′ = 3k − α′, and α′ ≤ 1 + (|A|+ |C|)/2.260

(Q9) n = 3k − α′, and G has a vertex x ∈ D′ of degree k + α′ − 1 such that for each261

maximum matching M in F , the set N(x) − V (M) is independent, and F has a262

maximum matching M∗ such that V (M∗) ⊂ N [x];263

(Q10) n ≥ 3k − α′, α(G) ≤ n − 2k, k′ = 2, and either n′ = 6 or all of n′ = 7, |F | = 2α′264

and G′ = F4.265

Theorem 18. There is a polynomial time algorithm that for every multigraph G ∈ DOk266

either finds k disjoint cycles in G or shows that G has no k disjoint cycles.267

4. Proof of Theorem 17 : simpler cases268

Suppose G does not have k disjoint cycles and that none of (Q1)–(Q10) holds.269

Among the maximum matchings in F , choose a matching M such that270

(i) α(G−W ) minimum, where W = V (M) and271

(ii) modulo (i), the sum of simple degrees of the multigraph G−W is maximum.272

Then |M | = α′, G′ := G−W is simple, and SO(G′) ≥ 4k−3−2α′ = 4k′−3. So G′ ∈ DOk′ .273

Let n′ := |V (G′)| = n− 2α′.274
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If |G′| = 3k′, then G′ is quite dense, so sometimes it will be convenient to consider the275

complement of G. For v ∈ V (G), let N(v) = V (G)−N [v] and d(v) = |N(v)| = n− 1− s(v).276

When |G′| = 3k′, we have n = 2k + k′ and thus the inequality d(v) + d(u) ≥ 4k − 3 can be277

written as278

(4.1) d(v) + d(u) ≤ 2k′ + 1 for all vu /∈ E(G).
Since G′ has no k′ disjoint cycles, either n′ < 3k′ or one of (S1)–(S9) in Theorem 16 holds279

for G′ with k′ in place of k. If n′ < 3k′, then (Q1) holds. So suppose n′ ≥ 3k′.280

The following observation will be sometimes helpful.281

Lemma 19. If u ∈ D − V (G′), then F has a maximum matching M ′ and G′ has a vertex282

w such that M ∪M ′ has a component that is a w, u-path in F and every other component283

of M ∪ M ′ is a single edge. In particular, the set of vertices of G not covered by M ′ is284

V (G′)− w + u.285

Proof. By the definition of D, F has a maximum matching M1 not covering u. Consider286

M ∪M1. Every component of it is a single edge or an even cycle or a path of an even length.287

Since u is not covered by M , it is an end of a path P in M ∪M1. The other end, say w, of288

P must be not covered by M , i.e., w ∈ V (G′). Furthermore, the intermediate vertices in P289

are not in V (G′), since they are covered by M . Let M ′ be obtained from M by switching290

the edges along the alternating path P . Then M ′ satisfies the lemma. �291

CASE 1: n > 2k+1 and (S3) holds for G′, i.e. α(G′) = n′− 2k′+1. So G′ is extremal.292

Let J be a big set in G′. Then |J | = n′ − 2k′ + 1 = n − 2k + 1 ≥ 3. So G is extremal and293

J is a big set in G. If (Q3a) fails then some w ∈ J has a strong neighbor v. Let vu be the294

edge in M containing v. In F , consider the maximum matching M ′ = M − vu + wv, and295

set G′′ = G − V (M ′). By the choice of M , G′′ contains a big set J ′, and J ′ is big in G.296

Since w /∈ J ′ and n − 2k + 1 ≥ 3, (2.1) implies J ′ ∩ J = ∅ (possibly, u ∈ J ′). If (Q3b) fails297

then there is a strong edge xy such that x ∈ J ∪ J ′ and y 6= v. Moreover, by the symmetry298

between J and J ′, we may assume x ∈ J ′. Let yz be the edge in M containing y. Since M299

is maximum, z 6= u. Let M ′′ =M ′− yz + xy. Again by the case, G− V (M ′′) contains a big300

set J ′′. Similarly to above, since w, x 6∈ J ′′ and n > 2k + 1, (2.1) implies that J ′′ is disjoint301

from J ∪ J ′. So n′ ≥ 3|J |. But n′ ≥ 3k′ and thus |J | = n′ − 2k′ + 1 ≥ n′ − 2n′/3 + 1, a302

contradiction.303

CASE 2: (S4) holds for G′, i.e. k′ = 3 and G′ = F1 (see Fig. 2.2). Since for i = 1, 2304

and 1 ≤ j ≤ 8, i 6= j, xizj /∈ E(G′) and dG′(xi) + dG′(zj) = 9 = 4k′ − 3,305

(4.2) each vertex of G′ is adjacent in G to each vertex in V (M).

If some vu ∈M is such that v has a strong neighbor zj ∈ V (G′)− x1 − x2, then by (4.2),306

ux1, ux2 ∈ E(G). Then the k − k′ − 1 2-cycles in M − uv together with cycles vzjv, ux1x2u307

and two disjoint 3-cycles in G′ − x1 − x2 − zj form k disjoint cycles in G. Similarly, if308

some vu ∈ M is such that v has a strong neighbor xi ∈ V (G′), say vx1 is a strong edge,309

then by (4.2), ux2, uz2 ∈ E(G). So the k − k′ − 1 2-cycles in M − uv together with cycles310

vx1v, ux2z2u, z3z4z5z3 and z6z7z8z6 form k disjoint cycles in G. Thus (Q2)(b) holds.311
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CASE 3: (S5) holds for G′, i.e. k′ = 3 and G′ = F2 which is obtained from the312

complement F′2 of O5 by adding a vertex t adjacent to all vertices in F′2 (see Fig. 3.1). Since313

each of the vertices x1, x2, x3, y1, . . . , y4 has degree 5 in F2 and is not adjacent to z1 or z2 of314

degree 4, and since 5 + 4 = 4k′ − 3, similarly to (4.2) we get315

(4.3) each vertex of G′ − t is adjacent in G to each vertex in V (M).

Suppose some vu ∈M is such that v has a strong neighbor w ∈ V (G′)− t. Then we find316

k disjoint cycles in G as follows. Certainly, we include into the set all k − k′ − 1 2-cycles in317

M − uv and the 2-cycle vwv. The remaining k′ = 3 cycles will depend on the choice of w.318

By symmetry, we may assume that w ∈ {x1, y1, z1}.319

(i) If w = x1, then by (4.3) we can take uy1x2u, wy2z1w and y3x3y4z2y3.320

(ii) If w = y1, then we can take uy2x1u, wz1z2w and y3x2y4x3y3.321

(iii) If w = z1, then we take uy1x1u, wy2x2w and y3x3y4z2y3.322

Thus if G′ = F2, then either (Q2) or (Q4) holds.323

CASE 4: (S6) holds for G′, i.e. k′ = 3 and G′ = F3 in Fig. 3.2. So, n′ = 9 and (Q5)324

holds.325

CASE 5: (S7) holds for G′, i.e. k′ ≥ 3, |G′| = 3k′, α(G′) ≤ k′, and χ(G′) > k′. Since326

|G′| = 3k′, (4.1) must hold. Since χ(G′) > k′, G′ contains an induced subgraph G0 such that327

G0 is a vertex-(k′ + 1)-critical graph. By (4.1),328

(4.4) for every xy ∈ E(G0), the sum of the degrees of x and y in G0 is at most 2k′ + 1.

The (k′ + 1)-critical graphs satisfying (4.4) were studied recently. If k′ ≥ 5, then by results329

in [8] and [15], G0 = Kk′+1, which means α(G′) ≥ k′ + 1, a contradiction to the case. If330

k′ ≤ 4, then (Q5) holds.331

5. Proof of Theorem 17, Case 6: k′ = 1332

In this section, we consider the case that (S1) holds for G′, i.e. k′ = 1 and G′ is a forest333

with at most one isolated vertex. Since k ≥ 4, there are strong edges xz, x′z′, x′′z′′ ∈M .334

Call a vertex v low if dG(v) ≤ 2k − 2.335

Case 6.1: n > 2k+1 and G′ has at least two non-singleton components, say H1 and H2.336

Then n′ ≥ 4. For i = 1, 2, let Pi be a longest path in Hi, and let ui and wi be the ends of Pi.337

As SO(G) ≥ 4k − 3, at most two edges between W and {u1, u2, w1, w2} are missing in G.338

So we may assume that at most one edge between {x, z} and {u1, u2, w1, w2} is missing in339

G. By symmetry, we assume that among these edges only xu1 could be missing in G. Then340

the α′ − 1 strong edges of M − xz and the cycles xu2w2 and zu1w1 form k disjoint cycles in341

G, a contradiction.342

Case 6.2: n > 2k + 1 and G′ has a unique non-singleton component H, and this H is343

not a star. Let P = y1, . . . , yt be a longest path in H. Since H is not a star, t ≥ 4. Then344

y1 is a leaf in G′, and either dG′(y2) = 2 or y2 is adjacent to a leaf l 6= y1. Let y′1 = y2 if345
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dH(y2) = 2 and y′1 = l otherwise. Similarly, either dG′(yt−1) = 2 or yt−1 is adjacent to a leaf346

l′ 6= yt. Let y′t = yt−1 if dH(yt−1) = 2 and y′t = l′ otherwise. Since y1y′t, y′1yt /∈ E(G) and347

G ∈ DOk,348

(5.1)
the number of missing edges between {y1, y′1, yt, y′t} and W in G is at most
q + r, where q = |{y′1, y′t} ∩ {y2, yt−1}| and r is the number of low vertices in
{y1, y′1, yt, y′t}.

Since q ≤ 2, r ≤ 2 and |M | ≥ 3, for some edge ab ∈M at most one edge between {a, b} and349

{y1, y′1, yt, y′t} is missing in G. So we get a contradiction as at the end of Case 6.1.350

Case 6.3: n > 2k + 1 and the unique non-singleton component H of G′ is a star. Let x351

be the center of this star. Then J = V (G′)− x is a big set and |J | = n′− 1 ≥ 3. So we have352

Case 1.353

Case 6.4: n = 2k + 1. Then (Q7) holds.354

6. Proof of Theorem 17 : Case 7: G′ ⊆ Yk′,c,2k′−c and k′ > 2355

In this section we consider the case that (S8) holds for G′, i.e. n′ = 3k′ and G′ ⊆ Yk′,c,2k′−c356

for k′ ≥ 3 and some odd 1 ≤ c ≤ k′. If k′ ≤ 3, then (Q5) holds. So below in this section we357

assume358

(6.1) k′ ≥ 4.

We view V (G′) in the form V (G′) = X ∪ Z ∪ Y , where |X| = c, |Z| = 2k′ − c, |Y | = k′, Y359

is independent and there are no edges between X and Z. First, we digress a bit:360

Lemma 20. Let t ≥ 2 and ε ∈ {0, 1}. Let H be a graph with V (H) = R ∪ Q such that361

|R| = 2t+ ε, |Q| = 3t− |R| = t− ε, and let y0 ∈ Q. If362

(1) each u ∈ R has at most one nonneighbor in H and363

(2) each y ∈ Q− y0 has at most 1 + ε nonneighbors in R and364

(3) y0 has at most 2 nonneighbors in R and has only 1 + ε nonneighbors if t = 2.365

then H contains t vertex-disjoint triangles.366

Proof. Using induction, note the lemma holds for t = 2. If t ≥ 3 then H has a triangle367

T = y0z1z2y0 with z1, z2 ∈ R. By induction H ′ := H − T has t− 1 disjoint triangles. �368

Since n′ = 3k′, we will often use (4.1). Since each y ∈ Y has k′ − 1 nonneighbors in369

Y , (4.1) yields370

(6.2) |N(y)− Y |+ |N(y′)− Y | ≤ 3 for all y, y′ ∈ Y .
By (6.2),371

(6.3) there is y0 ∈ Y such that |N(y)| ≤ 1 for every y ∈ Y − y0.
Since each x ∈ X has 2k′− c nonneighbors in Z and each z ∈ Z has c nonneighbors in X,372

by (4.1) we may assume that373

(6.4) |N(x) ∩W | ≤ 1 and N(x) ∩W = Z for each x ∈ X,
and374

(6.5) |N(z)−X| ≤ 1 for each z ∈ Z, and if c = k′ then G[Z] = Kc.
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Lemma 21. Let G′ ⊆ Yk′,c,2k′−c for k′ ≥ 4 and an odd c ≤ k′. Suppose there are w ∈ D′375

and u ∈ W such that F has an M-alternating u,w-path P376

(A) If w ∈ Y ∪ Z, then u has no neighbor in Y − w or no neighbor in X.377

(B) If w ∈ X, then u has no neighbor in Y or no neighbor in Z.378

Proof. Let M ′ be the matching obtained from M by switching edges on P . Then379

W (M ′) = W (M)− w + u. Set t = (2k′ − c− 1)/2. Since 1 ≤ c ≤ k′ and is odd, by (6.1),380

(6.6) |Z| = 2k′ − c ≥ 5 and k′ − 1 ≥ t ≥ 2.
Arguing by contradiction, we assume the lemma fails and construct k disjoint cycles.381

Case 1: w ∈ Y ∪ Z. Since (A) does not hold, u has a neighbors x ∈ X and y ∈ Y − w.382

Pick y ∈ N(u) ∩ Y − w with s(y) minimum. Then for y0 defined in (6.3), we have383

(6.7) if y0 ∈ Y − w − y, then y0u /∈ E(G), and so by (6.2), |N(y0) ∩ Z| ≤ 2.

By (6.4), T := uxyu ⊆ G. Set ε := 0 if w ∈ Z; else ε := 1. Partition Y − y −w as {Q,Q}384

so that |Q| = t− ε, |Q| = c−1
2
, and y0 ∈ Q ∪ {w, y} if c > 1. So t ≥ 3, if y0 ∈ Q. Regardless,385

by (6.3), (6.5) and (6.7), Q and R := Z−w satisfy the conditions of Lemma 20. Thus Q∪R386

contains t disjoint triangles. By (6.4), (X − x)∪Q contains c−1
2

disjoint triangles. Counting387

these k′ − 1 triangles, T , and k − k′ strong edges of M ′ gives k disjoint cycles.388

Case 2: w ∈ X. Since (B) fails, there are z ∈ N(u) ∩ Z and y ∈ N(u) ∩ Y . Our first389

goal is to show there is an edge with ends in N(u) ∩ Y and N(u) ∩ Z. If N(u) ∩N(z) 6= ∅390

then we are done. Else, by (6.5), N(z) ∩ Y = Y − y = N(u) ∩ Y . Let y′ ∈ Y − y. By (6.2)391

applied to y and y′, |N(y)∩Z| ≤ 2. By (4.1) applied to u and y′, |N(u)∩Z| ≤ 2. By (6.6),392

|Z| ≥ 5, so there is z′ ∈ Z ∩N(u) ∩N(y), and we are done.393

Pick xy ∈ E with y ∈ N(u) ∩ Y and z ∈ N(u) ∩ Z so that s(y) is minimum. Then for y0394

defined in (6.3), using (6.2),395

(6.8) if y0 ∈ Y − y then |N(y0) ∩ (Z − z)| ≤ 2,
since y0u /∈ E(G) or y0z /∈ E(G).396

Partition Y − y as {Q,Q} so that |Q| = t, |Q| = c−1
2
, and y0 ∈ Q + y if c > 1. So t ≥ 3,397

if y0 ∈ Q. Regardless, by (6.3), (6.5) and (6.8), Q and R := Z − z satisfy the conditions of398

Lemma 20. Thus Q ∪ R contains t disjoint triangles. By (6.4), (X − w) ∪ Q contains c−1
2

399

disjoint triangles. Counting these k′ − 1 triangles, T , and k − k′ strong edges of M ′ gives k400

disjoint cycles. �401

Lemma 22. Let G′ ⊆ Yk′,c,2k′−c for k′ ≥ 4 and an odd c ≤ k′. Then |D ∩W | ≤ 2.402

Proof. Suppose u ∈ D ∩W . Then there is a matching M ′ and vertex wu ∈ V (G′) such403

that W (M ′) = W (M) + wu − u and there is an M,M ′-alternating path from u to wu. By404

Lemma 21, u has no neighbors in Y − wu or in X or in Z.405

By degree condition (4.1), there is at most one u ∈ D ∩W with no neighbor in X or no406

neighbor in Z: otherwise for any x ∈ X and z ∈ Z we have the contradiction407

‖{x, z},W‖ ≤ 4α′ − 2 and so s(x) + s(z) ≤ 4k′ − 2 + 4α′ − 2 ≤ 4k − 4.

Similarly, there is at most one u ∈ D ∩W with at most one neighbor in Y : otherwise, as408

k′ ≥ 4, there are two y, y′ ∈ Y with409

‖{y, y′},W‖ ≤ 4α′ − 4 and so s(y) + s(y′) ≤ 4k′ + 4α′ − 4 ≤ 4k − 4.
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Thus |D ∩W | ≤ 2. �410

Lemma 22 yields that |W | ≤ 2 + |A|+ |C|. Thus (Q8) holds.411

7. Proof of Theorem 17 : Case 8: G′ ⊆ Yk′−1,1,2k′ and k′ > 2412

In this section we consider the case that (S9) holds for G′, i.e. n′ = 3k′ and G′ ⊆ Yk′−1,1,2k′413

for k′ ≥ 3. We view V (G′) = {x} ∪ Z ∪ Y , where |Z| = 2k′, |Y | = k′ − 1, Y is independent414

and there are no edges between x and Z. If k′ ≤ 3, then (Q5) holds. So as in Section 6, we415

assume (6.1).416

Since n′ = 3k′, we will often use (4.1). Since each y ∈ Y has k′ − 2 nonneighbors in417

Y , (4.1) yields418

(7.1) |N(y)− Y |+ |N(y′)− Y | ≤ 5 for all y, y′ ∈ Y .
This in turn yields:419

(7.2) at most one y ∈ Y has at least three nonneighbors in V (G)− Y ; call it y0, if exists.
Since x is not adjacent to any of the 2k′ vertices in Z, by (4.1)420

(7.3) N(x) = V (G)− Z − x and N(z) = V (G)− x− z for each z ∈ Z.
If x has a strong neighbor v0 with the M -mate u0, then we construct k disjoint cycles in421

G as follows. First, take the α′ strong edges in M − v0u0 + v0x. By (7.3), G[Z] = K2k′ and422

each y ∈ Y + u0 is adjacent to all of Z. So, we take k′ 3-cycles each of which contains one423

vertex in Y + u0 and two vertices in Z. This contradiction shows that x ∈ D′.424

Suppose (Q9) does not hold. Since x ∈ D′, d(x) = k + α′ − 1 and M can play the role of425

M∗ in the definition of (Q9), this means F has a maximum matching M ′ such that426

(7.4) there are u1, u2 ∈ V (G)− V (M ′)− Z with u1u2 ∈ E(G).
Similarly to the proof of Lemma 19, for i = 1, 2 the symmetric difference M4M ′ contains427

a path Pi of an even length an end of which is ui. Since the other end wi of Pi is not428

covered by M , wi ∈ V (G′) ∩D. Also by definition, none of the vertices in G′ is an internal429

vertex in Pi. In particular, x /∈ V (Pi). Let M ′′ be the maximum matching in F such that430

M4M ′′ = P1∪P2. Then V (G)−V (M ′′) = V (G′)−{w1, w2}∪{u1, u2}. If |{w1, w2}∩Z| = `Z431

and |{w1, w2}∩Y | = `Y , then we can renumber the vertices in Z−{w1, w2} and Y −{w1, w2}432

as z1, . . . , z2k′−`Z , y1, . . . , yk′−1−`Y and construct k disjoint cycles in G as follows. Take the433

k− k′ strong edges in M ′′, then take the cycle xu1u2x and for j = 1, . . . , k′− 1− `Y take the434

cycle (yj, z2j−1, z2j). Finally, if `Y ≥ 1, then |Z−{z1, . . . , z2(k′−1−`Y ), w1, w2}| = 3`Y , then we435

simply take `Y triangles in the remaining complete graph G[Z−{z1, . . . , z2(k′−1−`Y ), w1, w2}].436

Hence (Q9) holds.437

8. Proof of Theorem 17 : Case 9: (S2) holds for G′438

Notation. WE NEED TO DECIDE WHERE THIS GOES. PROBABLY BEFORE THE439

THEOREM 13.440

CHECK STATEMENT OF (Y4) AND (Y5) AND THEN CHANGE THEOREM 13.441

WE USE W = W (M) NOT V (M). WHEN WE DEFINE W (M) we should say, "Let442

W = W (M) be the set of vertices of G that are saturated byM ." I RECOMMENDW NOT443

V ′. SOMETIMES WE ALSO USE V (G′).444
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(Q7) AND (Q10) ARE NOT USED.445

In this section we consider the case that (S2) holds for k′ and G′, i.e., n′ ≥ 3k′ and k′ = 2446

and G′ satisfies one of (Y1)–(Y5) from Theorem 13. If n′ = 6 then (Q5) holds, so assume447

n′ ≥ 7. As k ≥ 5, |M | = α′ = k − k′ ≥ 3.448

Define a vertex v ∈ W to be i-acceptable if |N(v) ∩W | ≥ 2α′ − i, acceptable if it is 1-449

acceptable, and good if it is 0-acceptable. Let u, v ∈ W with uv /∈ E. If i and j are minimum450

natural numbers such that u is i-acceptable and v is j-acceptable, then451

(8.1) i+ j ≤ dG′(u) + dG′(v)− 5.

Case 9.1: G′ satisfies (Y1), i.e., G′ ⊆ S3. As n′ ≥ 7 and G′ ∈ DO′k, G′ ∈ {S3,S3−xz1}.452

Regardless, by (8.1) x and z1 are acceptable and the other vertices are good, so there is453

ab ∈ M with ax ∈ E. Thus G has k disjoint cycles, axya, bz4z5b, z1z2z3z1 and |M − ab|454

strong edges, contradicting G ∈ BOk.455

Case 9.2: G′ satisfies (Y2), i.e., G′ ⊆ S4. As n′ ≥ 7 and G′ ∈ DO′k, G′ = S4. By (8.1),456

all vertices except x are good, and x is 2-acceptable. As |M | ≥ 3, there is an edge ab ∈ M457

with ax ∈ E. Again, G has k disjoint cycles, axya, bz1z5b, z4z2z3z4, and |M − ab| strong458

edges, contradicting G ∈ BOk.459

Case 9.3: G′ satisfies (Y3), i.e., G′ = S5. By (8.1), all vertices are acceptable. As460

|M | ≥ 3, there is an edge ab ∈M with |(N(a) ∪N(b)) ∩ {z1, z2, x, y}| ≥ 7. Choose notation461

so that at worst bz1 /∈ E or bx /∈ E. Then az1xa, bz2yb, z3z4z5z3 and |M − ab| strong edges462

yield k disjoint cycles, contradicting G ∈ BOk.463

Case 9.4: G′ satisfies (Y4), i.e., G′ ∈ {H, sd(H, e, x), sd(H, e, xy)}, where W|H|−1 ⊆464

H ⊆ W+
|H|−1. Set t = |H| − 1. Let H have center v0 and rim v1 . . . vtv1, and let W′

t =465

Wt∪K∗({v0, v1}) be the result of adding a parallel edge. Since G′ is simple, we may assume466

H ∈ {Wt,Wt
′}. If G′ 6= H then let e = v1w be the subdivided edge. As n′ ≥ 7, t ≥ 4.467

Case 9.4.1: t = 4. Then G′ = sd(H, v1w, xy). By (8.1), v2, v3, v4, x, y are all good, and468

v1 is acceptable (even if v0v1 is strong). Thus there is an edge ab ∈ M with av1 ∈ E. Then469

G contains k disjoint cycles av4v1a, bxyb, v0v2v3v0 and α′ − 1 strong edges, contradicting470

G ∈ BOk.471

Case 9.4.2: t = 5. The subdividing vertex x exists. By (8.1), the subdividing vertices472

and v3, v4, v5 are all good, v2 is acceptable, and v1 is 2-acceptable. As |M | ≥ 3, there is an473

edge ab ∈M with av1, bv2 ∈ E. Then there are k disjoint cycles v0v4v5v0, av1xa, bv2v2b, and474

|M − ab| strong edges, contradicting G ∈ BOk.475

Case 9.4.3: t ≥ 6. By (8.1), the rim vertices v3, v4, v5, v6 are all acceptable. As |M | ≥ 3,476

there is an edge ab ∈ M such that av3v4a and bv5v6b are cycles. Let C be the smallest477

cycle containing v0, v1, v2 (and any subdividing vertices). Then there are k disjoint cycles C,478

av3v4a, bv5v6b and α′ − 1 strong edges, contradicting G ∈ BOk.479

Case 9.5: G′ satisfies (Y5), i.e., G′ ∈ {H, sd(H, e, x), sd(H, e, xy)}, where480

K3,|H|−3(Y, Zt)− e′ ⊆ H ⊆ K+
3,|H|−3 and Y = {y1, y2, y3}.
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As n′ ≥ 7, t ≥ 2. If α(G′) ≥ n′ − 2k′ + 1 then (Q3) holds by Case 1. So assume the481

subdividing vertex x exists in G′.482

Case 9.5.1: e = yhyi, where {h, i, j} = [3]. Since α(G′) ≤ n′ − 2k′ and Z + x is483

independent, e is subdivided twice. As dG′(x) = 2, every vertex of Z is adjacent to every484

vertex of Y (and no other vertex of G′). Thus G′ = sd(H, e, xy) and the vertices of Z+x+y485

are all good.486

Suppose t = 2. As yjx /∈ E, yj has a neighbor, say yi, in Y . Since dyh ≤ 5 and yhy /∈ E,487

(8.1) implies yh is 2-acceptable. As |M | ≥ 3, there is an edge ab ∈ M with avh ∈ E. Thus488

there are k disjoint cycles ayhz1a, bxyb, z2yiyjz2, and α′−1 other strong edges, contradicting489

G ∈ BOk.490

Suppose t = 3. Then dG′(yj) ≤ 5. By (8.1), yj is 2-acceptable. As |M | ≥ 3, there is an491

edge ab ∈ M with avj ∈ E. Thus there are k disjoint cycles avjz1a, bxyb, z2yhz3yiz2, and492

α′ − 1 strong edges, contradicting G ∈ BOk.493

Otherwise t ≥ 4. Then there are k disjoint cycles axya, bz1y1z2b, z3y2z4y3z3, and α′ − 1494

other strong edges, contradicting G ∈ BOk.495

Case 9.5.2: e ∈ E(Y, Zt). Now H is simple. Say e = y1z1 and e′ = y′z′. If e′ /∈ E(H)496

then y′ 6= y1. By degree conditions xz′ ∈ E, so z′ = z1. As xzi, z1zi /∈ E for i ≥ 2, (8.1)497

implies all vertices of Z − z1 and all subdividing vertices are good, z1 is acceptable, and z1498

is good if e′ /∈ H.499

Case 9.5.2.1: t = 2. Since n′ ≥ 7, G′ = sd(H, z1y1, xy). As α(G′) ≤ n′ − 2k′, Y + x is not500

independent. So there is an edge yhyi, where [3] = {h, i, j}. By (8.1), all of x, y, z1, z2 are501

good, and all of y1, y2, y3 are acceptable. So there is an edge ab ∈M with ayj ∈ E. If j = 1502

then there are k disjoint cycles ay1z2a, bxyb, z1y2y3z1, and α′ − 1 strong edges; else j 6= 1503

and there are k disjoint cycles ayjz1a, bxyb, z2yhyiz2, and α′ − 1 strong edges. Anyway this504

contradicts G ∈ BOk.505

Case 9.5.2.2: t ≥ 4. Let ab ∈M with a ∈ N(z1). If t ≥ 5 then there are k disjoint cycles,506

az1xa, bz2y1z3b, z4y2z5y3z4, and α′ − 1 strong edges, contradicting G ∈ BOk. Else t = 4.507

Since dG′(y2) ≤ 6 and xy2 /∈ E, (8.1) implies y2 is 3-acceptable. As z1 is acceptable and508

|M | ≥ 3, there is an edge ab ∈ M with az1, by2 ∈ E. As x and z2 are good, this yields k509

disjoint cycles az1xa, by1z2b, z3y1z4y3z2, and α′ − 1 strong edges, contradicting G ∈ BOk.510

Case 9.5.2.3: t = 3 and z1y1 is subdivided twice. Then x and y are both good. Since511

dG′(y1) ≤ 5 and xy1 /∈ E, y1 is 2-acceptable. As z1 is acceptable, there is an edge ab ∈ M512

with ax, by1 ∈ E. Thus there are k disjoint cycles az1xa, by1yb, y2z2y3z3y2, and α′−1 strong513

edges, contradicting G ∈ BOk.514

Case 9.5.2.4: t = 3 and z1y1 is subdivided once. Suppose there is an edge yiyj ∈ E,515

where [3] = {y1, y2, y3}. Then dG′(yh) ≤ 5 and either yhx /∈ E or yhz1 /∈ E. By (8.1), yh is516

3-acceptable. As |M | ≥ 3, there is an edge ab ∈ M with az1, byh ∈ M . Thus there are k517

disjoint cycles az1xa, byhz2b, yiz3yjz3, and α′ − 1 strong edges, contradicting G ∈ BOk. So518

assume ‖G[Y ]‖ = 0.519

If |F | = 2α′ then (Q2b) holds. Else there are edges ab, a′b′ ∈M and a vertex u ∈ W with520

au ∈ E(F ). All vertices of G′ are good except one of y1, z1 might only be acceptable. Choose521

notation so that {b, a′, b′} = {c1, c2, c3} and |N(c1) ∩ W | ≥ 6 and |N(c2) ∩ W |, |N(c3) ∩522

W | ≥ 7. By inspection G′ − u contains a perfect matching {e1, e2, e3} with e1 ⊆ N(c1).523
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Thus G contains k disjoint cycles, c1e1c1, c2e2c2, c3e3c3, aua and α′ − 2 other strong edges,524

contradicting G ∈ BOk. �525

9. Proof of Theorem 18526

To be completed. We define our algorithm in steps.527

Step 1. Find F (in O(n2) operations) and a maximum matchingM (in O(n3) operations).528

Let α′ := α′(F ) = |M | and n′ = n− 2α′. If n′ < 3(k − α′), then G has no k disjoint cycles,529

otherwise go to Step 2.530

Step 2. Construct a GE-decomposition (A,C,D) of V (F ) as follows: find the size α′(F −531

v) of a maximum matching in F − v for all v ∈ V (F ) (in O(n4) operations). Then D = {v ∈532

V (F ) : ν(F − v) = ν(F )}, A = N(F )− F and C = V (F )−D − A.533
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