Due Wednesday, March 06, 2024
Solve four of the next five problems.

1. \# 3.1.28 in the book.
2. Let D be a digraph. Prove that there exist pairwise disjoint cycles in D such that each vertex of D lies in exactly one of the cycles if and only if $\left|N^{+}(S)\right| \geq|S|$ for all $S \subseteq V(D)$. (Note that $N^{+}(S)$ may intersect or contain S.) (Hint: The trick used to prove Petersen's Theorem on 2-factors may help.)
3. Given the preference list below, determine the stable matchings resulting from the Proposal Algorithm run (a) with men proposing and (b) with women proposing.

$$
\begin{array}{cc}
\text { Men }[u, v, w, x, y, z] & \text { Women }[a, b, c, d, e, f] \\
u: a>b>d>c>f>e & a: z>x>y>u>v>w \\
v: a>b>c>f>e>d & b: y>z>w>x>v>u \\
w: c>b>d>a>f>e & c: v>x>w>y>u>z \\
x: c>a>d>b>e>f & d: w>y>u>x>z>v \\
y: c>d>a>b>f>e & e: u>v>x>w>y>z \\
z: d>e>f>c>b>a & f: u>w>x>v>z>y
\end{array}
$$

Write down the results of each round of proposals for both parts, (a) and (b).
4. Construct a connected 3-regular simple graph G such that the size of the maximum matching in G is at most $\frac{|V(G)|}{2}-2$.
5. Let G be a 9-regular connected graph that remains connected after deleting any 7 edges. Prove that G has a perfect matching.

Problems below review basic concepts and their ideas could be used in the tests.
WARMUP PROBLEMS: Section 3.2: \# 3. Section 3.3: \# 1, 2, 6, 7. Do not write these up!

OTHER INTERESTING PROBLEMS: Section 3.2: \# 12, 13, 14. Section 3.3: \# 8, 9, $10,15,16,22,24,25,26$. Do not write these up!

