Math 412

HW8

Due Wednesday, April 10, 2024
Solve four of the next five problems.

1. Let $k \geq 3$. Prove that for every $n \geq k+1$, every k-connected n-vertex graph G, and every disjoint vertex sets S and T in G with $|T|=3$ and $|S|=k-3$, there is a cycle that contains T and is disjoint from S. (Hint: Use the Fan Lemma.) Give an example of a 2 -connected graph and some 3 vertices in this graph that do not belong to a common cycle.
2. Let G be the network with the flow drawn below. Write the flow as a linear combination of flows along cycles, s, t-paths and t, s-paths.

3. In the network below find an S, T-cut of minimum capacity. Prove that it has the minimum capacity.

4. Using maximum flows (solution without flows does not count!), find a maximum matching in the bipartite graph below. Prove that the matching is optimal. Find a smallest vertex cover.

5. Let (G, ϕ) be a 3 -connected simple plane graph, let n_{i} denote the number of vertices of degree i in G, and let f_{j} denote the number of faces of degree j in (G, ϕ). Prove that

$$
\sum(4-i) n_{i}+\sum(4-j) f_{j}=8 . \quad \text { (Hint: Use Euler's Formula.) }
$$

Problems below review basic concepts and their ideas could be used in the tests.
WARMUP PROBLEMS: Section 4.2: \# 5. Section 4.3: \# 1. Do not write these up!
OTHER INTERESTING PROBLEMS: Section 4.2: 12, 22, 28. Section 4.3: \# 5, 7, 13. Do not write these up!

