
Spanning trees, II

Lecture 11



Minimum spanning trees
In many applications, it makes sense to consider an
edge-weighted graph, which is a graph G = (V (G), (E)) along
with a weight function w : E(G) → R that associates a real
number (the weight) to each edge.

An application might be if you have multiple villages you want to
connect with roads, the villages are all vertices, while the edges
can be weighted with the cost to build a road between those
two villages. You might want to minimize the cost of road
construction.

Similarly, you may have a set of computers that you want to
connect into a network, and the cost of connecting computer i
with computer j is ci,j . Again you may want to economize.



In both examples, we are looking for a spanning connected
subgraph of our graph with the sum of the weights of the edges
as small as possible.

Of course, if we have edges with negative weights, we’d better
include all of them. If the resulting graph is connected, then we
are done. If not, we can shrink each component into a vertex
and consider the resulting graph with modified weights.

In view of this observation, we will assume all edge weights are
non-negative. In this case, among spanning subgraphs of
minimum total weight there always are spanning trees.

This motivates us to study the Minimum Spanning Tree
Problem in a graph. As we know, Kn has nn−2 distinct spanning
trees, so the idea to look at all such trees and choose among
them a tree of minimum weight is not a great idea.
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A lemma
Lemma 2.7 : Let G be a connected loopless graph with
weighted edges, where w(e) ≥ 0 for every e ∈ E(G).
Let T1, . . . ,Tk be vertex-disjoint trees contained in G such that
V (T1) ∪ . . . ∪ V (Tk ) = V (G).
Let e0 be an edge of the minimum weight among the edges of
G connecting V (T1) with V (G)− V (T1).
Then among the containing E(T1) ∪ . . . ∪ E(Tk ) spanning trees
of G of minimum weight, there is a tree containing e0.

Proof. Let n = V (G). Let T0 be a spanning tree of G containing
E(T1) ∪ . . . ∪ E(Tk ) of minimum weight.

Suppose e0 = xy where x ∈ V (T1) and y ∈ V (G)− V (T1).
If e0 ∈ E(T0), then we are done.
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Otherwise, T ′ = T0 + e0 is a connected graph with n edges
containing exactly one cycle, say C. By construction,
e0 ∈ E(C).
Since x ∈ V (T1) and y ∈ V (G)− V (T1), cycle C contains
another edge e1 connecting V (T1) with V (G)− V (T1).
Then T ′′ := T ′ − e1 is a connected graph with n − 1 edges;
hence a spanning tree of G. Moreover, by the choice of e0,
w(e0) ≤ w(e1).

Therefore,
∑

e∈E(T ′′) w(e) ≤
∑

e∈E(T0)
w(e). It follows that T ′′

also is a spanning tree of G containing E(T1) ∪ . . . ∪ E(Tk ) of
minimum weight.
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Prim’s Algorithm:
Input: A weighted connected n-vertex graph G, say,
V (G) = {v1, . . . , vn}.

Goal: A spanning tree with the minimum total weight of the
edges.

Initialization: Let V0 := {v1} and E(T ) := ∅.

Step i (i = 1, . . . ,n − 1): Let ei be an edge of minimum weight
among the edges connecting V0 with V (G)− V0. If ei = xy ,
where x ∈ V0 and y ∈ V (G)− V0, then let V0 := V0 ∪ {y} and
E(T ) := E(T ) ∪ {ei}.

Proof: By Lemma 2.7.



Kruskal’s Algorithm:
Input: A weighted connected n-vertex graph G, say,
E(G) = {e1, . . . ,em}.

Goal: A spanning tree with the minimum total weight of the
edges.

Initialization: Reorder the edges so that
w(e1) ≤ w(e2) ≤ . . . ≤ w(em). Let E(T ) := ∅.

Step j (j = 1, . . . ,m): If E(T ) ∪ {ej} does not contain cycles,
then let E(T ) = E(T ) ∪ {ej}. Otherwise, do nothing.

Proof: By Lemma 2.7.

What if we want to find a spanning tree of maximum total
weight?



Main theorems in Chapter 2:
1. A Characterization Theorem for trees (Theorem 2.2).

2. Jordan’s Theorem on centers of trees (Theorem 2.3).

3. Theorem on Prüfer codes, Cayley’s Formula.

4. Matrix Tree Theorem (Theorem 2.6).

5. Prim’s and Kruskal’s algorithms.
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