Spanning trees, III and matchings

Lecture 12

A lemma

Lemma 2.7 : Let *G* be a connected loopless graph with weighted edges, where $w(e) \ge 0$ for every $e \in E(G)$. Let T_1, \ldots, T_k be vertex-disjoint trees contained in *G* such that $V(T_1) \cup \ldots \cup V(T_k) = V(G)$.

Let e_0 be an edge of the minimum weight among the edges of *G* connecting $V(T_1)$ with $V(G) - V(T_1)$.

Then among the containing $E(T_1) \cup \ldots \cup E(T_k)$ spanning trees of *G* of minimum weight, there is a tree containing e_0 .

(日) (日) (日) (日) (日) (日) (日)

A lemma

Lemma 2.7 : Let *G* be a connected loopless graph with weighted edges, where $w(e) \ge 0$ for every $e \in E(G)$. Let T_1, \ldots, T_k be vertex-disjoint trees contained in *G* such that $V(T_1) \cup \ldots \cup V(T_k) = V(G)$.

Let e_0 be an edge of the minimum weight among the edges of *G* connecting $V(T_1)$ with $V(G) - V(T_1)$.

Then among the containing $E(T_1) \cup \ldots \cup E(T_k)$ spanning trees of *G* of minimum weight, there is a tree containing e_0 .

Proof. Let n = V(G). Let T_0 be a spanning tree of G containing $E(T_1) \cup \ldots \cup E(T_k)$ of minimum weight.

(日) (日) (日) (日) (日) (日) (日)

Suppose $e_0 = xy$ where $x \in V(T_1)$ and $y \in V(G) - V(T_1)$. If $e_0 \in E(T_0)$, then we are done. Otherwise, $T' = T_0 + e_0$ is a connected graph with *n* edges containing exactly one cycle, say *C*. By construction, $e_0 \in E(C)$. Since $x \in V(T_1)$ and $y \in V(G) - V(T_1)$, cycle *C* contains another edge e_1 connecting $V(T_1)$ with $V(G) - V(T_1)$. Then $T'' := T' - e_1$ is a connected graph with n - 1 edges; hence a spanning tree of *G*. Moreover, by the choice of e_0 , $w(e_0) \leq w(e_1)$.

Otherwise, $T' = T_0 + e_0$ is a connected graph with *n* edges containing exactly one cycle, say *C*. By construction, $e_0 \in E(C)$. Since $x \in V(T_1)$ and $y \in V(G) - V(T_1)$, cycle *C* contains another edge e_1 connecting $V(T_1)$ with $V(G) - V(T_1)$. Then $T'' := T' - e_1$ is a connected graph with n - 1 edges; hence a spanning tree of *G*. Moreover, by the choice of e_0 , $w(e_0) \leq w(e_1)$.

Therefore, $\sum_{e \in E(T'')} w(e) \le \sum_{e \in E(T_0)} w(e)$. It follows that T'' also is a spanning tree of *G* containing $E(T_1) \cup \ldots \cup E(T_k)$ of minimum weight.

(ロ) (同) (三) (三) (三) (○) (○)

Main theorems in Chapter 2:

- 1. A Characterization Theorem for trees (Theorem 2.2).
- 2. Jordan's Theorem on centers of trees (Theorem 2.3).

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Main theorems in Chapter 2:

- 1. A Characterization Theorem for trees (Theorem 2.2).
- 2. Jordan's Theorem on centers of trees (Theorem 2.3).

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- 3. Theorem on Prüfer codes, Cayley's Formula.
- 4. Matrix Tree Theorem (Theorem 2.6).
- 5. Prim's and Kruskal's algorithms.

Matchings

A matching in a graph is a set of non-loop edges that are pairwise disjoint.

The **size** of a matching is the number of edges in it.

In particular, an empty set of edges is a matching (of size 0). Each non-loop edge also is a matching of size 1.

(ロ) (同) (三) (三) (三) (○) (○)

Matchings

A matching in a graph is a set of non-loop edges that are pairwise disjoint.

The **size** of a matching is the number of edges in it.

In particular, an empty set of edges is a matching (of size 0). Each non-loop edge also is a matching of size 1.

A matching is **perfect** in a graph *G* if it covers all vertices of *G*.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

The main problem is to find a matching in a graph G with the most edges.

A maximal matching in a graph *G* is a matching that is not a subset of any larger matching.

A **maximum matching** is a matching that has the most edges over all matchings of *G*.

The size of a maximum matching in G is denoted by $\alpha'(G)$.

Recall that the independence number of *G* is denoted by $\alpha(G)$.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Given a matching M in a graph G, an M-alternating path in G is a path that alternates between edges in M and not in M.

An *M*-augmenting path is an *M*-alternating path whose endpoints are not in any edge of *M*. Since an *M*-augmenting path must start and end with an edge

that is not in *M*, any *M*-augmenting path is of odd length, and has more edges outside *M* than in *M*.

・ロト・日本・モト・モー しょうくぐ

Given a matching M in a graph G, an M-alternating path in G is a path that alternates between edges in M and not in M.

An *M*-augmenting path is an *M*-alternating path whose endpoints are not in any edge of *M*.

Since an M-augmenting path must start and end with an edge that is not in M, any M-augmenting path is of odd length, and has more edges outside M than in M.

Theorem 3.1 (Berge)

(A) A matching M in a graph G is maximum if and only if (B) G does not contain any M-augmenting path.

Given a matching M in a graph G, an M-alternating path in G is a path that alternates between edges in M and not in M.

An *M*-augmenting path is an *M*-alternating path whose endpoints are not in any edge of *M*.

Since an M-augmenting path must start and end with an edge that is not in M, any M-augmenting path is of odd length, and has more edges outside M than in M.

Theorem 3.1 (Berge)

(A) A matching M in a graph G is maximum if and only if (B) G does not contain any M-augmenting path.

Proof. (A) \Rightarrow (B) (We prove (B) \Rightarrow (A)). If *P* is an *M*-augmenting path, then by removing from *M* the edges in $M \cap E(P)$ and adding the edges in E(P) - M, we obtain a matching larger than *M*.

(B) \Rightarrow (A) (We prove (A) \Rightarrow (M)). Suppose there is a matching *M*' with |M'| > |M|. Consider the graph *G*' with vertex set *V*(*G*) and edge set $M \cup M'$.

Since the edges set of G' is the union of two matchings, $\Delta(G') \leq 2$, each component of G' is a path or a cycle of even length. Each cycle or even-length path in G' is made up of the same number of edges from M and M'.

Since |M'| > |M|, there is a path *P* with more edges in *M'* than in *M*. The only way to have it is that the first and last edges of *P* are in M' - M. Then the endpoints of *P* are not covered by *M*. This means *P* is an *M*-augmenting path.