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A lemma
Lemma 2.7 : Let G be a connected loopless graph with
weighted edges, where w(e) ≥ 0 for every e ∈ E(G).
Let T1, . . . ,Tk be vertex-disjoint trees contained in G such that
V (T1) ∪ . . . ∪ V (Tk ) = V (G).
Let e0 be an edge of the minimum weight among the edges of
G connecting V (T1) with V (G)− V (T1).
Then among the containing E(T1) ∪ . . . ∪ E(Tk ) spanning trees
of G of minimum weight, there is a tree containing e0.

Proof. Let n = V (G). Let T0 be a spanning tree of G containing
E(T1) ∪ . . . ∪ E(Tk ) of minimum weight.

Suppose e0 = xy where x ∈ V (T1) and y ∈ V (G)− V (T1).
If e0 ∈ E(T0), then we are done.
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Otherwise, T ′ = T0 + e0 is a connected graph with n edges
containing exactly one cycle, say C. By construction,
e0 ∈ E(C).
Since x ∈ V (T1) and y ∈ V (G)− V (T1), cycle C contains
another edge e1 connecting V (T1) with V (G)− V (T1).
Then T ′′ := T ′ − e1 is a connected graph with n − 1 edges;
hence a spanning tree of G. Moreover, by the choice of e0,
w(e0) ≤ w(e1).

Therefore,
∑

e∈E(T ′′) w(e) ≤
∑

e∈E(T0)
w(e). It follows that T ′′

also is a spanning tree of G containing E(T1) ∪ . . . ∪ E(Tk ) of
minimum weight.
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Main theorems in Chapter 2:
1. A Characterization Theorem for trees (Theorem 2.2).

2. Jordan’s Theorem on centers of trees (Theorem 2.3).

3. Theorem on Prüfer codes, Cayley’s Formula.

4. Matrix Tree Theorem (Theorem 2.6).

5. Prim’s and Kruskal’s algorithms.
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Matchings
A matching in a graph is a set of non-loop edges that are
pairwise disjoint.
The size of a matching is the number of edges in it.

In particular, an empty set of edges is a matching (of size 0).
Each non-loop edge also is a matching of size 1.

A matching is perfect in a graph G if it covers all vertices of G.
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The main problem is to find a matching in a graph G with the
most edges.
A maximal matching in a graph G is a matching that is not a
subset of any larger matching.

A maximum matching is a matching that has the most edges
over all matchings of G.

The size of a maximum matching in G is denoted by α′(G).

Recall that the independence number of G is denoted by α(G).



Given a matching M in a graph G, an M-alternating path in G
is a path that alternates between edges in M and not in M.

An M-augmenting path is an M-alternating path whose
endpoints are not in any edge of M.
Since an M-augmenting path must start and end with an edge
that is not in M, any M-augmenting path is of odd length, and
has more edges outside M than in M.

Theorem 3.1 (Berge)
(A) A matching M in a graph G is maximum
if and only if (B) G does not contain any M-augmenting path.

Proof. (A) ⇒ (B) (We prove (¬B) ⇒ (¬A)). If P is an
M-augmenting path, then by removing from M the edges in
M ∩ E(P) and adding the edges in E(P)− M, we obtain a
matching larger than M.
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(B) ⇒ (A) (We prove (¬A) ⇒ (¬M)). Suppose there is a
matching M ′ with |M ′| > |M|. Consider the graph G′ with vertex
set V (G) and edge set M ∪ M ′.

Since the edges set of G′ is the union of two matchings,
∆(G′) ≤ 2, each component of G′ is a path or a cycle of even
length. Each cycle or even-length path in G′ is made up of the
same number of edges from M and M ′.

Since |M ′| > |M|, there is a path P with more edges in M ′ than
in M. The only way to have it is that the first and last edges of P
are in M ′ − M. Then the endpoints of P are not covered by M.
This means P is an M-augmenting path.


