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Matchings
A matching in a graph is a set of non-loop edges that are
pairwise disjoint.
The size of a maximum matching in G is denoted by α′(G).

Given a matching M in a graph G, an M-alternating path in G
is a path that alternates between edges in M and not in M.

An M-augmenting path is an M-alternating path whose
endpoints are not in any edge of M.

Theorem 3.1 (Berge)
(A) A matching M in a graph G is maximum
if and only if (B) G does not contain any M-augmenting path.



Bipartite graphs
Given a bipartite graph G = (X ,Y ;E), certainly,
α′(G) ≤ min{|X |, |Y |}. But it can be smaller.

The fundamental result for bipartite graphs is the Hall Theorem.



Hall’s Theorem
Theorem 3.2 (P. Hall): An X ,Y -bigraph G has a matching
covering X if and only if

|N(S)| ≥ |S| ∀S ⊆ X . (1)

Proof. The ”only if” part is evident. We prove the ”if” part by
induction on |E(G)|. Let a bigraph G = (X ,Y ;E) satisfy (1).
Then d(x) ≥ 1 for each x ∈ X .

Base of induction: |E(G)| = 1. Since d(x) ≥ 1 for each x ∈ X ,
this means |X | = 1, and the unique edge of G forms a matching
covering X .

Induction Step. Suppose the theorem is true for all graphs with
less than m edges. Let G = (X ,Y ;E) have m edges.
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Case 1: |N(S)| = |S| for some ∅ ≠ S ⊊ X . Define induced
subgraphs G1 and G2 of G: V (G1) = S ∪ NG(S) and
G2 = G − V (G1).

Claim 1. (1) holds for G1.

Claim 2. (1) holds for G2.

Indeed, if there is T ⊂ X − S with |NG2(T )| < |T |, then

|NG(S ∪ T )| = |NG(S)|+ |NG2(T )| < |S|+ |T | = |S ∪ T |,

a contradiction.
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In view of Claims 1 and 2, by the induction assumption, G1 has
a matching M1 covering S and G2 has a matching M2 covering
X − S. Now M1 ∪ M2 covers X .

Case 2:

|NG(S)| ≥ |S|+ 1 ∀∅ ≠ S ⊊ X . (2)

Choose any x0 ∈ X . Since d(x0) ≥ 1, there is y0 ∈ N(x0). Let
G′ = G − x0 − y0.

By (2), for each ∅ ≠ S ⊂ X − x0,

|NG′(S)| ≥ |NG(S)| − 1 ≥ (|S|+ 1)− 1 = |S|.

So (1) holds for G′, and by IH, G′ has a matching M ′ covering
X − x0.

Then matching M ′ ∪ {x0y0} covers X , as claimed.
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|NG′(S)| ≥ |NG(S)| − 1 ≥ (|S|+ 1)− 1 = |S|.

So (1) holds for G′, and by IH, G′ has a matching M ′ covering
X − x0.

Then matching M ′ ∪ {x0y0} covers X , as claimed.



Marriage Theorem:
Corollary 3.3 (Marriage Theorem) For each k ≥ 1 every
k -regular bipartite graph has a perfect matching.

Proof. Let B = (X ,Y ;E) be a k -regular bipartite graph. Since
each edge of B has exactly one endpoint in X , and exactly one
in Y ,

|E(B)| =
∑
v∈X

d(v) = k |X |,

and
|E(B)| =

∑
v∈Y

d(v) = k |Y |,

so |X | = |Y |.
Thus each matching that covers X is perfect. Let us check that
Hall’s condition is satisfied.
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Let S ⊆ X . There are exactly k |S| edges incident with vertices
in S, so there are at least k |S| edges incident with N(S), and
the total number of edges incident with N(S) is k |N(S)|, so

k |S| ≤ k |N(S)|,

which is equivalent to Hall’s condition. Thus, we are done by
Hall’s Theorem.

Systems of distinct representatives.



Vertex covers
A vertex cover of a graph G is a set S of vertices in G such that
each edge of G has at least one end in S.

Trivially, V (G) is a vertex cover of G. The problem is to find a
vertex cover of the minimum cardinality.

The minimum cardinality of a vertex cover of G is denoted by
β(G).

Observation A: A set S ⊂ V (G) is a vertex cover if and only if
V (G)− S is an independent set.

Observation B: For each n-vertex graph G, α(G) + β(G) = n.

Observation C: For each graph G, α′(G) ≤ β(G) ≤ 2α′(G).
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Theorem 3.4 (König, Egerváry, 1931): For each bipartite
graph G,

α′(G) = β(G). (3)

Proof. Let G = (X ,Y ;E) be a bipartite graph with parts X and
Y . By Observation C, we need only to prove α′(G) ≥ β(G).

Let Q be a vertex cover of G with |Q| = β(G).

Claim: (i) ∀A ⊆ Q ∩ X , |N(A)− Q ∩ Y | ≥ |A|.
(ii) ∀B ⊆ Q ∩ Y , |N(B)− Q ∩ X | ≥ |B|.

Proof of Claim (i). If for some A ⊆ Q ∩ X |N(A)− Q ∩ Y | < |A|,
then the set (Q − A) ∪ N(A) is a smaller vertex cover.
The proof of (ii) is symmetric.

By the claim and Hall’s Theorem, graph G[(Q ∩ X ) ∪ (Y − Q)]
has a matching MX covering Q ∩ X and graph
G[(Q ∩ Y ) ∪ (X − Q)] has a matching MY covering Q ∩ Y .
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