Matchings in bipartite graphs

Lecture 13



Matchings

A matching in a graph is a set of non-loop edges that are
pairwise disjoint.
The size of a maximum matching in G is denoted by o/(G).

Given a matching M in a graph G, an M-alternating path in G
is a path that alternates between edges in M and not in M.

An M-augmenting path is an M-alternating path whose
endpoints are not in any edge of M.

Theorem 3.1 (Berge)
(A) A matching M in a graph G is maximum
if and only if (B) G does not contain any M-augmenting path.



Bipartite graphs

Given a bipartite graph G = (X, Y; E), certainly,
o/(G) < min{|X],|Y|}. But it can be smaller.
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The fundamental result for bipartite graphs is the Hall Theorem.



Hall’'s Theorem

Theorem 3.2 (P. Hall): An X, Y-bigraph G has a matching
covering X if and only if

IN(S)| = S| VS C X.
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Hall’'s Theorem

Theorem 3.2 (P. Hall): An X, Y-bigraph G has a matching
covering X if and only if

IN(S)| = S| VS C X. (1)

Proof. The "only if” part is evident. We prove the "if” part by
induction on |E(G)|. Let a bigraph G = (X, Y; E) satisfy (1).
Then d(x) > 1 for each x € X.

Base of induction: |E(G)| = 1. Since d(x) > 1 for each x € X,
this means | X| = 1, and the unique edge of G forms a matching
covering X.

Induction Step. Suppose the theorem is true for all graphs with
less than m edges. Let G = (X, Y; E) have m edges.



Case 1: [N(S)| = |S| for some () # S C X. Define induced
subgraphs Gy and G, of G: V(G;) = SU Ng(S) and
Go=G- V(G
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Case 1: [N(S)| = |S| for some () # S C X. Define induced
subgraphs Gy and G, of G: V(G;) = SU Ng(S) and
Go=G- V(G

X X-S , s
Y Y-N(S) N N(S)
G G,

2

Claim 1. (1) holds for G;.
Claim 2. (1) holds for Go.
Indeed, if there is T C X — S with [Ng,(T)| < |T|, then

INg(SU T)| = INa(S)| + [Ne,(T)| < [S[+[T| = [SUTI,

a contradiction.



In view of Claims 1 and 2, by the induction assumption, Gy has
a matching My covering S and G, has a matching M, covering
X-S. Now M; U My covers X.
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In view of Claims 1 and 2, by the induction assumption, Gy has
a matching My covering S and G, has a matching M, covering
X-S. Now M; U My covers X.

Case 2:
ING(S)| > |S] + 1 £ SC X 2)

Choose any xp € X. Since d(xg) > 1, there is yp € N(xp). Let
G=G- Xo — Yo-

By (2), foreach ) # S C X — xo,

INe(S)| = [Na(S)| =1 = ([S|+1) -1 =15].
So (1) holds for G, and by IH, G’ has a matching M’ covering
X — X0-

Then matching M" U {xoyp} covers X, as claimed. O
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Corollary 3.3 (Marriage Theorem) For each k > 1 every
k-regular bipartite graph has a perfect matching.



Marriage Theorem:

Corollary 3.3 (Marriage Theorem) For each k > 1 every
k-regular bipartite graph has a perfect matching.

Proof. Let B = (X, Y E) be a k-regular bipartite graph. Since
each edge of B has exactly one endpoint in X, and exactly one
inY,

[E(B)| =) _ d(v) = k|X],

veX
and
[E(B)| =) d(v) = k|Y],
veyY
so | X|=1Y].

Thus each matching that covers X is perfect. Let us check that
Hall’s condition is satisfied.



Let S C X. There are exactly k|S| edges incident with vertices
in S, so there are at least k|S| edges incident with N(S), and
the total number of edges incident with N(S) is k|N(S)|, so

kIS| < KIN(S)I,

which is equivalent to Hall's condition. Thus, we are done by
Hall’'s Theorem. O

Systems of distinct representatives.



Vertex covers

A vertex cover of a graph G is a set S of vertices in G such that
each edge of G has at least one end in S.

Trivially, V(G) is a vertex cover of G. The problem is to find a
vertex cover of the minimum cardinality.

The minimum cardinality of a vertex cover of G is denoted by
B(Q).
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Vertex covers

A vertex cover of a graph G is a set S of vertices in G such that
each edge of G has at least one end in S.

Trivially, V(G) is a vertex cover of G. The problem is to find a
vertex cover of the minimum cardinality.

The minimum cardinality of a vertex cover of G is denoted by
B(G).

Observation A: Aset S C V(G) is a vertex cover if and only if
V(G) — Sis an independent set.

Observation B: For each n-vertex graph G, o(G) + 8(G) = n.
Observation C: For each graph G, o/(G) < 3(G) < 2¢/(G).
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Let Q be a vertex cover of G with |Q| = B(G).

Claim: () YAC QN X, [N(A)—QnY|=>|A.
(hvBCQnY, |N(B) —QnX| >|B.

Proof of Claim (i). If forsome AC QN X [N(A) — QN Y| < |A|
then the set (Q — A) U N(A) is a smaller vertex cover.
The proof of (ii) is symmetric.

By the claim and Hall’s Theorem, graph G[(QNn X)uU (Y — Q)]
has a matching Mx covering Q N X and graph
G[(QN Y)U (X — Q)] has a matching My covering QN Y.



