
Matchings in bipartite graphs, II

Lecture 14



Hall’s Theorem
Theorem 3.2 (P. Hall): An X ,Y -bigraph G has a matching
covering X if and only if

|N(S)| ≥ |S| ∀S ⊆ X . (1)

Corollary 3.3 (Marriage Theorem) For each k ≥ 1 every
k -regular bipartite graph has a perfect matching.



Vertex covers
A vertex cover of a graph G is a set S of vertices in G such that
each edge of G has at least one end in S.

The minimum cardinality of a vertex cover of G is denoted by
β(G).

Observation A: A set S ⊂ V (G) is a vertex cover if and only if
V (G)− S is an independent set.
Observation B: For each n-vertex graph G, α(G) + β(G) = n.

Observation C: For each graph G, α′(G) ≤ β(G) ≤ 2α′(G).



Theorem 3.4 (König, Egerváry, 1931): For each bipartite
graph G,

α′(G) = β(G). (2)

Proof. Let G = (X ,Y ;E) be a bipartite graph with parts X and
Y . By Observation C, we need only to prove α′(G) ≥ β(G).

Let Q be a vertex cover of G with |Q| = β(G).

Claim: (i) ∀A ⊆ Q ∩ X , |N(A)− Q ∩ Y | ≥ |A|.
(ii) ∀B ⊆ Q ∩ Y , |N(B)− Q ∩ X | ≥ |B|.

Proof of Claim (i). If for some A ⊆ Q ∩ X |N(A)− Q ∩ Y | < |A|,
then the set (Q − A) ∪ N(A) is a smaller vertex cover.
The proof of (ii) is symmetric.

By the claim and Hall’s Theorem, graph G[(Q ∩ X ) ∪ (Y − Q)]
has a matching MX covering Q ∩ X and graph
G[(Q ∩ Y ) ∪ (X − Q)] has a matching MY covering Q ∩ Y .
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Since MX and MY are disjoint,

α′(G) ≥ |MX |+ |MY | = |Q ∩ X |+ |Q ∩ Y | = |Q| = β(G).

This proves Theorem 3.4.

An edge cover of a graph G is a set T of edges in G such that
each vertex of G is an end of at least one edge in T .

Trivially, if G has isolated vertices, then it has no edge cover. If
G has no isolated vertices, then E(G) is an edge cover of G.
The problem is to find an edge cover of the minimum cardinality.

The minimum cardinality of an edge cover of G is denoted by
β′(G).

Theorem 3.5 (Gallai, 1959): For each n-vertex graph G with no
isolated vertices, α′(G) + β′(G) = n.
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Proof of Theorem 3.5. Let G be an n-vertex graph G with no
isolated vertices.

Part 1: We prove α′(G) + β′(G) ≤ n. Let M be a matching in G
with |M| = α′(G). It does not cover exactly n − 2α′(G) vertices.
Each of these vertices we can cover with a special edge. Thus

β′(G) ≤ α′(G) + (n − 2α′(G)) = n − α′(G),

as claimed.

Part 2: We now prove α′(G) + β′(G) ≥ n.
Let L be an edge cover of G with |L| = β′(G). Consider the
subgraph GL of G spanned by the edges in L.

By the minimality of L, GL does not contain cycles and paths of
length 3. Thus GL is a star forest.
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Let k be the number of components in GL. Then GL has a
matching M with k edges.
On the other hand, |L| = n − k .

Therefore,

β′(G) + α′(G)≥ |L|+ |M| ≥ (n − k) + k = n,

as claimed.

Corollary: For each bipartite graph G with no isolated vertices,
α(G) = β′(G).
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