Matchings in bipartite graphs, II

Lecture 14

Hall's Theorem

Theorem 3.2 (P. Hall): An X, Y-bigraph G has a matching covering X if and only if

$|N(S)| \ge |S| \qquad \forall S \subseteq X. \tag{1}$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Corollary 3.3 (Marriage Theorem) For each $k \ge 1$ every k-regular bipartite graph has a perfect matching.

Vertex covers

A vertex cover of a graph G is a set S of vertices in G such that each edge of G has at least one end in S.

The minimum cardinality of a vertex cover of *G* is denoted by $\beta(G)$.

Observation A: A set $S \subset V(G)$ is a vertex cover if and only if V(G) - S is an independent set. **Observation B:** For each *n*-vertex graph G, $\alpha(G) + \beta(G) = n$.

Observation C: For each graph G, $\alpha'(G) \leq \beta(G) \leq 2\alpha'(G)$.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

$$\alpha'(\mathbf{G}) = \beta(\mathbf{G}). \tag{2}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

$$\alpha'(\mathbf{G}) = \beta(\mathbf{G}). \tag{2}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Proof. Let G = (X, Y; E) be a bipartite graph with parts X and Y. By Observation C, we need only to prove $\alpha'(G) \ge \beta(G)$.

Let *Q* be a vertex cover of *G* with $|Q| = \beta(G)$.

$$\alpha'(\mathbf{G}) = \beta(\mathbf{G}). \tag{2}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Proof. Let G = (X, Y; E) be a bipartite graph with parts X and Y. By Observation C, we need only to prove $\alpha'(G) \ge \beta(G)$.

Let *Q* be a vertex cover of *G* with $|Q| = \beta(G)$.

Claim: (i) $\forall A \subseteq Q \cap X$, $|N(A) - Q \cap Y| \ge |A|$. (ii) $\forall B \subseteq Q \cap Y$, $|N(B) - Q \cap X| \ge |B|$.

$$\alpha'(\mathbf{G}) = \beta(\mathbf{G}). \tag{2}$$

A D F A 同 F A E F A E F A Q A

Proof. Let G = (X, Y; E) be a bipartite graph with parts X and Y. By Observation C, we need only to prove $\alpha'(G) \ge \beta(G)$.

Let *Q* be a vertex cover of *G* with $|Q| = \beta(G)$.

Claim: (i) $\forall A \subseteq Q \cap X$, $|N(A) - Q \cap Y| \ge |A|$. (ii) $\forall B \subseteq Q \cap Y$, $|N(B) - Q \cap X| \ge |B|$.

Proof of Claim (i). If for some $A \subseteq Q \cap X |N(A) - Q \cap Y| < |A|$, then the set $(Q - A) \cup N(A)$ is a smaller vertex cover. The proof of (ii) is symmetric.

$$\alpha'(\mathbf{G}) = \beta(\mathbf{G}). \tag{2}$$

Proof. Let G = (X, Y; E) be a bipartite graph with parts X and Y. By Observation C, we need only to prove $\alpha'(G) \ge \beta(G)$.

Let *Q* be a vertex cover of *G* with $|Q| = \beta(G)$.

Claim: (i) $\forall A \subseteq Q \cap X$, $|N(A) - Q \cap Y| \ge |A|$. (ii) $\forall B \subseteq Q \cap Y$, $|N(B) - Q \cap X| \ge |B|$.

Proof of Claim (i). If for some $A \subseteq Q \cap X |N(A) - Q \cap Y| < |A|$, then the set $(Q - A) \cup N(A)$ is a smaller vertex cover. The proof of (ii) is symmetric.

By the claim and Hall's Theorem, graph $G[(Q \cap X) \cup (Y - Q)]$ has a matching M_X covering $Q \cap X$ and graph $G[(Q \cap Y) \cup (X - Q)]$ has a matching M_Y covering $Q \cap Y$. Since M_X and M_Y are disjoint,

 $\alpha'(G) \geq |M_X| + |M_Y| = |Q \cap X| + |Q \cap Y| = |Q| = \beta(G).$

This proves Theorem 3.4.

An edge cover of a graph G is a set T of edges in G such that each vertex of G is an end of at least one edge in T.

Trivially, if *G* has isolated vertices, then it has no edge cover. If *G* has no isolated vertices, then E(G) is an edge cover of *G*. The problem is to find an edge cover of the minimum cardinality.

The minimum cardinality of an edge cover of *G* is denoted by $\beta'(G)$.

Since M_X and M_Y are disjoint,

 $\alpha'(G) \geq |M_X| + |M_Y| = |Q \cap X| + |Q \cap Y| = |Q| = \beta(G).$

This proves Theorem 3.4.

An edge cover of a graph G is a set T of edges in G such that each vertex of G is an end of at least one edge in T.

Trivially, if *G* has isolated vertices, then it has no edge cover. If *G* has no isolated vertices, then E(G) is an edge cover of *G*. The problem is to find an edge cover of the minimum cardinality.

The minimum cardinality of an edge cover of *G* is denoted by $\beta'(G)$.

Theorem 3.5 (Gallai, 1959): For each *n*-vertex graph *G* with no isolated vertices, $\alpha'(G) + \beta'(G) = n$.

Proof of Theorem 3.5. Let *G* be an *n*-vertex graph *G* with no isolated vertices.

Part 1: We prove $\alpha'(G) + \beta'(G) \le n$. Let *M* be a matching in *G* with $|M| = \alpha'(G)$. It does not cover exactly $n - 2\alpha'(G)$ vertices. Each of these vertices we can cover with a special edge. Thus

 $\beta'(G) \leq \alpha'(G) + (n - 2\alpha'(G)) = n - \alpha'(G),$

(ロ) (同) (三) (三) (三) (三) (○) (○)

as claimed.

Proof of Theorem 3.5. Let *G* be an *n*-vertex graph *G* with no isolated vertices.

Part 1: We prove $\alpha'(G) + \beta'(G) \le n$. Let *M* be a matching in *G* with $|M| = \alpha'(G)$. It does not cover exactly $n - 2\alpha'(G)$ vertices. Each of these vertices we can cover with a special edge. Thus

$$\beta'(G) \leq \alpha'(G) + (n - 2\alpha'(G)) = n - \alpha'(G),$$

as claimed.

Part 2: We now prove $\alpha'(G) + \beta'(G) \ge n$. Let *L* be an edge cover of *G* with $|L| = \beta'(G)$. Consider the subgraph G_L of *G* spanned by the edges in *L*.

(日) (日) (日) (日) (日) (日) (日)

Proof of Theorem 3.5. Let *G* be an *n*-vertex graph *G* with no isolated vertices.

Part 1: We prove $\alpha'(G) + \beta'(G) \le n$. Let *M* be a matching in *G* with $|M| = \alpha'(G)$. It does not cover exactly $n - 2\alpha'(G)$ vertices. Each of these vertices we can cover with a special edge. Thus

$$\beta'(G) \leq \alpha'(G) + (n - 2\alpha'(G)) = n - \alpha'(G),$$

as claimed.

Part 2: We now prove $\alpha'(G) + \beta'(G) \ge n$. Let *L* be an edge cover of *G* with $|L| = \beta'(G)$. Consider the subgraph G_L of *G* spanned by the edges in *L*.

By the minimality of *L*, G_L does not contain cycles and paths of length 3. Thus G_L is a star forest.

Let *k* be the number of components in G_L . Then G_L has a matching *M* with *k* edges. On the other hand, |L| = n - k.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Let *k* be the number of components in G_L . Then G_L has a matching *M* with *k* edges. On the other hand, |L| = n - k.

Therefore,

 $\beta'(\mathbf{G}) + \alpha'(\mathbf{G}) \ge |\mathbf{L}| + |\mathbf{M}| \ge (\mathbf{n} - \mathbf{k}) + \mathbf{k} = \mathbf{n},$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

as claimed.

Let *k* be the number of components in G_L . Then G_L has a matching *M* with *k* edges. On the other hand, |L| = n - k.

Therefore,

 $\beta'(\mathbf{G}) + \alpha'(\mathbf{G}) \ge |\mathbf{L}| + |\mathbf{M}| \ge (\mathbf{n} - \mathbf{k}) + \mathbf{k} = \mathbf{n},$

as claimed.

Corollary: For each bipartite graph *G* with no isolated vertices, $\alpha(G) = \beta'(G)$.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>