
Covers in bipartite graphs
and stable matchings

Lecture 15



Hall’s Theorem and vertex covers
Theorem 3.2 (P. Hall): An X ,Y -bigraph G has a matching
covering X if and only if

|N(S)| ≥ |S| ∀S ⊆ X . (1)

A vertex cover of a graph G is a set S of vertices in G such that
each edge of G has at least one end in S.

Observation C: For each graph G, α′(G) ≤ β(G) ≤ 2α′(G).

Theorem 3.4 (König, Egerváry, 1931): For each bipartite
graph G,

α′(G) = β(G). (2)



An edge cover of a graph G is a set T of edges in G such that
each vertex of G is an end of at least one edge in T .

Trivially, if G has isolated vertices, then it has no edge cover. If
G has no isolated vertices, then E(G) is an edge cover of G.
The problem is to find an edge cover of the minimum cardinality.

The minimum cardinality of an edge cover of G is denoted by
β′(G).

Theorem 3.5 (Gallai, 1959): For each n-vertex graph G with no
isolated vertices, α′(G) + β′(G) = n.



Proof of Theorem 3.5. Let G be an n-vertex graph G with no
isolated vertices.

Part 1: We prove α′(G) + β′(G) ≤ n. Let M be a matching in G
with |M| = α′(G). It does not cover exactly n − 2α′(G) vertices.
Each of these vertices we can cover with a special edge. Thus

β′(G) ≤ α′(G) + (n − 2α′(G)) = n − α′(G),

as claimed.

Part 2: We now prove α′(G) + β′(G) ≥ n.
Let L be an edge cover of G with |L| = β′(G). Consider the
subgraph GL of G spanned by the edges in L.

By the minimality of L, GL does not contain cycles and paths of
length 3. Thus GL is a star forest.



Proof of Theorem 3.5. Let G be an n-vertex graph G with no
isolated vertices.

Part 1: We prove α′(G) + β′(G) ≤ n. Let M be a matching in G
with |M| = α′(G). It does not cover exactly n − 2α′(G) vertices.
Each of these vertices we can cover with a special edge. Thus

β′(G) ≤ α′(G) + (n − 2α′(G)) = n − α′(G),

as claimed.

Part 2: We now prove α′(G) + β′(G) ≥ n.
Let L be an edge cover of G with |L| = β′(G). Consider the
subgraph GL of G spanned by the edges in L.

By the minimality of L, GL does not contain cycles and paths of
length 3. Thus GL is a star forest.



Proof of Theorem 3.5. Let G be an n-vertex graph G with no
isolated vertices.

Part 1: We prove α′(G) + β′(G) ≤ n. Let M be a matching in G
with |M| = α′(G). It does not cover exactly n − 2α′(G) vertices.
Each of these vertices we can cover with a special edge. Thus

β′(G) ≤ α′(G) + (n − 2α′(G)) = n − α′(G),

as claimed.

Part 2: We now prove α′(G) + β′(G) ≥ n.
Let L be an edge cover of G with |L| = β′(G). Consider the
subgraph GL of G spanned by the edges in L.

By the minimality of L, GL does not contain cycles and paths of
length 3. Thus GL is a star forest.



Let k be the number of components in GL. Then GL has a
matching M with k edges.
On the other hand, |L| = n − k .

Therefore,

β′(G) + α′(G)≥ |L|+ |M| ≥ (n − k) + k = n,

as claimed.

Corollary: For each bipartite graph G with no isolated vertices,
α(G) = β′(G).
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The stable matching problem
In a famous paper ”College admissions and the stability of
marriage” from 1962, Gale and Shapley (awarded the Nobel
Prize for this in 2012) considered the following problem.

There are n men and n women. Each man has his own linear
order of preferences among women and each woman has her
own linear order of preferences among men.

An example:

Men [w , x , y , z] Women [a,b, c,d ]
w : c > b > a > d a : z > x > y > w
x : a > b > c > d b : y > w > x > z
y : a > c > b > d c : w > x > y > z
z : c > b > a > d d : x > y > z > w .
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There are n! ways to marry all men to all women. Each such
way corresponds to a perfect matching in Kn,n with parts X and
Y , where X is the set of the men and Y is the set of the women.

An unstable pair is such a matching M is a pair (x , y) with
x ∈ X and y ∈ Y such that x is not married to y but likes y
more than his wife and y likes x more than her husband.

A perfect matching in such Kn,n with preference list is stable, if
it has no unstable pairs.

Comment: The language is about marriage, but this setting
models also admissions of students or graduate students to
colleges. Applicants could be viewed as men and universities
as groups of women. If the number of vacancies is less than
the number of applicants, we can add extra women to whom
nobody wants to marry.
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Gale-Shapley Proposal Algorithm
Input: Preference rankings of men and women.

Goal: Find a stable matching.

Iteration: Each man proposes to the woman highest in his list
among those who had not rejected him, yet.
If each woman receives exactly one proposal, then Stop and
output this matching.
Otherwise, each woman says ”Maybe” to the highest in her list
proposer and rejects other proposers. Each man deletes the
woman rejecting him from his list. Go to the next iteration.

Theorem 3.6 (Gale and Shapley, 1962): The above algorithm
produces a stable matching.
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Proof of Theorem 3.6
Observation 1: If a woman rejects somebody at least once,
then she has a proposer till the very end, and the position of
each next ”Maybe” man in her list can only grow.

Observation 2: No man is rejected by all women.

Observation 3: The algorithm stops after at most n2 rounds
and produces some perfect matching M.

Observation 4: The produced matching M is stable.

Indeed, suppose M is not stable. Then there is x ∈ X and
a ∈ Y such that a is higher in the list of x than M(x) and x is
higher in the list of a than M(a).
This means x proposed to a at some step(s), and at some Step
j , a rejected him, because of a better proposer. But then by
Observation 1, M(a) is higher in her list than x .
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