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An example:

Men [w , x , y , z] Women [a,b, c,d ]
w : c > b > a > d a : z > x > y > w
x : a > b > c > d b : y > w > x > z
y : a > c > b > d c : w > x > y > z
z : c > b > a > d d : x > y > z > w .

An unstable pair is such a matching M is a pair (x , y) with
x ∈ X and y ∈ Y such that x is not married to y but likes y
more than his wife and y likes x more than her husband.

A perfect matching in such Kn,n with preference list is stable, if
it has no unstable pairs.



Gale-Shapley Proposal Algorithm
Input: Preference rankings of men and women.

Goal: Find a stable matching.

Iteration: Each man proposes to the woman highest in his list
among those who had not rejected him, yet.
If each woman receives exactly one proposal, then Stop and
output this matching.
Otherwise, each woman says ”Maybe” to the highest in her list
proposer and rejects other proposers. Each man deletes the
woman rejecting him from his list. Go to the next iteration.

Theorem 3.6 (Gale and Shapley, 1962): The above algorithm
produces a stable matching.



Proof of Theorem 3.6
Observation 1: If a woman rejects somebody at least once,
then she has a proposer till the very end, and the position of
each next ”Maybe” man in her list can only grow.

Observation 2: No man is rejected by all women.

Observation 3: The algorithm stops after at most n2 rounds
and produces some perfect matching M.

Observation 4: The produced matching M is stable.

Indeed, suppose M is not stable. Then there is x ∈ X and
a ∈ Y such that a is higher in the list of x than M(x) and x is
higher in the list of a than M(a).
This means x proposed to a at some step(s), and at some Step
j , a rejected him, because of a better proposer. But then by
Observation 1, M(a) is higher in her list than x .
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An example

Men [u, v , x , y , z] Women [a,b, c,d ,e]
u : c > b > e > d > a a : y > x > u > v > z
v : c > d > e > a > b b : u > x > v > z > y
x : a > b > c > d > e c : z > x > y > u > v
y : a > e > d > b > c d : v > x > u > z > y
z : c > e > b > a > d e : v > u > y > x > z.



So, we have a polynomial-time algorithm for finding some
stable matching.
It looks that women in this algorithm feel more comfortable and
secure because of Observation 1.
In fact, the situation is opposite.

It could be proved that as a result of the above algorithm,
EVERY MAN gets the BEST wife he can get in a stable
matching.
Moreover, EVERY WOMAN gets the WORST husband she can
get in a stable matching.

This algorithm is used to assign the graduates of American
medical schools as residents at hospitals over the country.
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Matchings in general graphs
For k ≥ 1, a k -factor in a graph G is a spanning k -regular
subgraph of G.

An odd component of a graph G is a component with an odd
number of vertices, and o(G) denotes the number odd
components of G

It turned out that the number of odd components of subgraphs
of G is important for the existence of perfect matchings in G.

For example, if G has an odd component, then G has no p.m.
Similarly, if G has a set S of vertices s.t. G − S has more than
|S| odd components, then again G has no p.m.

The importance of the above observation follows from the
famous Tutte’s Theorem.
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Theorem 3.7 (Tutte, 1947): A graph G has a p.m. if and only if

o(G − S) ≤ |S| ∀S ⊆ V (G). (1)

Proof. The ”only if” part is easy. We prove the ”if” part.
If this part does not hold for n-vertex simple graphs, then there
is an n-vertex simple graph G satisfying (1) and no p.m. with
the most edges.

Since adding an edge to G preserves (1), any such adding
leads to a graph with a p.m.
Let U be the set of vertices in G of degree n − 1.

Case 1: All components of G − U are complete graphs. Since
by (1), o(G − U) ≤ |U|, we construct a p.m. by hand.
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Case 2: Some component G′ of G − U is not a complete graph.
Then G′ contains an induced path P3, say with vertices x , y and
z (in this order).

Since y /∈ U, there is w ∈ V (G)− N(y).

Let e1 = xz, e2 = wy . Let Gi = G + ei . Then for i = 1,2, Gi
contains a p.m. Mi .
Furthermore, e1 ∈ M1 − M2 and e2 ∈ M2 − M1.

Consider the graph F with edge set M1 ∪ M2. By definition,
∆(F ) = 2, and every component is either an edge (belonging to
both, M1 and M2) or a cycle whose edges alternately belong to
M1 and M2.

Let Ci be the cycle in F containing ei .
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Case 2.1: C2 ̸= C1. Then we define a new perfect matching in
F :
M = (M1 − (M1 ∩ E(C1))) ∪ (M2 ∩ E(C1)).

This M contains neither e1 nor e2. Hence it is a p.m. in G, a
contradiction.

Case 2.2: C2 = C1.
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Let Q1 be the x , y -path in C1 − xz and Q2 be the z, y -path in
C1 − xz

By symmetry, we may assume that wy ∈ E(Q1). Let M0 be
obtained from M1 by deleting the edges in M1 ∩ Q2 and adding
edge xy and all edges in M2 ∩ Q2.

Then M0 covers all vertices of G and contains neither e1 nor e2.
This contradiction proves the theorem.


